
000 ACPBENCH HARD: UNRESTRAINED REASONING 001 002 ABOUT ACTION, CHANGE, AND PLANNING 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 009 ABSTRACT 010

011 We introduce ACPBench Hard, a dataset of generative, open-ended questions
012 which LLM models needs to answer in order to plan. Models that perform well
013 on these tasks could in principle be integrated into a planner or be used directly
014 as a policy. We discuss the complexity of these tasks as well as the complexity of
015 validating the correctness of their answers and present validation algorithms for
016 each task. Equipped with these validators, we test the performance of a variety
017 of models on our tasks and find that for most of these tasks, the performance of
018 even the largest models is still subpar. The models do not possess even the most
019 basic capability of identifying which actions can be performed in a given state. No
020 model outperforms any other on our proposed tasks and, with a few exceptions,
021 all tested language models score below 65%, indicating that even the current fron-
022 tier language models as well as so-called reasoning models have a long way to go
023 before they can reliably reason about planning.
024

025 1 INTRODUCTION 026

027 The ability to reason and plan in large language models (LLMs), is a major focus in the field. For
028 reasoning, the majority of work focuses on the mathematical reasoning Cobbe et al. (2021) and
029 logical inference Saparov & He (2023). For planning, most work focused on the ability to produce
030 or validate a plan Valmeekam et al. (2023a); Stein et al. (2025). The downside of focusing on the
031 end-to-end planning datasets is the inability to pinpoint the reason for a black-box planner, such as
032 an LLM-based one, to not be able to produce a solution.

033 To tackle this gap, ACPBench Kokel et al. (2025) introduced a benchmark for testing the reasoning
034 abilities about action, change, and planning, separating the planning process into the atomic reasoning
035 tasks performed by planners. Tasks in these benchmarks are boolean or have multiple choice.
036 However, in real applications planners do not typically have shortlisted options. Planners need to
037 generate the actions from significantly larger action space. For instance, the applicability task in
038 ACPBench either asks about applicability of a given action in the boolean case or chooses an ap-
039 plicable action among 4 variants. Even if we make the assumption that the model can answer such
040 questions with high precision, it is not clear how this capability can be efficiently exploited for the
041 task of generating all applicable actions in a given state.

042 In this work, we create a generative version of ACPBench to alleviate these limitations. We devise
043 open-ended, generative versions of questions for the same 7 tasks, and add a new challenging task
044 of finding an action that takes us closer to the goal, a task that corresponds to the ability to perform
045 *optimal* planning Bylander (1994). For each of these tasks, we introduce an evaluator, which scores
046 a possible answer to the open-ended questions. We generate an evaluation set of questions based on
047 a wide collection of 13 Planning Domain Definition Language (PDDL) McDermott (2000) domains
048 from ACPBench, which we call *ACPBench Hard*. The core idea is to evaluate the LLMs' ability
049 to produce reliable components for automated planners, as LLMs that perform well on these tasks
050 could be integrated into a planner or be used directly as a policy Kambhampati et al. (2024).

051 For all tasks, we discuss their computational complexity, as well as the complexity of validating their
052 solutions. We devise validators for each task, based on the symbolic description of the questions.
053 With the help of these validators, we test the performance of a collection of modern LLMs of various
sizes on ACPBench Hard. We find that the performance of language models, even the largest ones,

054 is still insufficient to be reliably used in planners, see Figure 1. We observe that there is no single
 055 model that outperforms all other models on all tasks of the ACPBench Hard dataset. Further, on half
 056 of the tasks, namely “reachability” (reach), “action reachability” (areach), “landmarks” (land), and
 057 “applicability” (app), all tested language models exhibit a very low accuracy. All tested models score
 058 below 65% on most tasks, indicating that even the current frontier language models have a long way
 059 to go before they can reliably reason about planning. Further, even the so-called reasoning models
 060 o1 perform poorly on half of these tasks. The o1-preview model achieves 89% on the “progression”
 061 (prog) task and 80% on the “next action” (nexta) task, with the rest of the results being 66% and
 062 below, and the smaller o1-mini model outperforms it only on the “plan validation” (val) task with
 063 78% accuracy. The much higher computational effort of the reasoning models compared to the
 064 language models do not seem to justify the somewhat moderate increase in accuracy.
 065

066 2 BACKGROUND

067 We consider planning tasks $\Pi = \langle F, A, s_0, s_* \rangle$ in the STRIPS formalism
 068 Bylander (1994). In such a task, F is a set of Boolean
 069 *propositions*. Each subset $s \subseteq F$ is called a *state*, and $S = 2^F$ is
 070 the *state space* of Π . The state s_0 is the *initial state* of Π . The goal
 071 $s_* \subseteq F$ is a set of propositions, where a state s is a *goal state* if
 072 $s_* \subseteq s$. The set A is a finite set of *actions*. Each action $a \in A$
 073 has an associated set of *preconditions* $pre(a) \subseteq F$, *add* effects
 074 $add(a) \subseteq F$ and *delete* effects $del(a) \subseteq F$.
 075

076 The semantics of STRIPS planning is as follows. An action a is
 077 *applicable* in the state s if $pre(a) \subseteq s$. Applying a in s results in
 078 the state $s[a] := (s \setminus del(a)) \cup add(a)$. A sequence of actions
 079 $\pi = \langle a_1, \dots, a_n \rangle$ is *applicable* in s if there exists a sequence of
 080 states $s = s_1, \dots, s_{n+1}$ such that for each $1 \leq i \leq n$ we have a_i
 081 is applicable in the state s_i and applying it results in the state s_{i+1} .
 082 If it exists, such sequence is uniquely defined, and its end state s_n
 083 is denoted by $s[\pi]$. An applicable action sequence is a *plan* for s if
 084 $s[\pi]$ is a goal state. A plan for s with minimal length is called *optimal*. The *perfect heuristic* for s ,
 085 denoted by $h^*(s)$, is the cost of an optimal plan for s . The objective of (optimal) planning is to find
 086 an (optimal) plan for the state s_0 .
 087

088 3 RELATED WORK

089 The most relevant to our work is the ACPBench dataset Kokel et al. (2025), which we build upon.
 090 It features 7 core reasoning tasks about planning. ACPBench does not capture the decisions that the
 091 automated planners need to make, as these decisions are generative in their nature. In this work,
 092 therefore, we present the generative form of these tasks, requiring LLM to produce precisely the
 093 answers that automated planners produce and consume. Additionally, we present a new task, not
 094 considered by previous work, requiring to produce an action that takes us closer to the goal.
 095

096 Other notable work in similar direction includes TRAC He et al. (2023), featuring 4 tasks: projec-
 097 tion, execution, planning, and goal recognition, as well as PlanBench Valmeekam et al. (2023b), with
 098 8 planning tasks including plan generation, reasoning about plan execution, and plan verification.
 099 Both benchmarks focus on a small number of planning domains (mostly BlocksWorld and variants).
 100 Both use templates to generate natural language text; similar to ours. AutoPlanBench Stein et al.
 101 (2025) alleviates the dependence on templates, leveraging LLMs to generate these natural language
 102 template and hence were able to scale up the dataset to 12 domains. While scaling the number of
 103 domains, they limit their focus on planning task including plan and next-action generation.

104 Another notable dataset is ActionReasoningBench Handa et al. (2025), featuring six tasks: fluent
 105 tracking, state tracking, action executability, effects of actions, numerical RAC, and composite ques-
 106 tions. These tasks reason about action sequences and hence two of the tasks overlap with three of the
 107 tasks we consider. Specifically, action executability deals with questions that fall under applicability
 108 and validation tasks in our case. On one hand, this creates a complicated reasoning question, on the
 109 other, it makes it harder to pinpoint the source of an error. The effects-of-actions task is somewhat

069 Figure 1: Task-wise accuracy
 070 of large size language models.
 071

108 Context: There are several cities, each containing several locations, some of which are airports. There
 109 are also trucks, which can drive within a single city, and airplanes, which can fly between airports.
 110 The goal is to get some packages from various locations to various new locations. There are 2 trucks
 111 and 1 airplane, as well as 4 packages. There are 4 locations across 2 cities. The locations are in
 112 cities as follows: 11-1 and 11-0 are in c1; 10-1 and 10-0 are in c0. Currently, p2, t1, p1, p3, a0, and
 113 p0 are at 11-0, t0 is at 10-1. The available propositions are: (at ?obj ?loc) - ?obj is at ?loc and
 114 (in ?obj1 ?obj2) - ?obj1 is in ?obj2.
 115 Inputs: Break down the outcomes of performing the action "load object p3 into truck t1 at location 11-0"
 116 into two lists, positive effects and negative effects. Positive effects are the propositions that are
 117 false in the current state but will become true after performing the action. Negative effects are the
 118 propositions that are true in the current state and will become false after performing the action.

116 Figure 2: Example of a question for the progression task in ACPBench Hard.
 117

118 similar to our progression task, applied repetitively. Further, ActionReasoningBench uses a large-
 119 language model for evaluation of the generative questions, which is not quite robust. We develop
 120 dedicated symbolic validators to evaluate each of the generative task introduced. Table 4 in the
 121 Appendix compares and contrasts ACPBench Hard with related planning benchmarks.

122 Research on planning abilities of agents Liu et al. (2023); Ma et al. (2024) is also relevant. In our
 123 experiments, we focus on the planning abilities of individual models instead of agents. However,
 124 the "next action" prediction task does takes us in direction of agents.

