
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ACPBENCH HARD: UNRESTRAINED REASONING
ABOUT ACTION, CHANGE, AND PLANNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce ACPBench Hard, a dataset of generative, open-ended questions
which LLM models needs to answer in order to plan. Models that perform well
on these tasks could in principle be integrated into a planner or be used directly
as a policy. We discuss the complexity of these tasks as well as the complexity of
validating the correctness of their answers and present validation algorithms for
each task. Equipped with these validators, we test the performance of a variety
of models on our tasks and find that for most of these tasks, the performance of
even the largest models is still subpar. The models do not possess even the most
basic capability of identifying which actions can be performed in a given state. No
model outperforms any other on our proposed tasks and, with a few exceptions,
all tested language models score below 65%, indicating that even the current fron-
tier language models as well as so-called reasoning models have a long way to go
before they can reliably reason about planning.

1 INTRODUCTION

The ability to reason and plan in large language models (LLMs), is a major focus in the field. For
reasoning, the majority of work focuses on the mathematical reasoning Cobbe et al. (2021) and
logical inference Saparov & He (2023). For planning, most work focused on the ability to produce
or validate a plan Valmeekam et al. (2023a); Stein et al. (2025). The downside of focusing on the
end-to-end planning datasets is the inability to pinpoint the reason for a black-box planner, such as
an LLM-based one, to not be able to produce a solution.

To tackle this gap, ACPBench Kokel et al. (2025) introduced a benchmark for testing the reasoning
abilities about action, change, and planning, separating the planning process into the atomic reason-
ing tasks performed by planners. Tasks in these benchmarks are boolean or have multiple choice.
However, in real applications planners do not typically have shortlisted options. Planners need to
generate the actions from significantly larger action space. For instance, the applicability task in
ACPBench either asks about applicability of a given action in the boolean case or chooses an ap-
plicable action among 4 variants. Even if we make the assumption that the model can answer such
questions with high precision, it is not clear how this capability can be efficiently exploited for the
task of generating all applicable actions in a given state.

In this work, we create a generative version of ACPBench to alleviate these limitations. We devise
open-ended, generative versions of questions for the same 7 tasks, and add a new challenging task
of finding an action that takes us closer to the goal, a task that corresponds to the ability to perform
optimal planning Bylander (1994). For each of these tasks, we introduce an evaluator, which scores
a possible answer to the open-ended questions. We generate an evaluation set of questions based on
a wide collection of 13 Planning Domain Definition Language (PDDL) McDermott (2000) domains
from ACPBench, which we call ACPBench Hard. The core idea is to evaluate the LLMs’ ability
to produce reliable components for automated planners, as LLMs that perform well on these tasks
could be integrated into a planner or be used directly as a policy Kambhampati et al. (2024).

For all tasks, we discuss their computational complexity, as well as the complexity of validating their
solutions. We devise validators for each task, based on the symbolic description of the questions.
With the help of these validators, we test the performance of a collection of modern LLMs of various
sizes on ACPBench Hard. We find that the performance of language models, even the largest ones,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

is still insufficient to be reliably used in planners, see Figure 1. We observe that there is no single
model that outperforms all other models on all tasks of the ACPBench Hard dataset. Further, on half
of the tasks, namely “reachability” (reach), “action reachability” (areach), “landmarks” (land), and
“applicability” (app), all tested language models exhibit a very low accuracy. All tested models score
below 65% on most tasks, indicating that even the current frontier language models have a long way
to go before they can reliably reason about planning. Further, even the so-called reasoning models
o1 perform poorly on half of these tasks. The o1-preview model achieves 89% on the “progression”
(prog) task and 80% on the “next action” (nexta) task, with the rest of the results being 66% and
below, and the smaller o1-mini model outperforms it only on the “plan validation” (val) task with
78% accuracy. The much higher computational effort of the reasoning models compared to the
language models do not seem to justify the somewhat moderate increase in accuracy.

2 BACKGROUND

Figure 1: Task-wise accuracy
of large size language models.

We consider planning tasks Π = ⟨F,A, s0, s⋆⟩ in the STRIPS for-
malism Bylander (1994). In such a task, F is a set of Boolean
propositions. Each subset s ⊆ F is called a state, and S = 2F is
the state space of Π. The state s0 is the initial state of Π. The goal
s⋆ ⊆ F is a set of propositions, where a state s is a goal state if
s⋆ ⊆ s. The set A is a finite set of actions. Each action a ∈ A
has an associated set of preconditions pre(a) ⊆ F , add effects
add(a) ⊆ F and delete effects del(a) ⊆ F .

The semantics of STRIPS planning is as follows. An action a is
applicable in the state s if pre(a) ⊆ s. Applying a in s results in
the state sJaK := (s \ del(a)) ∪ add(a). A sequence of actions
π = ⟨a1, . . . , an⟩ is applicable in s if there exists a sequence of
states s = s1, . . . , sn+1 such that for each 1 ≤ i ≤ n we have ai
is applicable in the state si and applying it results in the state si+1.
If it exists, such sequence is uniquely defined, and its end state sn
is denoted by sJπK. An applicable action sequence is a plan for s if
sJπK is a goal state. A plan for s with minimal length is called optimal. The perfect heuristic for s,
denoted by h∗(s), is the cost of an optimal plan for s. The objective of (optimal) planning is to find
an (optimal) plan for the state s0.

3 RELATED WORK

The most relevant to our work is the ACPBench dataset Kokel et al. (2025), which we build upon.
It features 7 core reasoning tasks about planning. ACPBench does not capture the decisions that the
automated planners need to make, as these decisions are generative in their nature. In this work,
therefore, we present the generative form of these tasks, requiring LLM to produce precisely the
answers that automated planners produce and consume. Additionally, we present a new task, not
considered by previous work, requiring to produce an action that takes us closer to the goal.

Other notable work in similar direction includes TRAC He et al. (2023), featuring 4 tasks: projec-
tion, execution, planning, and goal recognition, as well as PlanBench Valmeekam et al. (2023b), with
8 planning tasks including plan generation, reasoning about plan execution, and plan verification.
Both benchmarks focus on a small number of planning domains (mostly BlocksWorld and variants).
Both use templates to generate natural language text; similar to ours. AutoPlanBench Stein et al.
(2025) alleviates the dependence on templates, leveraging LLMs to generate these natural language
template and hence were able to scale up the dataset to 12 domains. While scaling the number of
domains, they limit their focus on planning task including plan and next-action generation.

Another notable dataset is ActionReasoningBench Handa et al. (2025), featuring six tasks: fluent
tracking, state tracking, action executability, effects of actions, numerical RAC, and composite ques-
tions. These tasks reason about action sequences and hence two of the tasks overlap with three of the
tasks we consider. Specifically, action executability deals with questions that fall under applicability
and validation tasks in our case. On one hand, this creates a complicated reasoning question, on the
other, it makes it harder to pinpoint the source of an error. The effects-of-actions task is somewhat

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Context: There are several cities, each containing several locations, some of which are airports. There
are also trucks, which can drive within a single city, and airplanes, which can fly between airports.
The goal is to get some packages from various locations to various new locations. There are 2 trucks
and 1 airplane, as well as 4 packages. There are 4 locations across 2 cities. The locations are in
cities as follows: l1-1 and l1-0 are in c1; l0-1 and l0-0 are in c0. Currently, p2, t1, p1, p3, a0, and
p0 are at l1-0, t0 is at l0-1. The available propositions are: (at ?obj ?loc) - ?obj is at ?loc and
(in ?obj1 ?obj2) - ?obj1 is in ?obj2.

Inputs: Break down the outcomes of performing the action "load object p3 into truck t1 at location l1-0"
into two lists, positive effects and negative effects. Positive effects are the propositions that are
false in the current state but will become true after performing the action. Negative effects are the
propositions that are true in the current state and will become false after performing the action.

Figure 2: Example of a question for the progression task in ACPBench Hard.
similar to our progression task, applied repetitively. Further, ActionReasoningBench uses a large-
language model for evaluation of the generative questions, which is not quite robust. We develop
dedicated symbolic validators to evaluate each of the generative task introduced. Table 4 in the
Appendix compares and contrasts ACPBench Hard with related planning benchmarks.

Research on planning abilities of agents Liu et al. (2023); Ma et al. (2024) is also relevant. In our
experiments, we focus on the planning abilities of individual models instead of agents. However,
the “next action” prediction task does takes us in direction of agents.

4 DATASET CONSTRUCTION

Building upon ACPBench Kokel et al. (2025), we keep the same 13 planning domains and create
generative dataset. For each task, we describe the data stored in order to enable or speed up the
evaluation of the correctness of a potential answer. Often, the PDDL planning task Π = ⟨F,A, s, s⋆⟩
is needed for evaluation, and therefore we store it per question, with the current state s as the initial
state. Plans, whenever needed, are computed with a classical planner. We first attempt to run a
top-quality planner Katz & Lee (2023b), producing plans of best possible quality, and use a diverse
planner Katz & Sohrabi (2020) as a backup mechanism if no top quality plans were found. The
high-level construction workflow is illustrated in the Figure 6. We use template-based approach to
convert the PDDL to NL.

