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ABSTRACT

We often see undesirable tradeoffs in robust machine learning where out-of-
distribution (OOD) accuracy is at odds with in-distribution (ID) accuracy. A “ro-
bust” classifier obtained via specialized techniques like removing spurious fea-
tures has better OOD but worse ID accuracy compared to a “standard” classifier
trained via vanilla ERM. On six distribution shift datasets, we find that simply
ensembling a standard and a robust model is a strong baseline—we match the ID
accuracy of a standard model with only a small drop in OOD accuracy compared
to the robust model. However, calibrating these models in-domain surprisingly
improves the OOD accuracy of the ensemble and eliminates the tradeoff and we
achieve the best of both ID and OOD accuracy over the original models.

1 INTRODUCTION

Machine learning models typically suffer large drops in accuracy in the presence of distribution
shift where the test distribution is different from the training distribution. As ML systems are widely
deployed, it is important to train models that achieve good “out-of-distribution” (OOD) accuracy.
For example, models trained on medical data from a few hospitals should work well when deployed
broadly (Zech et al., 2018; AlBadawy et al., 2018). Similarly, when predicting poverty from satellite
imagery, models trained on data from a few countries should work well on all countries, particularly
those where labels are scarce due to resource constraints (Jean et al., 2016). There has been a lot
of research interest in tackling this robustness problem under various settings such as robustness
to spurious correlations (Heinze-Deml & Meinshausen, 2017; Sagawa et al., 2020a; Chen et al.,
2020b; Liu et al., 2021), robustness to adversarial perturbations (Goodfellow et al., 2015; Madry
et al., 2018), domain generalization (Arjovsky et al., 2019; Sun & Saenko, 2016), robustness to
demographic shifts (Hashimoto et al., 2018; Duchi et al., 2019) among others. Almost universally
across these different settings, an unfortunate tradeoff arises. Robustness interventions typically
improve the OOD accuracy but simultaneously cause a drop in the “in-distribution” (ID) accuracy
on new test points from the original distribution.

This tradeoff is a major hurdle in using the multitude of proposed robustness interventions. In
practice, most inputs are likely to be ID, so it is unsatisfactory to use a “robust” model that has high
OOD performance but performs less accurately on these majority ID points. On the other hand,
“standard models” (trained without robustness interventions) fail catastrophically in the presence of
even small shifts, and it can be highly dangerous to use a standard model even if OOD points are
rare. In this work, we ask is there a general strategy by which we can achieve high accuracy both
in-distribution and out-of-distribution and mitigate tradeoffs arising in robustness?

We consider four benchmark datasets (DomainNet, CIFAR → STL, ImageNet → ImageNet-R, and
BREEDS-Entity-30) and two real world satellite remote sensing datasets (Landcover and Cropland),
that have been used in prior work on robustness. Our work spans different types of robustness in-
terventions (projecting out spurious correlations, zero-shot language prompting, freezing pretrained
features), data modalities (image and time series data), and model architectures (vision transformers,
deep convolutional networks, time series convolution). Averaged across these datasets, robustness
interventions increase OOD accuracy from 65% to 77%, but decrease ID accuracy from 88% to
85%.

We first explore the natural strategy of ensembling the standard and robust models to combine their
strengths. Concretely, we add the probabilities of each model to obtain a prediction with the hope
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Figure 1: In many settings, we have a ‘standard’ model that performs better in-distribution, and a
‘robust’ model that performs better out-of-distribution. Simply ensembling these two models (e.g.,
by adding their probabilities), gets better ID accuracy than the standard and robust models, and
closes most of the OOD gap. Calibrating the models in-distribution (no access to OOD data) before
ensembling them leads to further improvements. Note that ensembling two standard or two robust
models does not close the gap and only leads to small improvements.

that when the two models conflict, the more confident model (with larger probability) dictates the
final prediction. We find that this surprisingly simple baseline already perfoms quite well—on av-
erage across all our datasets, this closes 90% of the gap between the OOD of standard models,
while outperforming both models ID. In other words, this simple baseline improves the OOD ac-
curacy over standard models without hurting ID accuracy unlike previous robustness interventions.
However, vanilla ensembling still leaves a gap as it underperforms the robust model OOD.

