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ABSTRACT

We introduce ACPBench Hard, a dataset of generative, open-ended questions
which LLM models needs to answer in order to plan. Models that perform well
on these tasks could in principle be integrated into a planner or be used directly
as a policy. We discuss the complexity of these tasks as well as the complexity of
validating the correctness of their answers and present validation algorithms for
each task. Equipped with these validators, we test the performance of a variety
of models on our tasks and find that for most of these tasks, the performance of
even the largest models is still subpar. The models do not possess even the most
basic capability of identifying which actions can be performed in a given state. No
model outperforms any other on our proposed tasks and, with a few exceptions,
all tested language models score below 65%, indicating that even the current fron-
tier language models as well as so-called reasoning models have a long way to go
before they can reliably reason about planning.

1 INTRODUCTION

The ability to reason and plan in large language models (LLMs), is a major focus in the field. For
reasoning, the majority of work focuses on the mathematical reasoning Cobbe et al. (2021) and
logical inference Saparov & He (2023). For planning, most work focused on the ability to produce
or validate a plan Valmeekam et al. (2023a); Stein et al. (2025). The downside of focusing on the
end-to-end planning datasets is the inability to pinpoint the reason for a black-box planner, such as
an LLM-based one, to not be able to produce a solution.

To tackle this gap, ACPBench Kokel et al. (2025) introduced a benchmark for testing the reasoning
abilities about action, change, and planning, separating the planning process into the atomic reason-
ing tasks performed by planners. Tasks in these benchmarks are boolean or have multiple choice.
However, in real applications planners do not typically have shortlisted options. Planners need to
generate the actions from significantly larger action space. For instance, the applicability task in
ACPBench either asks about applicability of a given action in the boolean case or chooses an ap-
plicable action among 4 variants. Even if we make the assumption that the model can answer such
questions with high precision, it is not clear how this capability can be efficiently exploited for the
task of generating all applicable actions in a given state.

In this work, we create a generative version of ACPBench to alleviate these limitations. We devise
open-ended, generative versions of questions for the same 7 tasks, and add a new challenging task
of finding an action that takes us closer to the goal, a task that corresponds to the ability to perform
optimal planning Bylander (1994). For each of these tasks, we introduce an evaluator, which scores
a possible answer to the open-ended questions. We generate an evaluation set of questions based on
a wide collection of 13 Planning Domain Definition Language (PDDL) McDermott (2000) domains
from ACPBench, which we call ACPBench Hard. The core idea is to evaluate the LLMs’ ability
to produce reliable components for automated planners, as LLMs that perform well on these tasks
could be integrated into a planner or be used directly as a policy Kambhampati et al. (2024).

For all tasks, we discuss their computational complexity, as well as the complexity of validating their
solutions. We devise validators for each task, based on the symbolic description of the questions.
With the help of these validators, we test the performance of a collection of modern LLMs of various
sizes on ACPBench Hard. We find that the performance of language models, even the largest ones, is
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still insufficient to be reliably used in planners, see Figure 1. We observe that there is no single model
that outperforms all other models on all tasks of the ACPBench Hard dataset. Further, on half of the
tasks, namely “atom reachability” (reach), “action reachability” (areach), “landmarks” (land), and
“applicability” (app), all tested language models exhibit a very low accuracy. All tested models score
below 65% on most tasks, indicating that even the current frontier language models have a long way
to go before they can reliably reason about planning. Further, even the so-called reasoning models
o1 perform poorly on half of these tasks. The o1-preview model achieves 89% on the “progression”
(prog) task and 80% on the “next action” (nexta) task, with the rest of the results being 66% and
below, and the smaller o1-mini model outperforms it only on the “plan validation” (val) task with
78% accuracy. The much higher computational effort of the reasoning models compared to the
language models do not seem to justify the somewhat moderate increase in accuracy.

2 BACKGROUND

Figure 1: Task-wise accuracy of
large size language models.

We consider planning tasks Π = ⟨F,A, s0, s⋆⟩ in the (propo-
sitional) STRIPS formalism Bylander (1994). In such a task, F
is a set of Boolean propositions. Each subset s ⊆ F is called
a state, and S = 2F is the state space of Π. The state s0 is
the initial state of Π. The goal s⋆ ⊆ F is a set of propositions,
where a state s is a goal state if s⋆ ⊆ s. The set A is a finite set
of actions. Each action a ∈ A has an associated set of precon-
ditions pre(a) ⊆ F , add effects add(a) ⊆ F and delete effects
del(a) ⊆ F .

The semantics of STRIPS planning is as follows. An action a is
applicable in the state s if pre(a) ⊆ s. Applying a in s results
in the state sJaK := (s\del(a))∪add(a). A sequence of actions
π = ⟨a1, . . . , an⟩ is applicable in s if there exists a sequence of
states s = s1, . . . , sn+1 such that for each 1 ≤ i ≤ n we have
ai is applicable in the state si and applying it results in the state
si+1. If it exists, such sequence is uniquely defined, and its end
state sn is denoted by sJπK. An applicable action sequence is
a plan for s if sJπK is a goal state. A plan for s with minimal
length is called optimal. The perfect heuristic for s, denoted by h∗(s), is the cost of an optimal plan
for s. The objective of (optimal) planning is to find an (optimal) plan for the state s0.

3 RELATED WORK

The most relevant to our work is the ACPBench dataset Kokel et al. (2025), which we build upon.
It features 7 core reasoning tasks about planning. ACPBench does not capture the decisions that the
automated planners need to make, as these decisions are generative in their nature. In this work,
therefore, we present the generative form of these tasks, requiring LLM to produce precisely the
answers that automated planners produce and consume. Additionally, we present a new task, not
considered by previous work, requiring to produce an action that takes us closer to the goal.

