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Abstract

Text-to-3D generation automates 3D content cre-
ation from textual descriptions, which offers trans-
formative potential across various fields. How-
ever, existing methods often struggle to align
generated content with human preferences, lim-
iting their applicability and flexibility. To ad-
dress these limitations, in this paper, we pro-
pose DreamDPO, an optimization-based frame-
work that integrates human preferences into the
3D generation process, through direct preference
optimization. Practically, DreamDPO first con-
structs pairwise examples, then compare their
alignment with human preferences using reward
or large multimodal models, and lastly opti-
mizes the 3D representation with a preference-
driven loss function. By leveraging pairwise
comparison to reflect preferences, DreamDPO
reduces reliance on precise pointwise quality eval-
uations while enabling fine-grained controllabil-
ity through preference-guided optimization. Ex-
periments demonstrate that DreamDPO achieves
competitive results, and provides higher-quality
and more controllable 3D content compared to
existing methods. Code is publicly available at:
https://github.com/ZhenglinZhou/DreamDPO.

1. Introduction
3D content generation is pivotal in driving innovation across
diverse fields, including product design, medical imaging,
scientific visualization, and the rapidly growing domains
of virtual and augmented reality (Li et al., 2023a). De-
spite its extensive applications, it remains challenging to
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create high-quality 3D content, which requires substantial
time and effort, even for professionals. In response, text-
to-3D generation has emerged as a solution by automating
3D generation from textual descriptions, which archives
remarkable advancements in the field (Poole et al., 2022;
Wang et al., 2022; Yu et al., 2023; Wang et al., 2024; Shi
et al., 2023; Katzir et al., 2023; Chung et al., 2024; Wu et al.,
2024b). Nevertheless, some researchers (Xie et al., 2024;
Ye et al., 2025) emphasize that 3D content generated by ex-
isting methods often fails to align with human preferences
fully, highlighting the need for continued refinement and
innovation in these methods.

Previous work (Ye et al., 2025) has leveraged reward models
to integrate human preferences into the generation process,
leading to enhanced 3D generation outcomes. The core
idea is to regularize the generated 3D content to achieve a
high pointwise score from the reward model. Despite these
improved results, several issues remain to be addressed.
First, it heavily depends on the reward model’s ability to
accurately evaluate the pointwise quality of generated con-
tent, which places significant demands on the reward model.
Second, since the reward model can only provide quality-
relevant scores, it lacks the flexibility to enable controlla-
bility from other perspectives. The issues reduce the appli-
cability and adaptability of the current method. This falls
short of meeting diverse requirements or providing broader
control in 3D generation, which is never our desideratum.

To relieve the issues of prior work and better align 3D gen-
eration with human preferences, we propose DreamDPO.
Essentially, DreamDPO is an optimization-based method
for text-to-3D generation. It achieves alignment through
direct preference optimization, leveraging preferences de-
rived from either reward models or large multimodal models.
Specifically, DreamDPO operates by initializing a 3D rep-
resentation (Mildenhall et al., 2020; Kerbl et al., 2023) and
optimizing it through a three-step iterative process. First,
pairwise examples are constructed on-the-fly by applying
different Gaussian noise. Second, a reward model or a
large multimodal model ranks these examples based on
their matching with the input text prompt or specific instruc-
tions, which matches human preferences about the pairwise
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examples1. Finally, a reward loss is computed from the
pairwise preferences, which guides the update of the 3D
representation. By incorporating human preferences into
the optimization loop, DreamDPO generates 3D assets that
achieve superior alignment with textual inputs, along with
enhanced texture and geometry quality.

DreamDPO can be justified as follows. While absolute
quality evaluation inherently provides a ranking on pair-
wise examples, a ranking requires only the scores to dis-
tinguish relative preferences, but need not be perfectly ac-
curate (c.f., (Zhang et al., 2024d)). DreamDPO takes ad-
vantage of this distinction, and changes the previous score-
guided optimization (Ye et al., 2025) to preference-guided
optimization. Therefore, it lowers the demand for precise
scoring and requires only distinguishable scores. Addition-
ally, DreamDPO can make use of the preferences provided
by large multimodal models. By constructing preferred and
less preferred examples based on specific instructions about
the attributes of generation content (e.g., the object num-
ber and motion), it directs the optimization process to align
more closely with the desired outcomes. This strategy en-
hances adherence to instructions and introduces fine-grained
controllability, meeting diverse requirements effectively.
Moreover, we conduct a series of experiments to justify our
claims. Empirical results demonstrate that our method flexi-
bly accommodates either reward models or large multimodal
models, which enables the generation of higher-quality and
more controllable 3D content.

Before delving into details, we clearly emphasize our con-
tribution as follows.

• Conceptually, we propose DreamDPO that shifts the
paradigm of text-to-3D generation by reducing depen-
dence on precise absolute quality evaluation. Instead,
it leverages distinguishable relative preferences and
integrates large multimodal models, which achieves
remarkable alignment with human preferences while
enabling fine-grained controllability.

• Technically, DreamDPO pioneers a three-step opti-
mization process, combining online pair construction,
preference ranking, and ranking-driven updates. This
innovative design ensures superior alignment with in-
put prompts, significantly enhancing the quality and
adaptability of generated 3D content.

• Empirically, extensive results establish DreamDPO as
a new benchmark for text-to-3D generation. Both quan-
titative and qualitative results are thoroughly analyzed,
supported by detailed discussions and ablation studies.

1Reward models are trained using pairwise data reflecting hu-
man preferences, while large multimodal models are inherently
aligned with these preferences (Sun et al., 2023).

DreamDPO outperforms 13 state-of-the-art methods,
achieving the best quantitative performance across two
key metrics while delivering highly impressive and
controllable qualitative results.

The rest of this paper is organized as follows. § 2 introduces
some background knowledge relevant to this work. § 3
presents the technical details of our proposed DreamDPO.
Experimental results are analyzed and discussed in § 4.
Conclusions are given in § 5.

