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Abstract

Text-based dialogues are now widely used to solve real-world problems. In cases where
solution strategies are already known, they can sometimes be codified into workflows and
used to guide humans or artificial agents through the task of helping clients. We introduce a
new problem formulation that we call Workflow Discovery (WD) in which we are interested
in the situation where a formal workflow may not yet exist. Still, we wish to discover
the set of actions that have been taken to resolve a particular problem. We also examine a
sequence-to-sequence (Seq2Seq) approach for this novel task. We present experiments where
we extract workflows from dialogues in the Action-Based Conversations Dataset (ABCD).
Since the ABCD dialogues follow known workflows to guide agents, we can evaluate our
ability to extract such workflows using ground truth sequences of actions. We propose and
evaluate an approach that conditions models on the set of possible actions, and we show
that using this strategy, we can improve WD performance. Our conditioning approach
also improves zero-shot and few-shot WD performance when transferring learned models
to unseen domains within and across datasets. Further, a modified variant of our Seq2Seq
method achieves state-of-the-art performance on related but different problems of Action

State Tracking (AST) and Cascading Dialogue Success (CDS) on the ABCD dataset.

1 Introduction

Task-oriented dialogues are ubiquitous in
everyday life and customer service in par-
ticular. Customer support agents use
dialogue to help customers shop online,
make travel plans, and receive assistance
for complex problems. Behind these di-
alogues, there could be either implicit
or explicit workflows — actions that the
agent has followed to ensure the customer
request is adequately addressed. For ex-
ample, booking an airline ticket might
comply with the following workflow: pull
up an account, register a seat, and re-
quest payment. Services with no formal
workflows struggle to handle variations in
how a particular issue is resolved, espe-
cially for cases where customer support
agents tend to follow “unwritten rules”
that differ from one agent to another, sig-
nificantly affecting customer satisfaction
and making training new agents more dif-

Task-Oriented Dialogue Predicted
| need to check on the status of my [ Workflow |
subscription.
Pull up account
[ Can you give me your username, ] [Janne55]
please? \l/
Itis Janne55
Verify identity
Your subscription is valid until next
[ month. ] \l/
. . Get subscription
-Possible Actions - status
Offer refund, Pull up account, Send link,
Verify identity, Get subscripfion status, ...

Figure 1: Our method for extracting workflows from dialogues.
The input consists of the dialogue utterances and the list of pos-
sible actions if available. The output is the workflow* followed
to resolve a specific task, consisting of the actions (e.g., Verify
identity) and their slot values (e.g., Janne5b5).

ficult. However, correctly identifying each action constituting a workflow can require significant domain
expertise, especially when the set of possible actions and procedures may change over time. For instance,
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newly added items or an update to the returns policy in an online shopping service may require modifying
the established workflows.

In this work, we focus on “workflow discovery” (WD) — the extraction of workflows that have either implicitly
or explicitly guided task-oriented dialogues between two people. Workflows extracted from a conversation
consist of a summary of the key actions taken during the dialogue. These workflows consist of pre-defined
terms for actions and slots when possible, but our approach also allows for actions that are not known to be
invented by the model online and used as new steps in the generated workflow. Our approach is targeted
toward the task of analyzing chat transcripts between real people, extracting workflows from transcripts,
and using the extracted workflows to help design automated dialogue systems or to guide systems that are
already operational. Alternatively, extracted workflows might also be used for human agent training. One
might imagine many scenarios where an analyst might use WD to understand if an unresolved problem is
due to a divergence from a formal workflow or to understand if workflows have organically emerged, even
in cases where no formal workflow documentation exists. WD is related to the well-established field of
process mining, but process mining typically extracts workflow information from event logs as opposed to
unstructured dialogues encoded as natural language. Our work shows that traditional process mining can
be dramatically expanded using modern NLP and sequence modeling techniques, as we propose and explore
here. Our approach correspondingly allows traditional event logging information to be combined with NLP
allowing systems constructed using our approach to benefit from recent advances in large language models
(LLMs), including enhanced zero-shot and few-shot learning performance.

To address the challenges of WD intro-
duced by dynamically changing actions, Task-Oriented Dialogue

distributional shifts, and the challenges _ Predicted
. Can you help me book a table at a
of transferring to completely new do- Chinese restaurant that's in the center Workflow
mains with limited labeled data, we pro- of town? Book Chinese
restaurant

[2 people, 11:45]

N

Return reference
numbers
[GFIL3UGS5]

output the workflow consisting of the Zﬁm?glfi;ogb?ef 123115];; E’;g? They
full set of actions and slot values from a Reference number is : GFIL3UGS.
task-oriented dialogue. Further, to bet-

ter adapt to unseen domains, we condi- I'am looking for some type of

tion our method on the full or partial reerwsftzrttj%r:}?'l\%?;g;;he same area as fhe
set of possible actions as shown in Fig-

ure [2] enabling us to perform zero-shot [ What about amuseum? The Combridge]
and few-shot learning. Figure [2] also il- S 5 O NICE One.
lustrates the type of generalization pos-
sible with our approach in these regimes Possible Actions -- ‘
where we can propose new actions never | ook hotel, Find hotel, Book restaurant,
seen during training. We investigate four | Findattraction, Find train, ...

scenarios for extracting workflows from - .
dialogues under differing degrees of dis-
tributional shift: (1) In-Domain work-
flows, where all workflow actions have
been seen during training. (2) Cross-
domain zero-shot, where actions from se-
lected domains have been omitted during
training but are present in the valid and test sets, (3) Cross-dataset zero-shot, where a model trained on
all the domains of one dataset is applied to another domain in a zero-shot setting, and (4) Cross-dataset
few-shot, where a model is trained on all the domains of one dataset, then trained on another domain is a
few-shot setting.

pose a text-to-text approach that can Great News! | was able to reserve

Modified Action
New Action
. Known Action

Figure 2: Our conditioning approach allows for better zero-shot
and few-shot performance. Entirely new workflow actions (i.e,
not in the list of possible actions) can be proposed, as well as
those based on minor modifications to known actions.