1. Applicability (App) The first task deals with identifying which actions are applicable in a state.
For an action to be applicable, its preconditions must hold in the state. Given a state s and the
set of actions A, the subset of applicable actions would be A(s) = {a ∈ A | pre(a) ⊆ s},
easily computable by iterating over the actions. The complexity of such an iterative algorithm is
O(|F ||A|), since |F | is a theoretical upper bound on the precondition size. In practice, planning
problems typically have small preconditions size. Thus, we can create a generative question by
simply asking the model to produce all applicable actions in a given state. For practical reasons,
we impose a bound on the number of applicable actions in a state, generating questions only in
cases when |A(s)| is under that bound. We can keep all applicable actions names in the dataset for
validating the answer. The number of applicable actions for all instances is < 10, except for Swap
and Alfword domains (ref. Table 5 in the Appendix).

2. Progression (Prog) The next task evaluates LLMs ability to understand how the world state
changes by action application. Performing an action changes the state in the following manner: The
delete effects will no longer hold and the add effects will hold. Everything else remains unchanged.
Given a state s and an action a, the next state is t = (s \ del(a)) ∪ add(a). The complexity of
the straightforward computation is O(|F |) worst case, but in practice the add and delete effects
of planning problems are typically small. We construct a single generative question, asking what
propositions are false in the current state but will become true after performing the action and asking
which ones are true and become false. The first set is t \ s, and the second one is s \ t. We maintain
both of these sets in the answers. Figure 2 shows an example of a progression question.

3. Reachability (Reach) The reachability task evaluates if a specific fact can eventually become
true by taking (possibly multiple consecutive) actions in the given state. This is a multi-step reason-
ing task that can help avoid exploring unfeasible options. The generative version of this question is
quite simple: what proposition can never hold in any potentially reachable state. If no such proposi-
tions exist, we instruct to reply None. Reachability is PSPACE-hard to answer in general Bylander
(1994) for partial states, so we only focus on reachability of a specific fact. We can generate some
unreachable facts by either finding groundings of static predicates (unchanged by any action) that do

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

not hold in the given state, or by (under)approximating the reachability with poly-time computable
delete-relaxed reachability Hoffmann & Nebel (2001). For practical reasons, we keep a subset of
generated unreachable facts, N , for speeding up answer validation. We generate question only in
states where we either know at least one unreachable fact or we know that all facts are reachable.
In case of doubt, we skip generating questions for that state.

4. Action Reachability (AReach) The action reachability task is closely related to the (atom) reach-
ability, checking whether there is a reachable state where the action is applicable. Computationally,
this problem is PSPACE-hard, for the same reason as (atom) reachability. The generative version of
the question is: what action can never become applicable, in any state reachable from the current
state? Here as well, we generate question only in states where we either know at least one unreach-
able action or we know that all actions are reachable. In case of doubt, we skip the state. For answer
validation, as in the previous case, we keep a set of example unreachable actions U . Set U is empty
when all actions are reachable.

5. Validation (Val) The validation task aims at checking whether the specified sequence of actions
π is a plan. In other words, whether π is valid, applicable, and successfully achieves the intended
goal from the given state s. The generative version of this question aims at identifying where the
plan fails. In other words, we ask to identify the first inapplicable action in a given sequence of
actions. To generate such a sequence, we start with a valid plan and randomly choose an action to
replace with an inapplicable one. For validation purposes, we keep the index of such action.

6. Justification (Just) Action justification Fink & Yang (1992); Salerno et al. (2023) deals with the
question of whether a given plan can be simplified by removing some actions. The generative version
of the justification task question asks to simplify the plan by removing one or two consecutive actions
and to produce the resulting simplified plan. To produce such a sequence, we start with a plan for the
initial state. We check whether the plan can be simplified by removing a single or two consecutive
actions. If not, we try to extend the plan by adding such an action or a pair of actions, keeping the
resulting sequence a plan. For answer validation, we keep the action or pair of actions that can be
removed, together with the appearance number, for actions that appear more than once on the plan.

7. Landmarks (Land) Landmarks task tests LLM’s ability to identify subgoals that are necessary
to achieve the goal. In the planning literature such subgoals are often called landmarks Porteous
et al. (2001). Landmarks are facts that must become true sometime along every plan. While check-
ing whether a proposition is a landmark is PSPACE-hard Porteous et al. (2001), there are several
methods that can find a subset of landmarks Keyder et al. (2010); Hoffmann et al. (2004); Richter
et al. (2008); Zhu & Givan (2003). We use the so-called RHW method Richter et al. (2008). Further,
negative evidence can be obtained from a collection of plans - a proposition that does not appear on
a plan is not a landmark. We keep the sets of facts that are known to be landmarks and of facts that
are known to be non-landmarks for speeding up answer validation.

8. Next Action (NextA) An additional task that does not appear in ACPBench is the next action
task. This generative question asks what is the next action that takes us towards the goal. This task
is closely related to optimal planning, since optimal plans can be produced by iteratively obtaining
such actions. While even non-optimal planning is PSPACE-hard Bylander (1994), modern planners
can often quickly find collections of optimal plans Katz et al. (2020); Katz & Lee (2023a). Clearly,
the first actions of these plans would be correct answers. Further, the cost of these optimal plans can
be used to check other applicable actions in the state, by producing an optimal plan for the states
obtained by applying these actions in the question state. We keep the sets of actions that are correct
answers and of actions that are known to not take us closer to the goal for speeding up answer
validation. Further, we store the optimal cost h∗(s) of achieving the goal from the current state.

5 ANSWER EVALUATION

Evaluating answers to boolean or multiple-choice questions simply amounts to looking up the cor-
rect answer and comparing. Evaluating open-ended answers, on the other hand, might not be as easy.
This is due to the fact that sometimes, there is not one single correct answer that can be stored with
the question. Looking at the tasks at hand, while in some cases we can store the complete correct
answer, in other we must resort to performing some computation in order to evaluate whether the
returned answer is correct. In what follows, we describe how the answer is evaluated for each task.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

1. Applicability (App) In this task, we store all applicable action names per question. The answer
evaluation therefore amounts to a simple comparison between the given answer and the correct one.
Since we ask for all applicable actions, we chose to assign a score 1 if the set of all actions in
the answer equals to the set of all applicable actions. Otherwise, we assign 0. The complexity
of validating the answer is therefore O(1) if we impose a constant threshold on the number of
applicable actions when the question is created, otherwise it is O(|A|).
2. Progression (Prog) Here, we store both correct sets of propositions (t \ s, and s \ t) per question.
An answer validation amounts to a simple comparison between the given answer and the correct one.
Since we test the ability to produce all action effects, we score 1 if both all positive and all negative
effects were correctly identified. Otherwise, we give the score 0. The complexity of validating the
answer is therefore O(|F |).
3. Reachability (Reach) The set of unreachable facts N being empty is an indication that there are
no unreachable facts. Hence, if the answer P is None, we assign score of 1 when N = ∅; otherwise,
the score is 0. If the answer P is not None and P ∈ N , we assign the score of 1. If P is not None
but the set N is empty, the score is 0. In the remaining case, where P is not part of N , we need to
solve a planning task Π′ = ⟨F,A, s0, {P}⟩, where the goal is to achieve the atom P and the rest as
in the planning task in the question. We can use any off-the-shelf planner to generate a plan for this
task. If a plan exists, we score the answer 0, otherwise 1. Therefore, the evaluation problem in this
case is PSPACE-complete.

4. Action Reachability (AReach) As in the previous case, when the set of unreachable actions
U is empty, all actions are reachable. Hence, if the answer is None, we assign a score of 1 when
U = ∅; otherwise the score is 0. For an action a as answer, if U = ∅ then the score is 0. If
a ∈ U , the score is 1. In the remaining case, where U ̸= ∅ and a /∈ U , we construct a planning task
Π′ = ⟨F,A, s0, pre(a)⟩ with the goal being the preconditions of the action a, and the rest as in the
planning tasks in the question. We run a planner on this task, checking if a plan exists. If yes, we
score the answer 0, otherwise 1. The evaluation is, therefore, PSPACE-complete in this case as well.

5. Validation (Val) In this case, we only need to compare the index in the answer to the correct
index of the first inapplicable action. We give a 0/1 score based on that comparison. The complexity
of validating the answer is therefore O(1).

6. Justification (Just) To check whether the returned sequence is correct, we slightly relaxed the
constraint in the question. We check whether it is a proper subsequence of the provided plan and
whether it is a plan. If both are true, we give a score of 1, otherwise, we score the answer 0. The
complexity of validating the answer is therefore O(|π||F |) for the plan π.

7. Landmarks (Land) Invalid propositions are scored 0. A proposition p ∈ s0 ∪ s⋆ is a trivial
landmark and is also scored 0. Given a valid proposition p ∈ F \ (s0 ∪ s⋆), if it is known not to be
a landmark (e.g., there exists a plan that does not traverse any state in which p holds), we assign it a
score of 0. Otherwise, in order to check if p is a non-trivial landmark, we construct a planning task
Π′ = ⟨F ′, A′, s′0, s

′
⋆⟩ as follows. The set of propositions is extended with a proposition pach that

is intended to indicate that p was never achieved along a sequence of actions. F ′ = F ∪ {pnach}
Thus, for each action a ∈ A such that p ∈ add(a), we construct a new action with extended delete
effect to include pnach. Formally, for an action a, a′ is defined as follows. pre(a′) = pre(a),
add(a′) = add(a), and del(a′) = del(a) ∪ {pnach} if p ∈ add(a), otherwise del(a′) = del(a).
The extended action set is therefore A′ = {a′) | a ∈ A. Finally, both the initial state and the goal
are extended with pnach: s′0 = s0 ∪ {pnach}, s′⋆ = s⋆ ∪ {pnach}, indicating that we are interested
in plans that do not achieve p along their path, as any action that achieves p will delete pnach from
the state, making the goal not reachable. We use an off-the-shelf planner to check if there is a plan
for Π′. If there is one, it corresponds to a plan for Π that does not make p true and therefore p is not
a landmark, and we assign the score of 0. If Π′ is found unsolvable, then p is a landmark and we
assign the score of 1. The answer validation is therefore PSPACE-complete in this case as well.

