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Abstract

Large language models (LLMs) are increas-001
ingly recognized for their exceptional genera-002
tive capabilities and versatility across various003
tasks. However, the high inference costs asso-004
ciated with these models have not received ad-005
equate attention, particularly when compared006
to the focus on training costs in existing re-007
search. In response to this gap, our study con-008
ducts a comprehensive benchmarking of LLM009
inference energy across a wide range of NLP010
tasks, where we analyze the impact of differ-011
ent models, tasks, prompts, and system-related012
factors on inference energy. Specifically, our013
experiments reveal several interesting insights,014
including strong correlation of inference en-015
ergy with output token length and response016
time. Also, we find that quantization and op-017
timal batch sizes, along with targeted prompt018
phrases, can significantly reduce energy usage.019
This study is the first to thoroughly benchmark020
LLM inference across such a diverse range of021
aspects, providing insights and offering sev-022
eral recommendations for improving energy023
efficiency in model deployment.024

1 Introduction025

Recent discussions on the energy and carbon im-026

pact of machine learning (ML) algorithms have027

mainly concentrated on quantifying energy usage028

during the training phase of these models (Dodge029

et al., 2022; Luccioni et al., 2023; Patterson et al.,030

2021; Raffel et al., 2020). Studies on inference en-031

ergy are much rarer because a single inference032

operation consumes considerably less energy and033

resources. However, under deployment, inference034

is performed many more times, making its energy035

impact significant and warranting separate investi-036

gation (Wu et al., 2022; Patterson et al., 2022). For037

example, 90% of total cloud computing demand038

for AWS, the largest global cloud provider, were039

for model inference purpose (Barr, 2019). More-040

over, a key motivation for training large language041

models is that a single model can achieve state- 042

of-the-art performance across diverse NLP tasks 043

due to its impressive zero-shot and few-shot capa- 044

bilities, making it energy-efficient from a training 045

perspective. However, when we consider the total 046

carbon footprint of the entire lifetime of the model, 047

the energy requirement for model inference plays 048

a significant role, considering the number of in- 049

ferences that are carried out during the model’s 050

lifetime. Thus it is crucial to conduct a systematic 051

study to quantify the energy requirements and car- 052

bon emissions for model inference across various 053

models and tasks. 054

Limitations of existing approaches: Some ex- 055

isting works attempt to address the gap, where 056

inference energy of LLMs are studied from varied 057

perspectives. Everman et al. (2023) evaluates a 058

bunch of GPT-based models on a number of hand- 059

crafted NLP prompts (open-ended question an- 060

swering).Samsi et al. (2023) study the inference 061

energy of LLMs for selected question-answering 062

datasets for Llama family models on different GPU 063

architecture. Li et al. (2024) compare the effect of 064

prompt directives on inference energy and perfor- 065

mance on 3 applications for Llama-2 (7B & 13B). 066

However, most of these works focus on ana- 067

lyzing the inference energy of LLMs from some 068

particular aspect while limiting themselves to a 069

limited set of LLMs and tasks, mostly ignoring 070

the performance-energy tradeoff. Luccioni et al. 071

(2024) offers benchmarking inference of LLMs for 072

a diverse range of LLMs and tasks, while primarily 073

focusing on the influence of model complexity and 074

task type on inference energy. 075

Contributions: In this work, we present a com- 076

prehensive study of LLMs, running models from 077

both encoder-decoder and decoder-only models 078

on both discriminative and generative NLP tasks, 079

while analyzing the impact of different models, 080

tasks, prompts, and system-related factors on in- 081
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Reference LLM Tasks/Datasets Observations

(Everman et al., 2023) GPT-styled models (4) 10 manual prompts Study on the energy-performance tradeoff of LLMs.

(Samsi et al., 2023) LlaMA models (3) QA tasks (2) Study inference cost on on diverse GPUs.

(Desislavov et al.,

2021)

DNN-based NLP mod-

els (7)

GLUE (9) Study model complexity vs inference cost.

(Liu et al., 2022) T5 models (3), GPT-

styled models (3)

NLP tasks (9),

RAFT

Study energy consumption of few-shot PEFT vs

in-context learning.

(Li et al., 2024) Llama models (2) QA tasks (3) Study effect of prompt directives on inference cost.

(Luccioni et al., 2024) Flan-T5 models (4),

BLOOMz models (4)

NLP + vision tasks

(10)

Study inference energy vs model complexity, task

type, output, etc.

Our work GPT styled models (6),

Flan-T5 models (4)

NLP tasks (11) Study inference cost vs input, output, response

time, model size & family, task complexity, quanti-

zation, batch size, targeted phrases

Table 1: Comparison of our approach with existing literature on benchmarking inference cost of LLMs