125
 126 4 DATASET CONSTRUCTION
 127

128 Building upon ACPBench Kokel et al. (2025), we keep the same 13 planning domains and create
 129 generative dataset. For each task, we describe the data stored in order to enable or speed up the
 130 evaluation of the correctness of a potential answer. Often, the PDDL planning task $\Pi = \langle F, A, s, s_* \rangle$
 131 is needed for evaluation, and therefore we store it per question, with the current state s as the initial
 132 state. Plans, whenever needed, are computed with a classical planner. We first attempt to run a
 133 top-quality planner Katz & Lee (2023b), producing plans of best possible quality, and use a diverse
 134 planner Katz & Sohrabi (2020) as a backup mechanism if no top quality plans were found. The
 135 high-level construction workflow is illustrated in the Figure 6. We use template-based approach to
 136 convert the PDDL to NL.

137 **1. Applicability (App)** The first task deals with identifying which actions are applicable in a state.
 138 For an action to be applicable, its preconditions must hold in the state. Given a state s and the
 139 set of actions A , the subset of applicable actions would be $A(s) = \{a \in A \mid \text{pre}(a) \subseteq s\}$,
 140 easily computable by iterating over the actions. The complexity of such an iterative algorithm is
 141 $O(|F||A|)$, since $|F|$ is a theoretical upper bound on the precondition size. In practice, planning
 142 problems typically have small preconditions size. Thus, we can create a generative question by
 143 simply asking the model to produce all applicable actions in a given state. For practical reasons,
 144 we impose a bound on the number of applicable actions in a state, generating questions only in
 145 cases when $|A(s)|$ is under that bound. We can keep all applicable actions names in the dataset for
 146 validating the answer. The number of applicable actions for all instances is < 10, except for Swap
 147 and Alfword domains (ref. Table 5 in the Appendix).

148 **2. Progression (Prog)** The next task evaluates LLMs ability to understand how the world state
 149 changes by action application. Performing an action changes the state in the following manner: The
 150 delete effects will no longer hold and the add effects will hold. Everything else remains unchanged.
 151 Given a state s and an action a , the next state is $t = (s \setminus \text{del}(a)) \cup \text{add}(a)$. The complexity of
 152 the straightforward computation is $O(|F|)$ worst case, but in practice the add and delete effects
 153 of planning problems are typically small. We construct a single generative question, asking what
 154 propositions are false in the current state but will become true after performing the action and asking
 155 which ones are true and become false. The first set is $t \setminus s$, and the second one is $s \setminus t$. We maintain
 156 both of these sets in the answers. Figure 2 shows an example of a progression question.

157 **3. Reachability (Reach)** The reachability task evaluates if a specific fact can eventually become
 158 true by taking (possibly multiple consecutive) actions in the given state. This is a multi-step reason-
 159 ing task that can help avoid exploring unfeasible options. The generative version of this question is
 160 quite simple: what proposition can never hold in any potentially reachable state. If no such proposi-
 161 tions exist, we instruct to reply *None*. Reachability is PSPACE-hard to answer in general Bylander
 162 (1994) for partial states, so we only focus on reachability of a specific fact. We can generate some
 163 unreachable facts by either finding groundings of *static* predicates (unchanged by any action) that do

162 not hold in the given state, or by (under)approximating the reachability with poly-time computable
163 delete-relaxed reachability Hoffmann & Nebel (2001). For practical reasons, we keep a subset of
164 generated unreachable facts, N , for speeding up answer validation. We generate question only in
165 states where we either *know at least one unreachable fact* or we *know that all facts are reachable*.
166 In case of doubt, we skip generating questions for that state.

167 **4. Action Reachability (AReach)** The action reachability task is closely related to the (atom) reach-
168 ability, checking whether there is a reachable state where the action is applicable. Computationally,
169 this problem is PSPACE-hard, for the same reason as (atom) reachability. The generative version of
170 the question is: what action can never become applicable, in any state reachable from the current
171 state? Here as well, we generate question only in states where we either *know at least one unreachable*
172 *action* or we *know that all actions are reachable*. In case of doubt, we skip the state. For answer
173 validation, as in the previous case, we keep a set of example unreachable actions U . Set U is empty
174 when all actions are reachable.

175 **5. Validation (Val)** The validation task aims at checking whether the specified sequence of actions
176 π is a plan. In other words, whether π is valid, applicable, and successfully achieves the intended
177 goal from the given state s . The generative version of this question aims at identifying where the
178 plan fails. In other words, we ask to identify the first inapplicable action in a given sequence of
179 actions. To generate such a sequence, we start with a valid plan and randomly choose an action to
180 replace with an inapplicable one. For validation purposes, we keep the index of such action.

181 **6. Justification (Just)** Action justification Fink & Yang (1992); Salerno et al. (2023) deals with the
182 question of whether a given plan can be simplified by removing some actions. The generative version
183 of the justification task question asks to simplify the plan by removing one or two consecutive actions
184 and to produce the resulting simplified plan. To produce such a sequence, we start with a plan for the
185 initial state. We check whether the plan can be simplified by removing a single or two consecutive
186 actions. If not, we try to extend the plan by adding such an action or a pair of actions, keeping the
187 resulting sequence a plan. For answer validation, we keep the action or pair of actions that can be
188 removed, together with the appearance number, for actions that appear more than once on the plan.

189 **7. Landmarks (Land)** Landmarks task tests LLM’s ability to identify subgoals that are necessary
190 to achieve the goal. In the planning literature such subgoals are often called landmarks Porteous
191 et al. (2001). Landmarks are facts that must become true sometime along every plan. While check-
192 ing whether a proposition is a landmark is PSPACE-hard Porteous et al. (2001), there are several
193 methods that can find a subset of landmarks Keyder et al. (2010); Hoffmann et al. (2004); Richter
194 et al. (2008); Zhu & Givan (2003). We use the so-called RHW method Richter et al. (2008). Further,
195 negative evidence can be obtained from a collection of plans - a proposition that does not appear on
196 a plan is not a landmark. We keep the sets of facts that are known to be landmarks and of facts that
197 are known to be non-landmarks for speeding up answer validation.

198 **8. Next Action (NextA)** An additional task that does not appear in ACPBench is the next action
199 task. This generative question asks what is the next action that takes us towards the goal. This task
200 is closely related to optimal planning, since optimal plans can be produced by iteratively obtaining
201 such actions. While even non-optimal planning is PSPACE-hard Bylander (1994), modern planners
202 can often quickly find collections of optimal plans Katz et al. (2020); Katz & Lee (2023a). Clearly,
203 the first actions of these plans would be correct answers. Further, the cost of these optimal plans can
204 be used to check other applicable actions in the state, by producing an optimal plan for the states
205 obtained by applying these actions in the question state. We keep the sets of actions that are correct
206 answers and of actions that are known to not take us closer to the goal for speeding up answer
207 validation. Further, we store the optimal cost $h^*(s)$ of achieving the goal from the current state.

208 **5 ANSWER EVALUATION**

211 Evaluating answers to boolean or multiple-choice questions simply amounts to looking up the cor-
212 rect answer and comparing. Evaluating open-ended answers, on the other hand, might not be as easy.
213 This is due to the fact that sometimes, there is not one single correct answer that can be stored with
214 the question. Looking at the tasks at hand, while in some cases we can store the complete correct
215 answer, in other we must resort to performing some computation in order to evaluate whether the
returned answer is correct. In what follows, we describe how the answer is evaluated for each task.

216 **1. Applicability (App)** In this task, we store all applicable action names per question. The answer
217 evaluation therefore amounts to a simple comparison between the given answer and the correct one.
218 Since we ask for all applicable actions, we chose to assign a score 1 if the set of all actions in
219 the answer equals to the set of all applicable actions. Otherwise, we assign 0. The complexity
220 of validating the answer is therefore $O(1)$ if we impose a constant threshold on the number of
221 applicable actions when the question is created, otherwise it is $O(|A|)$.

222 **2. Progression (Prog)** Here, we store both correct sets of propositions ($t \setminus s$, and $s \setminus t$) per question.
223 An answer validation amounts to a simple comparison between the given answer and the correct one.
224 Since we test the ability to produce all action effects, we score 1 if both all positive and all negative
225 effects were correctly identified. Otherwise, we give the score 0. The complexity of validating the
226 answer is therefore $O(|F|)$.

227 **3. Reachability (Reach)** The set of unreachable facts N being empty is an indication that there are
228 no unreachable facts. Hence, if the answer P is *None*, we assign score of 1 when $N = \emptyset$; otherwise,
229 the score is 0. If the answer P is not *None* and $P \in N$, we assign the score of 1. If P is not *None*
230 but the set N is empty, the score is 0. In the remaining case, where P is not part of N , we need to
231 solve a planning task $\Pi' = \langle F, A, s_0, \{P\} \rangle$, where the goal is to achieve the atom P and the rest as
232 in the planning task in the question. We can use any off-the-shelf planner to generate a plan for this
233 task. If a plan exists, we score the answer 0, otherwise 1. Therefore, the evaluation problem in this
234 case is PSPACE-complete.

235 **4. Action Reachability (AReach)** As in the previous case, when the set of unreachable actions
236 U is empty, all actions are reachable. Hence, if the answer is *None*, we assign a score of 1 when
237 $U = \emptyset$; otherwise the score is 0. For an action a as answer, if $U = \emptyset$ then the score is 0. If
238 $a \in U$, the score is 1. In the remaining case, where $U \neq \emptyset$ and $a \notin U$, we construct a planning task
239 $\Pi' = \langle F, A, s_0, \text{pre}(a) \rangle$ with the goal being the preconditions of the action a , and the rest as in the
240 planning tasks in the question. We run a planner on this task, checking if a plan exists. If yes, we
241 score the answer 0, otherwise 1. The evaluation is, therefore, PSPACE-complete in this case as well.

242 **5. Validation (Val)** In this case, we only need to compare the index in the answer to the correct
243 index of the first inapplicable action. We give a 0/1 score based on that comparison. The complexity
244 of validating the answer is therefore $O(1)$.

245 **6. Justification (Just)** To check whether the returned sequence is correct, we slightly relaxed the
246 constraint in the question. We check whether it is a proper subsequence of the provided plan and
247 whether it is a plan. If both are true, we give a score of 1, otherwise, we score the answer 0. The
248 complexity of validating the answer is therefore $O(|\pi||F|)$ for the plan π .