Qur contributions can be summarized as follows:

e We propose a new formulation to the problem of workflow extraction from dialogues, which, to
our knowledge, has not been examined or framed as we present here. We cast the problem as
summarizing dialogues with workflows and call the task Workflow Discovery (WD).
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o We propose a text-to-text approach to solve the WD task that takes entire dialogues as input and
outputs workflows consisting of sequences of actions and slot values that can be used to guide future
dialogues. We test our approach using various state-of-the-art text-to-text models and show its
efficacy on the Action Based Conversations Dataset (ABCD) (Chen et all 2021).

e We propose a conditioning mechanism for our text-to-text approach, providing the model with a
set of possible actions to use as potential candidates. We show that this mechanism allows our
method to be used in dramatically different domains from the MultiWOZ dataset (Budzianowski
et al |2018)), yielding good cross-dataset zero-shot workflow extraction performance. Moreover, it
allows an important performance increase in the cross-dataset few-shot setting.

e Using a variant of our approach, we achieve state-of-the-art results on related but different and
more standard tasks of Action State Tracking (AST) and Cascading Dialogue Success (CDS) on the
ABCD evaluation.

2 Related Work

Task-Oriented Dialogues The goal of task-oriented dialogue systems is to assist users in completing
certain tasks for specific domains, such as restaurant and travel bookings, as exemplified by the MultiWOZ
dialogues of Budzianowski et al. (2018) and |Zang et al. (2020). In the more recent ABCD (Chen et al.,
2021)), dialogues have been captured around a retail theme in which tasks such as seeking a refund or up-
dating addresses can only be accomplished when relatively long sequences of actions have been successfully
accomplished. In this work, we define a new problem for task-oriented dialogue where our goal is to identify
or extract a set of actions constituting a workflow from a dialogue consisting of the interactions between a
human agent and a customer. We focus on achieving this goal for new domains in the zero-shot and few-shot
learning setting.

Sequence-to-Sequence Text Generation In this work, we use Encoder-Decoder-based sequence-to-
sequence models since we wish to take a whole dialogue as input and output a workflow. Our work is related
to models developed for translation (Sutskever et al., |2014)) and summarization (Gliwa et al.l 2019; [Zhang
et all 2020), with summarization being the closer of the two. However, here we define and examine a new
problem entirely — where dialogues are transformed into sequences of steps that an agent has used to solve
a problem, using a special vocabulary for workflow action steps.

Summarization Models State-of-the-art summarization methods include PEGASUS (Zhang et al.,2020)
and BART (Lewis et al.,|2019)), both of which are based on encoder-decoder transformers. With PEGASUS,
models are trained by removing or masking key sentences from an input document and training models to
generate a single output sequence containing the concatenation of the masked content, similar to extractive
summarization. The BART approach uses denoising autoencoder pretraining. The classical formulations of
extractive and abstractive summarization (e.g., for news and scientific papers) are different from our setting
here. However, since PEGASUS, BART and a recent T5-based summarization model available from Hug-
gingFace all yield strong performance for classical summarization tasks, we build upon and fine-tune these
base models for our workflow discovery problem setting and experiments.

Process Mining & Discovery The goal of process mining is to extract processes from event logs. In-
fluential prior work includes that of [Van der Aalst et al. (2004]), which examines a series of event logs and
generates workflow networks (WF-nets), which are special types of Petri networks for describing workflows
(Van Der Aalst & Dongenl 2013). Their approach is unsupervised whereas the more recent work of Sommers
et al.| (2021) trained graph convolutional neural networks on synthetic data to produce Petri nets from event
logs in a supervised manner. To the best of our knowledge, our work here is the first to use a large language
model for workflow discovery.

3 Workflow Discovery (WD)

We propose a novel task we call Workflow Discovery (WD) to extract the actual workflow followed by an agent
from a task-oriented dialogue. A workflow is a sequence of actions with their respective slot values in the same
order in which they appeared during the conversation. Formally, given a dialogue D = {uy, ua, ..., u, }, where
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n is the total number of utterances in the dialogue, and an optional list of possible actions § = {a1,...,a.},
where z is the number of known actions, and a. is a unique workflow action. A model should predict the
target workflow W = {(aq, {v]|0 <= j <= nm1}), ..., (ak, {vi|0 <= j <= ni})}, where a; € 6, v} and n; are
the j'" slot value and the number of available slot values respectively for action a;, and k is the number of
workflow actions.

Workflow Discovery differs from dialogue state tracking (DST) where in WD, we are interested in extracting
the sequence of actions that have been followed to resolve an issue. We are particularly interested in the
situation where the actions that are needed to resolve a problem associated with a given intent or task
are not known a priori and must be invented by the WD model. This is in sharp contrast to DST which
generally requires dialogue states to be known and pre-defined. DST also generally focuses on tracking the
state of one party in the conversation, e.g., the user. In contrast, WD extracts actions executed by the agent
and slot values collected from user utterances. Furthermore, WD differs from Action State Tracking (AST),
since WD aims to extract all actions and their matching slot values, using all dialogue utterances without
any extra metadata like the annotated action turns at once (no online tracking). In contrast, AST predicts
the next action at a given turn, given the previous turns only. Models trained for AST help agents select
the next action following the agent guidelines. In contrast, models trained for WD extract all actions from
chat logs between real people, including those that might deviate from the agent guidelines. WD is aimed
at agent training or workflow mining with the goal of formalizing the discovered processes for subsequent
automation. WD can be applied to completely new, organic tasks where possible actions are unknown. Some
aspects of AST could be seen as a subset of WD when actions and slots are known. However, we believe
that WD is more closely related to the concept of summarization using a specialized vocabulary for actions
and slots, when possible, but inventing new terms when needed.