ference energy. Specifically, (i) We start with a082

detailed analysis of various model-related factors083

that affect the inference energy of LLMs, where we084

systematically study the correlation between infer-085

ence energy and influencing factors like input and086

output token length, response time, model size and087

complexity. (ii) We conduct various experiments088

to study the connection between inference energy089

and batch size, level of quantization, and prompt090

editing. (iii) We then complement our analysis by091

introducing the Normalized Accuracy metric, pro-092

viding an accuracy-energy usage tradeoff analysis093

across tasks and models. (iv) Finally, we present a094

list of efficiency guidelines in Section 5.095

2 Literature Survey096

Sustainable Large LanguageModels: (Schwartz097

et al., 2020) discuss the growing compute cost of098

deep learning research and advocate for making099

AI both greener and more inclusive by making100

efficiency an evaluation criteria. Following that101

trend, black-box approaches for reducing energy102

consumption of LLMs include usage of generation103

directives (Li et al., 2024), hardware and datacenter-104

oriented settings (McDonald et al., 2022), LLM cas-105

cading, prompt adaptation (Chen et al., 2023b), etc,106

while white-box approaches include speculative107

decoding (Leviathan et al., 2023), prunning (Kur-108

tić et al., 2024), embedding recycling (Saad-Falcon109

et al., 2022),quantization (Bai et al., 2022; Frantar110

et al., 2022; Xiao et al., 2023), few-shot PEFT (Liu111

et al., 2022), etc.112

Tools for measuring energy impact: To-113

ward systematic tracking of the energy consump-114

tion and carbon emissions in these models, re-115

searchers propose various tools, namely CodeCar-116

bon (Courty et al., 2024), CarbonTracker (Anthony117

et al., 2020), Experiment impact tracker (Hender-118

son et al., 2020), EnergyScope (Limpens et al., 119

2019), Eco2AI (Plosskaya et al., 2022), Carbu- 120

racy (Moro et al., 2023), etc. Recent literature 121

benchmarks these tools in various configura- 122

tions (Cao et al., 2020; Jay et al., 2023; Bouza et al., 123

2023), unanimously recommending CodeCarbon, 124

followed by CarbonTracker. 125

Benchmarking inference energy of LLMs: Us- 126

ing the tools as mentioned earlier, researchers at- 127

tempt to benchmark the inference energy of LLMs 128

in a diverse range of tasks and configurations. (Ev- 129

erman et al., 2023) conducts a thorough study on 130

the carbon impact of GPT-variants, concluding 131

high-carbon LLMs do not necessarily provide supe- 132

rior model quality than their low-carbon counter- 133

parts. (Samsi et al., 2023) benchmark the inference 134

energy of Llama models on diverse GPUs (NVIDIA 135

V100 and A100). (Luccioni et al., 2024) propose the 136

first systematic comparison of the inference en- 137

ergy of flan-t5 and Bloom models from a diverse 138

range of task and model-related aspects. Table 1 139

presents an overview of existing approaches and 140

their limitations. 141

3 Experimental setup 142

In this section, we describe the models, datasets 143

and various settings we use for our experiments. 144

3.1 Models 145

We select 6 popular and recent GPT-style models 146

from the decoder-only family and 4 Flan-T5 mod- 147

els from the encoder-decoder family, adding to 10 148

models in total (details in Appendix B). 149

Decoder-only Models generate output in an 150

autoregressive manner by predicting the next to- 151

ken in the sequence based on the context (key- 152

value-query) vectors corresponding to the in- 153

put and previously generated tokens. We con- 154

sider the following models from decoder family 155
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in our study. (D1) Tiny-LLama (1.1B params);156

(D2) Phi-3-mini (3.8B params); (D3) Mistral-157

7B (7.2B params); (D4) Llama-2-7B (6.7B params);158

(D5) Llama-3-8B (8.0B params); (D6) Llama-2-159

13B (13B params);160

Encoder-Decoder models process the input161

data and convert it into context (key-value) vec-162

tors. Then the decoder takes these vectors and163

generates output autoregressively. Models from164

this family, considered in our study, include:165

(ED1) Flan-T5-base (248M params); (ED2) Flan-166

T5-large (783M params); (ED3) Flan-T5-xl (2.8B167

params); (ED4) Flan-T5-xxl (11B params);168

3.2 Tasks and Datasets169

In this work, we select a diverse range of NLP tasks,170

from generative to question-answering, classifica-171

tion, and single-sentence tasks. This includes both172

general GLUE / SuperGLUE benchmarks, as well as173

domain specificVAX-Stance andCaves (for study-174

ing effect of task complexity). We describe the175

tasks and their corresponding datasets in Table 2.176

For each dataset, we selected 1024 data samples177

randomly and performed all experiments on the178

same set for comparable results. Performance met-179

rics are chosen depending on the tasks. For sum-180

marization tasks, average of ROUGE1, ROUGE2,181

and ROUGE-L are reported, whereas some form of182

F1 score are reported for the other tasks. Descrip-183

tion/prompts of the datasets and the individual184

metrics have been given in Appendix C.185

Normalized Accuracy (NA) Metric: Since differ-186

ent tasks use different metrics on different scales,187

it is difficult to compare the accuracy performance188

of models across the tasks. To gauge the overall189

performance of the models across multiple tasks,190

we introduce the NA metric that is obtained as191

follows. For each dataset, we first perform Z-score192

normalization across all the models, followed by193

a sigmoid operation to scale models between 0194

and 1. We then average the scores for each model195

across all datasets and multiply by 100. Note that196

this metric depends on the set of models used and197

will vary if models are added/removed. However,198

it allows us to quantify how well a model performs199

compared to others in the set.200

3.3 Hardware and Energy metrics201

We perform our experiments on a single NVIDIA202

A6000 GPU with 48GB VRAM hosted in a local203

server with Intel Xeon Silver 4210R processor204

and 128GB RAM, running Ubuntu 20.04-LTS. The205

Task Dataset

Linguistic acceptability check COLA (GLUE) (Wang

et al., 2019b)