249 **7. Landmarks (Land)** Invalid propositions are scored 0. A proposition $p \in s_0 \cup s_*$ is a trivial
250 landmark and is also scored 0. Given a valid proposition $p \in F \setminus (s_0 \cup s_*)$, if it is known not to be
251 a landmark (e.g., there exists a plan that does not traverse any state in which p holds), we assign it a
252 score of 0. Otherwise, in order to check if p is a non-trivial landmark, we construct a planning task
253 $\Pi' = \langle F', A', s'_0, s'_* \rangle$ as follows. The set of propositions is extended with a proposition p_{nach} that
254 is intended to indicate that p was never achieved along a sequence of actions. $F' = F \cup \{p_{nach}\}$
255 Thus, for each action $a \in A$ such that $p \in \text{add}(a)$, we construct a new action with extended delete
256 effect to include p_{nach} . Formally, for an action a , a' is defined as follows. $\text{pre}(a') = \text{pre}(a)$,
257 $\text{add}(a') = \text{add}(a)$, and $\text{del}(a') = \text{del}(a) \cup \{p_{nach}\}$ if $p \in \text{add}(a)$, otherwise $\text{del}(a') = \text{del}(a)$.
258 The extended action set is therefore $A' = \{a' \mid a \in A\}$. Finally, both the initial state and the goal
259 are extended with p_{nach} : $s'_0 = s_0 \cup \{p_{nach}\}$, $s'_* = s_* \cup \{p_{nach}\}$, indicating that we are interested
260 in plans that do not achieve p along their path, as any action that achieves p will delete p_{nach} from
261 the state, making the goal not reachable. We use an off-the-shelf planner to check if there is a plan
262 for Π' . If there is one, it corresponds to a plan for Π that does not make p true and therefore p is not
263 a landmark, and we assign the score of 0. If Π' is found unsolvable, then p is a landmark and we
264 assign the score of 1. The answer validation is therefore PSPACE-complete in this case as well.

265 **8. Next Action (NextA)** For an action a , if it is in the set of kept correct answers, we score it 1 and
266 if it is in the set of known incorrect answers, we score it 0. Otherwise, if it is applicable, we apply
267 it to the current state s and obtain the state t . We find the optimal plan costs $h^*(s)$ and $h^*(t)$ for
268 these two states with the help of an optimal planner and score the answer 1 if $h^*(s) - h^*(t) = 1$.
269 Otherwise, we score it 0. The answer validation is therefore PSPACE-complete in this case as well.

270 **6 EXPERIMENTS**
271

272 **6.1 BENCHMARKING PERFORMANCE**
273

274 Following ACPBench, we generated 10 open-ended questions per domain for each of the 8 tasks,
275 a total of 1040 questions. We evaluated 15 language/reasoning models, with the aim to cover
276 small, medium, and large models, *Small size*: Granite 3.1 8B Granite Team (2024) and Llama 3.1
277 8B Dubey et al. (2024); *medium size*: DeepSeek coder 33B Guo et al. (2024) and Granite 34B
278 code Mishra et al. (2024); *Large size*: Mixtral 8x22B MistralAI (2024), Llama 3.1 70B and Llama
279 3.1 405B Dubey et al. (2024), DeepSeek V3 DeepSeek-AI et al. (2025b), GPT-4o mini, GPT-4o
280 OpenAI et al. (2024a); *Reasoning* DeepSeek R1 DeepSeek-AI et al. (2025a), o1 mini, o1-preview
281 OpenAI et al. (2024b), and recent open-weight reasoning models from OpenAI—GPT OSS 20B and
282 120B OpenAI et al. (2025).

283 All models were either accessed using API or hosted locally using hugging face transformer library
284 on machines with 2 A100 80 GB GPU. It is important to note that there is a significant difference
285 in the energy consumption and evaluation cost between various models. While smaller models are
286 relatively cheap, the larger language models such as Llama 3.1 405B and GPT-4o are prohibitively
287 expensive to be used as planner components. The reasoning models such as o1 and even the cheaper
288 DeepSeeek R1 are even more expensive than the language models. Therefore, our experiments with
289 these reasoning models are intended mostly for providing a frame of reference.

290 For each task, we evaluated a 2-shot prompting with static examples from outside the evaluation
291 set. The two examples are from the grid and logistics domains, one each per task. This allows
292 to exemplify the expected response format. Additionally, we instructed the language models to
293 produce their response in a particular format. Still, the tested models do not necessarily adhere to
294 the instructions or the example format. Hence, to be able to extract the answer from the response, we
295 developed a lenient *grammar* based parser, which would discard tokens if they did not fit expected
296 token values. Figure 7 (Appendix) shows the grammar used for parsing the responses for our 8
297 tasks. For example, in the *progression* task, the response is a “*progression_list*”, which is two lists,
298 one for the positive effects and one for the negative effects. The response for the *justification* task is
299 a “*action_list*”, which is a list of actions (or the updated plan) and the response for the *validation* task
300 is an “*index*” which is the index of the first inapplicable action. Using the grammar with a parser
301 that discards tokens not consistent with the grammar helps significantly in post-processing these
302 open-ended responses. The post-processed results are then evaluated according to the procedures
303 described in Section 5. Our evaluation code is provided in the supplementary.

303 Focusing first on the small
304 and medium size language
305 models, Table 1 shows the
306 accuracy of these models
307 on the 8 tasks in our
308 dataset. A conclusion we
309 can draw from the figure
310 is that there are three cat-
311 egories of tasks according to
312 model performance. First, *progression* seems to be the easiest tasks among the 8 tasks. Even so,
313 the highest accuracy reached is 43% by Granite 34B code. The second category is the hard tasks of
314 *applicability* and *action reachability*. In fact, none of these models could score above 2% for these
315 two tasks. The third category includes the other 5 tasks with an average performance between 8.8%
316 and 28.8%. Hence, ACPBench Hard seems to be a difficult dataset for the small and medium size
317 language models.

317 Moving on to large size models, Table 2 shows the accuracy of the tested large language and
318 reasoning models. Looking first at the language models, the top part of the table, we observe that there
319 is no single model that outperforms all other models. GPT-4o is the top performer, with best results
320 in 5 out of 8 tasks, but it is outperformed by 5% by Mixtral 8x22B on the *reachability* task, and by
321 DeepSeek V3 on the *action reachability* task by 4% and on the *justification* task by 11%. Among
322 the large reasoning models (bottom part) the o1-preview model performs the best. Surprisingly, on
323 the *justification* task the DeepSeek V3 language model remains the top performer. In all of our ex-
periments we capped the maximum number of generated tokens at 1,000. For the GPT OSS models,

Model	app	areach	just	land	nexta	prog	reach	val
Granite 3.1 8B	0.00	0.00	0.21	0.08	0.22	0.36	0.33	0.09
Llama 3.1 8B	0.00	0.00	0.22	0.06	0.25	0.40	0.33	0.13
DeepSeek coder 33B	0.02	0.02	0.21	0.10	0.17	0.42	0.18	0.15
Granite 34B code	0.02	0.00	0.17	0.11	0.18	0.43	0.28	0.12

Table 1: Small/medium size models performance, best results bolded.

Figure 3: Domain-wise accuracy of GPT-4o.

Figure 4: Comparison of prediction error for GPT-4o on different question formats.

however, we had to raise this limit to 4,000 because their reasoning chains were longer. Despite the higher token count and the resulting increase in inference cost, this did not translate into a performance boost. Similar to the small and medium size language models, there are tasks such as *progression* that is relatively easy for all models, and there are tasks such as *action reachability* that is difficult for all models, and even o1-preview achieves only 12%. For other tasks, some models do better than others. Our third observation is that with the exception of what seems to be the easiest for these models *progression* task, there are only three scores above 65%, and all of them are of reasoning models, indicating that the ACPBench Hard dataset is difficult even for large models.

Going deeper, we look into the performance of the best performing LLM, GPT-4o, across different domains. Figure 3 presents the performance of the top-performing language model GPT-4o on various tasks, across the existing domains. For other models performance we refer to the supplementary material. Observe that GPT-4o exhibits high performance on the *progression* task across most domains, showing somewhat lower accuracy in *satellite*, *aifworld*, and *floortile*. *Action reachability* and *landmarks* tasks, on the other hand, pose significant challenges to the model. The model consistently generated accurate answers for the *visitall* and *grid* domains across most tasks. In the remaining domains the performance varied across tasks, indicating that none of these domains are particularly easy for the models.

Finally, we evaluate the hardness of our proposed open-ended variants by comparing the performance of GPT-4o on these questions (gen) to the two formats from ACPBench: boolean (bool) and multiple choice (mcq). Figure 4 depicts the comparison in terms of model errors, the complement of the accuracy. As can be seen, model error in generative format of the task is significantly higher than bool and mcq except for the *validation* task. Note, we are showing results from one of the largest models for this analysis. The gap in performance is even more prolonged in other models.

	Model	app	areach	just	land	nexta	prog	reach	val
LLMs	Mixtral 8x22B	0.10	0.02	0.31	0.26	0.32	0.68	0.37	0.23
	Llama 3.1 70B	0.12	0.02	0.44	0.20	0.42	0.65	0.28	0.20
	GPT-4o mini	0.07	0.01	0.14	0.04	0.35	0.59	0.22	0.27
	Llama 3.1 405B	0.14	0.04	<u>0.59</u>	0.15	0.48	0.74	0.26	0.48
	GPT-4o	<u>0.25</u>	0.01	0.54	<u>0.29</u>	<u>0.55</u>	<u>0.78</u>	<u>0.32</u>	<u>0.62</u>
	DeepSeek V3	0.21	<u>0.05</u>	0.65	0.12	0.47	0.76	<u>0.32</u>	0.56
LRMs	o1 mini	0.38	0.06	0.44	0.38	0.64	0.70	0.60	0.78
	GPT OSS 20B	0.03	0.09	0.14	0.47	0.62	0.72	0.50	0.14
	GPT OSS 120B	0.00	0.13	0.05	0.49	0.78	0.79	0.68	0.70
	o1-preview	0.44	0.12	0.46	0.56	0.80	0.89	0.66	0.26
	DeepSeek R1	0.05	0.01	0.52	0.20	0.36	0.77	0.24	0.53

Table 2: Accuracy of Larger LLMs (top) and LRMs (bottom). **Bold** entries indicate the best overall model, while the underlined entries indicate the best among language (non-reasoning) models.