8. Next Action (NextA) For an action a, if it is in the set of kept correct answers, we score it 1 and
if it is in the set of known incorrect answers, we score it 0. Otherwise, if it is applicable, we apply
it to the current state s and obtain the state t. We find the optimal plan costs h∗(s) and h∗(t) for
these two states with the help of an optimal planner and score the answer 1 if h∗(s) − h∗(t) = 1.
Otherwise, we score it 0. The answer validation is therefore PSPACE-complete in this case as well.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

6 EXPERIMENTS

6.1 BENCHMARKING PERFORMANCE

Following ACPBench, we generated 10 open-ended questions per domain for each of the 8 tasks,
a total of 1040 questions. We evaluated 15 language/reasoning models, with the aim to cover
small, medium, and large models, Small size: Granite 3.1 8B Granite Team (2024) and Llama 3.1
8B Dubey et al. (2024); medium size: DeepSeek coder 33B Guo et al. (2024) and Granite 34B
code Mishra et al. (2024); Large size: Mixtral 8x22B MistralAI (2024), Llama 3.1 70B and Llama
3.1 405B Dubey et al. (2024), DeepSeek V3 DeepSeek-AI et al. (2025b), GPT-4o mini, GPT-4o
OpenAI et al. (2024a); Reasoning DeepSeek R1 DeepSeek-AI et al. (2025a), o1 mini, o1-preview
OpenAI et al. (2024b), and recent open-weight reasoning models from OpenAI—GPT OSS 20B and
120B OpenAI et al. (2025).

All models were either accessed using API or hosted locally using hugging face transformer library
on machines with 2 A100 80 GB GPU. It is important to note that there is a significant difference
in the energy consumption and evaluation cost between various models. While smaller models are
relatively cheap, the larger language models such as Llama 3.1 405B and GPT-4o are prohibitively
expensive to be used as planner components. The reasoning models such as o1 and even the cheaper
DeepSeeek R1 are even more expensive than the language models. Therefore, our experiments with
these reasoning models are intended mostly for providing a frame of reference.

For each task, we evaluated a 2-shot prompting with static examples from outside the evaluation
set. The two examples are from the grid and logistics domains, one each per task. This allows
to exemplify the expected response format. Additionally, we instructed the language models to
produce their response in a particular format. Still, the tested models do not necessarily adhere to
the instructions or the example format. Hence, to be able to extract the answer from the response, we
developed a lenient grammar based parser, which would discard tokens if they did not fit expected
token values. Figure 7 (Appendix) shows the grammar used for parsing the responses for our 8
tasks. For example, in the progression task, the response is a “progression list”, which is two lists,
one for the positive effects and one for the negative effects. The response for the justification task is
a “action list”, which is a list of actions (or the updated plan) and the response for the validation task
is an “index” which is the index of the first inapplicable action. Using the grammar with a parser
that discards tokens not consistent with the grammar helps significantly in post-processing these
open-ended responses. The post-processed results are then evaluated according to the procedures
described in Section 5. Our evaluation code is provided in the supplementary.

Model app areach just land nexta prog reach val
Granite 3.1 8B 0.00 0.00 0.21 0.08 0.22 0.36 0.33 0.09
Llama 3.1 8B 0.00 0.00 0.22 0.06 0.25 0.40 0.33 0.13
DeepSeek coder 33B 0.02 0.02 0.21 0.10 0.17 0.42 0.18 0.15
Granite 34B code 0.02 0.00 0.17 0.11 0.18 0.43 0.28 0.12

Table 1: Small/medium size models performance, best results bolded.

Focusing first on the small
and medium size language
models, Table 1 shows the
accuracy of these mod-
els on the 8 tasks in our
dataset. A conclusion we
can draw from the figure
is that there are three cate-
gories of tasks according to
model performance. First, progression seems to be the easiest tasks among the 8 tasks. Even so,
the highest accuracy reached is 43% by Granite 34B code. The second category is the hard tasks of
applicability and action reachability. In fact, none of these models could score above 2% for these
two tasks. The third category includes the other 5 tasks with an average performance between 8.8%
and 28.8%. Hence, ACPBench Hard seems to be a difficult dataset for the small and medium size
language models.

Moving on to large size models, Table 2 shows the accuracy of the tested large language and rea-
soning models. Looking first at the language models, the top part of the table, we observe that there
is no single model that outperforms all other models. GPT-4o is the top performer, with best results
in 5 out of 8 tasks, but it is outperformed by 5% by Mixtral 8x22B on the reachability task, and by
DeepSeek V3 on the action reachability task by 4% and on the justification task by 11%. Among
the large reasoning models (bottom part) the o1-preview model performs the best. Surprisingly, on
the justification task the DeepSeek V3 language model remains the top performer. In all of our ex-
periments we capped the maximum number of generated tokens at 1,000. For the GPT OSS models,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Figure 3: Domain-wise accuracy
of GPT-4o.

Figure 4: Comparison of prediction error for GPT-4o
on different question formats.

however, we had to raise this limit to 4,000 because their reasoning chains were longer. Despite
the higher token count and the resulting increase in inference cost, this did not translate into a per-
formance boost. Similar to the small and medium size language models, there are tasks such as
progression that is relatively easy for all models, and there are tasks such as action reachability that
is difficult for all models, and even o1-preview achieves only 12%. For other tasks, some models do
better than others. Our third observation is that with the exception of what seems to be the easiest
for these models progression task, there are only three scores above 65%, and all of them are of
reasoning models, indicating that the ACPBench Hard dataset is difficult even for large models.

Model app areach just land nexta prog reach val

L
L

M
s

Mixtral 8x22B 0.10 0.02 0.31 0.26 0.32 0.68 0.37 0.23
Llama 3.1 70B 0.12 0.02 0.44 0.20 0.42 0.65 0.28 0.20
GPT-4o mini 0.07 0.01 0.14 0.04 0.35 0.59 0.22 0.27
Llama 3.1 405B 0.14 0.04 0.59 0.15 0.48 0.74 0.26 0.48
GPT-4o 0.25 0.01 0.54 0.29 0.55 0.78 0.32 0.62
DeepSeek V3 0.21 0.05 0.65 0.12 0.47 0.76 0.32 0.56

L
R

M
s

o1 mini 0.38 0.06 0.44 0.38 0.64 0.70 0.60 0.78
GPT OSS 20B 0.03 0.09 0.14 0.47 0.62 0.72 0.50 0.14
GPT OSS 120B 0.00 0.13 0.05 0.49 0.78 0.79 0.68 0.70
o1-preview 0.44 0.12 0.46 0.56 0.80 0.89 0.66 0.26
DeepSeek R1 0.05 0.01 0.52 0.20 0.36 0.77 0.24 0.53

Table 2: Accuracy of Larger LLMs (top) and LRMs (bottom). Bold
entries indicate the best overall model, while the underlined entries
indicate the best among language (non-reasoning) models.

Going deeper, we look
into the performance of
the best performing LLM,
GPT-4o, across different
domains. Figure 3 presents
the performance of the
top-performing language
model GPT-4o on various
tasks, across the existing
domains. For other models
performance we refer to
the supplementary mate-
rial. Observe that GPT-4o
exhibits high performance
on the progression task
across most domains,
showing somewhat lower
accuracy in satellite, alfworld, and floortile. Action reachability and landmarks tasks, on the other
hand, pose significant challenges to the model. The model consistently generated accurate answers
for the visitall and grid domains across most tasks. In the remaining domains the performance
varied across tasks, indicating that none of these domains are particularly easy for the models.

Finally, we evaluate the hardness of our proposed open-ended variants by comparing the perfor-
mance of GPT-4o on these questions (gen) to the two formats from ACPBench: boolean (bool) and
multiple choice (mcq). Figure 4 depicts the comparison in terms of model errors, the complement of
the accuracy. As can be seen, model error in generative format of the task is significantly higher than
bool and mcq except for the validation task. Note, we are showing results from one of the largest
models for this analysis. The gap in performance is even more prolonged in other models.

6.2 OBSERVATIONS AND INSIGHTS

The 2-shots seemed to be sufficient for the language models to mostly follow the instructions on
the answer syntax. The number of parsing errors was typically negligible, with a single exception of
Llama 3.1 8B on the applicable actions task, where in 4 cases the model made up objects that did not

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

follow the naming convention in the question and in 5 cases the model ran out of context generating
the same actions over and over again.

While atom and action reachability are very much related tasks, the latter seems to be much harder
for the tested models. It is not surprising, as action reachability requires an additional reasoning
step about the atoms in the action preconditions and their reachability. Further, while reachability
focuses on single atoms, action reachability requires reasoning about the entire precondition, that
often consists of multiple atoms. The reasoning should now account for their interplay, as they need
to hold in the same reachable state. In fact, action reachability seems to be consistently the most
difficult task across the tested models. Here, the models needed to provide an action that can never
become applicable, in any reachable state or None if there are no such actions. Interestingly, only
the OpenAI models were able to correctly identify the latter case, and these were the majority of
their correct answers. For instance, 9 out of 16 correct answers of o1-preview and all the 8 correct
answers of o1 mini were None. Most of the other correct answers recognized that a block cannot be
(un)stacked on itself, which accounts for 5 out of 6 correct answers for DeepSeek V3, 4 out of 5 for
Llama 3.1 405B, and 4 out of 16 for o1-preview.