2. Preliminaries
Text-to-3D generation aims to create high-quality 3D as-
sets aligned with a given text prompt y. The pipeline
typically distills knowledge from a parametrized diffusion
model ϵϕ (Rombach et al., 2022a; Shi et al., 2023) into a
learnable 3D representation with parameters θ ∈ Θ (e.g.,
NeRF (Mildenhall et al., 2020), DMTet (Shen et al., 2021),
and 3DGS (Kerbl et al., 2023)), where Θ is the space
of θ with the Euclidean metric. Score distillation sam-
pling (SDS) (Poole et al., 2022) is used to guide the dis-
tillation process.

Diffusion models. The diffusion model has been widely
used in generative tasks (Sohl-Dickstein et al., 2015; Song
et al., 2022; Bao et al., 2022; Peebles & Xie, 2023). Gen-
erally, it involves a forward process to gradually add Gaus-
sian noise to data points and a reverse process to trans-
form Gaussian noise into data points from a target distribu-
tion pdata. The reverse process starts from an initial noise
zT ∼ N (0, I). At each diffusion step t, the model refines
noisy data zt into a cleaner one zt−1 until finally producing
z0 = x ∼ pdata. Therefore, the transitions p(zt−1|zt) can
be learned effectively by the diffusion model.

Score distillation sampling (SDS). SDS was proposed in
DreamFusion (Poole et al., 2022), and has been widely
studied (Wang et al., 2024; Yu et al., 2023; Katzir et al.,
2023; Chung et al., 2024; Wu et al., 2024b; Zhuo et al., 2024;
Ye et al., 2025). Technically, for a rendered image x from
a 3D representation, random noise ϵ is added at timestep t.
A pre-trained diffusion model predicts this noise. The SDS
loss is computed as the difference between predicted and
added noise, which optimizes a set of parameters θ. The
gradient of the SDS loss with respect to θ is:

∇θLSDS = Et,ϵ[w(t)(ϵ
s
ϕ(xt; y, t)− ϵ)

∂x

∂θ
], (1)

where xt = αtx0+σtϵ, w(t) is a weighting function, and s
is a pre-defined scalar of classifier-free guidance (CFG) (Ho
& Salimans, 2022). The minimization of the SDS loss
follows the score function of the diffusion model to move
x to the text description region, ensuring the generated 3D
representation aligns with the given text prompt. Note that
to make a continuous and smooth presentation, we provide
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Figure 1. Overview of our method. DreamDPO first constructs pairwise examples, then compares their alignment with human preferences
using reward or large multimodal models, and lastly optimizes the 3D presentation with a preference-driven loss function. The loss
function pulls the win example xwin

t closer and pushes the lose example xlose
t away. As a piecewise objective, it selectively pushes xlose

t

only when the preference score gap sgap exceeds a threshold τ , preventing chaotic gradients from overly similar xlose
t .

a detailed review of related work in Appendix A.

3. Method
Overview. DreamDPO is an optimization-based text-to-3D
generation method. It begins by initializing a 3D representa-
tion, e.g., NeRF (Mildenhall et al., 2020). In each training it-
eration, the optimization procedure involves three key steps:
(1) pairwise example construction: pairwise examples are
generated online by applying different Gaussian noises dur-
ing the diffusion process; (2) pairwise example compari-
son: a reward model or a large multimodal model (LMM)
compares the generated examples based on their alignment
with the desired text prompt; and (3) preference-guided
optimization: a piecewise reward loss is calculated using
the pairwise comparison, and the 3D representation is up-
dated accordingly. Overall, our DreamDPO guides the op-
timization process with human preferences, leading to 3D
assets with improved alignment to input text and enhanced
texture/geometry quality. The framework overview of our
method is provided in Figure 1. A complete algorithm flow
of our method can be checked in Appendix B.

3.1. Algorithm Details

Pairwise example construction. Given a sampled cam-
era pose, an RGB image x can be rendered from the 3D
representation using renderers. Then two different Gaus-
sian noise ϵ1 and ϵ2 are added to x at timestep t ∈ [0, T ],
resulting in pairwise noisy images x1

t and x2
t :

x1
t = αtx0 + σtϵ

1, x2
t = αtx0 + σtϵ

2, (2)

where x0 = x, αt and σt are hyperparameters satisfying
α0 ≈ 1, σ0 ≈ 0, αT ≈ 0, σT ≈ 1 (c.f ., (Sohl-Dickstein
et al., 2015; Ho et al., 2020)). Afterward, we feed the pair-
wise noisy images into a pre-trained text-to-image diffusion

model ϵϕ (Shi et al., 2023; Rombach et al., 2022a) and
generate corresponding predictions:

x̂1
0 =

x1
t − σtϵϕ(x

1
t ; y, t)

αt
,

x̂2
0 =

x2
t − σtϵϕ(x

2
t ; y, t)

αt
,

(3)

where x̂1
0 and x̂2

0 are predicted x0 of a single step for x1
t

and x2
t , respectively (Song et al., 2021).

Pairwise comparison. After pair construction, at step t, we
utilize a rank model denoted by r(·) to compare x1

t and x2
t .

This yields a preferred prediction xwin
t and a less preferred

one xlose
t , where xwin

t = x1
t and xlose

t = x2
t , or vice versa. It

is worth noting that our DreamDPO supports both reward
models (Xu et al., 2024b; Wu et al., 2023) and LMM-based
AI annotators (Bai et al., 2023; Yang et al., 2023), where
reward models are used as default.

Preference-guided optimization. The proposed method
leverages the pairwise comparison (xwin

t ,xlose
t ) to enable

efficient sampling via optimization to yield human preferred
3D assets. To achieve this, we need a differentiable loss
function, where preferred images have low losses and less
preferred images have high losses. To this end, inspired
by (Rafailov et al., 2024; Meng et al., 2024; Wallace et al.,
2024), we reformulate SimPO (Meng et al., 2024) to elim-
inate the need for a reference model and derive a differen-
tiable objective:

LReward = −Et

[
w(t) ( ∥ϵwin − ϵϕ(x

win
t ; y, t)∥22

− ∥ϵlose − ϵϕ(x
lose
t ; y, t)∥22

)]
,

(4)

where ϵwin and ϵlose denote Gaussian noise for xwin
t and xlose

t

respectively. Intuitively, LReward encourages ϵϕ to pull xwin
t

closer and push xlose
t further away.
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Table 1. Qualitative comparisons on 110 prompts generated by GPTEval3D (Wu et al., 2024a). We calculate the ImageReward score
(IR) (Xu et al., 2024b) for human preference evaluation, the CLIP score (Radford et al., 2021) for text-image alignment evaluation, and
GPTEval3D (Wu et al., 2024a) for comprehensive 3D quality evaluation. The best performance in each case is shown in bold.