We compare and contrast WD, AST, and DST in Figure[3] We note that Figure [3a] shows a situation where
our WD approach has succeeded in inventing a new term (i.e., "Generate new code") which describes the
exact action the agent performed. This result matches the agent guidelines (Chen et al.l [2021), where there
is a clear distinction between offering a promo code when a customer is unhappy in which our approach
uses the known "promo code" action, and generating a new code since the old one is no longer working. A
good WD method should exhibit compositional generalization when creating new terms for actions and their
arguments. For example, if a system has been trained to summarize dialogues that involve granting a refund
for ordering a pair of pants, the WD summary of a new dialogue involving the refund of a shirt should use
a vocabulary consistent with the manner in which the refund of a pair of pants has been expressed.

Finally, in contrast to policy learning, WD aims to extract a workflow from dialogue logs describing the
sequence of agent actions that depend on slot values extracted from user utterances. The extracted sequence
may differ significantly from the actions of an optimal or estimated policy. WD focuses on extracting
potentially out-of-distribution workflows, where new action names and slot values derived from new domains
must be invented. This makes WD very different from policy learning and more similar to dialogue policy
act extraction, but where new acts and slot values must be invented on the fly to summarize new concepts
at test time.

4 Methodology

In this section, we describe our methodology for the WD task. Moreover, since there is no existing baseline
for our novel WD task, we included our text-to-text variants for both the AST and CDS tasks that we used
to test our text-to-text task casting scheme against existing benchmarks.

4.1 Text-to-Text Workflow Discovery

We cast the WD task as a text-to-text task where the input of the model Py, p consists of all utterances and
the list of possible actions, if available or partially available, formatted as

Pwp = Dialogue: uy, ..., u, Actions: ay, ..., a,
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~ Pwp
Dialogue: "Hi there, | am having frouble with my promo code,
keeps saying it is invalid" "May | Have your account ID please?" Twp
"Account ID is 123674" ... "okay. I'll check our system." "It seems Pull up account [123674]; Ask oracle[nonel;
that this is an error on our end. | will generate you a new ...; Generate new code [none]; ...
promo code." ... "Great thank you so much!” "Have a great

day" Actions: Offer refund, promo code, Get subscription
status, Pull up account, Ask oracle, notify team, ...

(a) Workflow Discovery (WD). Illustration of a prompt (Pwp) — consisting of an entire dialogue, and the target
(Twp) — consisting of a structured summary for the WD task. Pwp is composed of the delimiters in bold that
separate the dialogue utterances in blue and the optional list of possible actions in green. Twp is composed of the
predicted workflow actions, and matching slot values in brackets. The actions are either known (highlighted in green)
or invented (highlighted in orange).

— Pasr
Context "Hi there, | am having trouble with my promo code, — Tyst

Pull up account [123674]

keeps saying it is invalid" "May | Have your account ID please?"
"Account ID is 123674"

— Pasr
Context: "Hi there, | am having trouble with my promo code, — Tast
keeps saying it is invalid" "May | Have your account ID please?”
"Account ID is 123674" “Pull up account [123674]" ... "It seems Promo code [none]
that this is an error on our end. | will generate you a new

promo code."

1SV

(b) Action State Tracking (AST). Illustration of prompts (Pasr) and targets (Tasr) for the AST task at different
turns in the dialogue. Past is composed of the context delimiter in bold and the context utterances in blue that can
contain previous action turn text (underlined).

— Pcps
. . . respond
Context: Hi there, | am having trouble with my promo code, 7TCDS
keeps saying it is invalid" Candidates: "hello. how may | help Promo code invalid; respond; May | Have
you today?2” "okay." "May | Have your account ID please?" your account ID please?
"have a nice day!” ...
~ Pcps - Taction
Context: Hi there, | am having trouble with my promo code, CDS - .
keeps saying it is invalid' “May | Have your account ID 8 Promo code invalid; action; Pull up
please?” "Account ID is 123674" Candidates: "have a nice b7 account [123674]
day!” “Can you give me your username, please?2” ...
— Pcps end
Context: Hi there, | am having trouble with my promo code, * TCDS
keeps saying it is invalid" ... "Great thank you so much!" Promo code invalid; end
"Have a great day" Candidates: "sure!” "okay." "thank you so
much." "welcome to acmebrands. how may | helpg" ...

(c) Cascading Dialogue Success (CDS). Illustration of prompts (Pcps) and targets Tops for the CDS task at
different turns in the dialogue. Pops is composed of the delimiters in bold that separate the dialogue utterances in
blue and the list of possible agent response candidates in green. TgeDSg‘md, action and T, are the targets when
the next step is to respond with an utterance, perform an action, and end the conversation, respectively. "Promo

code invalid" is the entire dialogue intent.

Figure 3: Tllustration of prompt and target formats for WD, AST, and CDS tasks.

where u,, is a dialogue utterance, n is the total number of utterances in the dialogue, a, is a workflow action,
and z is the total number of available actions. "Dialogue:" and "Actions:" are delimiters. We omit the last
delimiter if the possible actions are not available. Finally, We use the source prefix "Extract work flow:"
The target workflow Ty p is formatted as

Twp = a1[v], ..., v ;.. ag[v, U]
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where ay, is a workflow action, k is the number of actions, v;* is a slot value, and nj is the number of slot

values for action k. "[" and "]" encapsulate the slot values. "," and ";" are the separators for the slot values
and actions. Moreover, if an action has no slot values, the target slot value list is set explicitly to [none].
An example of this casting scheme is shown in Figure To make the model invariant to the position and
the number of workflow actions, especially when adapting to a new domain in the zero-shot and few-shot
settings. We set the possible actions to a shuffled set comprised of the currents sample target actions and
a randomly chosen number r,,;,, <= r <= z of actions while training the models in the in-domain setting
only, where 7,,;, is a hyper-parameter. For all other settings, the list of possible actions is not modified.