Surprisingly, the second hardest task is action applicability. While one of the core tasks in plan-
ning, it seems to be quite challenging even for the reasoning models, the largest of which scored
44%, while DeepSeek R1 scoring only 5%. The smaller language models fail on this task, with
only DeepSeek coder 33B and Granite 34B code showing performance slightly above 0. Even the
largest language models barely reach 25%. One reason for that is the strict requirement for produc-
ing precisely the set of all applicable actions. While missing actions can hinder completeness and
cause missing existing solutions, extra made up actions can lead to producing incorrect solutions,
which is arguably worse. Interestingly, if we only required not to make up actions, but allowed
producing subsets of real answers, scoring according to Jaccard similarity, the score of the best per-
forming model o1 preview would go up to 57%. The largest absolute increase would be for Mixtral,
going from 10% to 38%. Using such action generation in a planner would correspond to loosing
completeness, while keeping the soundness of the planner.

Looking at the landmarks task, among the smaller models, the best performing is Granite 34B. It
gives quite uniform answers. Most of its correct answers are in the ferry domain, where it correctly
identifies the ferry location as a landmark. In logistics, it recognizes a package need to be in the
truck in the goal city before it can be delivered. The best performing large language model GPT-4o
achieves 29% accuracy, producing a diverse set of answers. In ferry, it sometimes correctly identifies
ferry being empty as a landmark, sometimes the need for a car to be onboard, and sometimes a ferry
location was identified as a landmark. In logistics, trucks or packages at particular locations were
identified as landmarks. In grid, it was more uniform, reporting in most cases holding a key as a
landmark. In goldminer, all correctly identified landmarks were some locations being clear. The best
performing reasoning model o1-preview achieves 56% accuracy. It correctly reports twice in satellite
and 6 times in swap the absence of non-trivial landmarks. The model that is best at recognizing that
is o1 mini, with 3 cases in visitall, 4 cases in satellite, 5 in swap, and once in alfworld. The only
other model that can identify such cases is Mixtral 8x22B, with 3 cases in visitall.

The justification task is among the few tasks where the best among the language models is not
GPT-4o, but DeepSeek V3, which performs better than even the reasoning models. The second best
performer is Llama 3.1 405B. Interestingly, in multiple cases, Llama produces a valid plan, which is
shorter than the given plan, but not its subsequence, and hence not a correct answer. In some cases,
Llama produced a valid plan that changes the order of the given plan actions. Note, the aim of the
justification task is not to produce a valid plan, but to recognize unnecessary actions on a sequence.

The validation task requires an index to be returned, which makes it harder to investigate the source
of the mistakes made. Most language models do not perform well on this task, with only the largest
models go above 30%. Interestingly, the reasoning model o1-preview scores much lower than o1
mini (26% vs 78%). To investigate the source of its mistakes, we check the absolute difference
between the given answer and the correct one. In 86% of the cases that o1-preview incorrectly
answered the question, it errored by 1. It is important to note that it was mistaken in both directions,
giving both lower and higher than the correct indices. Note that several models favor the answers 1,
10, and 100. For the majority of smaller models, most their answers are one of these three numbers.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

The progression task is mostly simple for the reasoning model o1-preview, which reaches 89%, but
even this model makes mistakes. For example, it does not recognize reasonable positive effects, such
as stacking a block on top of another block makes the top block clear. Not surprisingly, it misses
less negative effects, such as taking a picture with a rover camera makes the camera not calibrated.
Surprisingly, it invents unreasonable effects such as communicating the rock data from rover to the
lander would empty the rover’s store and delete the effect of rocks being analyzed at the waypoint.

6.3 REPRESENTATION
app areach just land nexta prog reach val avg

NL 0.21 0.05 0.65 0.12 0.47 0.76 0.32 0.56 0.39
PDDL 0.31 0.07 0.74 0.21 0.53 0.87 0.33 0.55 0.44
PDDL+NL 0.32 0.09 0.68 0.19 0.60 0.88 0.37 0.61 0.47

Table 3: DeepSeek V3 comparison of 3 prompt representa-
tions: “NL”, “PDDL”, “PDDL+NL”.

In all the experiments presented so
far, our prompt included only the nat-
ural language representation of the
domain and the problem as part of
the context, “NL”. Here, we experi-
ment with two additional representa-
tions of the context: “PDDL”, where the context included only the PDDL domain and the PDDL
problem, “PDDL+NL”, where the context included both the natural language representation of the
domain and problem as well as the PDDL representations. Table 3 presents the performance of
DeepSeek V3. The results indicate that incorporating the PDDL domain alongside the natural lan-
guage representation significantly improves performance. However, when the PDDL files are avail-
able, using a traditional planner may be more appropriate, rendering the use of an LLM unnecessary.

Figure 5: Domain-wise accuracy of DeepSeek V3
on next action, large evaluation set.

We look at the model performance on one of
the computationally hardest tasks, the new next
action task with the mixed PDDL+NL repre-
sentation, where the model shows a higher than
expected accuracy. To better understand the
phenomena, Figure 5 shows the per-domain ac-
curacy of DeepSeek V3 as a function of dis-
tance to goal. Note, the accuracy is not uniform
across domains. While, as expected, the accu-
racy decreases with the distance, we note some
domains like ferry and satellite, where there is
an increase for larger distances. The chances of
randomly choosing a correct answer in these domains are low (See Table 7, Appendix).

7 CONCLUSIONS, LIMITATIONS, SOCIETAL IMPACT, AND FUTURE WORK

We have created ACPBench Hard, a benchmark of open-ended questions that reflect precisely the
questions answered by symbolic planners during the planning process. We therefore believe that
ACPBench Hard is a good benchmark for testing reasoning abilities that are required for planning.
Based on an empirical investigation of a collection of large language models we conclude that even
the largest and the best performing models have a very long way to go before they can reliably plan.

There are a few limitations to our work. First, the benchmark only captures a subset of planning
problems. Second, our lenient evaluation only evaluates the first answer in the output. Third, we do
not evaluate the reasoning process; only the final answers.

Improving the planning abilities of autonomous agents can have both positive and negative societal
impact. Among the positive impact factors are increased efficiency and productivity of our society,
which can also lead to negative factors such as job displacement and economic inequality. Being
aware of these impact factors is the first step towards being able to exploit the positive impacts while
mitigating the negative ones.

Creating training data for generative questions with a chain of thought, would be a promising area of
future research, because for planning problems an instructive chain of thought is often not obvious.
Another avenue for future research would be extending the benchmark to additional tasks such as
object counting in a current state.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Tom Bylander. The computational complexity of propositional STRIPS planning. Artificial Intelli-
gence, 69(1–2):165–204, 1994.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv:2110.14168 [cs.LG], 2021.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement learning, 2025a. URL https:
//arxiv.org/abs/2501.12948.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, et al. Deepseek-v3
technical report, 2025b. URL https://arxiv.org/abs/2412.19437.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, et al. The llama
3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Eugene Fink and Qiang Yang. Formalizing plan justifications. In Proceedings of the Nineth Biennial
Conference of the Canadian Society for Computational Studies of Intelligence (CSCSI 1992),
1992.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

IBM Granite Team. Granite 3.0 language models, October 2024. URL https://github.com/
ibm-granite/granite-3.0-language-models/.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, et al. Deepseek-coder:
When the large language model meets programming–the rise of code intelligence. arXiv preprint
arXiv:2401.14196, 2024.

Divij Handa, Pavel Dolin, Shrinidhi Kumbhar, Chitta Baral, and Tran Cao Son. Actionreasoning-
bench: Reasoning about actions with and without ramification constraints. In The Thirteenth
International Conference on Learning Representations, 2025.

Weinan He, Canming Huang, Zhanhao Xiao, and Yongmei Liu. Exploring the capacity of pretrained
language models for reasoning about actions and change. In ACL. Association for Computational
Linguistics, 2023.

Jörg Hoffmann and Bernhard Nebel. RIFO revisited: Detecting relaxed irrelevance. In Amedeo
Cesta and Daniel Borrajo (eds.), Proceedings of the Sixth European Conference on Planning
(ECP 2001), pp. 127–135. AAAI Press, 2001.

Jörg Hoffmann, Julie Porteous, and Laura Sebastia. Ordered landmarks in planning. J. Artif. Intell.
Res., 22:215–278, 2004.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Kaya Stechly, Mudit Verma, Siddhant
Bhambri, Lucas Saldyt, and Anil Murthy. LLMs can’t plan, but can help planning in LLM-
Modulo frameworks. CoRR, abs/2402.01817, 2024.

Michael Katz and Junkyu Lee. K* search over orbit space for top-k planning. In Edith Elkind (ed.),
Proceedings of the 32nd International Joint Conference on Artificial Intelligence (IJCAI 2023).
IJCAI, 2023a.

Michael Katz and Junkyu Lee. K* and partial order reduction for top-quality planning. In Roman
Barták, Wheeler Ruml, and Oren Salzman (eds.), Proceedings of the 16th Annual Symposium on
Combinatorial Search (SoCS 2023). AAAI Press, 2023b.

10

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2407.21783
https://zenodo.org/records/12608602
https://github.com/ibm-granite/granite-3.0-language-models/
https://github.com/ibm-granite/granite-3.0-language-models/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Michael Katz and Shirin Sohrabi. Reshaping diverse planning. In Vincent Conitzer and Fei Sha
(eds.), Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2020),
pp. 9892–9899. AAAI Press, 2020.