We find that simply calibrating both models ID (adjusting their predicted confidence to match their
accuracy, on in-distribution data) before ensembling them closes this gap. Calibrated ensembles get
an average accuracy of 89.3% ID and 77.9% OOD, and outperform both the standard and robust
model, ID and OOD. The other method in the literature to alleviate robustness induced tradeoffs is
self-training that uses large amount of unlabeled data (Raghunathan et al., 2020; Xie et al., 2021;
Khani & Liang, 2021). On the two remote-sensing datasets with additional unlabeled data, we
find that calibrated ensembles match self-training on these datasets without requiring any unlabeled
data. This shows that calibrated ensembles, though conceptually simple, can be highly effective
in mitigating tradeoffs. As a sanity check, we find that the method also works when there is no
tradeoff: even when the standard model (or robust model) dominates the robust model (or standard
model) both ID and OOD, the calibrated ensemble accuracy matches up with the better model in
both domains.

While our method is intuitive in a way, it is also intriguing that it works so well because ensem-
bling seems to rely on good uncertainty estimates while it is common wisdom that uncertainty esti-
mates of deep networks are unreliable out-of-distribution (Ovadia et al., 2019). Furthermore, it has
been shown that calibration in-domain does not fix the issue of poor uncertainty estimates out-of-
distribution. Indeed, on the six datasets we test on, the models fare poorly on standard uncertainty
metrics OOD, even after calibrating ID. The expected calibration error (which roughly measures the
difference between the model’s confidence and accuracy) of the standard model across all datasets
is 11%. A partial answer might be that even if the models have high calibration error on average,
what determines the quality of ensembling is the relative confidence between the standard and ro-
bust model on a particular data point. For example, on the remote sensing dataset (Landcover), the
standard model is on average 6% more confident in its OOD predictions than the robust model, even
though the standard model is less accurate OOD—which seems bad. But at the granularity of indi-
vidual points, we find the more confident model is more likely to be accurate, enabling calibrated
ensembles to achieve higher OOD accuracy than both standard and robust models. While most prior
work on confidence estimates has focused on a single model at a population level, our results suggest
that examining individual data points and relative confidence of different models is an exciting line
of future work.
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Comparison with regular ensembling. Ensembling is an extremely common trick in ML to boost
performance. However, when using ensembles, it is typical to have each ensemble member obtained
by running the same training process with a different random seed which controls the stochastic
aspects of the training algorithm like initialization, ordering of the training samples in a batch,
which features are selected when using drop out and so on. The idea behind ensembling is that
with different random seeds, the algorithm might converge to different solutions with decorrelated
errors. In this work, we ensemble a standard and robust model which are obtain by minimizing
entirely different training losses. This small but subtle change is very crucial. Experimentally, we
find that regular ensembling of two standard models does poorly OOD (11% worse than a single
robust model), and ensembling two robust models does poorly ID (3% worse than a single standard
model). For these regular ensembles, calibration has no effect—the ID and OOD accuracies stay the
same.

Why is our proposed ensembling so much better than regular ensembling? Consider the case of
spurious correlations as studied in (Sagawa et al., 2020b) where standard classifiers use spurious
features irrespective of their random initialization. In other words, all members of the regular en-
semble would have the same failure mode. The intuition of decorrelated error does not pan out with
regular ensembles when standard models make systematic errors, as is common in most distribution
shift settings. On the other hand, in our ensemble, we have a standard model that uses spurious fea-
tures to be more accurate but also a robust model trained specifically not to use spurious features. By
combining these “diverse” models with qualitatively different failure modes, we are able to achieve
the best of both ID and OOD performance.