Our text-to-text framework differs from other work since our prompts don’t include slot descriptions or value
examples compared to |Zhao et al.| (2022a). Moreover, Adding lists of possible actions to the prompt makes
our method more flexible in the zero-shot setup (allowing new actions to be added on-the-fly) and improves
performance in the few-shot setup. Finally, we don’t prefix utterances with speaker prefixes (e.g., "User:
") compared to |Zhao et al.| (2022al); Lin et al.| (2021al), making our technique usable when this information
is unavailable or inaccurate; for example, in cases where the chat transcript originated from an upstream
text-to-speech model.

4.2 Text-to-Text Action State Tracking

The goal of the AST task is to predict a single action and its slot values given only the previous turns.
This task is similar to the traditional DST with the difference that agent guidelines constrain the target
actions. For example, an utterance might suggest that the target action is "validate-purchase", but the
agent’s proposed gold truth is "verify-identity" per the agent guideline because an agent needs to verify a
customer’s identity before validating any purchase.

We cast the AST task as a text-to-text task where the input of the model P4gs7 consists of all the utterances
formatted as
Pjyst = Context: uq, ..., us

where u; is a dialogue turn, including action turns, and ¢ is the index of the current turn. "Context:" is a
delimiter. We use the source prefix "Predict AST:". The target Tagr is formatted as

Tast = aifvy, ..., v}"]

where a; is an action, v™ is a slot value, and m is the number of slot values. "[" and "]" encapsulate the slot

values. "," is the separator for the slot values. Moreover, if an action has no slot values, the target slot value
list is set explicitly to [none]. An example of this casting scheme is shown in Figure

4.3 Text-to-Text Cascading Dialogue Success

The CDS task aims to evaluate a model’s ability to predict the dialogue intent and the next step given
the previous utterances. The next step can be to take action, respond with a text utterance, or end the
conversation. Moreover, the CDS task is evaluated over successive turns. In contrast, AST assumes that the
current turn is an action turn and is evaluated over individual turns.

We cast the CDS task as a text-to-text task where the model input P is formatted as
Pcps = Context: uy, ..., u; Candidates:cy, ..., ¢,

where u; is a dialogue turn, including action turns, and ¢ is the index of the current turn. ¢, € Cy is
a text utterance from the current agent response candidate list C;, and v is the size of C;. "Context:"
and "Candidates:" are delimiters. Finally, We use the source prefix "Predict CDS:". The target Tcpg is
formatted differently depending on the target next step. When the next step is to take an action, the target
is formatted as follows
Take™ = i: action; ag[v}, ..., v

where i is the dialogue intent, and values a;[v},...,v/"] is the step name and slots similar to the AST task
formulation above. When the next step is to respond, the target is formatted as follows

respond __ .. .
Topg =1 respond; ci4q
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where ¢;11 € Cy is the expected response utterance. When the next step is to terminate the dialogue, the
target is formatted as follows

TESs = i; end
An example of this casting scheme is shown in Figure

5 Experimental Setup

5.1 Implementation Details

In our experimentation, we used the T5 (Raffel et al.||2020)), BART (Lewis et al.||2019)) and PEGASUS (Zhang
et al., [2020) models for the WD task, which we call WD-T5, WD-BART, and WD-PEGASUS, respectively.
Furthermore, we use a T5 model for the text-to-text AST, and CDS tasks, which we call, AST-T5, and CDS-
T5, respectively. We use the Huggingface Transformers Pytorch implementatioﬂ for all model variants, and
use the associated summarization checkpointﬂ fine-tuned on CNN/DailyMail (Hermann et al.,|2015|) for all
models. For T5, we use the small (60M parameters), base (220M parameters), and large (770M parameters)
variants, and the large variant for both BART (400M parameters) and PEGASUS (569M parameters). We
fine-tuned all models on the WD tasks for 100 epochs for all experiments with a learning rate of 5e-5 with
linear decay and a batch size of 16. We set the maximum source length to 1024 and the maximum target
length to 256. For the BART model, we set the label smoothing factor to 0.1. We fine-tuned AST-T5, and
CDS-T5 for 14 and 21 epochs, respectively, matching the original work of [Chen et al.| (2021)), and used
similar hyper-parameters used for the WD task. We ran all experiments on 4 NVIDIA A100 GPUs with
80G memory, and the training time of the longest experiment was under six hours.

5.2 Datasets

ABCD  (Chen et al., |2021)) contains over 10k human-to-human dialogues split over 8k training samples
and 1k for each of the eval and test sets. The dialogues are divided across 30 domains, 231 associated slots,
and 55 unique user intents from online shopping scenarios. Each intent requires a distinct flow of actions
constrained by agent guidelines. To adapt ABCD to WD, we set actions to represent the workflow actions.
Moreover, we do not use the provided sub-flows. Instead, we extract the actions directly from the annotated
dialogues. Furthermore, we use natural language action names (i.e., using "pull up customer account" instead
of "pull-up-account"). Table (1| shows a subset of the natural language action names and we report the full
list of action names we used and the results of an ablation study showing the performance improvement
gained by using natural language action names in Appendix

Table 1: Subset of ABCD workflow actions

Action Name Natural Language Action Name
pull-up-account  pull up customer account
enter-details enter details

verify-identity verify customer identity

MultiWOZ  (Budzianowski et al.l |2018]) contains over 10k dialogues with dataset splits similar to ABCD
across eight domains: Restaurent, Attraction, Hotel, Taxi, Train, Bus, Hospital, Police. We use MultiWOZ
2.2 (Zang et al., |2020)) as it contains annotated per turn user intents and apply additional annotations
correction similar to |Ye et al (2021). In the MutliWOZ dataset, customer intents represent the workflow
actions. We assume that the system will always perform a customer intent. Similar to ABCD, we use natural
language action names. Table 2] shows a subset of the natural language action names. See Appendix [A-4] for
the full list.