Michael Katz, Shirin Sohrabi, and Octavian Udrea. Top-quality planning: Finding practically useful
sets of best plans. In Vincent Conitzer and Fei Sha (eds.), Proceedings of the Thirty-Fourth AAAI
Conference on Artificial Intelligence (AAAI 2020), pp. 9900–9907. AAAI Press, 2020.

Emil Keyder, Silvia Richter, and Malte Helmert. Sound and complete landmarks for and/or graphs.
In Helder Coelho, Rudi Studer, and Michael Wooldridge (eds.), Proceedings of the 19th European
Conference on Artificial Intelligence (ECAI 2010), pp. 335–340. IOS Press, 2010.

Harsha Kokel, Michael Katz, Kavitha Srinivas, and Shirin Sohrabi. ACPBench: Reasoning about
action, change, and planning. In Julie Shah and Zico Kolter (eds.), Proceedings of the Thirty-Ninth
AAAI Conference on Artificial Intelligence (AAAI 2025). AAAI Press, 2025.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating llms as agents. CoRR, abs/2308.03688, 2023.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Ling-
peng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn LLM
agents. CoRR, abs/2401.13178, 2024.

Drew McDermott. The 1998 AI Planning Systems competition. AI Magazine, 21(2):35–55, 2000.

Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang Shen, Aditya Prasad, et al. Granite code
models: A family of open foundation models for code intelligence. CoRR, abs/2405.04324, 2024.

MistralAI. Mixtral 8x22b. https://mistral.ai/news/mixtral-8x22b/, 2024.

OpenAI, :, Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, et al. Openai gpt-4o
system card, 2024a.

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, et al. Openai o1 system card,
2024b.

OpenAI, :, Sandhini Agarwal, Lama Ahmad, et al. gpt-oss-120b & gpt-oss-20b model card, 2025.
URL https://arxiv.org/abs/2508.10925.

Julie Porteous, Laura Sebastia, and Jörg Hoffmann. On the extraction, ordering, and usage of land-
marks in planning. In Amedeo Cesta and Daniel Borrajo (eds.), Proceedings of the Sixth European
Conference on Planning (ECP 2001), pp. 174–182. AAAI Press, 2001.

Silvia Richter, Malte Helmert, and Matthias Westphal. Landmarks revisited. In Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence (AAAI 2008), pp. 975–982. AAAI Press,
2008.

Mauricio Salerno, Raquel Fuentetaja, and Jendrik Seipp. Eliminating redundant actions from plans
using classical planning. In Pierre Marquis, Tran Cao Son, and Gabriele Kern-Isberner (eds.),
Proceedings of the Twentieth International Conference on Principles of Knowledge Representa-
tion and Reasoning (KR 2023), pp. 774–778. IJCAI Organization, 2023.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal anal-
ysis of chain-of-thought. In Proceedings of the Eleventh International Conference on Learning
Representations (ICLR 2023). OpenReview.net, 2023.

Katharina Stein, Daniel Fišer, Jörg Hoffmann, and Alexander Koller. Automating the generation of
prompts for llm-based action choice in pddl planning. In Proceedings of the Fourteenth Interna-
tional Conference on Automated Planning and Scheduling (ICAPS 2025). AAAI Press, 2025.

11

https://mistral.ai/news/mixtral-8x22b/
https://arxiv.org/abs/2508.10925

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kamb-
hampati. Planbench: An extensible benchmark for evaluating large language models on planning
and reasoning about change. In Proceedings of the Thirty-Seventh Annual Conference on Neural
Information Processing Systems (NeurIPS 2023), pp. 38975–38987, 2023a.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the
planning abilities of large language models - A critical investigation. In Proceedings of the Thirty-
Seventh Annual Conference on Neural Information Processing Systems (NeurIPS 2023), 2023b.

Lin Zhu and Robert Givan. Landmark extraction via planning graph propagation. In ICAPS 2003
Doctoral Consortium, pp. 156–160, 2003.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

8 APPENDIX

A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 RELATED WORK

Table 4 presents comparison of ACPBench Hard with other PDDL-based Planning Benchmarks.
Existing benchmarks either focus on few tasks or few domains. For example, PlanBench has only
3 domains but 8 tasks, where as AutoPlanBench has 13 domains but only 1 task. Ac exception
to this is Action Reasoning Bench which has reasonable number of domains and tasks, but they
lack systematic evaluation of the generative questions. With addition of ACPBench Hard, now
the ACPBench dataset contains all three formats of questions: generation, boolean and multi-choice
questions. Most importantly, Table 4 presents the coverage of different tasks in the existing literature.
As can be seen while the Action Applicability, Progression and Validation have some coverage in
TRAC and ActionReasoningBench, the tasks like Reachability, Action Reachability, Justification,
Landmark, and Next Actions are not really covered by existing benchmarks.

Dataset PlanBench AutoPlanBench TRAC ARB ACPBench ACPBench Hard
Tasks 8 1 4 6 7 8

Domains 3 (+variants) 13 1 8 13 13
NL templates ✓ × ✓ ✓ ✓ ✓

Evaluation { { & &, LLM & {
Question Format

Generative ✓ ✓ × ✓ × ✓
Boolean × × ✓ ✓ ✓ ×

MCQ × × × × ✓ ×
Tasks

Applicability × × ✓ ✓ ✓ ✓
Progression ✓ × ✓ ✓ ✓ ✓
Reachability × × × × ✓ ✓

Action Reachability × × × × ✓ ✓
Validation ✓ × ✓ ∼ ✓ ✓

Justification × × × × ✓ ✓
Landmark × × × × ✓ ✓

Next Action × × × × × ✓

Table 4: Comparison of ACPBench-hard with existing Planning Benchmarks. Evaluations are either
using string matching (&), symbolic tools ({), or using another LLM (LLM).

A.2 DATASET

Here we provide one sample question for each of the task.

APPLICABILITY

Listing 1: Example of Applicability

{
"id": -5674251047178000480,
"group": "applicable_actions_gen",
"context": "This is a ferry domain, where the task is to

transport cars from their start to their goal locations,
using a ferry. Each location is accessible by ferry from
each other location. The cars can be debarked or boarded,
and the ferry can carry only one car at a time. \nThere
are 2 locations and 20 cars, numbered consecutively.
\nCurrently, the ferry is at l0, with the car c2 on
board. The cars are at locations as follows: c0, c3, c15,
c10, c8, c6, and c9 are at l0; c18, c17, c16, c4, c19,
c5, c13, c7, c1, c12, c14, and c11 are at l1. The

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

available actions are: (sail ?from ?to) - travel by sea
from location ?from to location ?to, (board ?car ?loc) -
load the car ?car at location ?loc on to the ferry, and
(debark ?car ?loc) - unload the car ?car from the ferry
to location ?loc.",

"question": "Generate the list of all ground actions that are
applicable in this state.",

"answer": [
"(debark c2 l0)",
"(sail l0 l1)"

],
"PDDL_domain": "(define (domain ferry)\n (:requirements :

strips :typing)\n (:types car location - object)\n
(:predicates (at ?c - car ?l - location) (at-ferry ?l -
location) (empty-ferry) (not-eq ?x ?y) (on ?c - car))\n

(:action board\n :parameters (?car - car ?loc -
location)\n :precondition (and (at ?car ?loc)
(at-ferry ?loc) (empty-ferry))\n :effect (and (on
?car) (not (at ?car ?loc)) (not (empty-ferry)))\n)\n

(:action debark\n :parameters (?car - car ?loc
- location)\n :precondition (and (on ?car)
(at-ferry ?loc))\n :effect (and (at ?car ?loc)
(empty-ferry) (not (on ?car)))\n)\n (:action
sail\n :parameters (?from - location ?to -
location)\n :precondition (and (not-eq ?from ?to)
(at-ferry ?from))\n :effect (and (at-ferry ?to)
(not (at-ferry ?from)))\n)\n)",

"PDDL_problem": "(define (problem ferry-l2-c20)\n (:domain
ferry)\n (:requirements :strips :typing)\n
(:objects c0 c1 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19
c2 c3 c4 c5 c6 c7 c8 c9 - car l0 l1 - location)\n
(:init (at c0 l0) (at c1 l1) (at c10 l0) (at c11 l1) (at
c12 l1) (at c13 l1) (at c14 l1) (at c15 l0) (at c16 l1)
(at c17 l1) (at c18 l1) (at c19 l1) (at c3 l0) (at c4 l1)
(at c5 l1) (at c6 l0) (at c7 l1) (at c8 l0) (at c9 l0)
(at-ferry l0) (not-eq l0 l1) (not-eq l1 l0) (on c2))\n
(:goal (and (at c0 l0) (at c1 l1) (at c2 l1) (at c3 l0)
(at c4 l1) (at c5 l1) (at c6 l1) (at c7 l1) (at c8 l1)
(at c9 l0) (at c10 l0) (at c11 l1) (at c12 l1) (at c13
l0) (at c14 l1) (at c15 l0) (at c16 l1) (at c17 l1) (at
c18 l1) (at c19 l1)))\n)"

}

PROGRESSION

Listing 2: Example of Progression

{
"id": 297440160406485545,
"group": "progression_gen",
"context": "This is a ferry domain, where the task is to

transport cars from their start to their goal locations,
using a ferry. Each location is accessible by ferry from
each other location. The cars can be debarked or boarded,
and the ferry can carry only one car at a time. \nThere
are 2 locations and 10 cars, numbered consecutively.
\nCurrently, the ferry is at l1, with the car c2 on
board. The cars are at locations as follows: c5, c9, and
c4 are at l1; c3, c0, c1, c6, c7, and c8 are at l0. The