In summary, we show that a simple method of calibrating and then ensembling can combine the
best of standard and robust models, getting high ID and OOD accuracy—and calibration plays a
key role in this method. This is a general practical method to alleviate tradeoffs which can likely be
combined with other innovations to completely eliminate robustness induced tradeoffs in practice.
This work also raises several interesting conceptual questions regarding ensembling and uncertainty
estimation.

2 SETUP

Consider a K-class classification task, where the goal is to predict targets y ∈ [K] from inputs
x ∈ Rd.

Models: A model f : Rd → Rk takes an input x ∈ Rd and outputs f(x) ∈ Rk where f(x)i denotes
the model’s confidence that the output is y = i. The model predicts the label ŷ = argmaxk f(x)k.
The confidences can be converted into probabilities using a softmax function:

softmax(f(x))i =
exp(f(x)i)∑k
j=1 exp(f(x)j)

softmax : Rk → Rk (2.1)

Training data: Let Pid and Pood denote the underlying distribution of (x, y) pairs in-distribution
and out-of-distribution, respectively. We have a validation set {(xval

i , yvali )}nval
i=1 ∼ Pid used for early

stopping and calibration, a held-out in-distribution test set {(xtest
i , ytesti )}ntest

i=1 ∼ Pid, and a held-out
out-of-distribution test set {(xood

i , yoodi )}nood
i=1 ∼ Pood.

Evaluation: All methods can use the ID validation set for tuning hyperparameters, early stopping,
and calibration. The ID and OOD test set are only used for evaluation. Given a model f , the ID and
OOD accuracies are the average accuracies on these test sets:

ID-Acc(f) =
1

ntest

ntest∑
i=1

I(ytesti = argmax
k

f(xtest
i )k) (2.2)

OOD-Acc(f) =
1

nood

nood∑
i=1

I(yoodi = argmax
k

f(xood
i )k) (2.3)
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3 METHODS

Calibrated ensembles. Given a standard models fstd and robust model frob, calibrated ensembles
first calibrate each model using temperature scaling (Guo et al., 2017) with the cross-entropy loss l
on the in-distribution validation data:

Tstd = argmin
T

1

nval

nval∑
i=1

l
(fstd(xval

i )

T
, yvali

)
(3.1)

Trob = argmin
T

1

nval

nval∑
i=1

l
(frob(xval

i )

T
, yvali

)
(3.2)

The goal of temperature scaling is to adjust each model’s confidence on the in-distribution validation
data. We then ensemble the two models by adding up the probabilities that they predict (Lakshmi-
narayanan et al., 2017). So given an example x, we simply output the average p̂ of the probabilities
predicted by the standard and robust models after scaling by Tstd and Trob respectively.

p̂ =
1

2

(
softmax

(fstd(x)
Tstd

)
+ softmax

(frob(x)
Trob

))
(3.3)

Other ensembles. As baselines, we consider a number of additional ensembles.

Vanilla Ensembling: Here we simply return the average of the standard and robust model’s proba-
bilities, without temperature scaling.

p̂ =
1

2
(softmax(fstd(x)) + softmax(frob(x))) (3.4)

Tuned Ensembling: As a potentially stronger baseline, we consider outputting a weighted average
of the standard and robust model’s probabilities, where the weight α ∈ [0, 1] is tuned to maximize
accuracy on the in-distribution set.

p̂ = αsoftmax(fstd(x)) + (1− α)softmax(frob(x))) (3.5)

Alternative combination methods: We could also combine the logits of the models before taking the
softmax, or we could simply output the prediction of the more confident model. We chose to add
up the probabilities since that is commonly done by prior work on ensembling (Lakshminarayanan
et al., 2017) and we found it to work slightly better than these alternatives.

Other models: Each of these ensembling methods takes two models and combines them. As such,
we can apply each of these ensembling methods to two standard models or two robust models as
well.

4 DATASETS

We run experiments spanning three different types of robustness interventions: projecting out spuri-
ous metadata, language prompting, and freezing pretrained features. These experiments span multi-
ple data modalities and model architectures.