6.2 OBSERVATIONS AND INSIGHTS

The **2-shots seemed to be sufficient** for the language models to mostly follow the instructions on the answer syntax. The number of parsing errors was typically negligible, with a single exception of Llama 3.1 8B on the applicable actions task, where in 4 cases the model made up objects that did not

378 follow the naming convention in the question and in 5 cases the model ran out of context generating
379 the same actions over and over again.
380

381 While atom and action reachability are very much related tasks, the latter seems to be much harder
382 for the tested models. It is not surprising, as action reachability requires an additional reasoning
383 step about the atoms in the action preconditions and their reachability. Further, while reachability
384 focuses on single atoms, action reachability requires reasoning about the entire precondition, that
385 often consists of multiple atoms. The reasoning should now account for their interplay, as they need
386 to hold in the same reachable state. In fact, **action reachability seems to be consistently the most**
387 **difficult task across the tested models.** Here, the models needed to provide an action that can never
388 become applicable, in any reachable state or None if there are no such actions. Interestingly, only
389 the OpenAI models were able to correctly identify the latter case, and these were the majority of
390 their correct answers. For instance, 9 out of 16 correct answers of o1-preview and all the 8 correct
391 answers of o1 mini were *None*. Most of the other correct answers recognized that a block cannot be
392 (un)stacked on itself, which accounts for 5 out of 6 correct answers for DeepSeek V3, 4 out of 5 for
393 Llama 3.1 405B, and 4 out of 16 for o1-preview.
394

395 Surprisingly, **the second hardest task is action applicability.** While one of the core tasks in planning,
396 it seems to be quite challenging even for the reasoning models, the largest of which scored
397 44%, while DeepSeek R1 scoring only 5%. The smaller language models fail on this task, with
398 only DeepSeek coder 33B and Granite 34B code showing performance slightly above 0. Even the
399 largest language models barely reach 25%. One reason for that is the strict requirement for producing
400 precisely the set of all applicable actions. While missing actions can hinder completeness and
401 cause missing existing solutions, extra made up actions can lead to producing incorrect solutions,
402 which is arguably worse. Interestingly, if we only required not to make up actions, but allowed
403 producing subsets of real answers, scoring according to Jaccard similarity, the score of the best per-
404 forming model o1 preview would go up to 57%. The largest absolute increase would be for Mixtral,
405 going from 10% to 38%. Using such action generation in a planner would correspond to loosing
406 completeness, while keeping the soundness of the planner.
407

408 Looking at **the landmarks task**, among the smaller models, the best performing is Granite 34B. It
409 gives quite uniform answers. Most of its correct answers are in the ferry domain, where it correctly
410 identifies the ferry location as a landmark. In logistics, it recognizes a package need to be in the
411 truck in the goal city before it can be delivered. The best performing large language model GPT-4o
412 achieves 29% accuracy, producing a diverse set of answers. In ferry, it sometimes correctly identifies
413 ferry being empty as a landmark, sometimes the need for a car to be onboard, and sometimes a ferry
414 location was identified as a landmark. In logistics, trucks or packages at particular locations were
415 identified as landmarks. In grid, it was more uniform, reporting in most cases holding a key as a
416 landmark. In goldminer, all correctly identified landmarks were some locations being clear. The best
417 performing reasoning model o1-preview achieves 56% accuracy. It correctly reports twice in satellite
418 and 6 times in swap the absence of non-trivial landmarks. The model that is best at recognizing that
419 is o1 mini, with 3 cases in visitall, 4 cases in satellite, 5 in swap, and once in alfworld. The only
420 other model that can identify such cases is Mixtral 8x22B, with 3 cases in visitall.
421

422 The **justification task** is among the few tasks where the best among the language models is not
423 GPT-4o, but DeepSeek V3, which performs better than even the reasoning models. The second best
424 performer is Llama 3.1 405B. Interestingly, in multiple cases, Llama produces a valid plan, which is
425 shorter than the given plan, but not its subsequence, and hence not a correct answer. In some cases,
426 Llama produced a valid plan that changes the order of the given plan actions. Note, the aim of the
427 justification task is not to produce a valid plan, but to recognize unnecessary actions on a sequence.
428

429 The **validation task** requires an index to be returned, which makes it harder to investigate the source
430 of the mistakes made. Most language models do not perform well on this task, with only the largest
431 models go above 30%. Interestingly, the reasoning model o1-preview scores much lower than o1
432 mini (26% vs 78%). To investigate the source of its mistakes, we check the absolute difference
433 between the given answer and the correct one. In 86% of the cases that o1-preview incorrectly
434 answered the question, it errored by 1. It is important to note that it was mistaken in both directions,
435 giving both lower and higher than the correct indices. Note that several models favor the answers 1,
436 10, and 100. For the majority of smaller models, most their answers are one of these three numbers.
437
438

432 The **progression task** is mostly simple for the reasoning model o1-preview, which reaches 89%, but
 433 even this model makes mistakes. For example, it does not recognize reasonable positive effects, such
 434 as stacking a block on top of another block makes the top block clear. Not surprisingly, it misses
 435 less negative effects, such as taking a picture with a rover camera makes the camera not calibrated.
 436 Surprisingly, it invents unreasonable effects such as communicating the rock data from rover to the
 437 lander would empty the rover’s store and delete the effect of rocks being analyzed at the waypoint.

439 6.3 REPRESENTATION

440 In all the experiments presented so
 441 far, our prompt included only the natural
 442 language representation of the
 443 domain and the problem as part of
 444 the context, “NL”. Here, we exper-
 445 iment with two additional representa-
 446 tions of the context: “PDDL”, where the context included only the PDDL domain and the PDDL
 447 problem, “PDDL+NL”, where the context included both the natural language representation of the
 448 domain and problem as well as the PDDL representations. Table 3 presents the performance of
 449 DeepSeek V3. The results indicate that incorporating the PDDL domain alongside the natural lan-
 450 guage representation significantly improves performance. However, when the PDDL files are avail-
 451 able, using a traditional planner may be more appropriate, rendering the use of an LLM unnecessary.

452 We look at the model performance on one of
 453 the computationally hardest tasks, the new *next*
 454 *action* task with the mixed PDDL+NL repres-
 455 entation, where the model shows a higher than
 456 expected accuracy. To better understand the
 457 phenomena, Figure 5 shows the per-domain accu-
 458 racy of DeepSeek V3 as a function of dis-
 459 tance to goal. Note, the accuracy is not uniform
 460 across domains. While, as expected, the accu-
 461 racy decreases with the distance, we note some
 462 domains like *ferry* and *satellite*, where there is
 463 an increase for larger distances. The chances of
 464 randomly choosing a correct answer in these domains are low (See Table 7, Appendix).

	app	areach	just	land	nexta	prog	reach	val	avg
NL	0.21	0.05	0.65	0.12	0.47	0.76	0.32	0.56	0.39
PDDL	0.31	0.07	0.74	0.21	0.53	0.87	0.33	0.55	0.44
PDDL+NL	0.32	0.09	0.68	0.19	0.60	0.88	0.37	0.61	0.47

Table 3: DeepSeek V3 comparison of 3 prompt representations: “NL”, “PDDL”, “PDDL+NL”.

Figure 5: Domain-wise accuracy of DeepSeek V3 on next action, large evaluation set.

466 7 CONCLUSIONS, LIMITATIONS, SOCIETAL IMPACT, AND FUTURE WORK

467 We have created ACPBench Hard, a benchmark of open-ended questions that reflect precisely the
 468 questions answered by symbolic planners during the planning process. We therefore believe that
 469 ACPBench Hard is a good benchmark for testing reasoning abilities that are required for planning.
 470 Based on an empirical investigation of a collection of large language models we conclude that even
 471 the largest and the best performing models have a very long way to go before they can reliably plan.

472 There are a few limitations to our work. First, the benchmark only captures a subset of planning
 473 problems. Second, our lenient evaluation only evaluates the first answer in the output. Third, we do
 474 not evaluate the reasoning process; only the final answers.

475 Improving the planning abilities of autonomous agents can have both positive and negative societal
 476 impact. Among the positive impact factors are increased efficiency and productivity of our society,
 477 which can also lead to negative factors such as job displacement and economic inequality. Being
 478 aware of these impact factors is the first step towards being able to exploit the positive impacts while
 479 mitigating the negative ones.

480 Creating training data for generative questions with a chain of thought, would be a promising area of
 481 future research, because for planning problems an instructive chain of thought is often not obvious.
 482 Another avenue for future research would be extending the benchmark to additional tasks such as
 483 object counting in a current state.

486 REFERENCES

487

488 Tom Bylander. The computational complexity of propositional STRIPS planning. *Artificial Intelligence*, 69(1–2):165–204, 1994.

489

490 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
491 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
492 Schulman. Training verifiers to solve math word problems. arXiv:2110.14168 [cs.LG], 2021.

493

494 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, et al. Deepseek-r1: In-
495 centivizing reasoning capability in llms via reinforcement learning, 2025a. URL <https://arxiv.org/abs/2501.12948>.