Method IR ↑ GPTEval3D ↑
Alignment Plausibility T-G Coherency. Geo Details Tex Details Overall

DreamFusion (Poole et al., 2022) -1.51 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0
DreamGaussian (Tang et al., 2023) -1.56 1100.6 953.6 1158.6 1126.2 1130.8 951.4

Fantasia3D (Chen et al., 2023) -1.40 1067.9 891.9 1006.0 1109.3 1027.5 933.5
Instant3D (Li et al., 2023c) -0.91 1200.0 1087.6 1152.7 1152.0 1181.3 1097.8

Latent-NeRF (Metzer et al., 2023) -0.42 1222.3 1144.8 1156.7 1180.5 1160.8 1178.7
Magic3D (Lin et al., 2023) -1.11 1152.3 1000.8 1084.4 1178.1 1084.6 961.7

Point-E (Nichol et al., 2022) -2.24 725.2 689.8 688.6 715.7 745.5 618.9
ProlificDreamer (Wang et al., 2024) -0.50 1261.8 1058.7 1152.0 1246.4 1180.6 1012.5

Shap-E (Jun & Nichol, 2023) -2.10 842.8 842.4 846.0 784.4 862.9 843.8
SJC (Wang et al., 2023a) -0.82 1130.2 995.1 1033.5 1079.9 1042.5 993.8

SyncDreamer (Liu et al., 2023c) -1.77 1041.2 968.8 1083.1 1064.2 1045.7 963.5
Wonder3D (Long et al., 2024) -1.70 985.9 941.4 931.8 973.1 967.8 970.9
MVDream (Shi et al., 2023) -0.58 1270.5 1147.5 1250.6 1324.9 1255.5 1097.7

DreamDPO (ours) -0.35 1298.9 1171.9 1276.4 1373.2 1296.9 1203.1

Following (Poole et al., 2022), we consider the gradient of
LReward and omit the U-Net Jacobian term for effective opti-
mization. It leads to the following gradient for optimizing
3D representations with preference pairwise comparisons:

∇θLReward =Et [w(t)
(
ϵϕ(x

win
t ; y, t)− ϵwin)

−
(
ϵϕ(x

lose
t ; y, t)− ϵlose) ∂x

∂θ

]
.

(5)

However, in practice, the gradient in Equation (5) fails to
produce realistic results (refer to Figure 6). Delving into the
optimization process, we observe that the pairwise compar-
ison results can be overly similar, leading to nearly equal
scores. In this case, directly pushing xlose

t away leads to
chaotic gradients. To address this, we introduce a piecewise
optimization loss that selectively pulls xwin

t when the prefer-
ence score gap sgap is small. The gradient of the final loss is
defined as:

∇θLReward* :=

{
Et

[
w(t)

(
ϵsϕ(x

win
t ; y, t)

)
∂x
∂θ

]
, sgap < τ,

Et

[
w(t)

(
∆win

t −∆lose
t

)
∂x
∂θ

]
, otherwise.

(6)
where τ = 0.001 is a pre-defined threshold, ∆win

t :=
ϵsϕ(x

win
t ; y, t) − ϵwin, and ∆lose

t := ϵ1ϕ(x
lose
t ; y, t) − ϵlose.

Note that sgap := r(xwin
t , y) − r(xlose

t , y) indicates the dis-
crepancy of preference scores between xwin

t and xlose
t . In-

struction questions can also be incorporated into LMM-
based ranking models to provide explicit guidance (see em-
pirical evaluations in §4.3).

4. Experiments
In this section, a series of experiments are conducted to
justify our claims. We first detail experiment setups (§4.1).
The comprehensive results and comparison with previous

advanced methods are then presented and discussed (§4.2).
Finally, we carry out an analysis study to further elaborate
on and discuss the superiority of our method (§4.3).

4.1. Experimental Setups

Datasets and measurements. We here evaluate the pro-
posed method with 110 prompts from GPTEval3D (Wu
et al., 2024a), which covers a range of creativity and com-
plexity use cases. Based on this, two evaluation strategies
are exploited. (1) We utilize a text-to-image reward model
named ImageReward (Xu et al., 2024b) to evaluate human
preference for 3D assets. We calculate the average prefer-
ence score across 120 rendered images of a 3D asset and its
corresponding text prompt. (2) We use GPT-4V to perform
pairwise comparisons with baselines, generating Elo ratings
that align with human judgments on text alignment, 3D plau-
sibility, and texture-geometry coherence, etc. More details
of the two measurements can be found in Appendix C.1.

Baselines. Following GPTEval3D (Wu et al., 2024a),
we benchmark our method against 13 baselines catego-
rized into text-guided and image-guided approaches respec-
tively. Specifically, the text-guided group includes Dream-
Fusion (Poole et al., 2022), DreamGaussian (Tang et al.,
2023), Instant3D (Li et al., 2023c), Fantasia3D (Chen et al.,
2023), Latent-NeRF (Metzer et al., 2023), Magic3D (Lin
et al., 2023), MVDream (Shi et al., 2023), Point-E (Nichol
et al., 2022), ProlificDreamer (Wang et al., 2024), Shap-
E (Jun & Nichol, 2023), and SJC (Wang et al., 2023a). Be-
sides, the image-guided group includes SyncDreamer (Liu
et al., 2023c) and Wonder3D (Long et al., 2024).