Logical entailment Mnli (GLUE) (Wang

et al., 2019b)

Sentiment classification SST2 (GLUE) (Wang

et al., 2019b)

Contextual question answering Boolq (SuperGLUE)

(Wang et al., 2019a)

Causal reasoning COPA (SuperGLUE)

(Wang et al., 2019a)

Entity Question answering ReCoRD (SuperGLUE)

(Wang et al., 2019a)

Extractive question answering SQuAD v2 (Rajpurkar

et al., 2016)

Document summary generation CNN-DM (Nallapati

et al., 2016)

Dialogue summary generation SAMSum (Gliwa et al.,

2019)

3 class vaccine-stance classifica-

tion

VAX-Stance (Poddar

et al., 2022a)

12 class multi-label anti-vaccine

concerns classification

CAVES (Poddar et al.,

2022b)

Table 2: List of tasks/datasets we experimented on.

Description/prompts are been given in Appendix C.

server also hosted an NVIDIA A5000 GPU (24 GB), 206

which was used for one experiment, but otherwise 207

unused. We use Pytorch version 2.3 (with CUDA 208

12.1) and huggingface transformers version 4.41. 209

We use the popular Code Carbon (Schmidt et al., 210

2021) and Carbon Tracker (Anthony et al., 2020) 211

packages to measure the energy consumed in dif- 212

ferent experiments. Jay et al. (2023) demonstrated 213

the suitability and accuracy of CarbonTracker, 214

CodeCarbon, Energy Scope, and Experiment Im- 215

pact Tracker across various software-based power 216

meter setups, while Bouza et al. (2023) further es- 217

tablished the superiority of CodeCarbon and Car- 218

bonTracker among these tools. CodeCarbon is 219

especially the most user-friendly and works out 220

of the box, provided appropriate NVIDIA libraries 221

and permissions to Intel RAPL files. 222

These two packages measure the GPU-power 223

usage using pynvml and CPU-power using Intel 224

RAPL files every X seconds, and integrates it over 225

time. Carbon-tracker reports sum of these as the 226

total energy. Code-carbon also adds an estimate 227

of the RAM-power being used depending on the 228

RAM size. We use X = 10secs for a balance 229

between overhead costs and tracking accuracy. We 230

keep the Power Usage Effectiveness (PUE) to the 231

default 1.0 since we run all experiments on the 232

same server, but this implies that the actual energy 233

usage is higher than reported. 234

During inference, we provide test samples in 235

batches to the LLM, and measure the total energy 236
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required for 1024 samples per dataset using these237