496

497 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, et al. Deepseek-v3
498 technical report, 2025b. URL <https://arxiv.org/abs/2412.19437>.

499

500 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
501 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, et al. The llama
502 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.

503

504 Eugene Fink and Qiang Yang. Formalizing plan justifications. In *Proceedings of the Ninth Biennial
505 Conference of the Canadian Society for Computational Studies of Intelligence (CSCSI 1992)*,
506 1992.

507

508 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
509 ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muen-
510 nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
511 Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
512 evaluation harness, 07 2024. URL <https://zenodo.org/records/12608602>.

513

514 IBM Granite Team. Granite 3.0 language models, October 2024. URL <https://github.com/ibm-granite/granite-3.0-language-models/>.

515

516 Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, et al. Deepseek-coder:
517 When the large language model meets programming—the rise of code intelligence. *arXiv preprint
arXiv:2401.14196*, 2024.

518

519 Divij Handa, Pavel Dolin, Shrinidhi Kumbhar, Chitta Baral, and Tran Cao Son. Actionreasoning-
520 bench: Reasoning about actions with and without ramification constraints. In *The Thirteenth
521 International Conference on Learning Representations*, 2025.

522

523 Weinan He, Canming Huang, Zhanhao Xiao, and Yongmei Liu. Exploring the capacity of pretrained
524 language models for reasoning about actions and change. In *ACL*. Association for Computational
Linguistics, 2023.

525

526 Jörg Hoffmann and Bernhard Nebel. RIFO revisited: Detecting relaxed irrelevance. In Amedeo
527 Cesta and Daniel Borrajo (eds.), *Proceedings of the Sixth European Conference on Planning
(ECP 2001)*, pp. 127–135. AAAI Press, 2001.

528

529 Jörg Hoffmann, Julie Porteous, and Laura Sebastia. Ordered landmarks in planning. *J. Artif. Intell.
Res.*, 22:215–278, 2004.

530

531 Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Kaya Stechly, Mudit Verma, Siddhant
532 Bhambri, Lucas Saldyt, and Anil Murthy. LLMs can't plan, but can help planning in LLM-
533 Modulo frameworks. *CoRR*, abs/2402.01817, 2024.

534

535 Michael Katz and Junkyu Lee. K* search over orbit space for top-k planning. In Edith Elkind (ed.),
536 *Proceedings of the 32nd International Joint Conference on Artificial Intelligence (IJCAI 2023)*.
537 IJCAI, 2023a.

538

539 Michael Katz and Junkyu Lee. K* and partial order reduction for top-quality planning. In Roman
Barták, Wheeler Ruml, and Oren Salzman (eds.), *Proceedings of the 16th Annual Symposium on
Combinatorial Search (SoCS 2023)*. AAAI Press, 2023b.

540 Michael Katz and Shirin Sohrabi. Reshaping diverse planning. In Vincent Conitzer and Fei Sha
541 (eds.), *Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2020)*,
542 pp. 9892–9899. AAAI Press, 2020.

543

544 Michael Katz, Shirin Sohrabi, and Octavian Udrea. Top-quality planning: Finding practically useful
545 sets of best plans. In Vincent Conitzer and Fei Sha (eds.), *Proceedings of the Thirty-Fourth AAAI*
546 *Conference on Artificial Intelligence (AAAI 2020)*, pp. 9900–9907. AAAI Press, 2020.

547

548 Emil Keyder, Silvia Richter, and Malte Helmert. Sound and complete landmarks for and/or graphs.
549 In Helder Coelho, Rudi Studer, and Michael Wooldridge (eds.), *Proceedings of the 19th European*
550 *Conference on Artificial Intelligence (ECAI 2010)*, pp. 335–340. IOS Press, 2010.

551

552 Harsha Kokel, Michael Katz, Kavitha Srinivas, and Shirin Sohrabi. ACPBench: Reasoning about
553 action, change, and planning. In Julie Shah and Zico Kolter (eds.), *Proceedings of the Thirty-Ninth*
554 *AAAI Conference on Artificial Intelligence (AAAI 2025)*. AAAI Press, 2025.

555

556 Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
557 Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
558 Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
559 Agentbench: Evaluating llms as agents. *CoRR*, abs/2308.03688, 2023.

560

561 Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Ling-
562 peng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn LLM
563 agents. *CoRR*, abs/2401.13178, 2024.

564

565 Drew McDermott. The 1998 AI Planning Systems competition. *AI Magazine*, 21(2):35–55, 2000.

566

567 Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang Shen, Aditya Prasad, et al. Granite code
568 models: A family of open foundation models for code intelligence. *CoRR*, abs/2405.04324, 2024.

569

570 MistralAI. Mixtral 8x22b. <https://mistral.ai/news/mixtral-8x22b/>, 2024.

571

572 OpenAI, :, Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, et al. Openai gpt-4o
573 system card, 2024a.

574

575 OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, et al. Openai o1 system card,
576 2024b.

577

578 OpenAI, :, Sandhini Agarwal, Lama Ahmad, et al. gpt-oss-120b & gpt-oss-20b model card, 2025.
579 URL <https://arxiv.org/abs/2508.10925>.

580

581 Julie Porteous, Laura Sebastia, and Jörg Hoffmann. On the extraction, ordering, and usage of land-
582 marks in planning. In Amedeo Cesta and Daniel Borrajo (eds.), *Proceedings of the Sixth European*
583 *Conference on Planning (ECP 2001)*, pp. 174–182. AAAI Press, 2001.

584

585 Silvia Richter, Malte Helmert, and Matthias Westphal. Landmarks revisited. In *Proceedings of the*
586 *Twenty-Third AAAI Conference on Artificial Intelligence (AAAI 2008)*, pp. 975–982. AAAI Press,
587 2008.

588

589 Mauricio Salerno, Raquel Fuentetaja, and Jendrik Seipp. Eliminating redundant actions from plans
590 using classical planning. In Pierre Marquis, Tran Cao Son, and Gabriele Kern-Isenberner (eds.),
591 *Proceedings of the Twentieth International Conference on Principles of Knowledge Representa-
592 tion and Reasoning (KR 2023)*, pp. 774–778. IJCAI Organization, 2023.

593

594 Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal anal-
595 ysis of chain-of-thought. In *Proceedings of the Eleventh International Conference on Learning*
596 *Representations (ICLR 2023)*. OpenReview.net, 2023.

597

598 Katharina Stein, Daniel Fišer, Jörg Hoffmann, and Alexander Koller. Automating the generation of
599 prompts for llm-based action choice in pdl planning. In *Proceedings of the Fourteenth Interna-
600 tional Conference on Automated Planning and Scheduling (ICAPS 2025)*. AAAI Press, 2025.

594 Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kamb-
595 hampati. Planbench: An extensible benchmark for evaluating large language models on planning
596 and reasoning about change. In *Proceedings of the Thirty-Seventh Annual Conference on Neural*
597 *Information Processing Systems (NeurIPS 2023)*, pp. 38975–38987, 2023a.
598
599 Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the
600 planning abilities of large language models - A critical investigation. In *Proceedings of the Thirty-*
601 *Seventh Annual Conference on Neural Information Processing Systems (NeurIPS 2023)*, 2023b.
602 Lin Zhu and Robert Givan. Landmark extraction via planning graph propagation. In *ICAPS 2003*
603 *Doctoral Consortium*, pp. 156–160, 2003.
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648 8 APPENDIX

650 A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

652 A.1 RELATED WORK

654 Table 4 presents comparison of ACPBench Hard with other PDDL-based Planning Benchmarks.
 655 Existing benchmarks either focus on few tasks or few domains. For example, PlanBench has only
 656 3 domains but 8 tasks, where as AutoPlanBench has 13 domains but only 1 task. An exception
 657 to this is Action Reasoning Bench which has reasonable number of domains and tasks, but they
 658 lack systematic evaluation of the generative questions. With addition of ACPBench Hard, now
 659 the ACPBench dataset contains all three formats of questions: generation, boolean and multi-choice
 660 questions. Most importantly, Table 4 presents the coverage of different tasks in the existing literature.
 661 As can be seen while the Action Applicability, Progression and Validation have some coverage in
 662 TRAC and ActionReasoningBench, the tasks like Reachability, Action Reachability, Justification,
 663 Landmark, and Next Actions are not really covered by existing benchmarks.

664 Dataset	665 PlanBench	666 AutoPlanBench	667 TRAC	668 ARB	669 ACPBench	670 ACPBench Hard
# Tasks	8	1	4	6	7	8
# Domains	3 (+variants)	13	1	8	13	13
NL templates	✓	✗	✓	✓	✓	✓
Evaluation						
Question Format						
Generative	✓	✓	✗	✓	✗	✓
Boolean	✗	✗	✓	✓	✓	✗
MCQ	✗	✗	✗	✗	✓	✗
Tasks						
Applicability	✗	✗	✓	✓	✓	✓
Progression	✓	✗	✓	✓	✓	✓
Reachability	✗	✗	✗	✗	✓	✓
Action Reachability	✗	✗	✗	✗	✓	✓
Validation	✓	✗	✓	~	✓	✓
Justification	✗	✗	✗	✗	✓	✓
Landmark	✗	✗	✗	✗	✓	✓
Next Action	✗	✗	✗	✗	✗	✓

680 Table 4: Comparison of ACPBench-hard with existing Planning Benchmarks. Evaluations are either
 681 using string matching (↔), symbolic tools (✗), or using another LLM (LLM).