4.1 SPURIOUS METADATA

We run experiments on two remote sensing datasets used in prior work studying ID-OOD trade-
offs (Xie et al., 2021). These datasets consist of a core input x (image data or time series data) and
metadata z (e.g., location, meteorological climate data). The metadata is spuriously correlated with
the target—using the metadata to predict labels improves accuracy in-distribution (ID), but hurts
accuracy out-of-distribution. Xie et al. (2021) consider a standard model that takes in both the core
inputs and metadata to predict the target, and a robust model that only takes in the core inputs and
does some additional pretraining. They call these the ‘aux-in’ and ‘aux-out’ models respectively.
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Cropland. The goal is to predict whether a satellite image is of a cropland or not. The core input x
is an RGB satellite image, and the metadata z consists of location coordinates and vegetation bands.
The original dataset is from Wang et al. (2020), and we use U-net model checkpoints from Xie et al.
(2021).

Landcover. The goal is to predict the land type from satellite data at a given location. Here, the
core input x is a time series measured by NASA’s MODIS satellite (Vermote, 2015), and z is climate
data (e.g., temperature) at that location. The dataset is from Gislason et al. (2006); Rußwurm et al.
(2020). We use model checkpoints from Xie et al. (2021) where they use 1D convolutions for time
series data.

4.2 ZERO-SHOT LANGUAGE PROMPTING

Radford et al. (2021) (CLIP) pretrain a model on a large multi-modal language and vision dataset.
The model can then predict the label of an image by comparing the image embedding, with the
language embedding for prompts such as ‘photo of an apple’ or ‘photo of a banana’. They show that
this zero-shot language prompting approach can be much more accurate out-of-distribution than the
traditional method of fine-tuning the entire model.

ImageNet → ImageNet-R. We use a CLIP vision transformer, specifically a ViT-B/16, which
is the best publicly available model. The robust model uses language prompts to make zero-shot
predictions on ImageNet-Renditions (Hendrycks et al., 2020), a dataset containing cartoon, graffiti,
video game, etc, renditions of ImageNet classes. The standard model initializes with weights from
the CLIP model, and fine-tunes on ImageNet (Russakovsky et al., 2015) training data for 10 epochs
with a batch size of 64, initial learning rate of 0.0001 with a cosine learning rate decay, before
making predictions on ImageNet-R. We note that the robust model gets 10% lower accuracy ID (on
ImageNet validation examples), but gets 30% higher accuracy OOD (on ImageNet-R test examples)

4.3 FREEZING PRETRAINED FEATURES

When adapting a pretrained model to an ID dataset, typically all the model parameters are fine-tuned.
Recent work looks at ‘lightweight’ fine-tuning, where only parts of the model are adapted—this can
often do better OOD even though the ID performance is worse (Li & Liang, 2021; Houlsby et al.,
2019). We consider three distribution shift datasets where the standard model starts from a pretrained
initialization and fine-tunes all parameters on an ID dataset, and the robust model only learns the top
linear ‘head’ layer.

DomainNet. A standard domain adaptation dataset (Peng et al., 2019). Here, our ID dataset con-
tains ‘sketch’ images (e.g., drawings of apples, elephants, etc), and the OOD dataset contains ‘real’
photos of the same categories. We use the version of the dataset from Tan et al. (2020). We start
from a CLIP pretrained ResNet50 and either fine-tune for 50 epochs with batch size 64 and learning
rate 0.001 with cosine learning rate decay (to get a standard model) or train the head layer using
sklearn logistic regression (to get a robust model).

CIFAR-10 → STL. Another standard domain adaptation dataset (French et al., 2018), where the
ID is CIFAR-10 (Krizhevsky, 2009), and the OOD is STL (Coates et al., 2011). We start from
a ResNet50 pretrained on unlabeled ImageNet examples using MoCo-v2 (Chen et al., 2020a) and
either fine-tune for 20 epochs with a batch size of 64 and learning rate of 0.001 with cosine learning
rate decay (to get a standard model) or train the head layer using sklearn logistic regression (to get a
robust model).

