
ISAAC Newton: Input-based Approximate
Curvature for Newton’s Method

Anonymous Author(s)
Affiliation
Address
email

Abstract

We present ISAAC (Input-baSed ApproximAte Curvature), a novel method that1

conditions the gradient using selected second-order information and has an asymp-2

totically vanishing computational overhead, assuming a batch size smaller than3

the number of neurons. We show that it is possible to compute a good conditioner4

based on only the input to a respective layer without a substantial computational5

overhead. The proposed method allows effective training even in small-batch6

stochastic regimes, which makes it competitive to first-order as well as quasi-7

Newton methods.8

1 Introduction9

While second-order optimization methods are traditionally much less explored than first-order10

methods in large-scale machine learning (ML) applications due to their memory requirements and11

prohibitive computational cost per iteration, they have recently become more popular in ML mainly12

due to their fast convergence properties when compared to first-order methods [1]. The expensive13

computation of an inverse Hessian (also known as pre-conditioning matrix) in the Newton step has14

also been tackled via estimating the curvature from the change in gradients. Loosely speaking, these15

algorithms are known as quasi-Newton methods and a comprehensive treatment can be found in16

the textbook [2]. In addition, various new approximations to the pre-conditioning matrix have been17

proposed in the recent literature [3]–[6]. From a theoretical perspective, second-order optimization18

methods are not nearly as well understood as first-order methods. It is an active research direction to19

fill this gap [7], [8].20

Motivated by the task of training neural networks, and the observation that invoking local curvature21

information associated with neural network objective functions can achieve much faster progress22

per iteration than standard first-order methods [9]–[11], several methods have been proposed. One23

of these methods, that received significant attention, is known as Kronecker-factored Approximate24

Curvature (K-FAC) [12], whose main ingredient is a sophisticated approximation to the generalized25

Gauss-Newton matrix and the Fisher information matrix quantifying the curvature of the underlying26

neural network objective function, which then can be inverted efficiently.27

Inspired by the K-FAC approximation and the Tikhonov regularization of the Newton method, we28

introduce a novel two parameter regularized Kronecker-factorized Newton update step. The proposed29

scheme disentangles the classical Tikhonov regularization and allows us to condition the gradient30

using selected second-order information and has an asymptotically vanishing computational overhead.31

While this property makes the presented method highly attractive from the computational complexity32

perspective, we show that its achieved empirical performance on complicated high-dimensional33

Machine Learning problems remains comparable to existing state-of-the-art methods.34

The contributions of this paper can be summarized as follows: (i) we propose a novel two parameter35

regularized K-FAC approximated Gauss-Newton update step; (ii) we show that asymptotically—as36

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

both regularization parameters vanish—our method recovers the classical K-FAC scheme and in37

the opposite setting—as both regularization parameters grow—our method asymptotically reduces38

to classical gradient descent; (iii) we prove that for an arbitrary pair of regularization parameters,39

the proposed update direction is always a direction of decreasing loss; (iv) in the limit, as one40

regularization parameter grows, we obtain an efficient and effective conditioning of the gradient with41

an asymptotically vanishing overhead; (v) we empirically analyze the presented method and find that42

our efficient conditioning method maintains the performance of its more expensive counterpart; (vi)43

we demonstrate the effectiveness of the presented method in the setting of small-batch stochastic44

regimes and observe that it is competitive to first-order as well as quasi-Newton methods.45

2 Preliminaries46

In this section, we review aspects of second-order optimization, with a focus on generalized Gauss-47

Newton methods. In combination with Kronecker factorization, this leads us to a new regularized48

update scheme. We consider the training of an L-layer neural network f(x; θ) defined recursively as49

zi ← ai−1W
(i) (pre-activations), ai ← ϕ(zi) (activations), (1)

where a0 = x is the vector of inputs and aL = f(x; θ) is the vector of outputs. Unless noted otherwise,50

we assume these vectors to be row vectors (i.e., in R1×n) as this allows for a direct extension to the51

(batch) vectorized case (i.e., in Rb×n) introduced later. For any layer i, let W (i) ∈ Rdi−1×di be a52

weight matrix and let ϕ be an element-wise nonlinear function. We consider a convex loss function53

L(y, y′) that measures the discrepancy between y and y′. The training optimization problem is then54

argmin
θ

Ex,y [L(f(x; θ), y)] , (2)

where θ =
[
θ(1), . . . , θ(L)

]
with θ(i) = vec(W (i)).55

The classical Newton method for solving (2) is expressed as the update rule56

θ′ = θ − ηH−1
θ ∇θL(f(x; θ), y) , (3)

where η > 0 denotes the learning rate and Hθ is the Hessian corresponding to the objective function57

in (2). The stability and efficiency of an estimation problem solved via the Newton method can be58

improved by adding a Tikhonov regularization term [13] leading to a regularized Newton method59

θ′ = θ − η (Hθ + λI)−1∇θL(f(x; θ), y) , (4)
where λ > 0 is the so-called Tikhonov regularization parameter. It is well-known [14], [15], that60

under the assumption of approximating the model f with its first-order Taylor expansion, the Hessian61

corresponds with the so-called generalized Gauss-Newton (GGN) matrix Gθ, and hence (4) can be62

expressed as63

θ′ = θ − η (Gθ + λI)−1∇θL(f(x; θ), y) . (5)
A major practical limitation of (5) is the computation of the inverse term. A method that alleviates this64

difficulty is known as Kronecker-Factored Approximate Curvature (K-FAC) [12] which approximates65

the block-diagonal (i.e., layer-wise) empirical Hessian or GGN matrix. Inspired by K-FAC, there66

have been other works discussing approximations of Gθ and its inverse [15]. In the following, we67

discuss a popular approach that allows for (moderately) efficient computation.68

The generalized Gauss-Newton matrix Gθ is defined as69

Gθ = E
[
(Jθf(x; θ))

⊤∇2
fL(f(x; θ), y)Jθf(x; θ)

]
, (6)

where J and H denote the Jacobian and Hessian matrices, respectively. Correspondingly, the diagonal70

block of Gθ corresponding to the weights of the ith layer W (i) is71

GW (i)=E
[
(JW (i)f(x; θ))⊤∇2

fL(f(x; θ), y)JW (i)f(x; θ)
]
.