Other notable work in similar direction includes TRAC He et al. (2023), featuring 4 tasks: projec-
tion, execution, planning, and goal recognition, as well as PlanBench Valmeekam et al. (2023b), with
8 planning tasks including plan generation, reasoning about plan execution, and plan verification.
Both benchmarks focus on a small number of planning domains (mostly BlocksWorld and variants).
Both use templates to generate natural language text. AutoPlanBench Stein et al. (2025) alleviates
the dependence on templates, leveraging LLMs to generate these natural language template and
hence were able to scale up the dataset to 12 domains. While scaling the number of domains, they
limit their focus on planning task including plan and next-action generation.

Another notable dataset is ActionReasoningBench Handa et al. (2025), featuring six tasks: fluent
tracking, state tracking, action executability, effects of actions, numerical RAC, and composite ques-
tions. These tasks reason about action sequences and hence two of the tasks overlap with three of the
tasks we consider. Specifically, action executability deals with questions that fall under applicability
and validation tasks in our case. On one hand, this creates a complicated reasoning question, on the
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Context: There are several cities, each containing several locations, some of which are airports. There
are also trucks, which can drive within a single city, and airplanes, which can fly between airports.
The goal is to get some packages from various locations to various new locations. There are 2 trucks and
1 airplane, as well as 4 packages. There are 4 locations across 2 cities. The locations are in cities

as follows: l1-1 and l1-0 are in c1; l0-1 and l0-0 are in c0. Currently, p2, t1, p1, p3, a0, and p0 are
at l1-0, t0 is at l0-1. The available propositions are: (at ?obj ?loc) - ?obj is at ?loc and (in ?obj1
?obj2) - ?obj1 is in ?obj2.

Inputs: Break down the outcomes of performing the action "load object p3 into truck t1 at location l1-0"
into two lists, positive effects and negative effects. Positive effects are the propositions that are
false in the current state but will become true after performing the action. Negative effects are the
propositions that are true in the current state and will become false after performing the action.

Figure 2: Example of a question for the progression task in ACPBench Hard.

other, it makes it harder to pinpoint the source of an error. The effects-of-actions task is somewhat
similar to our progression task, applied repetitively. Further, ActionReasoningBench uses a large-
language model for evaluation of the generative questions, which is not quite robust. We develop
dedicated symbolic validators to evaluate each of the generative task introduced. Table 4 in the
Appendix compares and contrasts ACPBench Hard with related planning benchmarks.

Research on planning abilities of agents Liu et al. (2023); Ma et al. (2024) is also relevant. In our
experiments, we focus on the planning abilities of individual models instead of agents. However,
the “next action” prediction task does takes us in direction of agents.

4 DATASET CONSTRUCTION

Building upon ACPBench Kokel et al. (2025), we keep the same 13 planning domains and create
generative dataset. For each task, we describe the data stored in order to enable or speed up the
evaluation of the correctness of a potential answer. Often, the PDDL planning task Π = ⟨F,A, s, s⋆⟩
is needed for evaluation, and therefore we store it per question, with the current state s as the initial
state. Plans, whenever needed, are computed with a classical planner. We first attempt to run a
top-quality planner Katz & Lee (2023b), producing plans of best possible quality, and use a diverse
planner Katz & Sohrabi (2020) as a backup mechanism if no top quality plans were found. The
high-level construction workflow is illustrated in the Figure 6

1. Applicability (App) The first task deals with identifying which actions are applicable in a state.
For an action to be applicable, its preconditions must hold in the state. Given a state s and the
set of actions A, the subset of applicable actions would be A(s) = {a ∈ A | pre(a) ⊆ s},
easily computable by iterating over the actions. The complexity of such an iterative algorithm is
O(|F ||A|), since |F | is a theoretical upper bound on the precondition size. In practice, planning
problems typically have small preconditions size. Thus, we can create a generative question by
simply asking the model to produce all applicable actions in a given state. For practical reasons,
we impose a bound on the number of applicable actions in a state, generating questions only in
cases when |A(s)| is under that bound. We can keep all applicable actions names in the dataset for
validating the answer. The number of applicable actions for all instances is < 10, except for Swap
and Alfword domains (ref. Table 5 in the Appendix).

2. Progression (Prog) The next task evaluates LLMs ability to understand how the world state
changes by action application. Performing an action changes the state in the following manner: The
delete effects will no longer hold and the add effects will hold. Everything else remains unchanged.
Given a state s and an action a, the next state is t = (s \ del(a)) ∪ add(a). The complexity of
the straightforward computation is O(|F |) worst case, but in practice the add and delete effects
of planning problems are typically small. We construct a single generative question, asking what
propositions are false in the current state but will become true after performing the action and asking
which ones are true and become false. The first set is t \ s, and the second one is s \ t. We maintain
both of these sets in the answers. Figure 2 shows an example of a progression question.

3. Reachability (Reach) The reachability task evaluates if a specific fact can eventually become
true by taking (possibly multiple consecutive) actions in the given state. This is a multi-step reason-
ing task that can help avoid exploring unfeasible options. The generative version of this question is
quite simple: what proposition can never hold in any potentially reachable state. If no such proposi-
tions exist, we instruct to reply None. Reachability is PSPACE-hard to answer in general Bylander
(1994) for partial states, so we only focus on reachability of a specific fact. We can generate some
unreachable facts by either finding groundings of static predicates (unchanged by any action) that do
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not hold in the given state, or by (under)approximating the reachability with poly-time computable
delete-relaxed reachability Hoffmann & Nebel (2001). For practical reasons, we keep a subset of
generated unreachable facts, N , for speeding up answer validation. We generate question only in
states where we either know at least one unreachable fact or we know that all facts are reachable.
In case of doubt, we skip generating questions for that state.