Living-17. Part of the BREEDS benchmark (Santurkar et al., 2020), here the goal is to classify
an image as one of 17 animal categories such as ‘bear’—the ID dataset contains images of black
bears and sloth bears and the OOD dataset has images of brown bears and polar bears. We start
from a ResNet50 pretrained on unlabeled ImageNet examples using MoCo-v2 (Chen et al., 2020a)
and either fine-tune for 20 epochs with batch size 64 and learning rate of 0.001 with cosine learning
rate decay (to get a standard model) or train the head layer using sklearn logistic regression (to get a
robust model).
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Table 1: Out-of-distribution (OOD) accuracies for the standard model, robust model, and calibrated
ensembles, across six datasets. Calibrated ensembling matches or outperforms the better model in
5/6 cases, and on average outperforms both the standard and robust models. For the remaining
dataset, DomainNet, calibrated ensembles close 96% of the gap between the standard and robust
model.

Ent30 DomNet STL Land Crop ImNet-R

Standard 60.7 (0.1) 55.3 (0.4) 82.4 (0.3) 55.7 (1.1) 85.6 (5.8) 49.6 (-)
Robust 63.2 (1.1) 87.2 (0.1) 85.1 (0.2) 60.4 (1.1) 89.8 (0.4) 77.5 (-)

Cal ensemble 64.7 (0.5) 86.1 (0.2) 87.3 (0.2) 60.8 (0.8) 91.3 (0.8) 77.1 (-)

Table 2: In-distribution (ID) accuracies for the standard model, robust model, and calibrated
ensembling, across six datasets. Calibrated ensembling matches or outperforms the better model
in 5/6 cases, and on average outperforms both the standard and robust models. For the remaining
dataset, CIFAR-10, calibrated ensembles close 97% of the gap between the standard and robust
model.

Ent30 DomNet CIFAR10 Land Crop ImNet

Standard 93.6 (0.2) 83.9 (1.0) 97.4 (0.1) 76.9 (0.3) 95.3 (0.0) 80.5 (-)
Robust 90.7 (0.2) 89.2 (0.1) 92.0 (0.0) 72.7 (0.2) 95.1 (0.1) 68.4 (-)

Cal ensemble 93.7 (0.1) 91.2 (0.7) 97.2 (0.1) 77.2 (0.2) 95.6 (0.1) 81.1 (-)

5 EXPERIMENTS

5.1 MAIN RESULTS

Strong ID and OOD accuracy: Calibrating and then ensembling a standard and a robust model,
gets the best of both worlds, typically outperforming the standard and robust model both ID (Table 2)
and OOD (Table 1). Averaged across the datasets, calibrated ensembles get 89.3% ID (vs 87.9% for
the standard model and 84.7% for the robust model) and 77.9% OOD (vs 77.2% for the robust model
and 64.9% for the standard model). The method works across the board—calibrated ensembles
achieve the best performance on 5/6 ID datasets, and on 5/6 OOD datasets. For the remaining
two datasets, DomainNet OOD and CIFAR-10 ID, calibrated ensembles close over 95% of the gap
between the standard and robust model (96% for DomainNet, 97% for CIFAR-10).

Competitive with self-training: The remote sensing datasets have lots of unlabeled data so prior
work uses self-training on these datasets to mitigate the ID-OOD accuracy tradeoff—we take check-
points from the official implementation in (Xie et al., 2021) and compare calibrated ensembles with
self-training. Table 3 shows that calibrated-ensembles match or outperform self-training on both
datasets, both ID and OOD. We believe this is an interesting result because calibrated ensembling is
a simple method and does not need additional unlabeled data.

5.2 ENSEMBLING ABLATIONS

We run ablations to show the importance of calibration, and of including both a robust and a standard
model in the ensemble. We find that a strong baseline of tuning the ensemble weights on ID data
has lower accuracy than calibrated ensembles OOD.