tools. This includes both the input tokenization238

process by each model’s tokenizer and the output239

generation from the model. We keep the batch size240

to 8 for most experiments, except on the CNN-DM241

and SAMSum dataset for which we use a batch size242

of 4. While reporting results, we average the en-243

ergy usage and report the energy per sample in244

mWh (milli-Watt-hour). Unless otherwise stated,245

these are the default settings used for experiments.246

4 Factors Affecting Energy / Accuracy247

In this section, we discuss how different task,248

model, and setup-related factors contribute to the249

inference energy and accuracy metrics.250

4.1 Response time251

Response time is an important indicator for ac-252

tual inference energy, as given a (somewhat) fixed253

amount of power draw, the energy consumed is254

proportional to inference response time. To this255

end, we track the energy for each batch where256

the tracking interval is set to 1sec for the energy-257

measuring libraries. The batches were formed af-258

ter sorting the inputs (prompt + query) by length259

(so that similar-length queries end up together,260

allowing optimal padding and energy usage).261

Figure 1 (left column) compares per-sample av-262

erage response time and inference energy. They263

report the comparison for two representative mod-264

els, namely Flan-t5-xl andMistral, (rest of the mod-265

els in Appendix D). Points in the plot correspond266

to the average scores per query for the individual267

batches, with distinct color for each dataset.268

We find a strong correlation between response269

time and the inference energy (pearson r = 0.996,270

spearman rs = 0.968), indicating a strong possi-271

bility of using the response time as a reliable proxy272

for the energy consumed if demographic factors273

like location, energy grid, model, etc, are fixed.274

However, for different datasets, the slope of the275

dependency is different, which may be because276

of slightly different power draws due to datasets277

having different-sized inputs. We also compare278

the energy measures returned by CarbonTracker279

and CodeCarbon package and find a good corre-280

lation (pearson r = 0.610, spearman rs = 0.912),281

indicating reliable tracking.282

4.2 Input and Output token length283

The complexity of each attention block in a trans-284

former decoder model is given by the following285

equation (Vaswani et al., 2017), where n is the 286

#input tokens, d is the hidden dimension, and t is 287

the #output tokens. 288

O(n, d, t) = (n.d2 + n2.d).t (1) 289

This equation suggests input and output length 290

play a major role in deciding the computational 291

complexity of large language models, which con- 292

sist of several consecutive layers of multiple such 293

attention blocks, and thereby, the required infer- 294

ence energy. In this section, we attempt to explore 295

the influence of the aforementioned factors in a 296

more systematic manner. Toward that, we first 297

explore a similar setup explained in Section 4.1 298

to plot the batch-wise energy. Sorting the inputs 299

by their length before batching is especially im- 300

portant because the batches with random input 301

lengths can all get averaged out to have similar 302

values otherwise, making it difficult to visualize 303

the effect of energy with input/output sizes. 304

Input Length: Figure 1 (middle column) com- 305

pares per-sample average inference energy with 306

per-sample average input token length. Even 307

though the input size appears as a quadratic term 308

in Eq. 1, we see a linear trend of energy usage 309

with input size, attributed to the parallelization in 310

computing self-attention. The bigger, spread out 311

clusters primarily belong to the generative tasks, 312

namely, CNN-DM and SAMSum datasets, due to 313

their larger outputs than the other discriminative 314

tasks, which lay in the bottom clusters. 315

Output Length: Figure 1 (right column) compares 316

per-sample average output token length with per- 317

sample average inference energy for individual 318

batches, where we observe a similar trend indicat- 319

ing linear increment of energy with output size, 320

in accordance with Eq. 1. Here most tasks except 321

CNN-DM and SAMSum cluster around the bottom 322

left because of their short outputs, whereas the 323

widespread clusters of CNN-DM and SAMSum to- 324

wards the top provide a better visualization of the 325

linear dependency. Note that, the slope is steeper 326

for output length in comparison to the slope for in- 327

put length, (input pearson r = 0.697, output pear- 328

son r = 0.952) indicating a stronger role played 329

by output length in deciding the inference energy. 330

Controlled setup: For better and more exclu- 331

sive insights into the relation between inference 332

time and input and output length, we perform the 333

following controlled experiment where we fix ei- 334

ther input or output length and vary the other. 335
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Figure 1: Inference energy vs response time, input and output-token length averaged across samples in a batch

plotted across all datasets for Flan-T5-xl andMistral-7B. Dots correspond to distinct batches of different datasets.
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Figure 2: Inference energy on CNN-DM where we vary

input token lengths fixing #output tokens to 1.

Effect of varying input length: For CNN-DM336

dataset, we truncated each input text into N to-337

kens and ask the model to summarize the input,338

where we vary N from 100 to 400 at fixed inter-339

vals of 50 tokens, by means of truncation/padding.340

To eliminate the influence of generated output on341

inference energy, we force the model to stop gen-342

eration after generating the single token, which343

allows us to monitor the influence of input length344

on model inference energy in an exclusive manner.345

Figure 2 plots the inference energy (in terms346

of %) relative to the energy required for the input347

with 100 tokens. The results indicate a linear in-348

crease in energy with longer input lengths, with a349

steeper slope observed for decoder-only models.350

This is likely due to the longer decoder modules351

present in these models.352

Effect of varying output length: Similarly, to353

study the effect of output length on inference en-354
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Figure 3: Inference energy on CNN-DM dataset when

the output length is varied, keeping input length fixed.

ergy exclusively, we take the CNN-DM dataset, 355

fix the input text length and allow the generation 356

length to vary from 1 to 25 tokens. Specifically, 357

we instruct the model to summarize the input text 358

but force the model to stop after it generates the 359

required number of tokens. 360

Figure 3 plots the energy (in %) relative to the 361

energy required for generating a single token, con- 362

firming linear energy increment with generation 363

length. However, the energy of generating the 1st 364

token is much more than additional tokens, e.g. 365

generating 2 tokens takes only about 12% more 366

energy than generating 1 token. This is because 367

the model processes the entire input in the first 368

time step, but only 1 token for subsequent steps 369

(by means of caching the K-Q-V values for prior 370

tokens). Also, note that, the increment of energy 371

is larger with increasing output length, compared 372

to input length. Contrary to Figure 2, the relative 373
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increase is higher for the encoder-decoder family374

here, attributed to the fact that initial energy re-375

quirement is smaller for these families, along with376

higher jumps in energy with output length.377

4.3 Task complexity378

Next, we explore whether task ‘complexity’ has379

a significant impact on inference energy. Toward380

that, we conduct a series of controlled experiments381

where inference energy of two tasks with identical382

input and output length and distinctly different383

levels of complexity are compared. Here, we inter-384

pret "complexity" based on human cognition.385

We compare the inference energy between the386

VAX-Stance and Caves datasets, where the input387

texts are similar—tweets related to vaccines—but388

the tasks differ: a 3-class single-label classification389

for VAX-Stance versus a 12-class multi-label clas-390

sification for Caves. We ensure consistent input391

length via padding and fix the output to a single392

token, to find the energy difference to be < 1%.393

Similarly, we compare the average inference en-394

ergy for the summarization (hard) vs returning the395

first three sentences of the input (trivial) in CNN-396

DM dataset, to find the energy difference between397

the two tasks as less than 2%, indicating that task398

complexity hardly has any significant impact on399

inference energy if input and output lengths are400

kept fixed. This observation follows from the fact401

that the computational steps per token are fixed402

by the model’s architecture, with LLMs processing403

the inputs uniformly, without additional branches404

or conditional logic that would increase the load405

for more complex tasks.406

4.4 Model family and size407

We now compare the energy usage and normal-408

ized accuracy of different models with respect to409

their size (number of parameters). The model sizes410

and family have been listed in Section 3.1. Figure 4411

compares the size of models with per-sample infer-412

ence energy, averaged across all samples, showing413

a linear increase with the size of the model (note414

that only Y-axis is in log scale in Fig 4), that are415

individually visible for both the encoder-decoder416

and the decoder-only models.417

Encoder-decoder models typically consume less418

energy than decoder-only models with a compara-419

ble number of parameters. For instance, Flan-T5-xl420

and Phi-3-mini have a similar parameter count but421

use significantly less energy. The same pattern422

holds true for Flan-T5-large versus tinyLlama, and423
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Figure 4: Average per-prompt inference energy vs

model size for all models and datasets. The black lines

join the median energy for each model family.