4. Action Reachability (AReach) The action reachability task is closely related to the atom reach-
ability, checking whether there is a reachable state where the action is applicable. Computationally,
this problem is PSPACE-hard, for the same reason as atom reachability. The generative version of
the question is: what action can never become applicable, in any state reachable from the current
state? Here as well, we generate question only in states where we either know at least one unreach-
able action or we know that all actions are reachable. In case of doubt, we skip the state. For answer
validation, as in the previous case, we keep a set of example unreachable actions U . Set U is empty
when all actions are reachable.

5. Validation (Val) The validation task aims at checking whether the specified sequence of actions
π is a plan. In other words, whether π is valid, applicable, and successfully achieves the intended
goal from the given state s. The generative version of this question aims at identifying where the
plan fails. In other words, we ask to identify the first inapplicable action in a given sequence of
actions. To generate such a sequence, we start with a valid plan and randomly choose an action to
replace with an inapplicable one. For validation purposes, we keep the index of such action.

6. Justification (Just) Action justification Fink & Yang (1992); Salerno et al. (2023) deals with the
question of whether a given plan can be simplified by removing some actions. The generative version
of the justification task question asks to simplify the plan by removing one or two consecutive actions
and to produce the resulting simplified plan. To produce such a sequence, we start with a plan for the
initial state. We check whether the plan can be simplified by removing a single or two consecutive
actions. If not, we try to extend the plan by adding such an action or a pair of actions, keeping the
resulting sequence a plan. For answer validation, we keep the action or pair of actions that can be
removed, together with the appearance number, for actions that appear more than once on the plan.

7. Landmarks (Land) Landmarks task tests LLM’s ability to identify subgoals that are necessary
to achieve the goal. In the planning literature such subgoals are often called landmarks Porteous
et al. (2001). Landmarks are facts that must become true sometime along every plan. While check-
ing whether a proposition is a landmark is PSPACE-hard Porteous et al. (2001), there are several
methods that can find a subset of landmarks Keyder et al. (2010); Hoffmann et al. (2004); Richter
et al. (2008); Zhu & Givan (2003). We use the so-called RHW method Richter et al. (2008). Further,
negative evidence can be obtained from a collection of plans - a proposition that does not appear on
a plan is not a landmark. We keep the sets of facts that are known to be landmarks and of facts that
are known to be non-landmarks for speeding up answer validation.

8. Next Action (NextA) An additional task that does not appear in ACPBench is the next action
task. This generative question asks what is the next action that takes us towards the goal. This task
is closely related to optimal planning, since optimal plans can be produced by iteratively obtaining
such actions. While even non-optimal planning is PSPACE-hard Bylander (1994), modern planners
can often quickly find collections of optimal plans Katz et al. (2020); Katz & Lee (2023a). Clearly,
the first actions of these plans would be correct answers. Further, the cost of these optimal plans can
be used to check other applicable actions in the state, by producing an optimal plan for the states
obtained by applying these actions in the question state. We keep the sets of actions that are correct
answers and of actions that are known to not take us closer to the goal for speeding up answer
validation. Further, we store the optimal cost h∗(s) of achieving the goal from the current state.

5 ANSWER EVALUATION

Evaluating answers to boolean or multiple-choice questions simply amounts to looking up the cor-
rect answer and comparing. Evaluating open-ended answers, on the other hand, might not be as easy.
This is due to the fact that sometimes, there is not one single correct answer that can be stored with
the question. Looking at the tasks at hand, while in some cases we can store the complete correct
answer, in other we must resort to performing some computation in order to evaluate whether the
returned answer is correct. In what follows, we describe how the answer is evaluated for each task.
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1. Applicability (App) In this task, we store all applicable action names per question. The answer
evaluation therefore amounts to a simple comparison between the given answer and the correct one.
Since we ask for all applicable actions, we chose to assign a score 1 if the set of all actions in
the answer equals to the set of all applicable actions. Otherwise, we assign 0. The complexity
of validating the answer is therefore O(1) if we impose a constant threshold on the number of
applicable actions when the question is created, otherwise it is O(|A|).
2. Progression (Prog) Here, we store both correct sets of propositions (t \ s, and s \ t) per question.
An answer validation amounts to a simple comparison between the given answer and the correct one.
Since we test the ability to produce all action effects, we score 1 if both all positive and all negative
effects were correctly identified. Otherwise, we give the score 0. The complexity of validating the
answer is therefore O(|F |).
3. Reachability (Reach) The set of unreachable facts N being empty is an indication that there are
no unreachable facts. Hence, if the answer P is None, we assign score of 1 when N = ∅; otherwise,
the score is 0. If the answer P is not None and P ∈ N , we assign the score of 1. If P is not None
but the set N is empty, the score is 0. In the remaining case, where P is not part of N , we need to
solve a planning task Π′ = ⟨F,A, s0, {P}⟩, where the goal is to achieve the atom P and the rest as
in the planning task in the question. We can use any off-the-shelf planner to generate a plan for this
task. If a plan exists, we score the answer 0, otherwise 1. Therefore, the evaluation problem in this
case is PSPACE-complete.