Standard ensembles do not mitigate tradeoffs: Ensembling two standard models or two robust
models does not mitigate the ID-OOD accuracy tradeoff. As seen in Figure 1, ensembling two
standard models gets an average OOD accuracy of 66.0%, which is substantially worse than our
method (77.9%) or even a single robust model (77.2%). Calibrating the standard models does not
change its accuracy. Similarly calibrating and ensembling two robust models gets an average ID
accuracy of 84.9% which is worse than our method (89.3%) or even a single standard model (87.9%).
In summary, calibrated ensembles outperform standard and robust models, ID and OOD (Figure 1).
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Table 3: Calibrated ensembles are competitive with self-training (Xie et al., 2021) ID and OOD,
which requires unlabeled data.

Cropland Landcover
ID Acc OOD Acc ID Acc OOD Acc

Standard model 95.3 (0.0) 85.6 (5.8) 76.9 (0.3) 55.7 (1.1)
Robust model 95.1 (0.1) 89.8 (0.4) 72.7 (0.2) 60.4 (1.1)
Self-training 95.3 (0.2) 90.6 (0.6) 77.0 (0.4) 61.0 (0.7)

Cal ensembling 95.6 (0.1) 91.3 (0.8) 77.2 (0.2) 60.8 (0.8)

Table 4: OOD accuracies: calibrated ensembles outperform vanilla ensembles and even tuned
ensembles where the combination weights are tuned to maximize in-distribution accuracy. Averaged
across the datasets, calibrated ensembles get an OOD accuracy of 74.6%, while tuned ensembles get
an accuracy of 71.3%. The in-distribution accuracies of the methods are very close (within 0.2% of
each other).

Ent30 DomNet STL Land Crop ImNet-R

Vanilla Logits 64.9 (0.3) 75.7 (1.2) 87.3 (0.2) 60.5 (0.8) 90.9 (0.2) 72.2 (-)
Vanilla Probs 64.6 (0.4) 78.7 (1.3) 87.2 (0.2) 59.5 (1.0) 90.9 (0.2) 77.4 (-)
Tuned Logits 64.6 (0.6) 86.3 (0.6) 85.7 (0.9) 58.7 (1.2) 87.3 (5.7) 63.1 (-)
Tuned Probs 62.8 (0.7) 86.9 (0.2) 85.0 (1.3) 58.7 (2.2) 86.8 (5.5) 63.8 (-)

Calibrated Logits 65.0 (0.4) 84.4 (0.3) 87.5 (0.2) 61.2 (0.8) 91.3 (0.8) 71.7 (-)
Calibrated Probs 64.7 (0.5) 86.1 (0.2) 87.3 (0.2) 60.8 (0.8) 91.3 (0.8) 77.1 (-)

Calibration is important: We compared calibrated ensembles with vanilla ensembles (no calibra-
tion) and tuned ensembles where how to weight the predictions of the standard versus robust model
is learned on ID data. Interestingly, calibrated ensembles substantially outperform tuned ensem-
bles OOD (calibrated ensembles: 77.9%, tuned ensembles: 74.0%) with less than a 0.1% drop in
ID accuracy relative to tuned ensembles. Naturally, we expect the tuned ensemble to do the best
ID since its weights are tailored for ID—what is surprising is that the calibrated ensembles do so
much better OOD without using any OOD data either. Calibrated ensembles outperform vanilla
ensembles both ID and OOD as well. We show the accuracies for the different types of ensembles
in Table 4 (OOD) and Table 5 (ID)—we also ablate between combining the probabilities versus the
logits (before softmax) of the standard and robust models.

5.3 CALIBRATION AND RELATIVE CALIBRATION

In this section we examine the calibration and relative calibration of our models, which provides a
partial intuitive explanation for the success of calibrated ensembles. Since we calibrated the standard
and robust models on in-distribution (ID) data, we expect them to be calibrated even on held out ID
test data—this follows from standard statistical guarantees for calibration. Table 7 confirms this
intuition—the ECE of the standard and robust model are very low ID, on average the ID ECE is
1.2% for the standard model and 2.0% for the robust model. However, prior work shows that the
calibration of models degrades substantially with distribution shift—indeed, Table 6 shows that the
OOD ECE of the standard (average: 11.0%) and robust (average: 7.3%) models are much higher.