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

available propositions are: (at-ferry ?l) - The ferry is
at ?l location, (at ?c ?l) - Car ?c is at location ?l,
(empty-ferry) - The ferry is empty, and (on ?c) - Ferry
has car ?c on board.",

"question": "Break down the outcomes of performing the action
\"debark car c2 to location l1 from the ferry\" into two
lists, positive effects and negative effects. Positive
effects are the propositions that are false in the
current state but will become true after performing the
action. Negative effects are the propositions that are
true in the current state and will become false after
performing the action.",

"answer": {
"pos": [

"(empty-ferry)",
"(at c2 l1)"

],
"neg": [

"(on c2)"
]

},
"PDDL_domain": "(define (domain ferry)\n (:requirements :

strips :typing)\n (:types car location - object)\n
(:predicates (at ?c - car ?l - location) (at-ferry ?l -
location) (empty-ferry) (not-eq ?x ?y) (on ?c - car))\n

(:action board\n :parameters (?car - car ?loc -
location)\n :precondition (and (at ?car ?loc)
(at-ferry ?loc) (empty-ferry))\n :effect (and (on
?car) (not (at ?car ?loc)) (not (empty-ferry)))\n)\n

(:action debark\n :parameters (?car - car ?loc
- location)\n :precondition (and (on ?car)
(at-ferry ?loc))\n :effect (and (at ?car ?loc)
(empty-ferry) (not (on ?car)))\n)\n (:action
sail\n :parameters (?from - location ?to -
location)\n :precondition (and (not-eq ?from ?to)
(at-ferry ?from))\n :effect (and (at-ferry ?to)
(not (at-ferry ?from)))\n)\n)",

"PDDL_problem": "(define (problem ferry-l2-c10)\n (:domain
ferry)\n (:requirements :strips :typing)\n
(:objects c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 - car l0 l1 -
location)\n (:init (at c0 l0) (at c1 l0) (at c3 l0)
(at c4 l1) (at c5 l1) (at c6 l0) (at c7 l0) (at c8 l0)
(at c9 l1) (at-ferry l1) (not-eq l0 l1) (not-eq l1 l0)
(on c2))\n (:goal (and (at c0 l0) (at c1 l0) (at c2
l1) (at c3 l1) (at c4 l0) (at c5 l0) (at c6 l0) (at c7
l0) (at c8 l0) (at c9 l1)))\n)"

}

REACHABILITY

Listing 3: Example of Reachability

{
"id": 6900855040701022305,
"group": "reachable_atom_gen",
"context": "This is a ferry domain, where the task is to

transport cars from their start to their goal locations,
using a ferry. Each location is accessible by ferry from
each other location. The cars can be debarked or boarded,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

and the ferry can carry only one car at a time. \nThere
are 2 locations and 5 cars, numbered consecutively.
\nCurrently, the ferry is at l0, with the car c2 on
board. The cars are at locations as follows: c3, c0, and
c1 are at l0; c4 is at l1. The available propositions
are: (at-ferry ?l) - The ferry is at ?l location, (at ?c
?l) - Car ?c is at location ?l, (empty-ferry) - The ferry
is empty, and (on ?c) - Ferry has car ?c on board.",

"question": "What proposition can never hold in any
potentially reachable state?",

"answer": [],
"PDDL_domain": "(define (domain ferry)\n (:requirements :

strips :typing)\n (:types car location - object)\n
(:predicates (at ?c - car ?l - location) (at-ferry ?l -
location) (empty-ferry) (not-eq ?x ?y) (on ?c - car))\n

(:action board\n :parameters (?car - car ?loc -
location)\n :precondition (and (at ?car ?loc)
(at-ferry ?loc) (empty-ferry))\n :effect (and (on
?car) (not (at ?car ?loc)) (not (empty-ferry)))\n)\n

(:action debark\n :parameters (?car - car ?loc
- location)\n :precondition (and (on ?car)
(at-ferry ?loc))\n :effect (and (at ?car ?loc)
(empty-ferry) (not (on ?car)))\n)\n (:action
sail\n :parameters (?from - location ?to -
location)\n :precondition (and (not-eq ?from ?to)
(at-ferry ?from))\n :effect (and (at-ferry ?to)
(not (at-ferry ?from)))\n)\n)",

"PDDL_problem": "(define (problem ferry-l2-c5)\n (:domain
ferry)\n (:requirements :strips :typing)\n
(:objects c0 c1 c2 c3 c4 - car l0 l1 - location)\n
(:init (at c0 l0) (at c1 l0) (at c3 l0) (at c4 l1)
(at-ferry l0) (not-eq l0 l1) (not-eq l1 l0) (on c2))\n
(:goal (and (at c0 l1) (at c1 l0) (at c2 l1) (at c3 l0)
(at c4 l0)))\n)"

}

ACTION REACHABILITY

Listing 4: Example of Action Reachability

{
"id": -255316435894028208,
"group": "reachable_action_gen",
"context": "This is a ferry domain, where the task is to

transport cars from their start to their goal locations,
using a ferry. Each location is accessible by ferry from
each other location. The cars can be debarked or boarded,
and the ferry can carry only one car at a time. \nThere
are 2 locations and 20 cars, numbered consecutively.
\nCurrently, the ferry is at l0, with the car c2 on
board. The cars are at locations as follows: c12, c18,
c5, c4, c14, c19, c16, c11, c1, and c7 are at l1; c13,
c6, c10, c17, c9, c3, c8, c0, and c15 are at l0. The
available actions are: (sail ?from ?to) - travel by sea
from location ?from to location ?to, (board ?car ?loc) -
board the car ?car at the location ?loc, and (debark ?car
?loc) - debark the car ?car to location ?loc from the
ferry.",

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

"question": "What action can never become applicable, in any
state reachable from the current state?",

"answer": [
"(sail l0 l0)"

],
"PDDL_domain": "(define (domain ferry)\n (:requirements :

strips :typing)\n (:types car location - object)\n
(:predicates (at ?c - car ?l - location) (at-ferry ?l -
location) (empty-ferry) (not-eq ?x ?y) (on ?c - car))\n

(:action board\n :parameters (?car - car ?loc -
location)\n :precondition (and (at ?car ?loc)
(at-ferry ?loc) (empty-ferry))\n :effect (and (on
?car) (not (at ?car ?loc)) (not (empty-ferry)))\n)\n

(:action debark\n :parameters (?car - car ?loc
- location)\n :precondition (and (on ?car)
(at-ferry ?loc))\n :effect (and (at ?car ?loc)
(empty-ferry) (not (on ?car)))\n)\n (:action
sail\n :parameters (?from - location ?to -
location)\n :precondition (and (not-eq ?from ?to)
(at-ferry ?from))\n :effect (and (at-ferry ?to)
(not (at-ferry ?from)))\n)\n)",

"PDDL_problem": "(define (problem ferry-l2-c20)\n (:domain
ferry)\n (:requirements :strips :typing)\n
(:objects c0 c1 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19
c2 c3 c4 c5 c6 c7 c8 c9 - car l0 l1 - location)\n
(:init (at c0 l0) (at c1 l1) (at c10 l0) (at c11 l1) (at
c12 l1) (at c13 l0) (at c14 l1) (at c15 l0) (at c16 l1)
(at c17 l0) (at c18 l1) (at c19 l1) (at c3 l0) (at c4 l1)
(at c5 l1) (at c6 l0) (at c7 l1) (at c8 l0) (at c9 l0)
(at-ferry l0) (not-eq l0 l1) (not-eq l1 l0) (on c2))\n
(:goal (and (at c0 l0) (at c1 l1) (at c2 l1) (at c3 l0)
(at c4 l1) (at c5 l1) (at c6 l1) (at c7 l1) (at c8 l1)
(at c9 l0) (at c10 l0) (at c11 l1) (at c12 l1) (at c13
l0) (at c14 l1) (at c15 l0) (at c16 l1) (at c17 l1) (at
c18 l1) (at c19 l1)))\n)"

}

VALIDATION

Listing 5: Example of Validation

{
"id": 4896696031890359153,
"group": "validation_gen",
"context": "This is a ferry domain, where the task is to

transport cars from their start to their goal locations,
using a ferry. Each location is accessible by ferry from
each other location. The cars can be debarked or boarded,
and the ferry can carry only one car at a time. \nThere
are 2 locations and 5 cars, numbered consecutively.
\nCurrently, the ferry is at l0 location and it is empty.
The cars are at locations as follows: c3, c1, c0, and c2
are at l0; c4 is at l1. The goal is to reach a state
where the following facts hold: Car c3 is at location l0,
Car c4 is at location l0, Car c1 is at location l0, Car
c0 is at location l1, and Car c2 is at location l1. The
available actions are: (sail ?from ?to) - sail from
location ?from to location ?to, (board ?car ?loc) - board

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

the car ?car at the location ?loc, and (debark ?car ?loc)
- debark the car ?car from the ferry to location ?loc.",

"question": "What is the first inapplicable action in the
next sequence of actions: \"(board c2 l0) (debark c2 l0)
(board c2 l0) (sail l0 l1) (board c2 l1) (board c4 l1)
(sail l1 l0) (debark c4 l0) (board c0 l0) (sail l0 l1)
(debark c0 l1) (sail l1 l0)\"?",