4. Action Reachability (AReach) As in the previous case, when the set of unreachable actions
U is empty, all actions are reachable. Hence, if the answer is None, we assign a score of 1 when
U = ∅; otherwise the score is 0. For an action a as answer, if U = ∅ then the score is 0. If
a ∈ U , the score is 1. In the remaining case, where U ̸= ∅ and a /∈ U , we construct a planning task
Π′ = ⟨F,A, s0, pre(a)⟩ with the goal being the preconditions of the action a, and the rest as in the
planning tasks in the question. We run a planner on this task, checking if a plan exists. If yes, we
score the answer 0, otherwise 1. The evaluation is, therefore, PSPACE-complete in this case as well.

5. Validation (Val) In this case, we only need to compare the index in the answer to the correct
index of the first inapplicable action. We give a 0/1 score based on that comparison. The complexity
of validating the answer is therefore O(1).

6. Justification (Just) To check whether the returned sequence is correct, we slightly relaxed the
constraint in the question. We check whether it is a proper subsequence of the provided plan and
whether it is a plan. If both are true, we give a score of 1, otherwise, we score the answer 0. The
complexity of validating the answer is therefore O(|π||F |) for the plan π.

7. Landmarks (Land) Invalid propositions are scored 0. A proposition p ∈ s0 ∪ s⋆ is a trivial
landmark and is also scored 0. Given a valid proposition p ∈ F \ (s0 ∪ s⋆), if it is known not to be
a landmark (e.g., there exists a plan that does not traverse any state in which p holds), we assign it a
score of 0. Otherwise, in order to check if p is a non-trivial landmark, we construct a planning task
Π′ = ⟨F ′, A′, s′0, s

′
⋆⟩ as follows. The set of propositions is extended with a proposition pach that

is intended to indicate that p was never achieved along a sequence of actions. F ′ = F ∪ {pnach}
Thus, for each action a ∈ A such that p ∈ add(a), we construct a new action with extended delete
effect to include pnach. Formally, for an action a, a′ is defined as follows. pre(a′) = pre(a),
add(a′) = add(a), and del(a′) = del(a) ∪ {pnach} if p ∈ add(a), otherwise del(a′) = del(a).
The extended action set is therefore A′ = {a′) | a ∈ A. Finally, both the initial state and the goal
are extended with pnach: s′0 = s0 ∪ {pnach}, s′⋆ = s⋆ ∪ {pnach}, indicating that we are interested
in plans that do not achieve p along their path, as any action that achieves p will delete pnach from
the state, making the goal not reachable. We use an off-the-shelf planner to check if there is a plan
for Π′. If there is one, it corresponds to a plan for Π that does not make p true and therefore p is not
a landmark, and we assign the score of 0. If Π′ is found unsolvable, then p is a landmark and we
assign the score of 1. The answer validation is therefore PSPACE-complete in this case as well.

8. Next Action (NextA) For an action a, if it is in the set of kept correct answers, we score it 1 and
if it is in the set of known incorrect answers, we score it 0. Otherwise, if it is applicable, we apply
it to the current state s and obtain the state t. We find the optimal plan costs h∗(s) and h∗(t) for
these two states with the help of an optimal planner and score the answer 1 if h∗(s) − h∗(t) = 1.
Otherwise, we score it 0. The answer validation is therefore PSPACE-complete in this case as well.
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6 EXPERIMENTS

6.1 BENCHMARKING PERFORMANCE

We evaluated 15 language/reasoning models, with the aim to cover small, medium, and large mod-
els, Small size: Granite 3.1 8B Granite Team (2024) and Llama 3.1 8B Dubey et al. (2024); medium
size: DeepSeek coder 33B Guo et al. (2024) and Granite 34B code Mishra et al. (2024); Large size:
Mixtral 8x22B MistralAI (2024), Llama 3.1 70B and Llama 3.1 405B Dubey et al. (2024), DeepSeek
V3 DeepSeek-AI et al. (2025b), GPT-4o mini, GPT-4o OpenAI et al. (2024a); Reasoning DeepSeek
R1 DeepSeek-AI et al. (2025a), o1 mini, o1-preview OpenAI et al. (2024b), and recent open-weight
reasoning models from OpenAI—GPT OSS 20B as GPT OSS well as 120B OpenAI et al. (2025).

All models were either accessed using API or hosted locally using hugging face transformer library
on machines with 2 A100 80 GB GPU. It is important to note that there is a significant difference
in the energy consumption and evaluation cost between various models. While smaller models are
relatively cheap, the larger language models such as Llama 3.1 405B and GPT-4o are prohibitively
expensive to be used as planner components. The reasoning models such as o1 and even the cheaper
DeepSeeek R1 are even more expensive than the language models. Therefore, our experiments with
these reasoning models are intended mostly for providing a frame of reference.

For each task, we evaluated a 2-shot prompting with static examples from outside the evaluation
set. The two examples are from the grid and logistics domains, one each per task. This allows
to exemplify the expected response format. Additionally, we instructed the language models to
produce their response in a particular format. Still, the tested models do not necessarily adhere to
the instructions or the example format. Hence, to be able to extract the answer from the response, we
developed a lenient grammar based parser, which would discard tokens if they did not fit expected
token values. Figure 7 (Appendix) shows the grammar used for parsing the responses for our 8
tasks. For example, in the progression task, the response is a “progression list”, which is two lists,
one for the positive effects and one for the negative effects. The response for the justification task is
a “action list”, which is a list of actions (or the updated plan) and the response for the validation task
is an “index” which is the index of the first inapplicable action. Using the grammar with a parser
that discards tokens not consistent with the grammar helps significantly in post-processing these
open-ended responses. The post-processed results are then evaluated according to the procedures
described in Section 5. Our evaluation code is provided in the supplementary.