According to the backpropagation rule Jθ(i)f(x; θ) = Jzif(x; θ) ai−1, a⊤b = a ⊗ b, and the72

mixed-product property, we can rewrite GW (i) as73

GW (i)=E
[(
(Jzif(x; θ) ai−1)

⊤(∇2
fL(f(x; θ), y))1/2

)(
(∇2

fL(f(x; θ), y))1/2 Jzif(x; θ) ai−1

)]
(7)

= E
[
(ḡ⊤ai−1)

⊤(ḡ⊤ai−1)
]
= E
[
(ḡ ⊗ ai−1)

⊤(ḡ ⊗ ai−1)
]
= E
[
(ḡ⊤ḡ)⊗ (a⊤i−1 ⊗ ai−1)

]
, (8)

where74

ḡ = (Jzif(x; θ))
⊤ (∇2

fL(f(x; θ), y))1/2 . (9)

2

Remark 1 (Monte-Carlo Low-Rank Approximation for ḡ⊤ḡ). As ḡ is a matrix of shape m × di75

where m is the dimension of the output of f , ḡ is generally expensive to compute. Therefore, [12] use76

a low-rank Monte-Carlo approximation to estimate HfL(f(x; θ), y) and thereby ḡ⊤ḡ. For this, we77

need to use the distribution underlying the probabilistic model of our loss L (e.g., Gaussian for MSE78

loss, or a categorical distribution for cross entropy). Specifically, by sampling from this distribution79

pf (x) defined by the network output f(x; θ), we can get an estimator of HfL(f(x; θ), y) via the80

identity81

HfL(f(x; θ), y) = Eŷ∼pf (x)

[
∇fL(f(x; θ), ŷ)⊤∇fL(f(x; θ), ŷ)

]
. (10)

An extensive reference for this (as well as alternatives) can be found in Appendix A.2 of Dangel et82

al. [15]. The respective rank-1 approximation (denoted by ≜) of HfL(f(x; θ)) is83

HfL(f(x; θ), y) ≜ ∇fL(f(x; θ), ŷ)⊤∇fL(f(x; θ), ŷ) ,

where ŷ ∼ pf (x). Respectively, we can estimate ḡ⊤ḡ using this rank-1 approximation with84

ḡ ≜ (Jzif(x; θ))
⊤∇fL(f(x; θ), ŷ) = ∇ziL(f(x; θ), ŷ) . (11)

In analogy to ḡ, we introduce the gradient of training objective with respect to pre-activations zi as85

gi = (Jzif(x; θ))
⊤∇fL(f(x; θ), y) = ∇ziL(f(x; θ), y) . (12)

In other words, for a given layer, let g ∈ R1×di denote the gradient of the loss between an output and86

the ground truth and let ḡ ∈ Rm×di denote the derivative of the network f times the square root of87

the Hessian of the loss function (which may be approximated according to Remark 1), each of them88

with respect to the output zi of the given layer i. Note that ḡ is not equal to g and that they require one89

backpropagation pass each (or potentially many for the case of ḡ). This makes computing ḡ costly.90

Applying the K-FAC [12] approximation to (8) the expectation of Kronecker products can be91

approximated as the Kronecker product of expectations as92

G = E((ḡ⊤ḡ)⊗ (a⊤a)) ≈ E(ḡ⊤ḡ)⊗ E(a⊤a) , (13)

where, for clarity, we drop the index of ai−1 in (8) and denote it with a; similarly we denote GW (i)93

as G. While the expectation of Kronecker products is generally not equal to the Kronecker product94

of expectations, this K-FAC approximation (13) has been shown to be fairly accurate in practice95

and to preserve the “coarse structure” of the GGN matrix [12]. The K-FAC decomposition in (13)96

is convenient as the Kronecker product has the favorable property that for two matrices A,B the97

identity (A⊗B)−1 = A−1 ⊗B−1 which significantly simplifies the computation of an inverse.98

In practice, E(ḡ⊤ḡ) and E(a⊤a) can be computed by averaging over a batch of size b as99

E(ḡ⊤ḡ) ≃ ḡ̄ḡg⊤ḡ̄ḡg/b, E(a⊤a) ≃ a⊤a/b, (14)

where we denote batches of g, ḡ and a, as g ∈ Rb×di , ḡ̄ḡg ∈ Rrb×di and a ∈ Rb×di−1 , where our layer100

has di−1 inputs, di outputs, b is the batch size, and r is either the number of outputs m or the rank of101

an approximation according to Remark 1. Correspondingly, the K-FAC approximation of the GGN102

matrix and its inverse are concisely expressed as103

G ≈ (ḡ̄ḡg⊤ḡ̄ḡg)⊗ (a⊤a)/b2 G−1 ≈
(
ḡ̄ḡg⊤ḡ̄ḡg

)−1⊗
(
a⊤a

)−1 · b2 . (15)

Equipped with the standard terminology and setting, we now introduce the novel, regularized update104

step. First, inspired by the K-FAC approximation (13), the Tikhonov regularized Gauss-Newton105

method (5) can be approximated by106

θ(i)′ = θ(i) − η(ḡ̄ḡg⊤ḡ̄ḡg/b+ λI)−1 ⊗ (a⊤a/b+ λI)−1∇θ(i)L(f(x; θ)), (16)

with regularization parameter λ > 0. A key observation, which is motivated by the structure of107

the above update, is to disentangle the two occurrences of λ into two independent regularization108

parameters λg, λa > 0. By defining the Kronecker-factorized Gauss-Newton update step as109

ζζζ = λgλa(ḡ̄ḡg
⊤ḡ̄ḡg/b+ λgI)

−1 ⊗ (a⊤a/b+ λaI)
−1∇θ(i)L(f(x; θ)), (17)

we obtain the concise update equation110 θ(i)′ = θ(i) − η∗ζζζ. (18)

3

This update (18) is equivalent to update (16) when in the case of η∗ = η
λgλa

and λ = λg = λa. This111

equivalence does not restrict η∗, λg, λa in any way, and changing λg or λa does not mean that we112

change our learning rate or step size η∗. Parameterizing ζζζ in (17) with the multiplicative terms λgλa113

makes the formulation more convenient for analysis.114

In this paper, we investigate the theoretical and empirical properties of the iterative update rule (18)115

and in particular show how the regularization parameters λg, λa affect the Kronecker-factorized116

Gauss-Newton update step ζζζ. When analyzing the Kronecker-factorized Gauss-Newton update step117

ζζζ, a particularly useful tool is the vector product identity,118 ((
ḡ̄ḡg⊤ḡ̄ḡg

)−1 ⊗
(
a⊤a

)−1
)
vec(g⊤a) = vec

((
ḡ̄ḡg⊤ḡ̄ḡg

)−1
g⊤a

(
a⊤a

)−1
)
, (19)

where the gradient with respect to the weight matrix is g⊤a.119

3 Theoretical Guarantees120

In this section, we investigate the theoretical properties of the Kronecker-factorized Gauss-Newton121

update direction ζζζ as defined in (17). We recall that ζζζ introduces a Tikonov regularization, as it is122

commonly done in implementations of second order-based methods. Not surprisingly, we show that123

by decreasing the regularization parameters λg, λa the update rule (18) collapses (in the limit) to the124

classical Gauss-Newton method, and hence in the regime of small λg, λa the variable ζζζ describes the125

Gauss-Newton direction. Moreover, by increasing the regularization strength, we converge (in the126

limit) to the conventional gradient descent update step.127

The key observation is that, as we disentangle the regularization of the two Kronecker factors ḡ̄ḡg⊤ḡ̄ḡg128

and a⊤a, and consider the setting where only one regularizer is large (λg → ∞ to be precise),129

we obtain an update direction that can be computed highly efficiently. We show that this setting130

describes an approximated Gauss-Newton update scheme, whose superior numerical performance is131

then empirically demonstrated in Section 4.132

Theorem 1 (Properties of ζζζ). The K-FAC based update step ζζζ as defined in (17) can be expressed as133

ζζζ =

(
Im −

1

bλg
ḡ̄ḡg⊤
(
Ib +

1

bλg
ḡ̄ḡgḡ̄ḡg⊤

)−1

ḡ̄ḡg

)
· g⊤ ·

(
Ib −

1

bλa
aa⊤

(
Ib +

1

bλa
aa⊤

)−1
)
· a .