Thttps://huggingface.co/transformers
2https://huggingface.co/models
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Table 2: Subset of MultiWOZ workflow actions

Action Name Natural Language Action Name
find_ hotel search for hotel
find_ train search for train

book restaurant book table at restaurant

5.3 Metrics

We evaluate the WD task using the Exact Match (EM) and a variation of the Cascading Evaluation (CE)
(Suhr et al., [2019) metrics similar to (Chen et al.| (2021). The EM metric only gives credit if the predicted
workflow (i.e., actions and slot values) matches the ground truth. However, it is not a good proxy of model
performance on the WD task due to the sequential nature of workflows. For example, a model that predicts
all workflow actions correctly but one will have an EM score of 0, similar to another model that predicted all
actions wrong. In contrast, the CE metric gives partial credit for each successive correctly predicted action
and its slot values. Nonetheless, we kept the EM metric for applications where predicting the exact workflow
is critical. Furthermore, we report an action-only Exact Match (EM*) and Cascading Evaluation (CE*) for
some experiments to help isolate the task complexity added by predicting the slot values. Finally, due to the
text-to-text nature of our approach, we ignore any failure that occurs due to a stop word miss-match (e.g.,
we assume that the lensfield hotel is equivalent to lensfield hotel). Moreover, we use BERTScore (Zhang*
et al., [2020)) to evaluate the action in all zero-shot experiments. We assume that a predicted action is valid
if it has an Fl-score above 95% (e.g., check customer identity is equivalent to verify customer identity).

We evaluate the AST task similar to |Chen et al| (2021) where B-Slot and Value are accuracy measures for
predicting action names and values, respectively. Action is a joint accuracy for both B-Slot and Value metrics.
Furthermore, We evaluate the CDS task similar to [Chen et al.| (2021)) using the Cascading Evaluation (CE)
metric that relies on the Intent, NextStep, B-Slot, Value, and Recall@1 metrics that are accuracy measures
for the dialogue intent, next step, action, value, and next utterance predictions. We omit the Recall@5, and
Recall@10 metrics results since our model only predicts a single next utterance instead of ranking the top 5
or 10 utterances. However, the cascading evaluation calculation result remains valid since it only uses the
Recall@1 scores.

6 Experimental Results

To validate the efficacy of our approach against existing baselines, we first compare our results to the current
state-of-the-art on the AST and CDS tasks and show that our method achieves state-of-the-art results on
both tasks. Then, we describe the experiments we used to evaluate our approach on the WD task, report
the results, and discuss their conclusions.

6.1 Action State Tracking

Following the same evaluation method used in |Chen et al.|(2021)), we compared our AST-T5 model against
ABCD-RoBERTa (Chen et al., [2021), the current state-of-the-art on the AST task. We report the results
in Table Moreover, we only report the results of AST-T5-Small (60M parameters) variant for a fair
comparison since the ABCD-RoBERTa model is around 125M parameters while our AST-T5-Base is 220M
parameters.

Table 3: Our AST-T5-Small results on the AST task using the ABCD test set.

Model B-Slot Value Action
ABCD-RoBERTa 93.6% 67.2% 65.8%
AST-T5-Small 89.1% 89.2% 87.9%
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Our AST-T5-Small variant achieves state-of-the-art results on the AST task while using 50% less trainable
parameters. Furthermore, our text-to-text approach is easily adaptable to any new domain without any
model change. In contrast, an encoder-only approach like the one used by ABCD-RoBERTa requires an
update to the classification head to add a new action or slot value.

6.2 Cascading Dialogue Success (CDS)

Following the same evaluation method used in |Chen et al.| (2021)), we compared our CDS-T5 models against
the current state-of-the-art on the CDS task. In Table [4] we report the best results (ABCD Ensemble) for
each metric from |Chen et al.| (2021]).

Table 4: CDS-T5 results on the CDS task using the ABCD test set. ABCD Ensemble is the result of a
model ensemble with the best scores from ABCD.

ABCD CDS-T5 CDS-T5

Metric Ensemble Small Base
Intent 90.5% 85.7% 86.0%
Nextstep 87.8% 99.5% 99.6%
B-Slot 88.5% 85.9% 87.2%
Value 73.3% 75.1% 77.3%
Recall@l1 22.1 40.7 49.5

CE 32.9% 38.3% 41.0%

Our CDS-T5-Small (60M parameters) outperforms the current state-of-the-art (with up to 345M parameters)
while using 80% less trainable parameters. Furthermore, Our CDS-T5-Base achieves a new state-of-the-art
on the CDS task while using 36% fewer trainable parameters, showing the advantage of our text-to-text
approach. Specifically, our CDS-T5-Base outperformed the ABCD Ensemble on the next utterance prediction
(recall@l) by 27.4 points. Furthermore, both our models scored exceptionally on predicting the next step.
Finally, CDS-T5-Base outperforms the human performance (Chen et al., |2021)) on value accuracy by 1.8
points.