Model app areach just land nexta prog reach val
Granite 3.1 8B 0.00 0.00 0.21 0.08 0.22 0.36 0.33 0.09
Llama 3.1 8B 0.00 0.00 0.22 0.06 0.25 0.40 0.33 0.13
DeepSeek coder 33B 0.02 0.02 0.21 0.10 0.17 0.42 0.18 0.15
Granite 34B code 0.02 0.00 0.17 0.11 0.18 0.43 0.28 0.12

Table 1: Small/medium size models performance, best results bolded.

Focusing first on the small
and medium size language
models, Table 1 shows the
accuracy of these mod-
els on the 8 tasks in our
dataset. A conclusion we
can draw from the figure
is that there are three cate-
gories of tasks according to
model performance. First, progression seems to be the easiest tasks among the 8 tasks. Even so,
the highest accuracy reached is 43% by Granite 34B code. The second category is the hard tasks of
applicability and action reachability. In fact, none of these models could score above 2% for these
two tasks. The third category includes the other 5 tasks with an average performance between 8.8%
and 28.8%. Hence, ACPBench Hard seems to be a difficult dataset for the small and medium size
language models.

Moving on to large size models, Table 2 shows the accuracy of the tested large language and rea-
soning models. Looking first at the language models, the top part of the table, we observe that there
is no single model that outperforms all other models. GPT-4o is the top performer, with best results
in 5 out of 8 tasks, but it is outperformed by 5% by Mixtral 8x22B on the atom reachability task,
and by DeepSeek V3 on the action reachability task by 4% and on the justification task by 11%.
Among the large reasoning models (bottom part) the o1-preview model performs the best. Surpris-
ingly, on the justification task the DeepSeek V3 language model remains the top performer. In all of
our experiments we capped the maximum number of generated tokens at 1,000. For the GPT OSS
models, however, we had to raise this limit to 4,000 because their reasoning chains were longer.
Despite the higher token count and the resulting increase in inference cost, this did not translate into
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Figure 3: Domain-wise accuracy
of GPT-4o.

Figure 4: Comparison of prediction error for GPT-4o
on different question formats.

a performance boost. Similar to the small and medium size language models, there are tasks such as
progression that is relatively easy for all models, and there are tasks such as action reachability that
is difficult for all models, and even o1-preview achieves only 12%. For other tasks, some models do
better than others. Our third observation is that with the exception of what seems to be the easiest
for these models progression task, there are only three scores above 65%, and all of them are of
reasoning models, indicating that the ACPBench Hard dataset is difficult even for large models.

Model app areach just land nexta prog reach val

L
L

M
s

Mixtral 8x22B 0.10 0.02 0.31 0.26 0.32 0.68 0.37 0.23
Llama 3.1 70B 0.12 0.02 0.44 0.20 0.42 0.65 0.28 0.20
GPT-4o mini 0.07 0.01 0.14 0.04 0.35 0.59 0.22 0.27
Llama 3.1 405B 0.14 0.04 0.59 0.15 0.48 0.74 0.26 0.48
GPT-4o 0.25 0.01 0.54 0.29 0.55 0.78 0.32 0.62
DeepSeek V3 0.21 0.05 0.65 0.12 0.47 0.76 0.32 0.56

L
R

M
s

o1 mini 0.38 0.06 0.44 0.38 0.64 0.70 0.60 0.78
GPT OSS 20B 0.03 0.09 0.14 0.47 0.62 0.72 0.50 0.14
GPT OSS 120B 0.00 0.13 0.05 0.49 0.78 0.79 0.68 0.70
o1-preview 0.44 0.12 0.46 0.56 0.80 0.89 0.66 0.26
DeepSeek R1 0.05 0.01 0.52 0.20 0.36 0.77 0.24 0.53

Table 2: Accuracy of Larger LLMs (top) and LRMs (bottom). Bold
entries indicate the best overall model, while the underlined entries
indicate the best among language (non-reasoning) models.

Going deeper, we look
into the performance of
the best performing LLM,
GPT-4o, across different
domains. Figure 3 presents
the performance of the
top-performing language
model GPT-4o on various
tasks, across the existing
domains. For other models
performance we refer to
the supplementary mate-
rial. Observe that GPT-4o
exhibits high performance
on the progression task
across most domains,
showing somewhat lower
accuracy in satellite, alfworld, and floortile. Action reachability and landmarks tasks, on the other
hand, pose significant challenges to the model. Notably, the model consistently generated accurate
answers for the visitall and grid domains across most tasks. In the remaining domains, however, the
performance varied across tasks, indicating that none of these domains are particularly easy for the
models.

Finally, we evaluate the hardness of our proposed open-ended variants by comparing the perfor-
mance of GPT-4o on these questions (gen) to the two formats from ACPBench: boolean (bool) and
multiple choice (mcq). Figure 4 depicts the comparison in terms of model errors, the complement of
the accuracy. As can be seen, model error in generative format of the task is significantly higher than
bool and mcq except for the validation task. Note, we are showing results from one of the largest
models for this analysis. The gap in performance is even more prolonged in other models.

6.2 OBSERVATIONS AND INSIGHTS

Next, we discuss the insights from examining individual model responses.

The 2-shots seemed to be sufficient for the language models to mostly follow the instructions on
the answer syntax. The number of parsing errors was typically negligible, with a single exception of
Llama 3.1 8B on the applicable actions task, where in 4 cases the model made up objects that did not
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follow the naming convention in the question and in 5 cases the model ran out of context generating
the same actions over and over again.