Implementation. We conduct experiments using Py-

4



DreamDPO: Aligning Text-to-3D Generation with Human Preferences via Direct Preference Optimization

A small, rustic cabin sits alone in a peaceful, snow-covered forest

An assortment of vintage, fragrant perfumes on display

A cat pondering the mysteries of the universe

A boat floating on calm water

A rough rock

Dreamfusion DreamGaussian Fantasia3D Instant3D Latent-NeRF Magic3D Point-E ProlificDreamer Shape-E SJC SyncDreamer Wonder3D MVDream Ours

Figure 2. Qualitative comparisons on the benchmark of GPTEval3D (Wu et al., 2024a). Existing methods struggle with text matching, as
marked in red. DreamDPO improves text matching, which provides better human preference results. (Zoom in to see the details.)

Torch (Paszke et al., 2019) and threestudio (Guo et al., 2023),
with MVDream (Shi et al., 2023) as the backbone of our
method. Note that we use PyTorch auto-differentiation to
compute analytic normals for geometry evaluation in GPTE-
val3D and do not use the Lambertian shading trick (Lin
et al., 2023) due to memory limitation. We follow the train-
ing strategy of MVDream and use HPSv2 (Wu et al., 2023)
as the default reward model. The optimization process takes
around two hours on a single NVIDIA RTX A6000 GPU.

4.2. Comparison with Prior Methods

4.2.1. QUALITATIVE COMPARISONS

We conduct three qualitative evaluations, which include
comparing 13 benchmarks of GPTEval3D, MVDream (Shi
et al., 2023), and DreamReward (Ye et al., 2025). The eval-
uations show improvements in text alignment, generation
stability, and texture-geometry details, respectively. As seen
in Figure 2, while the comparing baselines produce high-
fidelity results, they often fail in text alignment, as marked
in red. For instance, in the prompt “A small, rustic cabin
sits alone in a peaceful, snow-covered forest”, most exist-
ing methods miss key elements like the forest (the first row
in Figure 2). In contrast, our method accurately captures
both objects, showcasing its effectiveness for improving
text alignment. Further comparisons with MVDream, are
shown in Figure 3. Although MVDream is capable of gen-
erating multiview consistent 3D assets, it struggles with
long prompts (e.g., the second and fourth rows in Figure 3).
Instead, our method performs well across both short to
long prompts. Lastly, the comparisons with DreamReward

demonstrate that our method not only improves text align-
ment (e.g., ensuring “leaves a trail of flowers” appears under
the bicycle shown in the first row in Figure 7) but also en-
hances geometric and texture details (e.g., generating a more
luxuriant oak shown in the second row in Figure 7). More
visualization results can be found in Appendix D.2.

4.2.2. QUANTITATIVE COMPARISONS

We provide extensive quantitative comparison results to jus-
tify our claims. Human preference evaluations are first con-
ducted using ImageReward, as illustrated in the first column
of Table 1. Our method achieves competitive performance
compared to existing methods, highlighting the benefits of
preference-guided optimization via our reward loss. Then
we perform a comprehensive evaluation using GPTEval3D.
The results indicate that our method outperforms previous
state-of-the-art (SOTA) methods, and ranks first across all
metrics. Specifically, our method achieves improvements
in text-asset alignment (+28.4), 3D plausibility (+24.4),
text-geometry alignment (+25.8), texture details (+48.4),
geometry details (+41.4), and overall performance (+24.4).
It showcases the superiority of the proposed method in en-
hancing text and geometry details while maintaining 3D
consistency.

4.3. More Analyses and Justifications

Evaluation on different backbones. We here further in-
vestigate the impact of backbone selection on our method.
The performance of DreamDPO using Stable Diffusion
v2.1 (SD2.1) (Rombach et al., 2022a) is provided. Note
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A small, solid, radially symmetrical, iridescent abalone shell, with jagged contours, hosting a miniature, 
tranquil Zen garden complete with tiny, raked sand and micro bonsai

Various hollow, asymmetrical, textured seashells, collected in a sand-filled, clear glass jar with a twine-
tied neck, displayed on a windowsill

A heavy, layered, asymmetrical winter quilt, with a patchwork of plaid fabrics in reds and greens, folded 
at the foot of a well-made bed

MVDream DreamDPO (Ours)

Jellyfish with bioluminescent tentacles shaped like lightning bolts

Figure 3. Qualitative comparisons with MVDream (Shi et al.,
2023). DreamDPO performs well across short to long prompts,
offering better human preference results, marked in red. (Zoom in
to see the details.)

ProlificDreamer Ours (w. SD2.1) MVDream Ours (w. MVDream)

A rubbery cactus

A lamp casting a warm glow

Figure 4. The analysis of backbone. We present the results of
DreamDPO using Stable Diffusion v2.1 (SD2.1) (Rombach et al.,
2022a). DreamDPO demonstrates effective performance with
SD2.1, highlighting its potential to leverage more advanced back-
bone diffusion models for further improvements.

that as the previous method ProlificDreamer (Wang et al.,
2024) also utilizes SD2.1, we compare DreamDPO with
SD2.1 against ProlificDreamer. As shown in Figure 4, our
method can perform effectively with SD2.1 and achieve
competitive results compared to ProlificDreamer. Impor-
tantly, DreamDPO does not need LoRA training and is more
efficient than ProlificDreamer.

Evaluation on different reward models. We study the
impact of reward model selection on our method. Specif-
ically, ImageReward (Xu et al., 2024b) is used, which is
an image-based reward model with a similarity function
comparable to HPSv2 (Wu et al., 2023). As shown in Fig-
ure 5, the results demonstrate that our method performs
effectively across different reward models, demonstrating
its flexibility and scalability. For instance, in the prompt “A
mug filled with steaming coffee”, both HPSv2 and ImageRe-

A mug filled with steaming coffee

MVDream Ours (w. HPSv2) Ours (w. ImageReward)

A twisted tower

Figure 5. The analysis of reward models. We present the results
of DreamDPO using ImageReward (Xu et al., 2024b). DreamDPO
demonstrates effective performance with ImageReward, highlight-
ing its potential to leverage stronger reward models to further
enhance generation quality.

SDS 𝜏 = 0.01 𝜏 = 0.005 𝜏 = 0.002 𝜏 = 0

An elderly nomadic woman with a deeply lined face, wearing a fur-lined cloak 
and a traditional woven headdress adorned with beads.