(20)
Moreover, ζζζ admits the following asymptotic properties:134

(i) In the limit of λg, λa → 0, 1
λgλa

ζζζ is the K-FAC approximation of the Gauss-Newton step, i.e.,135

limλg,λa→0
1

λgλa
ζζζ ≈ G−1∇θ(i)L(f(x; θ)), where ≈ denotes the K-FAC approximation (15).136

(ii) In the limit of λg, λa →∞, ζζζ is the gradient, i.e., limλg,λa→∞ ζζζ = ∇θ(i)L(f(x; θ)).137

The Proof is deferred to the Supplementary Material.138

We want to show that ζζζ is well-defined and points in the correct direction, not only for λg and λa139

numerically close to zero because we want to explore the full spectrum of settings for λg and λa.140

Thus, we prove that ζζζ is a direction of increasing loss, independent of the choices of λg and λa.141

Theorem 2 (Correctness of ζζζ is independent of λg and λa). ζζζ is a direction of increasing loss,142

independent of the choices of λg and λa.143

Proof. Recall that (λgIm+ḡ̄ḡg⊤ḡ̄ḡg/b) and (λaIn+a⊤a/b) are positive semi-definite (PSD) matrices by144

definition. Their inverses (λgIm + ḡ̄ḡg⊤ḡ̄ḡg/b)−1 and (λaIn + a⊤a/b)−1 are therefore also PSD. As the145

Kronecker product of PSD matrices is PSD, the conditioning matrix ((λgIm + ḡ̄ḡg⊤ḡ̄ḡg/b)−1 ⊗ (λaIn +146

a⊤a/b)−1 ≈ G−1) is PSD, and therefore the direction of the update step remains correct.147

From our formulation of ζζζ , we can find that, in the limit for λg →∞, Equation (21) does not depend148

on ḡ̄ḡg. This is computationally very beneficial as computing ḡ̄ḡg is costly as it requires one or even149

many additional backpropagation passes. In addition, it allows conditioning the gradient update by150

multiplying a b× b matrix between g⊤ and a, which can be done very fast.151

4

Theorem 3 (Efficient Update Direction). In the limit of λg → ∞, the update step ζζζ converges to152

limλg→∞ ζζζ = ζζζ∗, where153

ζζζ∗= g⊤ ·

(
Ib −

1

bλa
aa⊤

(
Ib +

1

bλa
aa⊤

)−1
)
· a . (21)

(i) Here, the update direction ζζζ∗ is based only on the inputs and does not require computing ḡ̄ḡg154

(which would require a second backpropagation pass), making it efficient.155

(ii) The computational cost of computing the update ζζζ∗ lies in O(bn2 + b2n+ b3), where n is the156

number of neurons in each layer. This comprises the conventional cost of computing the gradient157

∇ = g⊤x lying inO(bn2), and the overhead of computing ζζζ∗ instead of∇ lying inO(b2n+b3).158

The overhead is vanishing, assuming n≫ b. For b > n the complexity lies in O(bn2 + n3).159

Proof. We first show the property (21). Note that according to (22), λg ·
(
λgIm + ḡ̄ḡg⊤ḡ̄ḡg/b

)−1
con-160

verges in the limit of λg →∞ to Im, and therefore (21) holds.161

(i) The statement follows from the fact that the term ḡ̄ḡg does not appear in the equivalent characteriza-162

tion (21) of ζζζ∗.163

(ii) We first note that the matrix aa⊤ is of dimension b × b, and can be computed in O(b2n) time.164

Next, the matrix165 (
Ib −

1

bλa
aa⊤

(
Ib +

1

bλa
aa⊤

)−1
)

is of shape b× b and can be multiplied with a in O(b2n) time.166

Notably, (21) can be computed with a vanishing computational overhead and with only minor167

modifications to the implementation. Specifically, only the g⊤a expression has to be replaced by (21)168

in the backpropagation step. As this can be done independently for each layer, this lends itself also to169

applying it only to individual layers.170

As we see in the experimental section, in many cases in the mini-batch regime (i.e., b < n), the171

optimal (or a good) choice for λg actually lies in the limit to∞. This is a surprising result, leading to172

the efficient and effective ζζζ∗ = ζζζλg→∞ optimizer.173

Remark 2 (Relation between Update Direction ζζζ and ζζζ∗). When comparing the update direction174

ζζζ in (20) without regularization (i.e., λg → 0, λa → 0) with ζζζ∗ (i.e., λg → ∞) as given in (21), it175

can be directly seen that ζζζ∗ corresponds to a particular pre-conditioning of ζζζ, since ζζζ∗ = Mζζζ for176

M = 1
bλg

ḡ̄ḡg⊤ḡ̄ḡg.177

As the last theoretical property of our proposed update direction ζζζ∗, we show that in specific networks178

ζζζ∗ coincides with the Gauss-Newton update direction.179

Theorem 4 (ζζζ∗ is Exact for the Last Layer). For the case of linear regression or, more generally, the180

last layer of networks, with the mean squared error, ζζζ∗ is the Gauss-Newton update direction.181

Proof. The Hessian matrix of the mean squared error loss is the identity matrix. Correspondingly,182

the expectation value of ḡ̄ḡg⊤ḡ̄ḡg is I. Thus, ζζζ∗ = ζζζ.183

Remark 3. The direction ζζζ∗ corresponds to the Gauss-Newton update direction with an approxima-184

tion of G that can be expressed as G ≈ E
[
I⊗ (a⊤a)

]
.185

Remark 4 (Extension to the Natural Gradient). In some cases, it might be more desirable to use the186

Fisher-based natural gradient instead of the Gauss-Newton method. The difference to this setting is187

that in (5) the GGN matrix G is replaced by the empirical Fisher information matrix F.188