"answer": 4,
"PDDL_domain": "(define (domain ferry)\n (:requirements :

strips :typing)\n (:types car location - object)\n
(:predicates (at ?c - car ?l - location) (at-ferry ?l -
location) (empty-ferry) (not-eq ?x ?y) (on ?c - car))\n

(:action board\n :parameters (?car - car ?loc -
location)\n :precondition (and (at ?car ?loc)
(at-ferry ?loc) (empty-ferry))\n :effect (and (on
?car) (not (at ?car ?loc)) (not (empty-ferry)))\n)\n

(:action debark\n :parameters (?car - car ?loc
- location)\n :precondition (and (on ?car)
(at-ferry ?loc))\n :effect (and (at ?car ?loc)
(empty-ferry) (not (on ?car)))\n)\n (:action
sail\n :parameters (?from - location ?to -
location)\n :precondition (and (not-eq ?from ?to)
(at-ferry ?from))\n :effect (and (at-ferry ?to)
(not (at-ferry ?from)))\n)\n)",

"PDDL_problem": "(define (problem ferry-l2-c5)\n (:domain
ferry)\n (:requirements :strips :typing)\n
(:objects c0 c1 c2 c3 c4 - car l0 l1 - location)\n
(:init (at c0 l0) (at c1 l0) (at c2 l0) (at c3 l0) (at c4
l1) (at-ferry l0) (empty-ferry) (not-eq l0 l1) (not-eq l1
l0))\n (:goal (and (at c0 l1) (at c1 l0) (at c2 l1)
(at c3 l0) (at c4 l0)))\n)"

}

JUSTIFICATION

Listing 6: Example of Justification

{
"id": -1219355986766168268,
"group": "action_justification_gen",
"context": "This is a ferry domain, where the task is to

transport cars from their start to their goal locations,
using a ferry. Each location is accessible by ferry from
each other location. The cars can be debarked or boarded,
and the ferry can carry only one car at a time. \nThere
are 2 locations and 2 cars, numbered consecutively.
\nCurrently, the ferry is at l0 location and it is empty.
The cars are at locations as follows: c1 and c0 are at
l0. The available actions are: (sail ?from ?to) - sail
from location ?from to location ?to, (board ?car ?loc) -
board the car ?car at the location ?loc, and (debark ?car
?loc) - debark the car ?car to location ?loc from the
ferry. The goal is to reach a state where the following
facts hold: Car c1 is at location l1 and Car c0 is at
location l1.",

"question": "Simplify the plan \"(board c1 l0) (sail l0 l1)
(sail l1 l0) (sail l0 l1) (debark c1 l1) (sail l1 l0)
(sail l0 l1) (sail l1 l0) (board c0 l0) (sail l0 l1)
(debark c0 l1) (board c1 l1) (debark c1 l1)\" by removing

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

either a single action or a pair of consecutive actions,
while still maintaining a valid plan. Provide the
resulting simplified plan.",

"answer": [
[

"(sail l0 l1)",
"(sail l1 l0)",
"-1"

],
[

"(sail l1 l0)",
"(sail l0 l1)",
"-1"

],
[

"(sail l1 l0)",
"(sail l0 l1)",
"-1"

],
[

"(sail l0 l1)",
"(sail l1 l0)",
"-1"

],
[

"(board c1 l1)",
"(debark c1 l1)",
"-1"

]
],
"PDDL_domain": "(define (domain ferry)\n (:requirements :

strips :typing)\n (:types car location - object)\n
(:predicates (at ?c - car ?l - location) (at-ferry ?l -
location) (empty-ferry) (not-eq ?x ?y) (on ?c - car))\n

(:action board\n :parameters (?car - car ?loc -
location)\n :precondition (and (at ?car ?loc)
(at-ferry ?loc) (empty-ferry))\n :effect (and (on
?car) (not (at ?car ?loc)) (not (empty-ferry)))\n)\n

(:action debark\n :parameters (?car - car ?loc
- location)\n :precondition (and (on ?car)
(at-ferry ?loc))\n :effect (and (at ?car ?loc)
(empty-ferry) (not (on ?car)))\n)\n (:action
sail\n :parameters (?from - location ?to -
location)\n :precondition (and (not-eq ?from ?to)
(at-ferry ?from))\n :effect (and (at-ferry ?to)
(not (at-ferry ?from)))\n)\n)",

"PDDL_problem": "(define (problem ferry-l2-c2)\n (:domain
ferry)\n (:requirements :strips :typing)\n
(:objects c0 c1 - car l0 l1 - location)\n (:init (at
c0 l0) (at c1 l0) (at-ferry l0) (empty-ferry) (not-eq l0
l1) (not-eq l1 l0))\n (:goal (and (at c0 l1) (at c1
l1)))\n)"

}

LANDMARK

Listing 7: Example of Landmark

{

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

"id": 5196274110229243987,
"group": "landmarks_gen",
"context": "This is a ferry domain, where the task is to

transport cars from their start to their goal locations,
using a ferry. Each location is accessible by ferry from
each other location. The cars can be debarked or boarded,
and the ferry can carry only one car at a time. \nThere
are 2 locations and 10 cars, numbered consecutively.
\nCurrently, the ferry is at l1, with the car c6 on
board. The cars are at locations as follows: c9, c4, and
c2 are at l1; c1, c7, c3, c0, c5, and c8 are at l0. The
goal is to reach a state where the following facts hold:
Car c9 is at location l1, Car c4 is at location l0, Car
c6 is at location l0, Car c1 is at location l0, Car c7 is
at location l0, Car c2 is at location l1, Car c3 is at
location l1, Car c0 is at location l0, Car c5 is at
location l0, and Car c8 is at location l0. The available
propositions are: (at-ferry ?l) - The ferry is at ?l
location, (at ?c ?l) - Car ?c is at location ?l,
(empty-ferry) - The ferry is empty, and (on ?c) - Car ?c
is on board the ferry.",

"question": "Generate a non-trivial fact landmark, one that
does not hold in the initial state or goal.",

"answer": {
"yes": [

"(on c3)",
"(on c4)",
"(at-ferry l0)",
"(empty-ferry)"

],
"no": [

"(at c2 l0)",
"(at c5 l1)",
"(at c1 l1)",
"(at c8 l1)",
"(at c6 l1)",
"(on c1)",
"(at c0 l1)",
"(on c5)",
"(on c9)",
"(on c2)",
"(on c7)",
"(at c7 l1)",
"(on c0)",
"(on c8)",
"(at c9 l0)"

]
},
"PDDL_domain": "(define (domain ferry)\n (:requirements :

strips :typing)\n (:types car location - object)\n
(:predicates (at ?c - car ?l - location) (at-ferry ?l -
location) (empty-ferry) (not-eq ?x ?y) (on ?c - car))\n

(:action board\n :parameters (?car - car ?loc -
location)\n :precondition (and (at ?car ?loc)
(at-ferry ?loc) (empty-ferry))\n :effect (and (on
?car) (not (at ?car ?loc)) (not (empty-ferry)))\n)\n

(:action debark\n :parameters (?car - car ?loc
- location)\n :precondition (and (on ?car)
(at-ferry ?loc))\n :effect (and (at ?car ?loc)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

(empty-ferry) (not (on ?car)))\n)\n (:action
sail\n :parameters (?from - location ?to -
location)\n :precondition (and (not-eq ?from ?to)
(at-ferry ?from))\n :effect (and (at-ferry ?to)
(not (at-ferry ?from)))\n)\n)",

"PDDL_problem": "(define (problem ferry-l2-c10)\n (:domain
ferry)\n (:requirements :strips :typing)\n
(:objects c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 - car l0 l1 -
location)\n (:init (at c0 l0) (at c1 l0) (at c2 l1)
(at c3 l0) (at c4 l1) (at c5 l0) (at c7 l0) (at c8 l0)
(at c9 l1) (at-ferry l1) (not-eq l0 l1) (not-eq l1 l0)
(on c6))\n (:goal (and (at c0 l0) (at c1 l0) (at c2
l1) (at c3 l1) (at c4 l0) (at c5 l0) (at c6 l0) (at c7
l0) (at c8 l0) (at c9 l1)))\n)"

}

NEXT ACTION

Listing 8: Example of Next Action

{
"id": -6003545580663971528,
"group": "goal_closer_gen",
"context": "This is a ferry domain, where the task is to

transport cars from their start to their goal locations,
using a ferry. Each location is accessible by ferry from
each other location. The cars can be debarked or boarded,
and the ferry can carry only one car at a time. \nThere
are 2 locations and 5 cars, numbered consecutively.
\nCurrently, the ferry is at l1 location and it is empty.
The cars are at locations as follows: c0, c4, and c1 are
at l0; c3 and c2 are at l1. The goal is to reach a state
where the following facts hold: Car c0 is at location l1,
Car c4 is at location l0, Car c1 is at location l0, Car
c3 is at location l0, and Car c2 is at location l1. The
available actions are: (sail ?from ?to) - travel by sea
from location ?from to location ?to, (board ?car ?loc) -
board the car ?car at the location ?loc, and (debark ?car
?loc) - debark the car ?car from the ferry to location
?loc.",

"question": "What is the next action that takes us towards
the goal?",

"answer": {
"yes": [

"(board c3 l1)"
],
"no": [

"(board c2 l1)",
"(sail l1 l0)"

],
"maybe": [],
"opt": "6"

},
"PDDL_domain": "(define (domain ferry)\n (:requirements :

strips :typing)\n (:types car location - object)\n
(:predicates (at ?c - car ?l - location) (at-ferry ?l -
location) (empty-ferry) (not-eq ?x ?y) (on ?c - car))\n

(:action board\n :parameters (?car - car ?loc -
location)\n :precondition (and (at ?car ?loc)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Applicable Actions
Domain Max Mean

ferry 10 5.00
logistics 10 9.50

blocksworld 9 4.60
grid 6 4.00

floortile 10 9.50
grippers 9 6.10
rovers 10 7.90
visitall 4 2.80
depot 10 9.70

goldminer 4 2.80
satellite 8 8.00

swap 49 37.80
alfworld 99 66.20

Table 5: Number of correct applicable actions in the Applicability task dataset.