Flan-T5-xxl versus Llama-2-13B. This is because 424

the decoder part in the encoder-decoder models 425

is half the size, which reduces computational de- 426

mands during the autoregressive decoding phase. 427

Accuracymetrics: The top row of Table 3 lists the 428

Normalized accuracy (NA) scores for each model 429

across all datasets (performance on each dataset 430

given in Appendix E). Here, we observe that per- 431

formance depends on both model size and family. 432

Smaller models perform poorly, with TinyLlama 433

giving the worst performance, followed by Phi- 434

3-mini and flan-t5-base. Llama models tend to 435

perform inferior to flan-t5 models of similar size 436

(flan-t5-large, -xl, and -XXL). Mistral-7B is the only 437

exception among the decoder-only models that 438

performs comparably with the flan-t5 family. 439

As a general statement, it can be commented 440

that selecting models from the encoder-decoder 441

family for NLP tasks is recommended from an 442

energy-efficiency perspective, as well as their per- 443

formance which is improved by sequence to se- 444

quence instruction tuning. In contrast, decoder- 445

only models trained on vast amounts of general 446

data is more suited as an informational chatbot 447

(though instruction tuned versions of Llama3, Mis- 448

tral and Phi-3 try to bridge the gap). 449

4.5 Batch size 450

Next, we try to understand the effect of batch size 451

on the energy usage during inference. Intuitively, 452

increasing the batch size should lead to lower run- 453

times, requiring lesser energy per individual sam- 454

ple. However, the maximum batch size possible 455

is limited by size of the GPU VRAM (48GB for 456

A6000). We run the models on all the tasks under 457

different batch sizes BS = 4, 8, 16, 32, 64. Fig- 458
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flan-t5 flan-t5 flan-t5 flan-t5 TinyLlama Phi-3 Mistral Llama-2 Llama-3 Llama-2

base large xl xxl 1.1B mini 7B 7B 8B 13B

I. Average Normalized Accuracy across all datasets with original settings
default 42.85 69.77 55.45 58.12 23.5 41.82 59.91 42.83 55.09 52.31

II. Average change in performance (%) on Quantization
8-bit 0.47 0.03 -1.16 1.43 0.9 -2.92 -0.55 -0.46 -2.43 -4.66

4-bit 1.78 -1.83 -0.63 -0.61 9.66 -4.19 4.27 -1.57 -1.95 -2.76

III. Average change in performance (%) on introducing targeted phrases in prompts
fix-output -1.7 -2.42 -1.22 0.39 4.71 -8.21 11.64 -12.54 -8.53 3.24

energy-eff -1.28 -4.2 -0.89 0.84 1.44 9.55 2.52 0.33 -5.19 5.2

+ fix-output -1.33 -2.68 -1.78 0.74 4.07 4.11 12.4 -15.73 -10.07 5.38

quick 1.29 -3.88 -0.41 -1.71 2.63 8.14 5.82 -4.24 -14.88 3.69

+ fix-output -0.72 -5.48 -0.27 0.2 4.64 -2.55 12.45 -13.23 -18.88 2.64

Table 3: Accuracy metrics for LLM inferences averaged across all datasets. I. Encoder-Decoder models perform

better or close to Decoder only models. II. Quantization does not decrease performance by much (< 5%)

III. Performance degrades with most phrases, more so where energy / output token length had also reduced.
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Figure 5: Per-sample inference energy averaged across

all datasets when the batch size is varied.

ure 5 displays the average energy consumption per459

sample across all tasks, illustrating that increasing460

the batch size leads to a decrease in per-sample461

inference energy. However, for certain datasets462

and larger model combinations, higher batch sizes463

can result in out-of-memory errors, suggesting464

that there is an optimal batch size for each dataset465

and model size combination. To achieve energy-466

efficient inferences, it is advisable to perform in-467

ference using this optimal batch size.468

We have repeated this experiment on a NVIDIA469

A5000 GPU instead of the A6000, reported in Ap-470

pendix F; however, we did not find a significant471

difference in the inference time. This also signi-472

fies that GPUs with similar usable power require473

similar energy. Instead, the GPU VRAM size plays474

a more important role, allowing larger batches.475

4.6 Quantization476

Finally, we verify the effect of quantization on en-477

ergy usage while also comparing the loss in perfor-478

mancemetrics. We have used the bitsandbyes pack-479

age to load the transformers model weights in 8-bit480

and 4-bit quantized format. These quantized ver-481
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Figure 6: Per-sample inference energy averaged across

all datasets with 4-bit quantized models.