A close-up of an elderly woman with deep-set wrinkles around her eyes, high 
cheekbones, and thin lips, wearing a knitted hat with intricate patterns.

Figure 6. The analysis of the score gap threshold τ . We conduct
2D toy experiments with τ ranging from 0.01 to 0. The results
indicate that a small but non-zero τ effectively filters out overly
similar lose examples, leading to more detailed outputs.

ward successfully capture the coffee, and ImageReward
places greater emphasis on the steam. While ImageReward
demonstrates improvement over the baseline, HPSv2 yields
superior results due to its better generalization across di-
verse image distributions (Wu et al., 2023). Therefore, we
adopt HPSv2 as our default reward model. It highlights
the potential of leveraging stronger reward models, e.g.,
VisionReward (Xu et al., 2024a), to further enhance genera-
tion quality. Furthermore, DreamDPO is compatible with
rule-based reward metrics, such as image quality metrics
(e.g., BRISQUE (Mittal et al., 2011)). It does not require
additional reward models and is suitable for scenarios with
limited computational resources. As shown in Figure 10,
we include a case study demonstrating DreamDPO with
BRISQUE, a no-reference image quality evaluator, to show
its effectiveness.

Evaluation on different score gaps. We investigate the
impact of the score gap τ . Specifically, 2D toy experiments
with τ range from 0.01 to 0 are conducted. We provide
results in Figure 6, which show that a smaller τ produces
more detailed outputs. Note that a small τ means choosing
to lose examples with scores close to win samples, and
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A bicycle that leaves a trail of flowers

A colorful kite tangled in the branches of an oak tree, fabric fluttering in the wind

An ultra-detailed illustration of a mythical Phoenix, rising from ashes, vibrant feathers in a fiery Palette

MVDream DreamReward DreamDPO (Ours)

A pen leaking blue ink

Figure 7. Qualitative comparisons with DreamReward (Ye et al., 2025). DreamDPO improves both text matching (marked in red) and
geometric/texture details.

focusing the training process on hard cases. However, we
observe that τ = 0 (the last column in Figure 4) results in
a chaotic gradient. To balance high-fidelity generation and
stable training, we suggest using a small but non-zero τ ,
which excludes overly similar lose examples.

Evaluation on different pair examples. The influence
of different pair example generation methods is studied.
Specifically, we compare: (1) different noises, by adding
different Gaussian noises with the same timesteps; (2) differ-
ence steps, by adding the same Gaussian noise with different
timesteps. As shown in Figure 9, using different Gaussian
noise yields better results than different timesteps. We at-
tribute that noisy latents with different timesteps are easier
to distinguish, making them less effective as challenging
examples. It highlights the importance of generating mean-
ingful and challenging lose examples. Accordingly, we
adopt different noises as the default setting.

Ranking model design. We explore the potential of our
method to leverage large multi-modal models (LMMs) for
explicit guidance. Instead of relying on a reward model, we

use large visual-language models, such as QwenVL (Bai
et al., 2023), to rank paired results. Specifically, we ex-
tract “yes” or “no” questions from the text prompt, query
the LMM with rendered paired examples, and count the
“yes” responses to calculate the reward score. Then, we use
Equation (6) with threshold τ = 1 for 3D assets generation.
As shown in Figure 8, our method effectively improves text
alignment by using LMM to guide the optimization with
user instruction (e.g., correcting the number and attribute
of 3D assets). Additionally, our method flexibly supports
using lose examples to guide optimization. For example,
given the prompt “A dancing elephant”, the baseline gen-
erates an elephant standing rather than dancing. By setting
“elephant stays on the ground” as the lose example and
pushing it away, our method encourages the elephant to lift
its leg, leading to a dancing pose. It highlights the potential
of our method to integrate LMMs into 3D generation. More
implementation details of the LMMs-based comparison can
be found in Appendix B.2.

Discussion on potential bias from reward models. The
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Figure 8. The generation results of DreamDPO with large multi-modal models (LMMs). We explore the potential of our method to
leverage LMMs, such as QwenVL (Bai et al., 2023) for explicit guidance in correcting the number and attribute of 3D assets. The left
corner shows the details of pairwise comparisons using the LMM, including the question and win/lose criteria. By carefully designing the
question, DreamDPO can leverage both win and lose examples to guide optimization. (Zoom in to see the details.)

MVDream Ours
(w. Different Noise)

Ours
(w. Different Timestep)

Figure 9. The analysis of pairwise example construction. We
compare (1) different noises: adding different Gaussian noises
with the same timesteps, and (2) difference timesteps: adding the
same Gaussian noise with different timesteps.

reward bias is a known issue in RL-based optimization. One
solution is to scale the training data and model size of the
reward model. As shown in our experiments in Section 4.3,
the reward model HPSv2, which has a stronger general-
ization ability compared to ImageReward, demonstrates
superior generation performance in most cases. Moreover,
DreamDPO supports an ensemble of reward models, com-
bining their rankings to reduce reliance on a single model
and mitigate unwanted biases (see Figure 10).

Discussion on potential limitations on 2D metrics. In
this paper, we mainly adopt 2D reward models, due to the
fact that they are relatively mature, with abundant data and
good reward performance. However, they have limitations.
While they improve prompt alignment, such as correcting
character attributes (e.g., changing “man” to “knight”), they
struggle to address inherent Janus issues (e.g., characters
with three legs). Our DreamDPO is flexible with both 2D
and 3D rewards (Ye et al., 2025). Experiments in Figure 11
demonstrate that it effectively mitigates Janus issues and

Jellyfish with bioluminescent tentacles shaped like lightning bolts

MVDream DreamDPO
(w. BRISQUE)

DreamDPO
(w. HPSv2)

DreamDPO
(w. HPSv2 + BRISQUE)

A mug filled with steaming coffee

Figure 10. The analysis of rule-based reward metrics and ensemble
reward models. (1) DreamDPO is compatible with image quality
metrics (e.g., BRISQUE (Mittal et al., 2011)). (2) DreamDPO
could combine two rankings to reduce reliance on a single model
and mitigate unwanted biases.

some potential artifacts, offering a more reliable evaluation
for 3D consistency.