6.3 Workflow Discovery (WD)

We present the results of all model variants on the WD task in the following setups: in-domain, cross-domain
zero-shot, and cross-dataset zero-shot and few-shot. We report the results with and without our Actions
conditioning technique (i.e., w/ Possible Actions). Furthermore, we report the results of our randomized
actions conditioning technique (i.e., w/ Possible Actions™) with r,,,;,, = 10 used during in-domain training
only. Finally, we report results using multiple model architectures to show that our formulation is model-
independent and to understand performance improvement as the model size scales and in different learning
setups.

6.3.1 In-Domain Workflow Actions

Table [B] shows the results of our methods trained on all ABCD domains and tested on the ABCD test set.
The significant difference between the Cascading Evaluation (CE) and Exact Match (EM) results across
all configurations shows that it is much harder to predict the exact workflow and shows the CE metric’s
importance. Moreover, the EM* and CE* results, where we are only interested in the prediction of actions
and not the slot values, show that predicting the slot values increases task complexity even more.

Our conditioning technique (i.e., w/ Possible Actions) improves the performance of all model variants except
WD-T5-Small, where the EM score drops by 1.5 points. One explanation is that this model reaches its
capacity since adding the possible actions lengthens the model input, which increases the complexity and
reduces the performance, a known limitation of Transformer models (Tay et al., [2021; |Ainslie et al., |2020)).
Nonetheless, our randomized actions conditioning technique (i.e., w/ Possible Actions™) resolves this issue
and improves, even more, the performance of all other model variants, especially larger ones. For example,
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Table 5: WD in-domain test results on ABCD. w/ Possible Actions represents the results with the ac-
tions conditioning technique, and w/ Possible Actions™ the results with the randomized actions conditioning
technique.

Model EM/CE EM*/CE*
WD-T5-Small 44.1/67.9 55.4/78.6
w/ Possible Actions 42.6/66.9 53.6/77.6
w/ Possible Actions™  44.8/68.6 56.7/79.1
WD-T5-Base 47.7/69.9 56.2/79.4
w/ Possible Actions 48.1/70.1 56.7/79.5
w/ Possible Actions™  49.5/72.3 57.5/79.2
WD-BART-Large 42.0/60.3 61.9/68.8
w/ Possible Actions 43.2/61.0 62.3/69.0
w/ Possible Actions™  44.9/64.3  64.3/70.07
WD-PEGASUS-Large  49.9/71.2 59.6/81.2
w/ Possible Actions 51.9/72.0 61.4/81.7
w/ Possible Actions™  52.1/72.6 62.9/82.8
WD-T5-Large 50.6/73.1 59.9/81.4
w/ Possible Actions 54.6/74.8 62.3/83.0
w/ Possible Actions™ 55.7/75.8  63.3/83.1

WD-T5-Large EM score increased by 4.9 points. Moreover, the results show that the performance of our
approach improves as the number of model parameters increases, which suggests that the results should
improve with even larger models (i.e., more than 770M parameters).

Our analysis of these results shows that the main improvement of larger models on ABCD is their ability to
predict slot values correctly since the dataset contains 30 unique actions with 231 associated slots. Moreover,
larger models can better predict longer workflows (i.e., longer than four actions) which link to the Tranformers
input sequence length issue discussed earlier. However, our WD-BART-Large shows an interesting behavior
where it can predict the actions better than larger models, but performs poorly on slot values that represent
either names, usernames, or emails (e.g., predicting crystmb61 instead of crystalmb61, knowing that the
former does not exist in the dataset). This observation, coupled with the fact that 70% of the test set
contains at least one action that includes slot value with these types, explains the poor results.

6.3.2 ABCD Cross-Domain Zero-Shot

We performed a "leave-one-out" cross-domain zero-shot experiment similar to |Lin et al.|(2021b); Hu et al.
(2022); Zhao et al.| (2022b) on ABCD. In this setup, we train a model on samples from all the domains
except one. Then, we evaluate the performance on the test set that includes the omitted domain. Table [g]
shows the results of the experiments in which we excluded the "Shirt FAQ" and "Promo Code" domains. The
domains were selected to better assess the transfer performance since the "Shirt FAQ" domain has similarities
with three other domains present during training (i.e., "Boots FAQ', "Jeans FAQ', and "Jacket FAQ"). In
contrast, the "Promo Code" domain is unique. A good approach should avoid confusing similar domains and
be able to generalize to a different one.

Overall, our approach achieves good zero-shot transfer performance in both domains. Our randomized
actions conditioning technique (i.e., w/ Possible Actions’) improved the results in both domains. However,
on average, the "Promo Code" EM score is 3.5 points lower than the in-domain results. This might be related
to the uniqueness of the domain, which might lead to less positive transfer between the source and target
domains. On the "Shirt FAQ" domain, only 15% of the failures are due to confusion with similar domains
(mostly "Jacket FAQ"). In some cases the models generate plausible predictions (e.g., "does this t-shirt
shrink" instead of "does this shirt shrink"). On the "Promo Code" domain, most of the failures were either
invalid predictions where the models copy part of the input or predict an invalid slot value. Similarly, in
some cases the models generate plausible predictions (e.g., "generate new code" instead of "promo code", see

10
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Table 6: WD cross-domain zero-shot results on ABCD with "Shirt FAQ" and "Promo Code" as target
domains. w/ Possible Actions’ represents the results with the randomized actions conditioning technique.

Shirt FAQ Promo Code

Model EM/CE EM/CE
WD-T5-Small 42.3/65.1 41.0/64.8
w/ Possible Actions™  42.5/66.5 41.0/65.0
WD-T5-Base 46.0/67.6 45.1/68.8
w/ Possible Actions™  47.8/69.7 45.7/69.0
WD-BART-Large 41.5/58.3 40.0/59.1

w/ Possible Actionst  43.6/62.2 42.3/61.7
WD-PEGASUS-Large  47.4/68.8 46.2/68.9
w/ Possible Actions™  49.6/69.2 47.4/69.3
WD-T5-Large 48.1/70.7 49.9/72.4
w/ Possible Actions™ 51.8/72.3 50.2/72.4

Appendix for more examples). We also performed an ablation study on the randomization conditioning
technique and showed that it has a similar effect to the one seen in the in-domain setting. See Appendix
[A2] for more details.