(at-ferry ?loc) (empty-ferry))\n :effect (and (on
?car) (not (at ?car ?loc)) (not (empty-ferry)))\n)\n

(:action debark\n :parameters (?car - car ?loc
- location)\n :precondition (and (on ?car)
(at-ferry ?loc))\n :effect (and (at ?car ?loc)
(empty-ferry) (not (on ?car)))\n)\n (:action
sail\n :parameters (?from - location ?to -
location)\n :precondition (and (not-eq ?from ?to)
(at-ferry ?from))\n :effect (and (at-ferry ?to)
(not (at-ferry ?from)))\n)\n)",

"PDDL_problem": "(define (problem ferry-l2-c5)\n (:domain
ferry)\n (:requirements :strips :typing)\n
(:objects c0 c1 c2 c3 c4 - car l0 l1 - location)\n
(:init (at c0 l0) (at c1 l0) (at c2 l1) (at c3 l1) (at c4
l0) (at-ferry l1) (empty-ferry) (not-eq l0 l1) (not-eq l1
l0))\n (:goal (and (at c0 l1) (at c1 l0) (at c2 l1)
(at c3 l0) (at c4 l0)))\n)"

}

A.3 GENERATION PROCESS

Figure 6 illustrates the overall generation process of the ACPBench-Hard dataset.

APPLICABILITY

While constructing the action applicability dataset, we impose a bound on the number of applicable
actions in a state. We only keep the states when |A(s)| is ≤ 100. While the bound is high, in most
cases the number of applicable actions are ≤ 10. Table 5 presents the Max and Mean number of
Applicable Actions.

EVALUATION

Table 6 show the complexity of evaluating an answer per task.

A.4 GRAMMAR FOR PARSING THE MODEL RESPONSE

Figure 7 shows the grammar used for parsing the responses for our 8 tasks.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Figure 6: High-level Workflow of Generating ACPBench Hard Dataset. 1. We use the Problem/-
Domain Generator when available to generate PDDL Problem and Domain Files. For Alfworld
domain, we skip this step and directly use the PDDL Domain and Problem file made available in
the Alfworld repo. 2. Given a PDDL Problem and Domain File, we use a top-K planner Katz et al.
(2020) to find multiple plans. 3 Depending on the task, we either sample plans from the obtained
plans or sample intermediate states on these plans. 4. We generate question and answer for the
task symbolically. 5. Translate the Symbolic task to Natural Language using Templates. 6. Save
the Natural Language question and the information needed to evaluate the answer to the ACPBench
Hard Dataset

Task Complexity
Applicability (App) O(|A|)
Progression (Prog) O(|F |)
Reachability (Reach) PSPACE-complete
Action Reachability (AReach) PSPACE-complete
Validation (Val) O(1)
Justification (Just) O(|π||F |)
Landmarks (Land) PSPACE-complete
Next Action (NextA) PSPACE-complete

Table 6: Computational complexity of answer evaluation per task.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

NAME:/[a-zA-Z][a-zA-Z0-9-_]*/
LPAR:"("
RPAR:")"
WS:/[\n]/
LSPAR:"["
RSPAR:"]"
COMMA:","
action_none: "None"
action_name: LPAR NAME (WS NAME)* RPAR
act: action_name | action_none
action_list: (action_name WS?)*
prog_list: action_name* (COMMA action_name)*
progression_list: LSPAR prog_list RSPAR LSPAR prog_list RSPAR
index:/[0-9]+[0-9]*/

Figure 7: Grammar used for parsing the model response.

A.5 EXPERIMENTAL SETUP

All our experiments were carried our using temperature 0 for replicability. We leverages LM Evalu-
ation Harness Gao et al. (2024) framework for our experiments and use default configurations for the
experiments. The YAML config file for our experiments is provided in the supplemental material.
We highlight the most important hyperparameters below.

num fewshot : 2
g e n e r a t i o n k w a r g s :

u n t i l :
− ”\n\n\n\n ”
− ”\n\n ”
− ”** Q u e s t i o n * * : ”
− ”** Q u e s t i o n : * * ”
− ”Q: ”

do sample : f a l s e
m a x g e n t o k s : 1000
t e m p e r a t u r e : 0 . 0

A.6 NEXT ACTION, SPLIT BY DOMAIN

Model depot goldminer satellite swap alfworld ferry logistics blocks grid floortile grippers rovers visitall
Mixtral 8x22B 0.4 0.2 0.4 0.8 0.1 0.3 0.4 0.3 0.3 0.1 0.2 0.4 0.3
Llama 3.1 70B 0.6 0.4 0.5 0.7 0.1 0.2 0.4 0.5 0.5 0.4 0.3 0.3 0.5
GPT-4o mini 0.4 0.4 0.4 0.7 0.0 0.5 0.1 0.4 0.6 0.1 0.2 0.3 0.5
DeepSeek V3 0.5 0.4 0.2 1.0 0.2 0.7 0.8 0.6 0.6 0.0 0.1 0.5 0.5
Llama 3.1 405B 0.6 0.4 0.4 1.0 0.4 0.4 0.6 0.2 0.6 0.0 0.3 0.6 0.7
GPT-4o 0.6 0.7 0.5 0.9 0.4 0.7 0.6 0.6 0.7 0.1 0.2 0.8 0.4
DeepSeek R1 0.4 0.5 0.2 0.9 0.0 0.4 0.6 0.5 0.4 0.0 0.1 0.2 0.5
o1 mini 0.9 0.8 0.5 0.9 0.5 1.0 0.4 0.6 0.9 0.3 0.2 0.4 0.9
o1-preview 0.8 0.9 0.8 0.9 0.9 1.0 0.8 0.8 0.9 0.8 0.1 0.9 0.8
random (full set) 0.11 0.43 0.04 0.21 0.03 0.19 0.14 0.39 0.36 0.22 0.20 0.26 0.49

Table 7: Accuracy of large size models on the next action task, split by domain. Bold entries
indicate the best overall model, while the underlined entries indicate the best language model. Last
row indicates the ratio of the actions that are correct answers among the applicable actions, the
performance of a random selector among applicable actions.

One of the tasks, specifically the new next action task shows a higher than expected accuracy for such
a computationally hard task. To better understand the phenomena, Table 7 shows the per-domain
split. The bolded and underlined values depict the top accuracy values per domain across the tested
models. Note, the accuracy is not uniform across domains. Some more complex domains such as
depot shows better performance across models than easy domains such as grippers, which is hard
for all models. There are some domains, such as logistics and ferry that are hard for some models

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

(a) Granite 3.1 8B base. (b) Granite 3.1 8B. (c) Llama 3.1 8B.

Figure 8: Domain-wise accuracy of small size language models.

(a) DeepSeek coder 33B. (b) Granite code 34B.

Figure 9: Domain-wise accuracy of small and medium size language models.

and easy for other. There are domains like floortile and alfworld that are very hard for almost all
models.

A.7 DOMAIN-WISE ACCURACY OF TESTED MODELS

Figures 8 and 9 show the domain-wise accuracy of tested small and medium language models, while
Figure 10 presents the domain-wise accuracy of tested large language and reasoning models.

A.8 LIMITATIONS

Our work aims to propose a reliable benchmark the evaluates LLM’s ability to reason about action,
change and planning. However, there are a few limitations to our work.

• Captures a subset of planning problems: classical domains - closed world, deterministic
dynamics, full observability, described in a standard planning language PDDL.

• Requires specifying the corresponding natural language mapping of facts and actions per
domain.

• Generation and validation are both computationally challenging and therefore time con-
suming. The validation makes use of lenient grammar, resulting in possibly capturing a
wrong part of the answer, when multiple answers are given in one response.

• Evaluating generated output is hard, while we counted on the model to not produce multiple
conflicting answers, LLMs are known to do so.

• The evaluations only measures the final answer and do not evaluate the reasoning process
of LLMs.

• We use same set of prompts to evaluate all the LLM. Having different prompts and ap-
proaches might result in different performance on the benchmark.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

(a) Mixtral 8x22B. (b) GPT-4o mini. (c) Llama 3.1 70B.

(d) GPT-4o. (e) Llama 3.1 405B. (f) DeepSeek V3.

(g) DeepSeek R1. (h) o1 mini. (i) o1 preview.

(j) GPT-OSS 20B. (k) GPT-OSS 120B.

Figure 10: Domain-wise accuracy of large language and reasoning models.

26

	Introduction
	Background
	Related Work
	Dataset Construction
	Answer Evaluation
	Experiments
	Benchmarking Performance
	Observations and Insights
	Representation

	Conclusions, Limitations, Societal Impact, and Future Work
	Appendix
	Technical Appendices and Supplementary Material
	Related Work
	Dataset
	Applicability
	Progression
	Reachability
	Action Reachability
	Validation
	Justification
	Landmark
	Next Action

	Generation Process
	Applicability
	Evaluation

	Grammar for parsing the model response
	Experimental Setup
	Next action, split by domain
	Domain-wise Accuracy of Tested Models
	Limitations