Discussion on LMM-based reward model enhancements.
We investigate strategies to enhance performance when us-
ing large multimodal models (LMMs) as reward models, in-
cluding increasing the number of comparison candidates and
employing stronger LMMs. First, we extend DreamDPO to
support multi-sample comparisons. Specifically, we modify
STEP1 to construct multiple candidate examples (e.g., 4
or 6), enabling more diverse comparisons. From these, we
select the candidate with the highest reward score as the
win example and the one with the lowest score as the lose
example. As shown in Figure 12 (first and second columns),
this approach proves effective, as it allows DreamDPO
to mine more positive samples and form higher-quality
positive-negative pairs. Second, we evaluate the impact
of the LMM scale by conducting experiments with three
models: Qwen2.5-VL-3B, Qwen2.5-VL-32B, and Qwen-
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MVDream
DreamDPO
(w. HPSv2)

DreamDPO
(w. Reward3D)

Various hollow, asymmetrical, textured seashells, collected in a sand-filled, clear glass 
jar with a twine-tied neck, displayed on a windowsill

A DSLR photo of a knight chopping wood

Figure 11. The analysis of the 3D reward models. DreamDPO is
flexible with both 2D and 3D rewards. The 3D reward model (e.g.,
Reward3D (Ye et al., 2025)) effectively mitigates Janus issues and
some potential artifacts.

4 Candidates
Qwen-VL-Plus

4 Candidates
Qwen2.5-VL-3b

4 Candidates
Qwen2.5-VL-32b

200-iter

400-iter

600-iter

800-iter

1000-iter

1200-iter

2 Candidates
Qwen-VL-Plus

Three vibrant balloons tied together

Figure 12. The analysis of the LMM-based reward model. The
results show that increasing the number of comparison candi-
dates helps to better mine positive samples, while high-performing
LMMs could enhance DreamDPO’s performance.

VL-Plus (Bai et al., 2023). Notably, Qwen2.5-VL-3B, with
only 3B parameters, is a relatively weak model. Results in
Figure 12 (third column) indicate that when the capability
of LMM is limited (e.g., Qwen2.5-VL-3B), it struggles with
tasks such as number correction. In SDS-based optimization,
early correction of numerical content is crucial, which re-
quires a strong LMM. Thus, larger and more capable LMMs
can enhance DreamDPO’s performance.

Further application. To showcase the potential of our
method, we provide empirical results on text-to-avatar gen-
eration. Specifically, we replace the score sampling loss
in HeadStudio (Zhou et al., 2024) which is a 3DGS (Kerbl
et al., 2023) based avatar generation framework, with our re-
ward loss. As illustrated in Figure 13, our method achieves
great generation results. This underscores the broader ap-
plicability of our method to various generation tasks, e.g.,
4D generation (Bahmani et al., 2024) and scene genera-

A DSLR portrait of an elderly 
man with a long white beard, 

deep-set eyes, and a fur-lined cap A head of I am Groot

Figure 13. The further application of DreamDPO. We conduct toy
experiments on text-to-avatar generation by combining DreamDPO
with Gaussian-based avatar generation framework (Zhou et al.,
2024). More details can be checked in Appendix B.3.

tion (Zhang et al., 2024a), etc.

5. Conclusion
In this work, we propose DreamDPO, an optimization-based
3D generation method that offers human preferences and
fine-grained control for generation. The method is built on
three key steps: pairwise example construction, pairwise
example comparison, and preference-guided optimization.
Unlike existing methods that rely on precise pointwise qual-
ity evaluations, DreamDPO uses pairwise comparison in-
formed by reward models or large multimodal models. It
enables a more flexible optimization process. By incor-
porating human preferences directly into the optimization,
DreamDPO generates 3D assets that are better aligned with
input text and exhibit enhanced texture and geometry qual-
ity. Comprehensive experimental results demonstrate that
DreamDPO surpasses previous state-of-the-art methods in
both output quality and controllability. Lastly, we hope
DreamDPO paves the way for more refined, adaptable, and
human-aligned 3D content generation solutions.

Limitations and future work. While DreamDPO has
shown improvements in aligning 3D generation with human
preferences, several avenues for future research could fur-
ther enhance its performance and applicability. The primary
limitations of DreamDPO are as follows: (1) AI feedback
can be used for guidelines, but is largely limited to the inher-
ent power of generative models. (2) Open API can provide
more freedom, but actually brings more instability, where
instruction prompts should be designed carefully.

To address these limitations, we suggest the following di-
rections for future work: (1) Enhancing generative models.
Incorporating image prompts (Chen et al., 2024) to intro-
duce explicit guidance could improve alignment with user
expectations by providing a more detailed context for gener-
ation. (2) Improving the robustness of models in pairwise
comparison. Exploring prompt-free methods, such as using
object detection models (Wang et al., 2023c) or ground-
ing models (Oquab et al., 2023), for number and attribute
correction, might reduce dependencies on prompt design.
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A. Related Work
A.1. Text-to-Image Generation

With the development of vision-language models (Radford et al., 2021) and diffusion models (Sohl-Dickstein et al., 2015;
Ho et al., 2020), great advancements recently have been made in text-to-image generation (Nichol et al., 2021; Ho et al.,
2022; Zhang et al., 2023b). In particular, Stable Diffusion (Rombach et al., 2022b) is a notable framework that trains the
diffusion models on latent space, leading to reduced complexity and detailed preservation. In addition, with the emergence
of text-to-2D models, more applications have been developed (Liu et al., 2023a; 2025; 2024c;b), e.g., spatial control (Voynov
et al., 2023; Zhang et al., 2023c), concept control (Gal et al., 2022; Ruiz et al., 2022), and image editing (Brooks et al.,
2023).