6.3.3 MultiwOZ Cross-Dataset Zero-Shot

In this setting, we evaluate if a model trained on one dataset can be used on another in a zero-shot setup
similar to[Zhao et al.| (2022b)). Therefore, we test our models trained on ABCD from Section [5]on MultiWOZ
test set that includes all domains. We report the results of this experiment in Table[7] However, we excluded
the results of our WD-T5-Small since it performed poorly in this setting.

Table 7: WD cross-dataset zero-shot test results on MultiWOZ. w/ Possible Actions™ the results with the
randomized actions conditioning technique.

Model EM/CE
WD-T5-Base 3.6/10.0

w/ Possible Actions™  23.0/38.3
WD-BART-Large 5.1/12.2

w/ Possible Actions™  24.1/39.9
WD-PEGASUS-Large 9.8/15.2

w/ Possible Actions™ 27.4/41.2
WD-T5-Large 9.0/13.1

w/ Possible Actions™  26.9/40.0

Without our action conditioning mechanism, all model variants did not perform well. However, adding the
conditioning mechanism (i.e., w/ Possible Actions™) improved the performance for all variants with an average
EM score increase of 18.3 points, showing the importance of this technique in the zero-shot setting.

Most of the failures in this setting are due to invalid slot value predictions, especially for actions with more
than three slot values. We believe that this is related to the fact the source domains (i.e., ABCD) have
at most three slot values. Compared to the results of other settings, WD-PEGASUS-Large performs better
than WD-T5-Large even if it has 200M fewer parameters. Our qualitative results analysis shows that WD-
T5-Large uses actions from the source domains (i.e., ABCD) more often than WD-PEGASUS-Large. For
example, it uses search-timing for cases where a customer asks about the train departure time. Moreover,
our WD-BART-Large performs better in this setting since MultiWOZ does not contain usernames or email
slot values. We noticed that some predicted slot values are more refined than the gold ones (e.g., museum
of science instead of museum). While we can handle such cases during evaluation, it will make the testing
process more complex. Finally, the models generate plausible actions that are not part of the list of possible
actions (e.g., check rating, see Appendix for more details).

11
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6.3.4 MultiwOZ Cross-Dataset Few-Shot

We consider the case where only a few samples are available for each workflow action. To this end, we
conducted a cross-dataset few-shot experiment, where we trained a model on all ABCD domains, then fine-
tuned it with randomly selected k samples per action from all MultiWOZ domains. We picked k =1, k = 5,
and k£ = 10 that yielded a training set of 11, 55, and 106 samples, respectively. Due to the nature of workflows
containing multiple actions, some of these actions might have more than k£ samples.

Table 8: WD cross-dataset few-shot test results on MultiWOZ. w/ Possible Actions™ the results with the
randomized actions conditioning technique, and k is the number of samples per action.

Method EM/CE
WD-T5-Base k =1 5.9/54.8
w/ Possible Actions™  38.2/58.7
WD-T5-Base k=5 24.4/65.4
w/ Possible Actions™  61.7/84.4
WD-T5-Base k = 10 43.2/73.0
w/ Possible Actions™ 72.2/89.1

We report the few-shot results of our WD-T5-Base in Table |8 Our approach shows a significant adaptation
performance that keeps increasing as the number of training samples increases, reaching an EM score of 72.2.
Moreover, our randomized actions conditioning technique shows an important performance gain in all the
settings, where it improved the EM score by an average of 32.8 points. Similar to the cross-dataset zero-shot
experiment, the failures are mainly due to invalid slot values prediction. Furthermore, the model generated
23 invalid actions as opposed to 5 when we use the conditioning technique (i.e., w/ Possible Actions™). This
behavior shows the utility of our conditioning mechanism and proves that it can restrict the model to the
provided actions.

7 Conclusion

We have formulated a new problem called Workflow Discovery, in which we aim to extract workflows from
dialogues consisting of sequences of actions and slot values representing the steps taken throughout a di-
alogue to achieve a specific goal. We have examined models capable of performing three different tasks:
Workflow Discovery, Action State Tracking, and Cascading Dialogue Success. Our experiments show that
our sequence-to-sequence approach can significantly outperform existing methods that use encoder-only lan-
guage models for the AST and CDS tasks, achieving state-of-the-art results. Furthermore, our method is
able to correctly predict both in-domain and out-of-distribution workflow actions, and our action condition-
ing approach affords much better performance for out-of-domain few-shot and zero-shot learning. We hope
that our work sparks further NLP research applied to the field of process mining, but allowing for the use
logs, meta-data and dialogues as input. Moreover, we believe that this method of characterizing complex
interactions between users and agents could have significant impact on the way researchers and developers
create automated agents, viewing workflow discovery as a special type of summarization that produces a
form of natural language based program trace for task oriented dialogues.
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A Appendices

A.1 Ablation on Using Natural Language Action Names

We performed an ablation study to quantify the performance difference between using actions names in a
format similar to pull-up-account compared to using natural language names (e.g., pull up customer account).
We followed an experimental setup similar to the one described in Section [6.3.1]

Table 9: Ablation study results on the effectiveness of using natural language action names (w/ NL Names).
EM* and CE* are the action-only EM and CE metrics, respectively.