sions take up much less GPU memory to load (and 482

thus can be run with larger batch sizes), though 483

the computations still get executed in 16-bit single 484

precision format. We also loaded the Flan-T5 mod- 485

els with their original 32-bit precision weights to 486

understand if they improve performance during 487

inference. However, the models seem to produce 488

exactly same outputs, yet requiring almost twice 489

the energy, and thus 32-bit precision should not 490

be used in production during inference. 491

Figure 6 shows the average change in energy 492

for the 4-bit quantized model, with respect to the 493

original model. Interestingly, keeping all factors 494

same, quantization increases the energy used to 495

almost 2×, because of the overhead of additional 496

data format conversions to 16-bit. However, using 497

the 4-bit quantized model with larger batch size 498

of 256 reduces the energy to about 0.33× of the 499

original 16-bit model with batch size of 64. We 500

noticed very similar results with 8-bit quantization 501

and thus, its energy plot is given in Appendix F. 502

Accuracy metrics: The change in performance 503

of the quantized models compared to the original 504

models is given in the middle set of rows of Table 3. 505
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Directive Targeted Phrases

default Read the passage and answer the question

with True or False.

quick <default> Answer as quickly as possible.

fix-output <default> Do not output anything else.

energy-eff <default> Answer in energy-efficient way.

Table 4: List of targeted phrases that are used to instruct

the LLM for energy-efficient inference.

Quantization seems to reduce the performance by506

less than 5% for some models (mostly decoder-507

only models in 8-bit quantization and majority508

of the models for 4-bit quantization) and even509

increases performance slightly for some smaller510

models, which may have been overfitting earlier.511

Thus, quantization does not seem to degrade per-512

formance too much and should be used to speed513

up inference time by increasing batch size.514

4.7 Effect of targeted phrases in prompts515

on inference energy516

Finally, we attempt to find whether addition of517

phrases targeted towards energy optimization518

can affect the inference energy. Specifically, we519

wanted to see if adding a few more input tokens520

can lead to a larger decrease in energy by reducing521

the output token length. In this experiment, for522

each dataset, we append certain targeted phrases523

after the default prompt, as shown in Table 4.524

Figure 7 reports the % inference energy us-525

age using modified prompts compared to default526

prompts, averaged across the two generative and527

rest discriminative tasks. Significant energy reduc-528

tion is observed for Mistral and Llama-2 models.529

The reduction is less pronounced in generative530

tasks, where it mainly results from slightly shorter531

outputs. However, for discriminative tasks, the532

reductions are much more significant. This differ-533

ence arises because these models typically include534

explanations with their answers, leading to longer535

outputs by default. By instructing the model to be536

concise we can limit the output length and, thus,537

reduce inference energy. However, the change in538

energy is negligible for the encoder-decoder mod-539

els, Llama-3 and Phi-3-mini, as they typically gen-540

erate short, brief answers, leaving little scope for541

reducing the output. Thereby, additional phrases542

in the prompt increase the input without reducing543

the generation, resulting in higher inference en-544

ergy. TinyLlama always generates long outputs,545

often stopping only at the generation limit, ren-546

dering the targeted phrases useless.547
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Figure 7: Effect of inserting targeted phrases in prompt

on inference energy, as a percentage of default prompt.

Accuracy metrics: The performance metrics for 548

modified prompts are given in bottom rows of Ta- 549

ble 3, we observe that the introduction of such 550

phrases in prompts results in diverse behavior de- 551

pending on model size and architecture. Perfor- 552

mance degrades in most of the cases, especially 553

where output token length had also reduced, tak- 554

ing lesser energy. In summary, we can see that the 555

introduction of such phrases turns out to be useful 556

only for Mistral-7B and Llama-2-13B, considering 557

energy efficiency without affecting performance. 558

5 Concluding Discussion 559

In this study, we benchmarked the power con- 560

sumption of various large language models (LLMs) 561

during inference across diverse NLP tasks. Our 562

primary high-level takeaways can be summarized 563

as follows: (1) Strong correlation between infer- 564

ence energy and response time makes it a good 565

proxy for energy estimation in black-box models. 566

(2) While input size shows a linear relationship 567

with energy use, output length has a stronger in- 568

fluence on inference energy. (3) Task complexity 569

has little impact on inference time independent of 570

input and output lengths. (4) Selecting models 571

from the encoder-decoder family for NLP tasks is 572

recommended from an energy-efficiency perspec- 573

tive, as well as their performance. (5) Increasing 574

batch size reduces inference energy. However, it is 575

constrained by the GPU memory availability, rec- 576

ommending an optimal batch size for a particular 577

model, task pair. (6) Quantization allows larger 578

batches, resulting in lower energy use without 579

degrading the inference accuracy much. (7) Intro- 580

ducing targeted phrases achieves energy reduction 581

for older decoder-only models by restricting their 582

output for discriminative tasks. 583

8



Limitations584

Despite the comprehensive analysis and valuable585

insights provided by this study, the following limi-586

tations should be considered. First, the benchmark-587

ing experiments were conducted under controlled588

conditions, which may not fully capture the vari-589

ability and complexity of real-world deployment590

environments. The results might differ when mod-591

els are deployed on different hardware, infrastruc-592

ture or in varying operational contexts. Also, the593

study focuses primarily on specific NLP tasks and594

may not generalize to other domains like vision595

or time series analysis. Additionally, while the596

study explores a range of system-related factors,597

it does not account for all possible variables that598

could influence inference energy, such as network599

latency or hardware-specific optimizations.600

Ethical Considerations601

One of the main ethical issues in our experimenta-602

tion was the substantial energy consumption and603

carbon emissions it produced. We perform 1024604

inferences for 11 datasets over 10 models in several605

configurations, necessitating multiple repetitions606

of the inferences, along with several pilot experi-607

ments to finalize the experimental setup. This led608

to an approx total energy use of 2000 kWh. To609

reduce our environmental impact, we limited our610

experiments to only 1024 test examples sampled611

from the datasets.612
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A Additional Literature Survey 847