684 A.2 DATASET

685 Here we provide one sample question for each of the task.

687 APPLICABILITY

689 Listing 1: Example of Applicability

```

691 {
692   "id": -5674251047178000480,
693   "group": "applicable_actions_gen",
694   "context": "This is a ferry domain, where the task is to
695   transport cars from their start to their goal locations,
696   using a ferry. Each location is accessible by ferry from
697   each other location. The cars can be debarked or boarded,
698   and the ferry can carry only one car at a time. \nThere
699   are 2 locations and 20 cars, numbered consecutively.
700   \nCurrently, the ferry is at 10, with the car c2 on
701   board. The cars are at locations as follows: c0, c3, c15,
702   c10, c8, c6, and c9 are at 10; c18, c17, c16, c4, c19,
703   c5, c13, c7, c1, c12, c14, and c11 are at 11. The
  
```

PROGRESSION

Listing 2: Example of Progression

```
745
746 { "id": 297440160406485545,
747 "group": "progression_gen",
748 "context": "This is a ferry domain, where the task is to
749     transport cars from their start to their goal locations,
750     using a ferry. Each location is accessible by ferry from
751     each other location. The cars can be debarked or boarded,
752     and the ferry can carry only one car at a time. \nThere
753     are 2 locations and 10 cars, numbered consecutively.
754     \nCurrently, the ferry is at 11, with the car c2 on
755     board. The cars are at locations as follows: c5, c9, and
c4 are at 11; c3, c0, c1, c6, c7, and c8 are at 10. The
```

```

756     available propositions are: (at-ferry ?l) - The ferry is
757     at ?l location, (at ?c ?l) - Car ?c is at location ?l,
758     (empty-ferry) - The ferry is empty, and (on ?c) - Ferry
759     has car ?c on board.",,
760   "question": "Break down the outcomes of performing the action
761     \"debark car c2 to location l1 from the ferry\" into two
762     lists, positive effects and negative effects. Positive
763     effects are the propositions that are false in the
764     current state but will become true after performing the
765     action. Negative effects are the propositions that are
766     true in the current state and will become false after
767     performing the action.",,
768   "answer": {
769     "pos": [
770       "(empty-ferry)",
771       "(at c2 l1)"
772     ],
773     "neg": [
774       "(on c2)"
775     ],
776   "PDDL_domain": "(define (domain ferry)\n      (:requirements :\n        strips :typing)\n      (:types car location - object)\n      (:predicates (at ?c - car ?l - location) (at-ferry ?l -\n        location) (empty-ferry) (not-eq ?x ?y) (on ?c - car))\n      (:action board\n        :parameters (?car - car ?loc -\n          location)\n        :precondition (and (at ?car ?loc)\n          (at-ferry ?loc) (empty-ferry))\n        :effect (and (on\n          ?car) (not (at ?car ?loc)) (not (empty-ferry)))\n      )\n      (:action debark\n        :parameters (?car - car ?loc -\n          location)\n        :precondition (and (on ?car)\n          (at-ferry ?loc))\n        :effect (and (at ?car ?loc)\n          (empty-ferry) (not (on ?car)))\n      )\n      (:action\n        sail\n        :parameters (?from - location ?to -\n          location)\n        :precondition (and (not-eq ?from ?to)\n          (at-ferry ?from))\n        :effect (and (at-ferry ?to)\n          (not (at-ferry ?from)))\n      )\n    )",
777   "PDDL_problem": "(define (problem ferry-l2-c10)\n      (:domain\n        ferry)\n      (:requirements :strips :typing)\n      (:objects c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 - car l0 l1 -\n        location)\n      (:init (at c0 l0) (at c1 l0) (at c3 l0)\n        (at c4 l1) (at c5 l1) (at c6 l0) (at c7 l0) (at c8 l0)\n        (at c9 l1) (at-ferry l1) (not-eq l0 l1) (not-eq l1 l0)\n        (on c2))\n      (:goal (and (at c0 l0) (at c1 l0) (at c2 l1)\n        (at c3 l1) (at c4 l0) (at c5 l0) (at c6 l0) (at c7 l0)\n        (at c8 l0) (at c9 l1)))\n    )"
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
}

```

REACHABILITY

Listing 3: Example of Reachability

```

{
  "id": 6900855040701022305,
  "group": "reachable_atom_gen",
  "context": "This is a ferry domain, where the task is to
  transport cars from their start to their goal locations,
  using a ferry. Each location is accessible by ferry from
  each other location. The cars can be debarked or boarded,
}

```

```

810 and the ferry can carry only one car at a time. \nThere
811 are 2 locations and 5 cars, numbered consecutively.
812 \nCurrently, the ferry is at 10, with the car c2 on
813 board. The cars are at locations as follows: c3, c0, and
814 c1 are at 10; c4 is at 11. The available propositions
815 are: (at-ferry ?l) - The ferry is at ?l location, (at ?c
816 ?l) - Car ?c is at location ?l, (empty-ferry) - The ferry
817 is empty, and (on ?c) - Ferry has car ?c on board.",

818 "question": "What proposition can never hold in any
819 potentially reachable state?",

820 "answer": [],

821 "PDDL_domain": "(define (domain ferry)\n  (:requirements :strips :typing)\n  (:types car location - object)\n  (:predicates (at ?c - car ?l - location) (at-ferry ?l - location) (empty-ferry) (not-eq ?x ?y) (on ?c - car))\n  (:action board\n    :parameters (?car - car ?loc - location)\n    :precondition (and (at ?car ?loc) (at-ferry ?loc) (empty-ferry))\n    :effect (and (on ?car) (not (at ?car ?loc)) (not (empty-ferry)))\n  )\n  (:action debark\n    :parameters (?car - car ?loc - location)\n    :precondition (and (on ?car) (at-ferry ?loc) (empty-ferry) (not (on ?car)))\n    :effect (and (at ?car ?loc) (empty-ferry) (not (on ?car)))\n  )\n  (:action sail\n    :parameters (?from - location ?to - location)\n    :precondition (and (not-eq ?from ?to) (at-ferry ?from))\n    :effect (and (at-ferry ?to) (not (at-ferry ?from)))\n  )\n)",

822 "PDDL_problem": "(define (problem ferry-12-c5)\n  (:domain ferry)\n  (:requirements :strips :typing)\n  (:objects c0 c1 c2 c3 c4 - car 10 11 - location)\n  (:init (at c0 10) (at c1 10) (at c3 10) (at c4 11)\n    (at-ferry 10) (not-eq 10 11) (not-eq 11 10) (on c2))\n  (:goal (and (at c0 11) (at c1 10) (at c2 11) (at c3 10)\n    (at c4 10)))\n)",

823 }

824 }
```

ACTION REACHABILITY

Listing 4: Example of Action Reachability

```
848 {  
849     "id": -255316435894028208,  
850     "group": "reachable_action_gen",  
851     "context": "This is a ferry domain, where the task is to  
852         transport cars from their start to their goal locations,  
853         using a ferry. Each location is accessible by ferry from  
854         each other location. The cars can be debarked or boarded,  
855         and the ferry can carry only one car at a time. \\nThere  
856         are 2 locations and 20 cars, numbered consecutively.  
857         \\nCurrently, the ferry is at 10, with the car c2 on  
858         board. The cars are at locations as follows: c12, c18,  
859         c5, c4, c14, c19, c16, c11, c1, and c7 are at 11; c13,  
860         c6, c10, c17, c9, c3, c8, c0, and c15 are at 10. The  
861         available actions are: (sail ?from ?to) - travel by sea  
862         from location ?from to location ?to, (board ?car ?loc) -  
863         board the car ?car at the location ?loc, and (debark ?car  
         ?loc) - debark the car ?car to location ?loc from the  
         ferry.",
```

```

864 "question": "What action can never become applicable, in any
865     state reachable from the current state?",  

866 "answer": [  

867     "(sail 10 10)"  

868 ],
869 "PDDL_domain": "(define (domain ferry)\n    (:requirements :  

870     strips :typing)\n    (:types car location - object)\n    (:predicates (at ?c - car ?l - location) (at-ferry ?l -  

871     location) (empty-ferry) (not-eq ?x ?y) (on ?c - car))\n    (:action board\n        :parameters (?car - car ?loc -  

872     location)\n        :precondition (and (at ?car ?loc)  

873     (at-ferry ?loc) (empty-ferry))\n        :effect (and (on  

874     ?car) (not (at ?car ?loc)) (not (empty-ferry)))\n    )\n    (:action debark\n        :parameters (?car - car ?loc -  

875     location)\n        :precondition (and (on ?car)  

876     (at-ferry ?loc))\n        :effect (and (at ?car ?loc)  

877     (empty-ferry) (not (on ?car)))\n    )\n    (:action  

878     sail\n        :parameters (?from - location ?to -  

879     location)\n        :precondition (and (not-eq ?from ?to)  

880     (at-ferry ?from))\n        :effect (and (at-ferry ?to)  

881     (not (at-ferry ?from)))\n    )\n",  

882 "PDDL_problem": "(define (problem ferry-12-c20)\n    (:domain  

883     ferry)\n    (:requirements :strips :typing)\n    (:objects c0 c1 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19  

884     c2 c3 c4 c5 c6 c7 c8 c9 - car 10 11 - location)\n    (:init (at c0 10) (at c1 11) (at c10 10) (at c11 11) (at  

885     c12 11) (at c13 10) (at c14 11) (at c15 10) (at c16 11)  

886     (at c17 10) (at c18 11) (at c19 11) (at c3 10) (at c4 11)  

887     (at c5 11) (at c6 10) (at c7 11) (at c8 10) (at c9 10)  

888     (at-ferry 10) (not-eq 10 11) (not-eq 11 10) (on c2))\n    (:goal (and (at c0 10) (at c1 11) (at c2 11) (at c3 10)  

889     (at c4 11) (at c5 11) (at c6 11) (at c7 11) (at c8 11)  

890     (at c9 10) (at c10 10) (at c11 11) (at c12 11) (at c13  

891     10) (at c14 11) (at c15 10) (at c16 11) (at c17 11) (at  

892     c18 11) (at c19 11)))\n"
893 }
894
895
896
897