Models EM*/CE*
WD-T5-Small 53.2/74.1
WD-T5-Small w/ NL Names 55.4/78.6
WD-T5-Base 52.8/74.1
WD-T5-Base w/ NL Names 56.2/79.4
WD-BART-Large 59.2/66.3
WD-BART-Large w/ NL Names 61.9/68.8
WD-PEGASUS-Large 56.7/76.5
WD-PEGASUS-Large w/ NL Names  59.6/81.2
WD-T5-Large 56.6/85.9
WD-T5-Large w/ NL Names 59.9/81.4

We show the result of this ablation study in Table [9]in which we only report the EM* and CE* results since
we are interested in the performance of predicting the actions and not the slot values for this study. We
observe that using natural language names (i.e., w/ NL Names) yields better performance on both metrics on
all model variants where it increased the EM* score by an average of 2.9. We think this is related to the fact
that all the pre-trained models we used are fine-tuned for English summarization and thus should perform
better on a formally-written text like pull up customer account as opposed to pull-up-account.
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A.2 Ablation on the Conditioning Mechanism in the Cross-Domain Zero-Shot Setting

Similar to the in-domain experimental setup in Section [6.3.1} we performed an ablation study on the effect
of the different conditioning methods (i.e., w/ Possible Actions, and w/ Possible Actions™). Table[10|shows the
result of this study.

Table 10: Cross-domain zero-shot results on the ABCD dataset with "Shirt FAQ" and "Promo Code" as
target domains. EM and CE are the Exact Match and Cascading Evaluation metrics, respectively. w/
Possible Actions represents the results with possible actions added to the input, and w/ Possible Actions™
represents the results with actions randomization technique.

Shirt FAQ Promo Code

Model EM/CE EM/CE
WD-T5-Small 42.3/65.1 41.0/64.8
w/ Possible Actions 41.2/64.4 40.9/64.5
w/ Possible Actions™ 42.5/66.5 41.0/65.0
WD-T5-Base 46.0/67.6 45.1/68.8
w/ Possible Actions 46.9/68.7 45.3/68.8

w/ Possible Actions™  47.8/69.7 45.7/69.0

Adding the possible actions (i.e., w/ Possible Actions) to the input has a similar negative effect on the
smaller model (i.e., WD-T5-Small) as observed in the in-domain experiment results in Table [5| and similarly,
it increased the performance of the larger variant (i.e., WD-T5-Base). However, our randomized actions
conditioning technique (i.e., w/ Possible Actions™) resolves this issue and improves performance on both
model variants.

A.3 Plausible Predictions in the Zero-Shot Setting

Predicted
Workflow

Generate new
code

~Task-Oriented Dialogue

Hi. My name is Alessandro

Phoenix. My Order ID is
9602071593. The promo code | tried
to use on these Michael Kors jeans
keeps saying it's invalid

Predicted
Workflow

~Task-Oriented Dialogue

| am a little upset | checked on my
order and found out that you now
have the same boots for $12 less

_
[ Since it seems you are still upset with h

(" This seems o be an error on our ] ] L
part. | am going to generate you a New Action this matter, what | can do is offer a
new promo code, just give me one promo code that should cover the
\_more moment. ) \_difference. )| W Know Action
(a) (b)

Figure 4: Plausible (a) and known (b) workflow actions generated during the ABCD cross-domain zero-shot
experiment.

~Task-Oriented Dialogue Predicted
Workflow
Could you also let me know the star i
rating of the hotel, and I'd also like \l/
to know if they have wifi.

Check rating

The Aylesbray Lodge Guest House has
four stars and free internet.

New Action

Figure 5: Plausible workflow action generated during the MultiWOZ cross dataset zero-shot experiment.
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This section shows cases of plausible workflow actions predicted in the zero-shot setting that are not part of
the possible actions. The generated actions are either "fine-grained" versions of existing actions or entirely
new ones. For example, Figure [fa] shows a case where the model predicted generate new code while the closet
possible action is promo code. However, our analysis showed that there is a clear separation between cases in
which agents offer a promo code as shown in Figure bl and when they generate a new one if the old promo
code is no longer working, as shown in Figure [{a]

Another example is shown in Figure [5| of an entirely new action that has no similarities with any other
possible action. Here the customer is clearly asking for the rating of the hotel Hence the check rating action.
Our dataset analysis showed that there are 10 test samples where customers requested to get the rating of
hotels or restaurants.

A.4 MultiwOZ Workflow Actions
Table [[1] shows the MultiWOZ workflow natural language action names we used in all our experiments.

Table 11: MultiWOZ workflow actions

Action Name Natural Language Action Name

find hotel search for hotel
book_hotel book hotel

find_ train search for train
book train book train ticket

find _attraction search for attractions
find restaurant search for restaurants
book restaurant book table at restaurant

find_ hospital search for hospital
book taxi book taxi

find_ taxi search for taxi

find bus search for bus

find_ police search for police station

A.5 ABCD Workflow Actions

Table [[2] shows the ABCD workflow natural language actions names we used in all our experiments.

16



Under review as submission to TMLR

Table 12: ABCD workflow actions

Action Name Natural Language Action Name
pull-up-account pull up customer account
enter-details enter details
verify-identity verify customer identity
make-password create new password
search-timing search timing
search-policy check policy
validate-purchase validate purchase
search-faq search faq

membership check membership level
search-boots search for boots
try-again ask customer to try again
ask-the-oracle ask oracle

update-order update order information
promo-code promo code
update-account update customer account
search-membership get memberships information
make-purchase make purchase
offer-refund offer refund

notify-team notify team

record-reason record reason
search-jeans search for jeans
shipping-status get shipping status
search-shirt search for shirt
instructions check instructions
search-jacket search for jacket
log-out-in ask customer to log out log in
select-faq select topic in faq
subscription-status  get subscription status
send-link send link to customer
search-pricing check pricing
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