While atom and action reachability are very much related tasks, the latter seems to be much harder
for the tested models. It is not surprising, as action reachability requires an additional reasoning step
about the atoms in the action preconditions and their reachability. Further, while atom reachability
focuses on single atoms, action reachability requires reasoning about the entire precondition, that
often consists of multiple atoms. The reasoning should now account for their interplay, as they need
to hold in the same reachable state. In fact, action reachability seems to be consistently the most
difficult task across the tested models. Here, the models needed to provide an action that can never
become applicable, in any reachable state or None if there are no such actions. Interestingly, only
the OpenAI models were able to correctly identify the latter case, and these were the majority of
their correct answers. For instance, 9 out of 16 correct answers of o1-preview and all the 8 correct
answers of o1 mini were None. Most of the other correct answers recognized that a block cannot be
(un)stacked on itself, which accounts for 5 out of 6 correct answers for DeepSeek V3, 4 out of 5 for
Llama 3.1 405B, and 4 out of 16 for o1-preview.

Surprisingly, the second hardest task is action applicability. While one of the core tasks in plan-
ning, it seems to be quite challenging even for the reasoning models, the largest of which scored
44%, while DeepSeek R1 scoring only 5%. The smaller language models fail on this task, with
only DeepSeek coder 33B and Granite 34B code showing performance slightly above 0. Even the
largest language models barely reach 25%. One reason for that is the strict requirement for produc-
ing precisely the set of all applicable actions. While missing actions can hinder completeness and
cause missing existing solutions, extra made up actions can lead to producing incorrect solutions,
which is arguably worse. Interestingly, if we only required not to make up actions, but allowed
producing subsets of real answers, scoring according to Jaccard similarity, the score of the best per-
forming model o1 preview would go up to 57%. The largest absolute increase would be for Mixtral,
going from 10% to 38%. Using such action generation in a planner would correspond to loosing
completeness, while keeping the soundness of the planner.

Looking at the landmarks task, among the smaller models, the best performing is Granite 34B. It
gives quite uniform answers. Most of its correct answers are in the ferry domain, where it correctly
identifies the ferry location as a landmark. In logistics, it recognizes a package need to be in the
truck in the goal city before it can be delivered. The best performing large language model GPT-4o
achieves 29% accuracy, producing a diverse set of answers. In ferry, it sometimes correctly identifies
ferry being empty as a landmark, sometimes the need for a car to be onboard, and sometimes a ferry
location was identified as a landmark. In logistics, trucks or packages at particular locations were
identified as landmarks. In grid, it was more uniform, reporting in most cases holding a key as a
landmark. In goldminer, all correctly identified landmarks were some locations being clear. The best
performing reasoning model o1-preview achieves 56% accuracy. It correctly reports twice in satellite
and 6 times in swap the absence of non-trivial landmarks. The model that is best at recognizing that
is o1 mini, with 3 cases in visitall, 4 cases in satellite, 5 in swap, and once in alfworld. The only
other model that can identify such cases is Mixtral 8x22B, with 3 cases in visitall.

The justification task is among the few tasks where the best among the language models is not
GPT-4o, but DeepSeek V3, which performs better than even the reasoning models. The second best
performer is Llama 3.1 405B. Interestingly, in multiple cases, Llama produces a valid plan, which is
shorter than the given plan, but not its subsequence, and hence not a correct answer. In some cases,
Llama produced a valid plan that changes the order of the given plan actions. Note, the aim of the
justification task is not to produce a valid plan, but to recognize unnecessary actions on a sequence.

The validation task requires an index to be returned, which makes it harder to investigate the source
of the mistakes made. Most language models do not perform well on this task, with only the largest
models go above 30%. Interestingly, the reasoning model o1-preview scores much lower than o1
mini (26% vs 78%). To investigate the source of its mistakes, we check the absolute difference
between the given answer and the correct one. In 86% of the cases that o1-preview incorrectly
answered the question, it errored by 1. It is important to note that it was mistaken in both directions,
giving both lower and higher than the correct indices. Additionally note that several models favor
the answers 1, 10, and 100. For the majority of smaller models, most their answers are one of these
three numbers.
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The progression task is mostly simple for the reasoning model o1-preview, which reaches 89%, but
even this model makes mistakes. For example, it does not recognize reasonable positive effects, such
as stacking a block on top of another block makes the top block clear. Not surprisingly, it misses
less negative effects, such as taking a picture with a rover camera makes the camera not calibrated.
Surprisingly, it invents unreasonable effects such as communicating the rock data from rover to the
lander would empty the rover’s store and delete the effect of rocks being analyzed at the waypoint.

6.3 REPRESENTATION
app areach just land nexta prog reach val avg

NL 0.21 0.05 0.65 0.12 0.47 0.76 0.32 0.56 0.39
PDDL 0.31 0.07 0.74 0.21 0.53 0.87 0.33 0.55 0.44
PDDL+NL 0.32 0.09 0.68 0.19 0.60 0.88 0.37 0.61 0.47

Table 3: DeepSeek V3 comparison of 3 prompt representa-
tions: “NL”, “PDDL”, “PDDL+NL”.

In all the experiments presented so
far, our prompt included only the nat-
ural language representation of the
domain and the problem as part of
the context, “NL”. Here, we experi-
ment with two additional representa-
tions of the context: “PDDL”, where the context included only the PDDL domain and the PDDL
problem, “PDDL+NL”, where the context included both the natural language representation of the
domain and problem as well as the PDDL representations. Table 3 presents the performance of
DeepSeek V3. The results indicate that incorporating the PDDL domain alongside the natural lan-
guage representation significantly improves performance. However, when the PDDL files are avail-
able, using a traditional planner may be more appropriate, rendering the use of an LLM unnecessary.