A.2. Text-to-3D Generation

The success of the 2D generation is incredible. However, it is challenging to transfer image diffusion models to 3D
because of the difficulty of 3D data collection. Fortunately, Neural Radiance Fields (NeRF) (Mildenhall et al., 2020; Barron
et al., 2022) provided new insights for 3D-aware generation, where only 2D multi-view images are needed in 3D scene
reconstruction. Combining prior knowledge from text-to-2D models, several methods, such as DreamField (Jain et al.,
2022), DreamFusion (Poole et al., 2022), and SJC (Wang et al., 2022), have been proposed to generate 3D objects guided by
text prompts (Li et al., 2023b). However, the vanilla score distillation sampling loss (Poole et al., 2022) suffers from issues
such as over-saturation, over-smoothing, and Janus problems, etc. Recently, several works have proposed improvements
to enhance generation quality (Wang et al., 2024; Yu et al., 2023; Zhu et al., 2023; Katzir et al., 2023; Chung et al., 2024;
Wu et al., 2024b; Zhuo et al., 2024), and inspire multiple applications that include but are not limited to text-guided scene
generation (Cohen-Bar et al., 2023; Höllein et al., 2023), text-guided 3D editing (Haque et al., 2023; Kamata et al., 2023),
and text-guided avatar generation (Cao et al., 2023; Jiang et al., 2023; Han et al., 2023; Zhou et al., 2024). Additionally,
with the availability of large 3D datasets (Deitke et al., 2023; 2024), some works (Liu et al., 2023b; Shi et al., 2023; Liu
et al., 2024a; 2023c; Long et al., 2024) leverage multi-view information to address the Janus problem more effectively.

Recent advancements in multi-view diffusion models have enabled the development of large reconstruction models (Hong
et al., 2023; Tang et al., 2024; Zou et al., 2024) that can generate 3D objects from multi-view inputs within minutes. In
parallel, 3D generative models (Zhang et al., 2023a; Wang et al., 2023b; Zhang et al., 2024b; Xiang et al., 2025) have emerged,
enabling the direct creation of 3D objects guided by text or images. These feed-forward methods significantly accelerate
the 3D generation process, fostering broader applications in areas such as gaming and 3D printing. Aligning feed-forward
methods with human preferences is meaningful but remains underexplored, primarily due to the significant computational
resources required. DreamDPO offers valuable insights for feed-forward methods. Specifically, by constructing candidates
with varying noise and using ranking-guided optimization, DreamDPO provides a potential pathway for reinforcement
learning-based optimization of feed-forward methods.

A.3. Learning from Human Preferences

Learning from human preferences is essential for improving the alignment and performance of generative models across
various domains, including large language models (LLMs) (Bai et al., 2022a;b; Lee et al., 2023a; Zhao et al., 2023; Su
et al., 2025), text-to-image diffusion models (Black et al., 2023; Lee et al., 2023b; Clark et al., 2023; Xu et al., 2024b;
Wallace et al., 2024; Fan et al., 2024; Zhang et al., 2024c), and text-to-3D generation (Xie et al., 2024; Ye et al., 2025).
Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017) has been proven effective in refining
LLMs to better align with human preferences. It often involves collecting human feedback datasets, training a reward model,
and fine-tuning the language model using reinforcement learning. InstructGPT (Ouyang et al., 2022) is a notable work
that employs a two-stage fine-tuning strategy to align GPT-3 with human instructions, which leads to more coherent and
contextually appropriate outputs.

The success of RLHF in LLMs has inspired the applications in text-to-image diffusion models to enhance image generation
quality and align with human preferences. In more detail, RWR (Lee et al., 2023b) first introduces human feedback-based
reward fine-tuning for diffusion models, which fine-tunes Stable Diffusion (Rombach et al., 2022a) using log probabilities
of the denoising process. ImageReward (Xu et al., 2024b) proposes a reward model specifically for text-to-image tasks and
further develops reward feedback Learning for refining diffusion models. DiffusionDPO (Wallace et al., 2024) uses DPO to
optimize diffusion models using human comparative data, while DPOK (Fan et al., 2024) integrates policy optimization
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with KL regularization for improved alignment. Recently, advancements in multi-view diffusion models have facilitated
significant progress in text-to-3D generation. For instance, Carve3D (Xie et al., 2024) enhances text-to-3D generation with a
Multi-view Reconstruction Consistency (MRC) metric for improved consistency and quality. DreamReward (Ye et al., 2025)
improves text-to-3D models using human feedback. It collects a 3D dataset with human annotations, trains Reward3D
as a multi-view reward model, and introduces DreamFL to create 3D assets aligned with human preferences. However,
these works rely heavily on large-scale datasets to train a reward model or utilize it as preference feedback, which is very
expensive for 3D generation.

B. Additional Implementation Details
B.1. Pseudo-Code for DreamDPO

A more detailed pseudo-code for DreamDPO is presented in Algorithm 1.

Algorithm 1 Pseudo-code for DreamDPO
Input: Text-to-image diffusion model ϵϕ. Ranking model r. Learning rate η for 3D representation parameters. A prompt y.

Evaluating threshold of score gap τ .
1: Initialization A 3D representation presenting with NeRF θ
2: while not converged do
3: Randomly sample a camera pose c, pairwise 2D noise ϵ1 and ϵ2, and timestep t ∼ Uniform({0, · · · , T}).
4: Render at pose c to get a image x0.
5: Add noise ϵ1 and ϵ2 to x0 and get x1

t and x2
t , respectively.

6: Denoise with the predicting noise:

x̂1
0 =

x1
t − σtϵθ(x

1
t ; y, t)

αt
,

x̂2
0 =

x2
t − σtϵθ(x

2
t ; y, t)

αt
.

7: Score the prediction (x̂1
0, x̂

2
0) online via a rank model r, yielding the pairwise comparison (xwin

t ,xlose
t ).

8: Compute the score gap:
sgap = r(xwin

t , y)− r(xlose
t , y). (7)

9: if sgap < τ then
10:

∇θLReward = Et

[
w(t)

(
ϵsϕ(x

win
t ; y, t)

) ∂x
∂θ

]
,

11: else
12:

∇θLReward = Et

[
w(t)

((
ϵsϕ(x

win
t ; y, t)− ϵwin)− (

ϵ1ϕ(x
lose
t ; y, t)− ϵlose)) ∂x

∂θ

]
.