Why do calibrated ensembles mitigate the ID-OOD tradeoff even though neural networks are not
calibrated OOD? We show that relative calibration provides a partial answer towards this. The final
prediction is typically made by the model that is more confident. So if the robust model is more
confident than the standard model OOD then the ensemble inherits the high OOD accuracy of the
robust model—even if the absolute ECE of the standard and robust models are both bad.

To get a handle at relative calibration we measure 1. the accuracy gap between the standard and
robust model, which is the robust model’s accuracy minus the standard model’s accuracy, and 2. the
confidence gap between the two models: the robust model’s average confidence minus the standard
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Table 5: ID accuracies: The in-distribution accuracies of calibrated ensembles, tuned ensembles,
and vanilla ensembles are very close (within confidence intervals), so any of these methods are
acceptable if we are looking at in-distribution accuracy. However, they perform quite differently
when it comes to OOD accuracy (Table 4).

Ent30 DomNet CIFAR10 Land Crop ImNet

Logits 93.7 (0.1) 89.3 (0.6) 97.3 (0.1) 77.4 (0.1) 95.5 (0.1) 80.9 (-)
Probs 93.7 (0.1) 89.1 (0.4) 97.3 (0.1) 77.4 (0.2) 95.5 (0.1) 81.0 (-)

Tuned Logits 93.8 (0.0) 91.3 (0.2) 97.4 (0.1) 77.3 (0.4) 95.6 (0.1) 81.7 (-)
Tuned Probs 93.8 (0.1) 90.6 (0.7) 97.4 (0.1) 77.1 (0.3) 95.5 (0.1) 81.3 (-)

Calibrated Logits 93.7 (0.1) 91.1 (0.4) 97.2 (0.1) 77.2 (0.2) 95.6 (0.1) 81.0 (-)
Calibrated Probs 93.7 (0.1) 91.2 (0.7) 97.2 (0.1) 77.2 (0.2) 95.6 (0.1) 81.1 (-)

Table 6: OOD ECE: The expected calibration error (ECE) of the standard and robust models on
OOD test data, after post-calibration in ID validation data. The calibration errors here are high,
especially compared to the ID calibration errors in Table 7.

Ent30 DomNet STL Land Crop ImNet-R

Calibrated Standard 15.4 (0.8) 13.6 (1.5) 5.6 (1.1) 16.4 (0.8) 7.4 (4.8) 7.8 (-)
Calibrated Robust 14.3 (1.5) 5.5 (0.5) 8.2 (0.0) 6.5 (1.1) 5.0 (0.3) 4.0 (-)

model’s average confidence. Ideally, the two should align with each other and at least have the
same sign: if the robust model is more accurate then it should also be more confident. In Table 8
we show that this provides a reasonable initial explanation for the success of calibrated ensembles.
The confidence gap and accuracy gap tend to have the same sign, and calibration aligns the two
better. However, calibrated ensembles still work on LandCover—even though the relative calibra-
tion average across the entire dataset is not correct (the standard model is more confident but less
accurate OOD) at the granularity of individual points ensembling is able to get the benefits of both
the standard and robust models.

Why might calibrating models ID improve the relative calibration OOD? Standard deep learning
models tend to be overparameterized, and can often get near 0 loss on the training data. As such
they tend to be highly overconfident on ID and OOD data. Robustness interventions typically involve
additional constraints (projecting out spurious input features, lightweight fine-tuning, extensive data
augmentation) and so robust models generally tend to be less overconfident. Calibrating both mod-
els, even just ID, can make their confidences more comparable—even though both models degrade
OOD, the hope is that the relative calibration continues to track their accuracy.

We note that all this is intuition (theory about OOD calibration and ensembling is scarce and highly
challenging)—we hope that future work formalizes these arguments. We think relative calibration
might be a promising future direction—even if models are not calibrated OOD, their relative cali-
bration could be much better.