```

VALIDATION

Listing 5: Example of Validation

```

903 {
904     "id": 4896696031890359153,  

905     "group": "validation_gen",  

906     "context": "This is a ferry domain, where the task is to  

907         transport cars from their start to their goal locations,  

908         using a ferry. Each location is accessible by ferry from  

909         each other location. The cars can be debarked or boarded,  

910         and the ferry can carry only one car at a time. \nThere  

911         are 2 locations and 5 cars, numbered consecutively.  

912         \nCurrently, the ferry is at 10 location and it is empty.  

913         The cars are at locations as follows: c3, c1, c0, and c2  

914         are at 10; c4 is at 11. The goal is to reach a state  

915         where the following facts hold: Car c3 is at location 10,  

916         Car c4 is at location 10, Car c1 is at location 10, Car  

917         c0 is at location 11, and Car c2 is at location 11. The  

918         available actions are: (sail ?from ?to) - sail from  

919         location ?from to location ?to, (board ?car ?loc) - board

```

```

918     the car ?car at the location ?loc, and (debark ?car ?loc)
919     - debark the car ?car from the ferry to location ?loc.",,
920     "question": "What is the first inapplicable action in the
921     next sequence of actions: \"(board c2 10) (debark c2 10)
922     (board c2 10) (sail 10 11) (board c2 11) (board c4 11)
923     (sail 11 10) (debark c4 10) (board c0 10) (sail 10 11)
924     (debark c0 11) (sail 11 10)\"?",,
925     "answer": 4,
926     "PDDL_domain": "(define (domain ferry)\n    (:requirements :\n        strips :typing)\n    (:types car location - object)\n    (:predicates (at ?c - car ?l - location) (at-ferry ?l -\n        location) (empty-ferry) (not-eq ?x ?y) (on ?c - car))\n        (:action board\n            :parameters (?car - car ?loc -\n                location)\n            :precondition (and (at ?car ?loc)\n                (at-ferry ?loc) (empty-ferry))\n            :effect (and (on\n                ?car) (not (at ?car ?loc)) (not (empty-ferry)))\n        )\n        (:action debark\n            :parameters (?car - car ?loc -\n                location)\n            :precondition (and (on ?car)\n                (at-ferry ?loc))\n            :effect (and (at ?car ?loc)\n                (empty-ferry) (not (on ?car)))\n        )\n        (:action sail\n            :parameters (?from - location ?to -\n                location)\n            :precondition (and (not-eq ?from ?to)\n                (at-ferry ?from))\n            :effect (and (at-ferry ?to)\n                (not (at-ferry ?from)))\n        )",
940     "PDDL_problem": "(define (problem ferry-l2-c5)\n    (:domain\n        ferry)\n    (:requirements :strips :typing)\n    (:objects c0 c1 c2 c3 c4 - car 10 11 - location)\n    (:init (at c0 10) (at c1 10) (at c2 10) (at c3 10) (at c4\n        11) (at-ferry 10) (empty-ferry) (not-eq 10 11) (not-eq 11\n        10))\n    (:goal (and (at c0 11) (at c1 10) (at c2 11)\n        (at c3 10) (at c4 10)))\n    )"
947 }
948
949
950 JUSTIFICATION
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

```

Listing 6: Example of Justification

```

{
    "id": -1219355986766168268,
    "group": "action_justification_gen",
    "context": "This is a ferry domain, where the task is to\n        transport cars from their start to their goal locations,\n        using a ferry. Each location is accessible by ferry from\n        each other location. The cars can be debarked or boarded,\n        and the ferry can carry only one car at a time. \\nThere\n        are 2 locations and 2 cars, numbered consecutively.\n\n        Currently, the ferry is at 10 location and it is empty.\n        The cars are at locations as follows: c1 and c0 are at\n        10. The available actions are: (sail ?from ?to) - sail\n        from location ?from to location ?to, (board ?car ?loc) -\n        board the car ?car at the location ?loc, and (debark ?car\n        ?loc) - debark the car ?car to location ?loc from the\n        ferry. The goal is to reach a state where the following\n        facts hold: Car c1 is at location 11 and Car c0 is at\n        location 11.",
    "question": "Simplify the plan \"(board c1 10) (sail 10 11)\n        (sail 11 10) (sail 10 11) (debark c1 11) (sail 11 10)\n        (sail 10 11) (sail 11 10) (board c0 10) (sail 10 11)\n        (debark c0 11) (board c1 11) (debark c1 11)\" by removing"
}

```

```

972     either a single action or a pair of consecutive actions,
973     while still maintaining a valid plan. Provide the
974     resulting simplified plan.",  

975     "answer": [  

976         [  

977             "(sail 10 11)",  

978             "(sail 11 10)",  

979             "-1"  

980         ],  

981         [  

982             "(sail 11 10)",  

983             "(sail 10 11)",  

984             "-1"  

985         ],  

986         [  

987             "(sail 11 10)",  

988             "(sail 10 11)",  

989             "-1"  

990         ],  

991         [  

992             "(sail 10 11)",  

993             "(sail 11 10)",  

994             "-1"  

995         ],  

996         [  

997             "(board c1 11)",  

998             "(debark c1 11)",  

999             "-1"  

1000         ],  

1001     "PDDL_domain": "(define (domain ferry)\n      (:requirements :  

1002       strips :typing)\n      (:types car location - object)\n  

1003      (:predicates (at ?c - car ?l - location) (at-ferry ?l -  

1004        location) (empty-ferry) (not-eq ?x ?y) (on ?c - car))\n  

1005      (:action board\n        :parameters (?car - car ?loc -  

1006        location)\n        :precondition (and (at ?car ?loc)  

1007        (at-ferry ?loc) (empty-ferry))\n        :effect (and (on  

1008        ?car) (not (at ?car ?loc)) (not (empty-ferry)))\n      )\n  

1009      (:action debark\n        :parameters (?car - car ?loc -  

1010        location)\n        :precondition (and (on ?car)  

1011        (at-ferry ?loc))\n        :effect (and (at ?car ?loc)  

1012        (empty-ferry) (not (on ?car)))\n      )\n      (:action  

1013        sail\n        :parameters (?from - location ?to -  

1014        location)\n        :precondition (and (not-eq ?from ?to)  

1015        (at-ferry ?from))\n        :effect (and (at-ferry ?to)  

1016        (not (at-ferry ?from)))\n      )\n",  

1017     "PDDL_problem": "(define (problem ferry-12-c2)\n      (:domain  

1018       ferry)\n      (:requirements :strips :typing)\n      (:objects c0 c1 - car 10 11 - location)\n      (:init (at  

1019       c0 10) (at c1 10) (at-ferry 10) (empty-ferry) (not-eq 10  

1020       11) (not-eq 11 10))\n      (:goal (and (at c0 11) (at c1  

1021       11))))\n"
1022
1023 LANDMARK
1024
1025

```

Listing 7: Example of Landmark

```

1026 "id": 5196274110229243987,
1027 "group": "landmarks_gen",
1028 "context": "This is a ferry domain, where the task is to
1029     transport cars from their start to their goal locations,
1030     using a ferry. Each location is accessible by ferry from
1031     each other location. The cars can be debarked or boarded,
1032     and the ferry can carry only one car at a time. \nThere
1033     are 2 locations and 10 cars, numbered consecutively.
1034     \nCurrently, the ferry is at 11, with the car c6 on
1035     board. The cars are at locations as follows: c9, c4, and
1036     c2 are at 11; c1, c7, c3, c0, c5, and c8 are at 10. The
1037     goal is to reach a state where the following facts hold:
1038     Car c9 is at location 11, Car c4 is at location 10, Car
1039     c6 is at location 10, Car c1 is at location 10, Car c7 is
1040     at location 10, Car c2 is at location 11, Car c3 is at
1041     location 11, Car c0 is at location 10, Car c5 is at
1042     location 10, and Car c8 is at location 10. The available
1043     propositions are: (at-ferry ?l) - The ferry is at ?l
1044     location, (at ?c ?l) - Car ?c is at location ?l,
1045     (empty-ferry) - The ferry is empty, and (on ?c) - Car ?c
1046     is on board the ferry.",
1047 "question": "Generate a non-trivial fact landmark, one that
1048     does not hold in the initial state or goal.",
1049 "answer": {
1050     "yes": [
1051         "(on c3)",
1052         "(on c4)",
1053         "(at-ferry 10)",
1054         "(empty-ferry)"
1055     ],
1056     "no": [
1057         "(at c2 10)",
1058         "(at c5 11)",
1059         "(at c1 11)",
1060         "(at c8 11)",
1061         "(at c6 11)",
1062         "(on c1)",
1063         "(at c0 11)",
1064         "(on c5)",
1065         "(on c9)",
1066         "(on c2)",
1067         "(on c7)",
1068         "(at c7 11)",
1069         "(on c0)",
1070         "(on c8)",
1071         "(at c9 10)"
1072     ]
1073 },
1074 "PDDL_domain": "(define (domain ferry)\n    (:requirements :\n        strips :typing)\n    (:types car location - object)\n    (:predicates (at ?c - car ?l - location) (at-ferry ?l -\n        location) (empty-ferry) (not-eq ?x ?y) (on ?c - car))\n        (:action board\n            :parameters (?car - car ?loc -\n                location)\n            :precondition (and (at ?car ?loc)\n                (at-ferry ?loc) (empty-ferry))\n            :effect (and (on\n                ?car) (not (at ?car ?loc)) (not (empty-ferry)))\n            )\n        (:action debark\n            :parameters (?car - car ?loc -\n                location)\n            :precondition (and (on ?car)\n                (at-ferry ?loc))\n            :effect (and (at ?car ?loc)