Sustainable Large Language Models: Schwartz 848

et al. (Schwartz et al., 2020) discuss the growing 849

compute cost of deep learning research and advo- 850

cate for making efficiency an evaluation criterion 851

alongside accuracy and related measures with a fo- 852

cus on making AI both greener and more inclusive. 853

Lacoste et al. (Lacoste et al., 2019) consider various 854

factors like energy grid, energy draw of server, 855

make and model of training hardware to assess 856

the environmental impact of machine learning al- 857

gorithms. Following that trend, recent literature 858

focuses on various alternatives to reduce the in- 859

ference energy of large language models. Among 860

the black-box approaches, Li et al (Li et al., 2024) 861

append generation directives to user prompts for 862

carbon-friendly LLM inferences. (McDonald et al., 863

2022) focus on techniques to measure energy us- 864

age and propose various hardware and datacenter- 865

oriented settings that can be tuned to reduce en- 866

ergy consumption for training and inference for 867

language models. Frugal GPT (Chen et al., 2023b) 868

explores strategies like prompt adaptation, LLM 869

cascade, and LLM approximation for reducing the 870

inference cost for a large set of queries. On the 871

contrary, white-box approaches include specula- 872

tive decoding (Leviathan et al., 2023), speculative 873

sampling (Chen et al., 2023a), prunning (Kurtić 874

et al., 2024), embedding recycling (Saad-Falcon 875

et al., 2022), quantization (Bai et al., 2022; Frantar 876

et al., 2022; Xiao et al., 2023), and many more. 877

Tools for measuring energy impact: Re- 878

searchers propose various tools for tracking the 879

realtime energy consumption and carbon emis- 880

sions during model training and inferences. These 881

tools include CodeCarbon (Courty et al., 2024), 882

CarbonTracker (Anthony et al., 2020), Experiment 883

impact tracker (Henderson et al., 2020), Ener- 884

gyScope (Limpens et al., 2019), etc. Green Algo- 885

rithms (Lannelongue et al., 2021) is another online 886

tool, enabling a user to estimate and report the 887

carbon footprint of their computation. Eco2AI is 888

another open-source package to help data scien- 889

tists and researchers to track energy consumption 890

and equivalent CO2 emissions of their models in a 891

straightforward way (Plosskaya et al., 2022). Car- 892

buracy (Moro et al., 2023) proposes the first carbon- 893

aware accuracy measure that captures both model 894

effectiveness and eco-sustainability for generative 895

transformer-based models (Moro et al., 2023). Re- 896

searchers explore energy impact analysis in terms 897
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of carbon footprints of ML algorithms in various898