Figure 5: Domain-wise accuracy of DeepSeek V3
on next action, large evaluation set.

We look deeper into the model performance on
one of the computationally hardest tasks, the
new next action task with the mixed PDDL+NL
representation, where the model shows a higher
than expected accuracy. To better understand
the phenomena, Figure 5 shows the per-domain
accuracy of DeepSeek V3 as a function of dis-
tance to goal. Note, the accuracy is not uni-
form across domains. While, as expected, the
accuracy mostly decreases with the distance,
we note some domains like ferry and satellite,
where there is an increase for larger distances.
The chances of randomly choosing a correct answer in these domains are low (See last row in Ta-
ble 7, Appendix).

7 CONCLUSIONS, LIMITATIONS, SOCIETAL IMPACT, AND FUTURE WORK

We have created ACPBench Hard, a benchmark of open-ended questions that reflect precisely the
questions answered by symbolic planners during the planning process. We therefore believe that
ACPBench Hard is a good benchmark for testing reasoning abilities that are required for planning.
Based on an empirical investigation of a collection of large language models we conclude that even
the largest and the best performing models have a very long way to go before they can reliably plan.

There are a few limitations to our work. First, the benchmark only captures a subset of planning
problems. Second, our lenient evaluation only evaluates the first answer in the output. Third, we do
not evaluate the reasoning process; only the final answers.

Improving the planning abilities of autonomous agents can have both positive and negative societal
impact. Among the positive impact factors are increased efficiency and productivity of our society,
which can also lead to negative factors such as job displacement and economic inequality. Being
aware of these impact factors is the first step towards being able to exploit the positive impacts while
mitigating the negative ones.

Creating training data for generative questions with a chain of thought, would be a promising area of
future research, because for planning problems an instructive chain of thought is often not obvious.
Another avenue for future research would be extending the benchmark to additional tasks such as
object counting in a current state.
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8 APPENDIX

A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 RELATED WORK

Table 4 presents comparison of ACPBench Hard with other PDDL-based Planning Benchmarks.
Existing benchmarks either focus on few tasks or few domains. For example, PlanBench has only
3 domains but 8 tasks, where as AutoPlanBench has 13 domains but only 1 task. Ac exception
to this is Action Reasoning Bench which has reasonable number of domains and tasks, but they
lack systematic evaluation of the generative questions. With addition of ACPBench Hard, now
the ACPBench dataset contains all three formats of questions: generation, boolean and multi-choice
questions. Most importantly, Table 4 presents the coverage of different tasks in the existing literature.
As can be seen while the Action Applicability, Progression and Validation have some coverage in
TRAC and ActionReasoningBench, the tasks like Reachability, Action Reachability, Justification,
Landmark, and Next Actions are not really covered by existing benchmarks.

Dataset PlanBench AutoPlanBench TRAC ARB ACPBench ACPBench Hard
# Tasks 8 1 4 6 7 8

# Domains 3 (+variants) 13 1 8 13 13
NL templates ✓ × ✓ ✓ ✓ ✓

Evaluation { { & &, LLM & {
Question Format

Generative ✓ ✓ × ✓ × ✓
Boolean × × ✓ ✓ ✓ ×

MCQ × × × × ✓ ×
Tasks

Applicability × × ✓ ✓ ✓ ✓
Progression ✓ × ✓ ✓ ✓ ✓
Reachability × × × × ✓ ✓

Action Reachability × × × × ✓ ✓
Validation ✓ × ✓ ∼ ✓ ✓

Justification × × × × ✓ ✓
Landmark × × × × ✓ ✓

Next Action × × × × × ✓

Table 4: Comparison of ACPBench-hard with existing Planning Benchmarks. Evaluations are either
using string matching ( &), symbolic tools ( {), or using another LLM ( LLM ).

A.2 DATASET

A.3 GENERATION PROCESS

Figure 6 illustrates the overall generation process of the ACPBench-Hard dataset.

APPLICABILITY

While constructing the action applicability dataset, we impose a bound on the number of applicable
actions in a state. We only keep the states when |A(s)| is ≤ 100. While the bound is high, in most
cases the number of applicable actions are ≤ 10. Table 5 presents the Max and Mean number of
Applicable Actions.

EVALUATION

Table 6 show the complexity of evaluating an answer per task.

A.4 GRAMMAR FOR PARSING THE MODEL RESPONSE

Figure 7 shows the grammar used for parsing the responses for our 8 tasks.
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Figure 6: High-level Workflow of Generating ACPBench Hard Dataset. 1. We use the Problem/-
Domain Generator when available to generate PDDL Problem and Domain Files. For Alfworld
domain, we skip this step and directly use the PDDL Domain and Problem file made available in
the Alfworld repo. 2. Given a PDDL Problem and Domain File, we use a top-K planner Katz et al.
(2020) to find multiple plans. 3 Depending on the task, we either sample plans from the obtained
plans or sample intermediate states on these plans. 4. We generate question and answer for the task
symbolically. 5. Translate the Symbolic task to Natural Language. 6. Save the Natural Language
question and the information needed to evaluate the answer to the ACPBench Hard Dataset

# Applicable Actions
Domain Max Mean

ferry 10 5.00
logistics 10 9.50

blocksworld 9 4.60
grid 6 4.00

floortile 10 9.50
grippers 9 6.10
rovers 10 7.90
visitall 4 2.80
depot 10 9.70

goldminer 4 2.80
satellite 8 8.00

swap 49 37.80
alfworld 99 66.20

Table 5: Number of correct applicable actions in the Applicability task dataset.
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Task Complexity
Applicability (App) O(|A|)
Progression (Prog) O(|F |)
Reachability (Reach) PSPACE-complete
Action Reachability (AReach) PSPACE-complete
Validation (Val) O(1)
Justification (Just) O(|π||F |)
Landmarks (Land) PSPACE-complete
Next Action (NextA) PSPACE-complete

Table 6: Computational complexity of answer evaluation per task.