We note that our theory also applies to F, and that ζζζ∗ also efficiently approximates the natural189

gradient update step F−1∇. The i-th diagonal block of F (Fθ(i) = E
[
(g⊤i gi)⊗ (a⊤i−1 ⊗ ai−1)

]
),190

has the same form as a block of the GGN matrix G (Gθ(i) = E
[
(ḡ⊤i ḡi)⊗ (a⊤i−1 ⊗ ai−1)

]
).191

Thus, we can replace ḡ̄ḡg with g in our theoretical results to obtain their counterparts for F.192

5

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

-6
-5
-4
-3
-2
-1
0

+1
+2
+3
+4
+5
+6

lo
g 1

0
a

(a)

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

(b)

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

(c)

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

(d)

14

12

10

8

6

4

2

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

-6
-5
-4
-3
-2
-1
0

+1
+2
+3
+4
+5
+6

lo
g 1

0
a

(e)

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

(f)

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

(g)

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

(h)

0.970

0.972

0.974

0.976

0.978

0.980

0.982

0.984

0.986

Figure 1: Logarithmic training loss (top) and test accuracy (bottom) on the MNIST classification task. The
axes are the regularization parameters λg and λa in logarithmic scale with base 10. Training with a 5-layer
ReLU activated network with 100 (left, a, e), 400 (center, b, c, f, g), and 1 600 (right, d, h) neurons per layer.
The optimizer is SGD except for (c, g) where the optimizer is SGD with momentum. The top-left sector is
ζζζ, the top-right column is ζζζ∗, and the bottom-right corner is ∇ (gradient descent). For each experiment and
each of the three sectors, we use one learning rate, i.e., ζζζ, ζζζ∗, ∇ have their own learning rate to make a fair
comparison between the methods; within each sector the learning rate is constant. We can observe that in the
limit of λg → ∞ (i.e., in the limit to the right) the performance remains good, showing the utility of ζζζ∗.

4 Experiments193

In the previous section, we discussed the theoretical properties of the proposed update directions194

ζζζ and ζζζ∗ with the aspect that ζζζ∗ would actually be “free” to compute in the mini-batch regime. In195

this section, we provide empirical evidence that ζζζ∗ is a good update direction, even in deep learning.196

Specifically, we demonstrate that197

(E1) ζζζ∗ achieves similar performance to K-FAC, while being substantially cheaper to compute.198

(E2) The performance of our proposed method can be empirically maintained in the mini-batch199

regime (n≫ b).200

(E3) ζζζ∗ may be used for individual layers, while for other layers only the gradient ∇ is used. This201

still leads to improved performance.202

(E4) ζζζ∗ also improves the performance for training larger models such as BERT and ResNet.203

(E5) The runtime and memory requirements of ζζζ∗ are comparable to those of gradient descent.204

E1: Impact of Regularization Parameters205

For (E1), we study the dependence of the model’s performance on the regularization parameters λg206

and λa. Here, we train a 5-layer deep neural network on the MNIST classification task [16] with a207

batch size of 60 for a total of 40 epochs or 40 000 steps.208

The plots in Figure 1 demonstrate that the advantage of training by conditioning with curvature209

information can be achieved by considering both layer inputs a and gradients with respect to random210

samples ḡ̄ḡg, but also using only layer inputs a. In the plot, we show the performance of ζζζ for different211

choices of λg and λa, each in the range from 10−6 to 106. The right column shows ζζζ∗, i.e., λg =∞,212

for different λa. The bottom-right corner is gradient descent, which corresponds to λg = ∞ and213

λa =∞.214

Newton’s method or the general K-FAC approximation corresponds to the area with small λg and λa.215

The interesting finding here is that the performance does not suffer by increasing λg toward∞, i.e.,216

from left to right in the plot.217

6

0 2000 4000 6000 8000 10000
training time [s]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Tr
ai

ni
ng

 lo
ss

Gradient descent
* (a = 0.1)

K-FAC (a, g = 0.1)
K-FAC (a, g = 0.01)

 (a, g = 0.1)
 (a, g = 0.01)

0 500 1000 1500 2000 2500 3000 3500 4000
Steps

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Tr
ai

ni
ng

 lo
ss

Gradient descent
* (a = 0.1)

K-FAC (a, g = 0.1)
K-FAC (a, g = 0.01)

 (a, g = 0.1)
 (a, g = 0.01)

Figure 2: Training loss of the MNIST auto-encoder trained with gradient descent, K-FAC, ζζζ, and ζζζ∗. Comparing
the performance per real-time (left) and per number of update steps (right). Runtimes are for a CPU core.

In addition, in Figure 3, we consider the case of regression with an auto-encoder trained with the218

MSE loss on MNIST [16] and Fashion-MNIST [17]. Here, we follow the same principle as above219

and also find that ζζζ∗ performs well.220

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

-6
-5
-4
-3
-2
-1
0

+1
+2
+3
+4
+5
+6

lo
g 1

0
a

(a)

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

(b)

5.5

5.0

4.5

4.0

3.5

3.0

2.5

Figure 3: Training an auto-encoder on MNIST (left) and Fashion-
MNIST (right). The model is the same as used by Botev et al. [18],
i.e., it is a ReLU-activated 6-layer fully connected model with
dimensions 784-1000-500- 30-500-1000-784. Displayed is
the logarithmic training loss.

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

-6
-5
-4
-3
-2
-1
0

+1
+2
+3
+4
+5
+6

lo
g 1

0
a

(a)

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

(b)

Figure 4: Training a 5-layer ReLU network with 400 neurons per
layer on the MNIST classification task (as in Figure 1) but with
the Adam optimizer [19].

In Figure 7, we compare the loss for dif-221

ferent methods. Here, we distinguish222

between loss per time (left) and loss223

per number of steps (right). We can ob-224

serve that, for λ = 0.1, K-FAC, ζζζ, and225

ζζζ∗ are almost identical per update step226

(right), while ζζζ∗ is by a large margin227

the fastest, followed by ζζζ, and the con-228

ventional K-FAC implementation is the229

slowest (left). On the other hand, for230

λ = 0.01 we can achieve a faster con-231

vergence than with λ = 0.1, but here232

only the K-FAC and ζζζ methods are nu-233

merically stable, while ζζζ∗ is unstable in234

this case. This means in the regime of235

very small λ, ζζζ∗ is not as robust as K-236

FAC and ζζζ, however, it achieves good237

performance with small but moderate238

λ like λ = 0.1. For λ < 0.01, also239

K-FAC and ζζζ become numerically un-240

stable in this setting and, in general, we241

observed that the smallest valid λ for242

K-FAC is 0.01 or 0.001 depending on243

model and task. Under consideration244

of the runtime, ζζζ∗ performs best as it is245

almost as fast as gradient descent while246

performing equivalent to K-FAC and ζζζ .247

Specifically, a gradient descent step is248

only about 10% faster than ζζζ∗.249

E2: Minibatch Regime250

0 250 500 750 1000 1250 1500 1750 2000
training time [s]

18

16

14

12

10

8

6

4

2

0

lo
g.

 tr
ai

ni
ng

 e
rro

r

Gradient descent
* for layers 1, 2, 3, 4, 5
* for layers 1
* for layers 5
* for layers 1, 2, 3
* for layers 3, 4, 5
* for layers 1, 3, 5
* for layers 2, 4

Figure 5: Training on the MNIST classification task
using ζζζ∗ only in selected layers. Runtimes are for CPU.