domains, namely differential privacy (Naidu et al.,899

2021), medical image analysis (Selvan et al., 2022),900

etc.901

Benchmarking energy tools: Researchers902

benchmark the tools for measuring carbon foot-903

prints in various configurations for various deep904

learning based ML models. Cao et al (Cao et al.,905

2020) compare energy returned by software-based906

energy measurements with hardware power meter907

(WhattsUPMeter) on various NLP models and re-908

port experiment impact tracker as not so accurate.909

Jay et al (Jay et al., 2023) qualitatively and experi-910

mentally compare several software-based power911

meters against high-precision physical power me-912

ters while executing various intensive workloads,913

where they conclude that for measuring energy,914

Carbon Tracker, Code Carbon, Energy Scope, and915

Experiment Impact Tracker are suitable fits. How-916

ever, Bouza et al (Bouza et al., 2023) establish that917

the energy value reported by CodeCarbon is clos-918

est toWattmeter, followed by CarbonTracker, with919

more variability between infrastructures.920

Benchmarking LLMs: Recently, researchers921

attempt to benchmark the inference energy of a922

broad range of LLMs in a diverse range of tasks923

and configurations. (Everman et al., 2023) con-924

ducts a thorough study on the carbon impact of925

various open-source LLMs, including GPT-J 6B,926

GPT Neo 2.7B, GPT-NEO 1.3B, and GPT-2 at the in-927

ference stage, utilizing the Software Carbon Inten-928

sity (SCI) specification released by the Green Soft-929

ware Foundation, concluding high-carbon LLMs930

do not necessarily provide superior model qual-931

ity than their low-carbon counterparts. Samsi et932

al (Samsi et al., 2023) benchmark the inference933

performance and inference energy costs of differ-934

ent sizes of LLaMA on two generations of popular935

GPUs (NVIDIA V100 and A100) and two datasets936

(Alpaca and GSM8K) to reflect the diverse set of937

tasks/benchmarks for LLMs in research and prac-938

tice. Liu et al. (Liu et al., 2022) propose that few-939

shot parameter-efficient fine-tuning is less energy-940

intensive without affecting the inference perfor-941

mance. Desislavov et al (Desislavov et al., 2021)942

study the correlation between model complexity943

and inference energy (measured using GFLOPs)944

for various NLP and Computer Visionmodels. Luc-945

cioni et al. (Luccioni et al., 2024) propose the first946

systematic comparison of the ongoing inference947

cost of various categories of ML systems, cover-948

ing both task-specific (i.e. finetuned models that949

carry out a single task) and ‘general-purpose’ mod- 950

els. Table 1 presents a comprehensive overview of 951

existing approaches and their limitations. 952

B Model Descriptions 953

Check Table 5 954

C Dataset Examples and Metrics 955

Check Table 6 956

D Scatter Plots of batch-wise energy 957

tracking 958

Check Figure 8 959

E Original Accuracy Metrics of 960

individual datasets 961

Check Table 7 962

F BS Quant experiments 963

Check Figure 9 964
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Model Model description link

Tiny-LLama (1.1B params) https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0

Phi-3-mini (3.8B params) https://huggingface.co/microsoft/Phi-3-mini-4k-instruct

Mistral-7B (7.2B params) https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

Llama-2-7B (6.7B params) https://huggingface.co/meta-llama/Llama-2-7b-chat-hf

Llama-3-8B (8.0B params) https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

Llama-2-13B (13B params) https://huggingface.co/meta-llama/Llama-2-13b-chat-hf

Flan-T5-base (248M params) https://huggingface.co/google/flan-t5-base

Flan-T5-large (783M params) https://huggingface.co/google/flan-t5-large

Flan-T5-xl (2.8B params) https://huggingface.co/google/flan-t5-xl

Flan-T5-xxl (11B params) https://huggingface.co/google/flan-t5-xxl

Table 5: Links to specific models versions we used in our experiments

Task Dataset Metric Input Prompt with query

Linguistic acceptability check COLA

(GLUE)

Macro-F1 Answer in binary whether the given sentence is gram-

matically, semantically, and logically acceptable.

Logical entailment Mnli (GLUE) Macro-F1 Select the stance of the premise towards the hypothesis:

Entailment (0), Neutral (1) or Contradiction (2).

Sentiment classification SST2

(GLUE)

Macro-F1 Classify the sentiment of the sentence as positive (1) or

negative (0).

Contextual question answering Boolq (Su-

perGLUE)

Macro-F1 Read the passage and answer the question with True (1)

or False (0).

Causal reasoning COPA (Su-

perGLUE)

Macro-F1 Select Choice1 (0) or Choice2 (1) that is a cause/effect

of a given premise.

Entity Question answering ReCoRD (Su-

perGLUE)

F1 Read the passage and find the entity that replaces

“@placeholder” inside the query.

Extractive question answering SQuAD v2 F1 Read the context and answer the question with a phrase

from the context.

Document summary generation CNN-DM avgROUGE-

1,2,L

Summarize a given news article.

Dialogue summary generation SAMSum avgROUGE-

1,2,L

Summarize a given dialogue sequence.

3 class vaccine-stance classifica-

tion

VAX-Stance Macro-F1 Classify into one of the following three vaccine stances:

Pro-Vaccine, Anti-Vaccine or Neutral.

12 class multi-label anti-vaccine

concerns classification

CAVES Macro-F1 Classify into one or more of these anti-vax classes:

0: ineffective, 1: ingredients, 2: rushed ... 11: side-effect.

Table 6: List of tasks/datasets we experimented on along with input prompts/descriptions

Dataset flan-t5 flan-t5 flan-t5 flan-t5 TinyLlama Phi-3 Mistral Llama-2 Llama-3 Llama-2

base large xl xxl 1.1B mini 7B 7B 8B 13B

cola 23.5 68.8 31.2 24.9 22.1 44.1 54.1 22.1 55.6 30.3

mnli 54.2 88.0 79.4 87.6 22.6 24.6 46.1 28.5 50.6 41.3

sst2 33.0 74.5 32.7 40.2 47.4 51.8 75.1 48.6 71.1 57.7

boolq 71.3 86.4 91.6 88.5 45.5 46.4 74.7 61.4 65.2 64.5

copa 33.3 41.9 26.0 42.7 36.7 64.9 60.3 53.2 73.7 56.1

squad 57.2 59.5 59.5 58.4 18.3 20.2 31.0 47.6 16.9 44.1

cnndm 21.4 20.8 16.5 16.2 12.7 18.4 21.7 18.9 19.6 22.9

samsum 40.0 44.6 46.1 45.3 21.9 16.0 25.8 28.4 22.1 29.3

caves 11.9 30.0 37.0 38.9 4.8 24.3 34.5 12.5 28.2 20.8

vax 20.3 53.0 52.1 54.6 23.0 47.9 52.7 50.2 52.5 54.2

Table 7: Original avgROUGE / F1 metrics for LLM inferences averaged across all datasets.
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Figure 8: Average per-sample inference energy vs average per-sample response time, input and output-token

length across all datasets for different models where points in the image correspond to individual batches of

different datasets.
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(a) Per-sample inference energy averaged across all

datasets when the batch size is varied, on the A5000 GPU

instead of A6000.
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(b) Per-sample inference energy averaged across all

datasets with 8-bit quantized models.

Figure 9: Additional Batch size experiments on the A5000 GPU, and using 8-bit quantization.
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