NAME:/[a-zA-Z][a-zA-Z0-9-_]*/
LPAR:"("
RPAR:")"
WS:/[ \n]/
LSPAR:"["
RSPAR:"]"
COMMA:","
action_none: "None"
action_name: LPAR NAME (WS NAME)* RPAR
act: action_name | action_none
action_list: (action_name WS?)*
prog_list: action_name* (COMMA action_name)*
progression_list: LSPAR prog_list RSPAR LSPAR prog_list RSPAR
index:/[0-9]+[0-9]*/

Figure 7: Grammar used for parsing the model response.

A.5 NEXT ACTION, SPLIT BY DOMAIN

Model depot goldminer satellite swap alfworld ferry logistics blocks grid floortile grippers rovers visitall
Mixtral 8x22B 0.4 0.2 0.4 0.8 0.1 0.3 0.4 0.3 0.3 0.1 0.2 0.4 0.3
Llama 3.1 70B 0.6 0.4 0.5 0.7 0.1 0.2 0.4 0.5 0.5 0.4 0.3 0.3 0.5
GPT-4o mini 0.4 0.4 0.4 0.7 0.0 0.5 0.1 0.4 0.6 0.1 0.2 0.3 0.5
DeepSeek V3 0.5 0.4 0.2 1.0 0.2 0.7 0.8 0.6 0.6 0.0 0.1 0.5 0.5
Llama 3.1 405B 0.6 0.4 0.4 1.0 0.4 0.4 0.6 0.2 0.6 0.0 0.3 0.6 0.7
GPT-4o 0.6 0.7 0.5 0.9 0.4 0.7 0.6 0.6 0.7 0.1 0.2 0.8 0.4
DeepSeek R1 0.4 0.5 0.2 0.9 0.0 0.4 0.6 0.5 0.4 0.0 0.1 0.2 0.5
o1 mini 0.9 0.8 0.5 0.9 0.5 1.0 0.4 0.6 0.9 0.3 0.2 0.4 0.9
o1-preview 0.8 0.9 0.8 0.9 0.9 1.0 0.8 0.8 0.9 0.8 0.1 0.9 0.8
random (full set) 0.11 0.43 0.04 0.21 0.03 0.19 0.14 0.39 0.36 0.22 0.20 0.26 0.49

Table 7: Accuracy of large size models on the next action task, split by domain. Bold entries
indicate the best overall model, while the underlined entries indicate the best language model. Last
row indicates the ratio of the actions that are correct answers among the applicable actions, the
performance of a random selector among applicable actions.

One of the tasks, specifically the new next action task shows a higher than expected accuracy for such
a computationally hard task. To better understand the phenomena, Table 7 shows the per-domain
split. The bolded and underlined values depict the top accuracy values per domain across the tested
models. Note, the accuracy is not uniform across domains. Some more complex domains such as
depot shows better performance across models than easy domains such as grippers, which is hard
for all models. There are some domains, such as logistics and ferry that are hard for some models
and easy for other. There are domains like floortile and alfworld that are very hard for almost all
models.

A.6 DOMAIN-WISE ACCURACY OF TESTED MODELS

Figures 8 and 9 show the domain-wise accuracy of tested small and medium language models, while
Figure 10 presents the domain-wise accuracy of tested large language and reasoning models.
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(a) Granite 3.1 8B base. (b) Granite 3.1 8B. (c) Llama 3.1 8B.

Figure 8: Domain-wise accuracy of small size language models.

(a) DeepSeek coder 33B. (b) Granite code 34B.

Figure 9: Domain-wise accuracy of small and medium size language models.

A.7 LIMITATIONS

Our work aims to propose a reliable benchmark the evaluates LLM’s ability to reason about action,
change and planning. However, there are a few limitations to our work.

• Captures a subset of planning problems: classical domains - closed world, deterministic
dynamics, full observability, described in a standard planning language PDDL.

• Requires specifying the corresponding natural language mapping of facts and actions per
domain.

• Generation and validation are both computationally challenging and therefore time con-
suming. The validation makes use of lenient grammar, resulting in possibly capturing a
wrong part of the answer, when multiple answers are given in one response.

• Evaluating generated output is hard, while we counted on the model to not produce multiple
conflicting answers, LLMs are known to do so.

• The evaluations only measures the final answer and do not evaluate the reasoning process
of LLMs.

• We use same set of prompts to evaluate all the LLM. Having different prompts and ap-
proaches might result in different performance on the benchmark.
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(a) Mixtral 8x22B. (b) GPT-4o mini. (c) Llama 3.1 70B.

(d) GPT-4o. (e) Llama 3.1 405B. (f) DeepSeek V3.

(g) DeepSeek R1. (h) o1 mini. (i) o1 preview.

(j) GPT-OSS 20B. (k) GPT-OSS 120B.

Figure 10: Domain-wise accuracy of large language and reasoning models.
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