For (E2), in Figure 1, we can see that training251

performs well for n ∈ {100, 400, 1 600} neu-252

rons per layer at a batch size of only 60. Also, in253

all other experiments, we use small batch sizes254

of between 8 and 100.255

E3: ζζζ∗ in Individual Layers256

In Figure 5, we train the 5-layer fully connected257

model with 400 neurons per layer. Here, we258

consider the setting that we use ζζζ∗ in some of259

the layers while using the default gradient ∇260

in other layers. Specifically, we consider the261

7

Table 1: BERT results for fine-tuning pre-trained BERT-Base (B-B) and BERT-Mini (B-M) models on the
COLA, MRPC, and STSB text classification tasks. Larger values are better for all metrics. MCC is the Matthews
correlation. Results averaged over 10 runs.

Method / Setting CoLA (B-B) CoLA (B-M) MRPC (B-B) STS-B (B-M)

Metric MCC MCC Acc. F1 Pearson Spearman

Gradient baseline 54.20 ± 7.56 21.08 ± 2.88 82.52 ± 1.22 87.88 ± 0.74 76.98 ± 1.10 76.88 ± 0.79
ζζζ∗ 57.62 ± 1.59 24.67 ± 2.62 83.28 ± 0.89 88.28 ± 0.70 81.09 ± 1.58 80.82 ± 1.57

settings, where all, the first, the final, the first three, the final three, the odd numbered, and the262

even numbered layers are updated by ζζζ∗. We observe that all settings with ζζζ∗ perform better than263

plain gradient descent, except for “ζζζ∗ for layers 3,4,5” which performs approximately equivalent to264

gradient descent.265

E4: Large-scale Models266

BERT To demonstrate the utility of ζζζ∗ also in large-scale models, we evaluate it for fine-tuning267

BERT [20] on three natural language tasks. In Table 1, we summarize the results for the BERT268

fine-tuning task. For the “Corpus of Linguistic Acceptability” (CoLA) [21] data set, we fine-tune269

both the BERT-Base and the BERT-Mini models and find that we outperform the gradient descent270

baseline in both cases. For the “Microsoft Research Paraphrase Corpus” (MRPC) [22] data set, we271

fine-tune the BERT-Base model and find that we outperform the baseline both in terms of accuracy272

and F1-score. Finally, on the “Semantic Textual Similarity Benchmark” (STS-B) [23] data set, we273

fine-tune the BERT-Mini model and achieve higher Pearson and Spearman correlations than the274

baseline. While for training with CoLA and MRPC, we were able to use the Adam optimizer [19]275

(which is recommended for this task and model) in conjunction with ζζζ∗ in place of the gradient,276

for STS-B Adam did not work well. Therefore, for STS-B, we evaluated it using the SGD with277

momentum optimizer. For each method, we performed a grid search over the hyperparameters. We278

note that we use a batch size of 8 in all BERT experiments.279

0 250 500 750 1000 1250 1500 1750 2000
training time [s]

0.73

0.74

0.75

0.76

0.77

0.78

Te
st

 A
cc

.

Gradient descent, lr=0.1
Gradient descent, lr=0.3
Gradient descent, lr=1.0

* for last layer, lr=0.1
* for last layer, lr=0.3
* for last layer, lr=1.0

Figure 6: ResNet-18 trained on CIFAR-10. Runtimes
are for a GPU. Results are averaged over 5 runs.

ResNet In addition, we conduct an experiment280

where we train the last layer of a ResNet with281

ζζζ∗, while the remainder of the model is up-282

dated using the gradient ∇. Here, we train a283

ResNet-18 [24] on CIFAR-10 [25] using SGD284

with a batch size of 100 in a vanilla setting, i.e.,285

without additional tricks employed in by He et286

al. [24] and others. Specifically, we use (i) a287

constant learning rate for each training (optimal288

from (1, 0.3, 0.1, 0.03, 0.01)) and (ii) vanilla289

SGD and not momentum-based SGD. The rea-290

son behind this is that we want a vanilla experi-291

ment and with aspects such as extensively tuning292

multiple parameters of learning rate scheduler293

would make the evaluation less transparent; how-294

ever, therefore, all accuracies are naturally lower than SOTA. In Figure 6, we plot the test accuracy295

against time. The results show that the proposed method outperforms vanilla SGD when applied296

to the last layer of a ResNet-18. To validate that the learning rate is not the cause for the better297

performance, we also plot the neighboring learning rates and find that even with a too small or too298

large learning rate ζζζ∗ outperforms gradient descent with the optimal learning rate.299

E5: Runtime and Memory300

Finally, we also evaluate the runtime and memory requirements of each method. The runtime301

evaluation is displayed in Table 2. We report both CPU and GPU runtime using PyTorch [26] and302

(for K-FAC) the backpack library [15]. Note that the CPU runtime is more representative of the303

pure computational cost, as for the first rows of the GPU runtime the overhead of calling the GPU304

is dominant. When comparing runtimes between the gradient and ζζζ∗ on the GPU, we can observe305

that we have an overhead of around 2.5 s independent of the model size. The overhead for CPU time306

is also very small at less than 1% for the largest model, and only 1.3 s for the smallest model. In307

8

contrast, the runtime of ζζζ∗ is around 4 times the runtime of the gradient, and K-FAC has an even308

substantially larger runtime. Regarding memory, ζζζ∗ (contrasting the other approaches) also requires309

only a small additional footprint.310

Remark 5 (Implementation). The implementation of ζζζ∗ can be done by replacing the backpropagation311

step of a respective layer by (21). As all “ingredients” are already available in popular deep learning312

frameworks, it requires only little modification (contrasting K-FAC and ζζζ, which require at least one313

additional backpropagation.)314

Table 2: Runtimes and memory requirements for different models. Runtime is the training time per epoch on
MNIST at a batch size of 60, i.e., for 1 000 training steps. The K-FAC implementation is from the backpack
library [15]. The GPU is an Nvidia A6000.