6 RELATED WORKS AND DISCUSSION

Calibration. Calibration has been widely studied in machine learning (Naeini et al., 2014; Guo
et al., 2017; Kumar et al., 2019), and applications such as meteorology (Murphy, 1973; DeGroot
& Fienberg, 1983; Gneiting & Raftery, 2005), fairness (Hebert-Johnson et al., 2018), and health-
care (Jiang et al., 2012). Many of these works focus on the in-distribution (ID) setting, where models
are calibrated on the same distribution that they are evaluated on. Ovadia et al. (2019) show that if
we calibrate (e.g., via temperature scaling) a model ID, it still has poor uncertainties OOD. Jones
et al. (2021) also show that model uncertainties can be quite unreliable out-of-distribution. How-
ever, we show that despite having poor uncertainties on traditional metrics, calibrated models can be
combined effectively to mitigate ID-OOD tradeoffs.
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Table 7: ID ECE: The expected calibration error (ECE) of the standard and robust models on ID test
data, after post-calibration in ID validation data. The calibration errors are fairly low—note that we
only use 500 examples to temperature scale, so for ImageNet we have fewer examples than classes
for post-calibration, but the models are still fairly well calibrated.

Ent30 DomNet CIFAR10 Land Crop ImNet

Cal Standard 0.7 (0.1) 2.0 (0.3) 0.8 (0.2) 1.1 (0.5) 1.4 (0.3) 1.0 (-)
Cal Robust 1.1 (0.4) 2.2 (0.2) 1.3 (0.2) 1.7 (0.3) 3.5 (0.2) 2.3 (-)

Table 8: We show the accuracy gap (difference between the accuracy of the standard and robust
model) and the confidence gap (difference in confidence between the two) before and after calibra-
tion. The accuracy gap and confidence gap typically have the same sign, and this improves after
calibrating ID.

Ent30 DomNet STL Land Crop ImNet-R

Acc Gap 2.5 31.9 2.7 4.7 4.2 27.9
Conf Gap -2.3 3.6 1.1 -13.5 4.3 18.6

(+ Cal) Conf Gap 1.4 23.7 5.5 -6 1.3 16.6

Ensembling. Ensembling models is a common way to get an accuracy boost—typically the en-
semble members are trained on the same data, but with a different random seed (Lakshminarayanan
et al., 2017) or augmentation (Stickland & Murray, 2020). In the setting where the ensemble mem-
bers mostly differ by random seeds or augmentations, prior work has shown that calibrating the
members of an ensemble does not help (Wu & Gales, 2021; Ovadia et al., 2019). Indeed, we find
that calibration has minimal effect when we ensemble two standard, or two robust models, that are
trained from different seeds. However when we combine two very different models (standard and
robust), calibration leads to clear improvements.

Mitigating ID-OOD tradeoffs. Tradeoffs between ID and OOD accuracy are widely studied and
prior work self-trains on large amounts of unlabeled data to mitigate such tradeoffs (Raghunathan
et al., 2020; Xie et al., 2021; Khani & Liang, 2021). In contrast, our approach uses no extra unlabeled
data and is a simple method where we just add up the model probabilities after a quick calibration
step. In concurrent and independent work, (Wortsman et al., 2021) show on ImageNet and variants
(e.g. ImageNet-v2, ImageNet-sketch, ImageNet-R) that there exists a way to ensemble a CLIP zero-
shot and fine-tuned model to get good ID and OOD accuracy—however learning exactly how to
ensemble the models might require OOD data, which is not available. We show that the natural
way to learn how to weight ensemble members—selecting the weights to optimize in-distribution
accuracy—does not mitigate the ID-OOD gap, but calibrated ensembles do.

Discussion. In this paper, we show that a simple method of calibrating and then ensembling mod-
els can eliminate the tradeoff between in-distribution (ID) and out-of-distribution (OOD) accuracy.
We hope that this leads to more widespread use and deployment of robustness interventions. One
mystery is why calibrated ensembles work so well—especially when tuning ensemble weights ID
does not, and the worse standard model can still be more confident OOD.
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