13: end if
13: θ ← θ − η∇θLReward.
14: end while

B.2. Details of LMM-based Pairwise Comparison

We detail the implementation of the LMM-based pairwise comparison. We use the large visual-language model “qwen-vl-
plus-latest” from QwenVL (Bai et al., 2023) as the default LMM. Given pairwise examples, we conduct the comparison
query sequentially. For each query, we first insert a predefined “yes” or “no” question into the comparison prompt, such as
“Is the leaf shouting?” for the prompt “A shouting leaf.” Then, the LMM performs visual question answering based on the
provided image and query. Finally, we extract the number of “yes” responses as the score. The following prompts are used
for the queries:
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Comparison Query

[Task Description]: You are an expert in evaluating the alignment between a given text description and an image.
Your task is to answer each of the alignment questions with either “Yes” or “No” based on the image. Provide your
responses in the format specified below.
[Evaluation Instruction]:
1. Carefully analyze the provided image and answer questions based on the image.
2. For each question, answer with either “Yes” or “No”. Do not provide explanations or additional information.
[Evaluation Question(s)]:
Q1: {Question}
...
[Output Format]:
A1: [Yes/No]
...

B.3. Details of Text-to-Avatar Generation

We detail the toy exploration of text-to-avatar generation using DreamDPO. Specifically, we integrate the reward loss into
HeadStudio (Zhou et al., 2024), a Gaussian-based avatar generation framework. HeadStudio is an optimization-based method
that utilizes a score sampling loss (Katzir et al., 2023) with ControlNet (Zhang et al., 2023c) to optimize an animatable head
prior model. By replacing the score sampling loss with the reward loss, we leverage ControlNet to generate avatars.

C. Supplementary Experimental Settings
C.1. Details of Measurement Metrics

In the main paper, we employ two evaluation strategies to demonstrate the superiority of the proposed method. Here we
supplementary the details of the measurements.

Evaluation with ImageReward. ImageReward (Xu et al., 2024b) is a text-to-image human preference reward model. Due
to its effectiveness, it has been broadly used for human preference evaluation in text-to-image generation (Fan et al., 2024)
and text-to-3D generation (Ye et al., 2025). Given a (text, image) pair, it extracts image and text features, combines them
with cross-attention, and uses an MLP to generate a scalar for preference comparison. For each 3D asset, we uniformly
render 120 RGB images from different viewpoints. Afterward, the ImageReward score is computed from the multi-view
renderings and averaged for each prompt.

Evaluation with GPTEval3D. We utilize GPTEval3D (Wu et al., 2024a), which is a comprehensive benchmark for
text-to-3D generation evaluation. GPTEval3D includes 13 baseline methodsM, 110 text prompts, and 5 criteria that are
text-asset alignment, 3D plausibility, texture details, geometry details, and texture-geometry coherency respectively. For a
new method, GPTEval3D employs GPT-4V to compare 3D assets generated by this new method and one of the baseline
methods with the same input text prompt. These pairwise comparison results are then used to calculate the Elo rating for
each model. Specifically, let A be a matrix where Aij represents the number of times that the i-th model outperforms the
j-th model in comparisons. The Elo ratings for the models are computed by optimizing the following objective:

σ = argmax
σ

∑
i ̸=j

Aij log
(
1 + 10(σj−σi)/400

)
, (8)

where σi ∈ R is the Elo rating of the i-th model. In this work, we calculate Elo ratings within the existing tournament,
initializing, and freezing baseline scores as specified in the official code2. For interested readers, please refer to (Wu et al.,
2024a).
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Figure 14. The analysis of reducing generation time. DreamDPO could reduce generation time by 25% (to 1.5 hours) while maintaining
improved performance.

Figure 15. The analysis of the score gap threshold τ . We conduct 3D experiments with τ ranging from 1 to 0. The results indicate that
τ = 0 results in over-saturation, and a small but non-zero τ leads to more detailed outputs.

D. Supplementary Experimental Results
D.1. Discussion

Discussion on training time. The vanilla SDS takes around 1 hour to optimize. Our method takes approximately 2 hours
due to the pairwise example construction. To speed up the process, we can adopt a simple yet effective strategy: performing
SDS for the first 6000 iterations and then switching to DreamDPO. As shown in Figure 14, this approach reduces the
generation time by 25% (to around 1.5 hours) while maintaining improved performance.

Discussion on the score gap threshold in the 3D setting. We present the ablation study of the score gap threshold τ in the
3D setting (see Figure 15). The results indicate that a large τ (e.g., τ = 1) degrades DreamDPO to the SDS loss, resulting in
an over-smoothing issue. Conversely, setting τ = 0 may result in over-saturation in some cases, such as a purplish sunlight
appearance in rocks. Therefore, we recommend using a small but non-zero τ .

2https://github.com/3DTopia/GPTEval3D/blob/main/data/tournament-v0/config.json
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D.2. More Qualitative Results

We present additional qualitative results in Figure 16 and Figure 17. The comparisons demonstrate that our method generates
human-preferred 3D assets, with improved text alignment and enhanced geometric and texture details.
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A book left on a park bench

MVDream DreamDPO (Ours)

A small, solid, geometrically spherical, metallic orb, with a glossy ruby finish, nestled in a nest of black velvet, untouched 
and gleaming under a spotlight

An ensemble of hollow, irregularly shaped musical instruments, including a saxophone, a violin, and a drum, resting on a 
stage before a jazz concert"

A bunch of colorful marbles spilling out of a red velvet bag

A ceramic upside down yellow octopus holding a blue green ceramic cup

A DSLR photo of a lion reading the newspaper

A DSLR photo of a humanoid robot using a laptop

Figure 16. More qualitative results using DreamDPO.
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A DSLR photo of a blue jay standing on a large basket of rainbow macarons

MVDream DreamDPO (Ours)

A DSLR photo of a cat lying on its side batting at a ball of yarn

A DSLR photo of a cat magician making a white dove appear

A DSLR photo of a knight chopping wood

A beagle in a detective’s outfit

A collection of solid, irregularly shaped hand tools, with wooden handles and metal ends, well-used and slightly rusty, 
hanging on a pegboard in a workshop

A DSLR photo of a basil plant

Figure 17. More qualitative results using DreamDPO.
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