Gradient K-FAC ζζζ ζζζ∗

Model CPU time GPU time Memory CPU time GPU t. Memory CPU time GPU t. Memory CPU t. GPU t. Memory

5 layers w/ 100 n. 2.05 s 1.79 s 1.0MB 62.78 s 17.63 s 11.5MB 8.65 s 11.76 s 1.6MB 3.34 s 4.07 s 1.0MB
5 layers w/ 400 n. 23.74 s 1.84 s 4.8MB 218.48 s 32.00 s 22.4MB 38.67 s 12.62 s 7.7MB 13.62 s 4.19 s 4.9MB
5 layers w/ 1 600 n. 187.87 s 1.93 s 51.0MB 6985.48 s 156.48 s 212.2MB 665.80 s 12.53 s 85.8MB 291.01 s 4.49 s 51.4MB
5 layers w/ 6 400 n. 3439.59 s 8.22 s 691.0MB — 1320.81 s 3155.3MB 9673 s 31.87 s 1197.8MB 3451.61 s 10.24 s 692.5MB

Auto-Encoder 78.61 s 2.20 s 16.2MB 1207.58 s 74.09 s 70.7MB 193.25 s 14.19 s 33.8MB 87.39 s 4.93 s 16.5MB

We will publish the source code of our implementation. In the appendix, we give a PyTorch [26]315

implementation of the proposed method (ζζζ∗).316

5 Related Work317

Our methods are related to K-FAC by Martens and Grosse [12]. K-FAC uses the approximation318

(13) to approximate the blocks of the Hessian of the empirical risk of neural networks. In most319

implementations of K-FAC, the off-diagonal blocks of the Hessian are also set to zero. One of the320

main claimed benefits of K-FAC is its speed (compared to stochastic gradient descent) for large-batch321

size training. That said, recent empirical work has shown that this advantage of K-FAC disappears322

once the additional computational costs of hyperparameter tuning for large batch training is accounted323

for. There is a line of work that extends the basic idea of K-FAC to convolutional layers [27]. Botev et324

al. [18] further extend these ideas to present KFLR, a Kronecker factored low-rank approximation,325

and KFRA, a Kronecker factored recursive approximation of the Gauss-Newton step. Singh and326

Alistarh [28] propose WoodFisher, a Woodbury matrix inverse-based estimate of the inverse Hessian,327

and apply it to neural network compression. Yao et al. [29] propose AdaHessian, a second-order328

optimizer that incorporates the curvature of the loss function via an adaptive estimation of the Hessian.329

Frantar et al. [6] propose M-FAC, a matrix-free approximation of the natural gradient through a queue330

of the (e.g., 1 000) recent gradients. These works fundamentally differ from our approach in that their331

objective is to approximate the Fisher or Gauss-Newton matrix inverse vector products. In contrast,332

this work proposes to approximate the Gauss-Newton matrix by only one of its Kronecker factors,333

which we find to achieve good performance at a substantial computational speedup and reduction of334

memory footprint. For an overview of this area, we refer to Kunstner et al. [30] and Martens [31].335

For an overview of the technical aspects of backpropagation of second-order quantities, we refer to336

Dangel et al. [15], [32]337

Taking a step back, K-FAC is one of many Newton-type methods for training neural networks.338

Other prominent examples of such methods include subsampled Newton methods [33], [34] (which339

approximate the Hessian by subsampling the terms in the empirical risk function and evaluating the340

Hessian of the subsampled terms) and sketched Newton methods [3]–[5] (which approximate the341

Hessian by sketching, e.g., by projecting the Hessian to a lower-dimensional space by multiplying it342

with a random matrix). The main features that distinguish K-FAC from this group of methods are343

K-FAC’s superior empirical performance and K-FAC’s lack of theoretical justification.344

6 Conclusion345

In this work, we presented ISAAC Newton, a novel approximate curvature method based on layer-346

inputs. We demonstrated it to be a special case of the regularization-generalized Gauss-Newton347

method and empirically demonstrate its utility. Specifically, our method features an asymptotically348

vanishing computational overhead in the mini-batch regime, while achieving competitive empirical349

performance on various benchmark problems.350

9

References351

[1] N. Agarwal, B. Bullins, and E. Hazan, “Second-order stochastic optimization for machine352

learning in linear time,” Journal on Machine Learning Research, vol. 18, no. 1, pp. 4148–4187,353

2017.354

[2] J. Nocedal and S. J. Wright, Numerical Optimization, 2e. New York, NY, USA: Springer, 2006.355

[3] A. Gonen and S. Shalev-Shwartz, “Faster SGD using sketched conditioning,” arXiv preprint,356

arXiv:1506.02649, 2015.357

[4] M. Pilanci and M. J. Wainwright, “Newton sketch: A near linear-time optimization algorithm358

with linear-quadratic convergence,” SIAM Journal on Optimization, vol. 27, 2017.359

[5] M. A. Erdogdu and A. Montanari, “Convergence rates of sub-sampled Newton methods,” in360

Proc. Neural Information Processing Systems (NeurIPS), 2015.361

[6] E. Frantar, E. Kurtic, and D. Alistarh, “M-FAC: Efficient matrix-free approximations of362

second-order information,” in Proc. Neural Information Processing Systems (NeurIPS), 2021.363

[7] N. Doikov and Y. Nesterov, “Convex Optimization based on Global Lower Second-order364

Models,” in Proc. Neural Information Processing Systems (NeurIPS), Curran Associates, Inc.,365

2020.366

[8] Y. Nesterov and B. T. Polyak, “Cubic regularization of Newton method and its global perfor-367

mance,” Mathematical Programming, vol. 108, 2006.368

[9] S. Becker and Y. Lecun, “Improving the convergence of back-propagation learning with369

second-order methods,” 1989.370

[10] T. Schaul, S. Zhang, and Y. LeCun, “No more pesky learning rates,” in International Conference371

on Machine Learning (ICML), 2013.372

[11] Y. Ollivier, “Riemannian metrics for neural networks i: Feedforward networks,” Information373

and Inference, vol. 4, pp. 108–153, Jun. 2015.374

[12] J. Martens and R. Grosse, “Optimizing neural networks with Kronecker-factored approximate375

curvature,” in International Conference on Machine Learning (ICML), 2015.376

[13] A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-posed problems. W.H. Winston, 1977.377

[14] P. Chen, “Hessian matrix vs. Gauss—Newton Hessian matrix,” SIAM Journal on Numerical378

Analysis, 2011.379

[15] F. Dangel, F. Kunstner, and P. Hennig, “Backpack: Packing more into backprop,” in Interna-380

tional Conference on Learning Representations, 2020.381

[16] Y. LeCun, C. Cortes, and C. Burges, “MNIST Handwritten Digit Database,” ATT Labs, 2010.382

[17] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel image dataset for benchmarking383

machine learning algorithms,” arXiv, 2017.384

[18] A. Botev, H. Ritter, and D. Barber, “Practical Gauss-Newton optimisation for deep learning,”385

in International Conference on Machine Learning (ICML), 2017.386

[19] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in International Confer-387

ence on Learning Representations (ICLR), 2015.388

[20] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional389

transformers for language understanding,” in North American Chapter of the Association for390

Computational Linguistics: Human Language Technologies (NAACL-HLT), 2018.391

[21] A. Warstadt, A. Singh, and S. R. Bowman, “Neural network acceptability judgments,” Trans-392

actions of the Association for Computational Linguistics, vol. 7, 2019.393

[22] W. B. Dolan and C. Brockett, “Automatically constructing a corpus of sentential paraphrases,”394

in Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005.395

[23] D. Cer, M. Diab, E. Agirre, I. Lopez-Gazpio, and L. Specia, “SemEval-2017 task 1: Semantic396

textual similarity multilingual and crosslingual focused evaluation,” in Proceedings of the397

11th International Workshop on Semantic Evaluation (SemEval-2017), Vancouver, Canada:398

Association for Computational Linguistics, 2017.399

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in400

Proc. International Conference on Computer Vision and Pattern Recognition (CVPR), 2016.401

[25] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (Canadian Institute for Advanced Research),”402

2009.403

[26] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style, high-performance deep404

learning library,” in Proc. Neural Information Processing Systems (NeurIPS), 2019.405

10

[27] R. Grosse and J. Martens, “A Kronecker-factored approximate Fisher matrix for convolution406

layers,” in International Conference on Machine Learning (ICML), 2016.407

[28] S. P. Singh and D. Alistarh, “Woodfisher: Efficient second-order approximation for neural408

network compression,” in Proc. Neural Information Processing Systems (NeurIPS), 2020.409

[29] Z. Yao, A. Gholami, S. Shen, M. Mustafa, K. Keutzer, and M. W. Mahoney, “Adahessian:410

An adaptive second order optimizer for machine learning,” in AAAI Conference on Artificial411

Intelligence, 2021.412

[30] F. Kunstner, L. Balles, and P. Hennig, “Limitations of the empirical Fisher approximation for413

natural gradient descent,” in Proc. Neural Information Processing Systems (NeurIPS), 2019.414

[31] J. Martens, “New insights and perspectives on the natural gradient method,” Journal of Machine415

Learning Research, 2020.416

[32] F. Dangel, S. Harmeling, and P. Hennig, “Modular block-diagonal curvature approximations417

for feedforward architectures,” in International Conference on Artificial Intelligence and418

Statistics (AISTATS), 2020.419

[33] F. Roosta-Khorasani and M. W. Mahoney, “Sub-Sampled Newton Methods I: Globally Con-420

vergent Algorithms,” arXiv: 1601.04737, 2016.421

[34] P. Xu, J. Yang, F. Roosta, C. Ré, and M. W. Mahoney, “Sub-sampled Newton Methods with422

Non-uniform Sampling,” in Proc. Neural Information Processing Systems (NeurIPS), 2016.423

11

Checklist424

1. For all authors...425

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s426

contributions and scope? [Yes]427

(b) Did you describe the limitations of your work? [Yes]428

(c) Did you discuss any potential negative societal impacts of your work? [N/A]429

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?430

[Yes]431

2. If you are including theoretical results...432

(a) Did you state the full set of assumptions of all theoretical results? [Yes]433

(b) Did you include complete proofs of all theoretical results? [Yes]434

3. If you ran experiments...435

(a) Did you include the code, data, and instructions needed to reproduce the main experimental436

results (either in the supplemental material or as a URL)? [Yes] / [No] We include a437

Python / PyTorch implementation of the method in the supplementary material. We will438

publicly release full source code for the experiments.439

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were440

chosen)? [Yes]441

(c) Did you report error bars (e.g., with respect to the random seed after running experiments442

multiple times)? [Yes]443

(d) Did you include the total amount of compute and the type of resources used (e.g., type of444

GPUs, internal cluster, or cloud provider)? [Yes]445

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...446

(a) If your work uses existing assets, did you cite the creators? [Yes]447

(b) Did you mention the license of the assets? [N/A]448

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]449

(d) Did you discuss whether and how consent was obtained from people whose data you’re450

using/curating? [N/A]451

(e) Did you discuss whether the data you are using/curating contains personally identifiable452

information or offensive content? [N/A]453

5. If you used crowdsourcing or conducted research with human subjects...454

(a) Did you include the full text of instructions given to participants and screenshots, if455

applicable? [N/A]456

(b) Did you describe any potential participant risks, with links to Institutional Review Board457

(IRB) approvals, if applicable? [N/A]458

(c) Did you include the estimated hourly wage paid to participants and the total amount spent459

on participant compensation? [N/A]460

12

A PyTorch Implementation461

We display a PyTorch [26] implementation of ISAAC for a fully-connected layer below. Here, we462

mark the important part (i.e., the part beyond the boilerplate) with a red rectangle.463

import torch

class ISAACLinearFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, input, weight, bias, la, inv_type):

ctx.save_for_backward(input, weight, bias)
ctx.la = la
if inv_type == 'cholesky_inverse':

ctx.inverse = torch.cholesky_inverse
elif inv_type == 'inverse':

ctx.inverse = torch.inverse
else:

raise NotImplementedError(inv_type)
return input @ weight.T + (bias if bias is not None else 0)

@staticmethod
def backward(ctx, grad_output):

input, weight, bias = ctx.saved_tensors
if ctx.needs_input_grad[0]:

grad_0 = grad_output @ weight
else:

grad_0 = None

if ctx.needs_input_grad[1]:

aaT = input @ input.T / grad_output.shape[0]
I_b = torch.eye(aaT.shape[0], device=aaT.device, dtype=aaT.dtype)
aaT_IaaT_inv = aaT @ ctx.inverse(aaT / ctx.la + I_b)
grad_1 = grad_output.T @ (

I_b - 1. / ctx.la * aaT_IaaT_inv
) @ input

else:
grad_1 = None

return (
grad_0,
grad_1,
grad_output.mean(0, keepdim=True) if bias is not None else None,
None, None, None,

)

class ISAACLinear(torch.nn.Linear):
def __init__(self, in_features, out_features,

la, inv_type='inverse', **kwargs):
super(ISAACLinear, self).__init__(

in_features=in_features, out_features=out_features, **kwargs
)
self.la = la
self.inv_type = inv_type

def forward(self, input: torch.Tensor) -> torch.Tensor:
return ISAACLinearFunction.apply(

input, self.weight,

13

self.bias.unsqueeze(0) if self.bias is not None else None,
self.la,
self.inv_type

)

B Implementation Details464

Unless noted differently, for all experiments, we tune the learning rate on a grid of465

(1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001). We verified this range to cover the full reasonable range of466

learning rates. Specifically, for every single experiment, we made sure that there is no learning rate467

outside this range which performs better.468

For all language model experiments, we used the respective Huggingface PyTorch implementation.469

All other hyperparameter details are given in the main paper.470

The code will be made publicly available.471

C Additional Proofs472

Proof of Theorem 1. We first show, that ζζζ as defined in (17) can be expressed as in (20). Indeed by473

using (19), the Woodbury matrix identity and by regularizing the inverses, we can see that474

ζζζ = λgλa(ḡ̄ḡg
⊤ḡ̄ḡg/b+ λgI)

−1 ⊗ (a⊤a/b+ λaI)
−1g⊤a

= λgλa ·
(
λgIm + ḡ̄ḡg⊤ḡ̄ḡg/b

)−1
g⊤a

(
λaIn + a⊤a/b

)−1

= λgλa ·

(
1

λg
Im −

1

bλg
2 ḡ̄ḡg

⊤
(
Ib +

1

bλg
ḡ̄ḡgḡ̄ḡg⊤

)−1

ḡ̄ḡg

)

g⊤a

(
1

λa
In −

1

bλa
2 a

⊤
(
Ib +

1

bλa
aa⊤

)−1

a

)

=

(
Im −

1

bλg
ḡ̄ḡg⊤
(
Ib +

1

bλg
ḡ̄ḡgḡ̄ḡg⊤

)−1

ḡ̄ḡg

)
· g⊤

· a ·

(
In −

1

bλa
a⊤
(
Ib +

1

bλa
aa⊤

)−1

a

)

=

(
Im −

1

bλg
ḡ̄ḡg⊤
(
Ib +

1

bλg
ḡ̄ḡgḡ̄ḡg⊤

)−1

ḡ̄ḡg

)
· g⊤

·

(
a− 1

bλa
aa⊤

(
Ib +

1

bλa
aa⊤

)−1

a

)

=

(
Im −

1

bλg
ḡ̄ḡg⊤
(
Ib +

1

bλg
ḡ̄ḡgḡ̄ḡg⊤

)−1

ḡ̄ḡg

)
· g⊤

·

(
Ib −

1

bλa
aa⊤

(
Ib +

1

bλa
aa⊤

)−1
)
· a

To show Assertion (i), we note that according to (17)475

lim
λg,λa→0

1

λgλa
ζζζ

= lim
λg,λa→0

(ḡ̄ḡg⊤ḡ̄ḡg/b+ λgI)
−1 ⊗ (a⊤a/b+ λaI)

−1g⊤a

= (ḡ̄ḡg⊤ḡ̄ḡg)−1 ⊗ (a⊤a)−1g⊤a

≈ G−1g⊤a,

14

where the first equality uses the definition of ζζζ in (17). The second equality is due to the continuity of476

the matrix inversion and the last approximate equality follows from the K-FAC approximation (15).477

To show Assertion (ii), we consider limλg→∞ and limλa→∞ independently, that is478

lim
λg→∞

λg ·
(
λgIm + ḡ̄ḡg⊤ḡ̄ḡg/b

)−1
(22)

= lim
λg→∞

(
Im +

1

bλg
ḡ̄ḡg⊤ḡ̄ḡg

)−1

= Im,

and479

lim
λa→∞

λa ·
(
λaIn + a⊤a/b

)−1
(23)

= lim
λa→∞

(
In +

1

bλa
a⊤a

)−1

= In.

This then implies480

lim
λg,λa→∞

λg

(
λgIm + ḡ̄ḡg⊤ḡ̄ḡg/b

)−1 · g⊤ (24)

· a · λa

(
λaIn + a⊤a/b

)−1

= Im · g⊤a · In = g⊤a,

which concludes the proof.481

15

D Additional Experiments482

0 2000 4000 6000 8000 10000
training time [s]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Tr

ai
n

lo
ss

Gradient descent
* (a = 0.1)

K-FAC (a, g = 0.1)
K-FAC (a, g = 0.01)

 (a, g = 0.1)
 (a, g = 0.01)

SGD w/ Momentum
SGD (bs=600)
K-FAC (a, g = 0.01) (bs=600)
Adam

0 5 10 15 20 25 30 35 40
Epochs

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Tr
ai

n
lo

ss

Gradient descent
* (a = 0.1)

K-FAC (a, g = 0.1)
K-FAC (a, g = 0.01)

 (a, g = 0.1)
 (a, g = 0.01)

SGD w/ Momentum
SGD (bs=600)
K-FAC (a, g = 0.01) (bs=600)
Adam

0 2000 4000 6000 8000 10000
training time [s]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Te
st

 lo
ss

Gradient descent
* (a = 0.1)

K-FAC (a, g = 0.1)
K-FAC (a, g = 0.01)

 (a, g = 0.1)
 (a, g = 0.01)

SGD w/ Momentum
SGD (bs=600)
K-FAC (a, g = 0.01) (bs=600)
Adam

0 5 10 15 20 25 30 35 40
Epochs

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Te
st

 lo
ss

Gradient descent
* (a = 0.1)

K-FAC (a, g = 0.1)
K-FAC (a, g = 0.01)

 (a, g = 0.1)
 (a, g = 0.01)

SGD w/ Momentum
SGD (bs=600)
K-FAC (a, g = 0.01) (bs=600)
Adam

Figure 7: Training loss of the MNIST auto-encoder trained with gradient descent, K-FAC, ζζζ, ζζζ∗, as well as SGD
w/ momentum, SGD with a 10× larger batch size (600), K-FAC with a 10× larger batch size (600), and Adam.
Comparing the performance per real-time (left) and per number of epochs (right). We display both the training
loss (top) as well as the test loss (bottom) Runtimes are for a CPU core.

0 25 50 75 100 125 150 175 200
Epochs

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Te
st

 A
cc

.

Gradient descent, SGD w/ momentum + weight decay
* for last layer, SGD w/ momentum + weight decay

Gradient descent, SGD w/ momentum
* for last layer, SGD w/ momentum

Gradient descent, SGD
* for last layer, SGD

Figure 8: ResNet-18 trained on CIFAR-10 with image augmentation and a cosine learning rate schedule. The
first line (blue) uses the hyperparameters of a public implementation. To ablate the optimizer, two additional
settings are added, specifically, without weight decay and without momentum. Results are averaged over 5 runs
and the standard deviation is indicated with the colored areas.

16

0 250 500 750 1000 1250 1500 1750 2000
training time [s]

0.960

0.965

0.970

0.975

0.980

0.985

0.990

Te
st

 a
cc

ur
ac

y

Gradient descent
* for layers 1, 2, 3, 4, 5
* for layers 1
* for layers 5
* for layers 1, 2, 3
* for layers 3, 4, 5
* for layers 1, 3, 5
* for layers 2, 4

Figure 9: Test accuracy for training on the MNIST classification task using ζζζ∗ only in selected layers. Runtimes
are for CPU.

17

	Introduction
	Preliminaries
	Theoretical Guarantees
	Experiments
	Related Work
	Conclusion
	PyTorch Implementation
	Implementation Details
	Additional Proofs
	Additional Experiments