```

```

1080      (empty-ferry) (not (on ?car)))\n      (:action
1081          sail\n          :parameters (?from - location ?to -
1082          location)\n          :precondition (and (not-eq ?from ?to)
1083          (at-ferry ?from))\n          :effect (and (at-ferry ?to)
1084          (not (at-ferry ?from)))\n      )\n",
1085  "PDDL_problem": "(define (problem ferry-12-c10)\n      (:domain
1086          ferry)\n      (:requirements :strips :typing)\n      (:objects c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 - car 10 11 -
1087          location)\n      (:init (at c0 10) (at c1 10) (at c2 11)
1088          (at c3 10) (at c4 11) (at c5 10) (at c7 10) (at c8 10)
1089          (at c9 11) (at-ferry 11) (not-eq 10 11) (not-eq 11 10)
1090          (on c6))\n      (:goal (and (at c0 10) (at c1 10) (at c2
1091          11) (at c3 11) (at c4 10) (at c5 10) (at c6 10) (at c7
1092          10) (at c8 10) (at c9 11)))\n"
1093  }\n
1094
1095
1096  NEXT ACTION
1097
1098  Listing 8: Example of Next Action

```

```

1099  {
1100      "id": -6003545580663971528,
1101      "group": "goal_closer_gen",
1102      "context": "This is a ferry domain, where the task is to
1103          transport cars from their start to their goal locations,
1104          using a ferry. Each location is accessible by ferry from
1105          each other location. The cars can be debarked or boarded,
1106          and the ferry can carry only one car at a time. \nThere
1107          are 2 locations and 5 cars, numbered consecutively.
1108          \nCurrently, the ferry is at 11 location and it is empty.
1109          The cars are at locations as follows: c0, c4, and c1 are
1110          at 10; c3 and c2 are at 11. The goal is to reach a state
1111          where the following facts hold: Car c0 is at location 11,
1112          Car c4 is at location 10, Car c1 is at location 10, Car
1113          c3 is at location 10, and Car c2 is at location 11. The
1114          available actions are: (sail ?from ?to) - travel by sea
1115          from location ?from to location ?to, (board ?car ?loc) -
1116          board the car ?car at the location ?loc, and (debark ?car
1117          ?loc) - debark the car ?car from the ferry to location
1118          ?loc.",
1119      "question": "What is the next action that takes us towards
1120          the goal?",
1121      "answer": {
1122          "yes": [
1123              "(board c3 11)"
1124          ],
1125          "no": [
1126              "(board c2 11)",
1127              "(sail 11 10)"
1128          ],
1129          "maybe": [],
1130          "opt": "6"
1131      },
1132      "PDDL_domain": "(define (domain ferry)\n      (:requirements :
1133          strips :typing)\n      (:types car location - object)\n      (:predicates (at ?c - car ?l - location) (at-ferry ?l -
1134          location) (empty-ferry) (not-eq ?x ?y) (on ?c - car))\n      (:action board\n          :parameters (?car - car ?loc -
1135          location)\n          :precondition (and (at ?car ?loc)

```

		# Applicable Actions	
	Domain	Max	Mean
1134	ferry	10	5.00
1135	logistics	10	9.50
1136	blocksworld	9	4.60
1137	grid	6	4.00
1138	floortile	10	9.50
1139	grippers	9	6.10
1140	rovers	10	7.90
1141	visitall	4	2.80
1142	depot	10	9.70
1143	goldminer	4	2.80
1144	satellite	8	8.00
1145	swap	49	37.80
1146	alfworld	99	66.20
1147			

1148
1149 Table 5: Number of correct applicable actions in the Applicability task dataset.
1150
1151

```

1152      (at-ferry ?loc) (empty-ferry))\n          :effect (and (on
1153      ?car) (not (at ?car ?loc)) (not (empty-ferry)))\n      )\n
1154      (:action debark\n          :parameters (?car - car ?loc
1155      - location)\n          :precondition (and (on ?car)
1156      (at-ferry ?loc))\n          :effect (and (at ?car ?loc)
1157      (empty-ferry) (not (on ?car)))\n      )\n      (:action
1158      sail\n          :parameters (?from - location ?to -
1159      location)\n          :precondition (and (not-eq ?from ?to)
1160      (at-ferry ?from))\n          :effect (and (at-ferry ?to)
1161      (not (at-ferry ?from)))\n      )\n",
1162      "PDDL_problem": "(define (problem ferry-12-c5)\n      (:domain
1163      ferry)\n      (:requirements :strips :typing)\n      (:objects c0 c1 c2 c3 c4 - car 10 11 - location)\n      (:init (at c0 10) (at c1 10) (at c2 11) (at c3 11) (at c4
1164      10) (at-ferry 11) (empty-ferry) (not-eq 10 11) (not-eq 11
1165      10))\n      (:goal (and (at c0 11) (at c1 10) (at c2 11)
1166      (at c3 10) (at c4 10)))\n      )"
1167  }
1168
1169
1170
```

1171 A.3 GENERATION PROCESS

1172 Figure 6 illustrates the overall generation process of the ACPBench-Hard dataset.

1174 APPLICATION

1176 While constructing the action applicability dataset, we impose a bound on the number of applicable
1177 actions in a state. We only keep the states when $|A(s)| \leq 100$. While the bound is high, in most
1178 cases the number of applicable actions are ≤ 10 . Table 5 presents the Max and Mean number of
1179 Applicable Actions.

1181 EVALUATION

1183 Table 6 show the complexity of evaluating an answer per task.

1185 A.4 GRAMMAR FOR PARSING THE MODEL RESPONSE

1187 Figure 7 shows the grammar used for parsing the responses for our 8 tasks.

1188
1189
1190
1191

Figure 6: High-level Workflow of Generating ACPBench Hard Dataset. **1.** We use the Problem-/Domain Generator when available to generate PDDL Problem and Domain Files. For Alfworld domain, we skip this step and directly use the PDDL Domain and Problem file made available in the Alfworld repo. **2.** Given a PDDL Problem and Domain File, we use a top-K planner Katz et al. (2020) to find multiple plans. **3** Depending on the task, we either sample plans from the obtained plans or sample intermediate states on these plans. **4.** We generate question and answer for the task symbolically. **5.** Translate the Symbolic task to Natural Language using Templates. **6.** Save the Natural Language question and the information needed to evaluate the answer to the ACPBench Hard Dataset

Task	Complexity
Applicability (App)	$O(A)$
Progression (Prog)	$O(F)$
Reachability (Reach)	PSPACE-complete
Action Reachability (AReach)	PSPACE-complete
Validation (Val)	$O(1)$
Justification (Just)	$O(\pi F)$
Landmarks (Land)	PSPACE-complete
Next Action (NextA)	PSPACE-complete

Table 6: Computational complexity of answer evaluation per task.

```
1242 NAME: / [a-zA-Z] [a-zA-Z0-9-_]* /
1243 LPAR: "("
1244 RPAR: ")"
1245 WS: / [ \n] /
1246 LSPAR: "["
1247 RSPAR: "]"
1248 COMMA: ","
1249 action_none: "None"
1250 action_name: LPAR NAME (WS NAME)* RPAR
1251 act: action_name | action_none
1252 action_list: (action_name WS?)*
1253 prog_list: action_name* (COMMA action_name)*
1254 progression_list: LSPAR prog_list RSPAR LSPAR prog_list RSPAR
1255 index: /[0-9]+[0-9]* /
```

Figure 7: Grammar used for parsing the model response.

A.5 EXPERIMENTAL SETUP

All our experiments were carried out using temperature 0 for replicability. We leverage the LM Evaluation Harness Gao et al. (2024) framework for our experiments and use default configurations for the experiments. The YAML config file for our experiments is provided in the supplemental material. We highlight the most important hyperparameters below.

```
num_fewshot: 2
generation_kw_args:
  until:
    - "\n\n\n\n"
    - "\n\n"
    - "***Question***"
    - "***Question***"
    - "Q."
do_sample: false
max_gen_toks: 1000
temperature: 0.0
```

A.6 NEXT ACTION, SPLIT BY DOMAIN

Model	depot	goldminer	satellite	swap	alfworld	ferry	logistics	blocks	grid	floortile	grippers	rovers	visitall
Mixtral 8x22B	0.4	0.2	0.4	0.8	0.1	0.3	0.4	0.3	0.3	0.1	0.2	0.4	0.3
Llama 3.1 70B	<u>0.6</u>	0.4	<u>0.5</u>	0.7	0.1	0.2	0.4	0.5	0.5	<u>0.4</u>	0.3	0.3	0.5
GPT-4o mini	0.4	0.4	0.4	0.7	0.0	0.5	0.1	0.4	0.6	0.1	0.2	0.3	0.5
DeepSeek V3	0.5	0.4	0.2	1.0	0.2	0.7	0.8	0.6	0.6	0.0	0.1	0.5	0.5
Llama 3.1 405B	<u>0.6</u>	0.4	0.4	1.0	<u>0.4</u>	0.4	0.6	0.2	0.6	0.0	0.3	0.6	0.7
GPT-4o	<u>0.6</u>	<u>0.7</u>	<u>0.5</u>	0.9	<u>0.4</u>	<u>0.7</u>	0.6	<u>0.6</u>	<u>0.7</u>	0.1	<u>0.2</u>	<u>0.8</u>	0.4
DeepSeek R1	0.4	0.5	0.2	0.9	0.0	0.4	0.6	0.5	0.4	0.0	0.1	0.2	0.5
o1 mini	0.9	0.8	0.5	0.9	0.5	1.0	0.4	0.6	0.9	0.3	0.2	0.4	0.9
o1-preview	0.8	0.9	0.8	0.9	0.9	1.0	0.8	0.8	0.9	0.8	0.1	0.9	0.8
random (full set)	0.11	0.43	0.04	0.21	0.03	0.19	0.14	0.39	0.36	0.22	0.20	0.26	0.49

Table 7: Accuracy of large size models on the *next action* task, split by domain. Bold entries indicate the best overall model, while the underlined entries indicate the best language model. Last row indicates the ratio of the actions that are correct answers among the applicable actions, the performance of a random selector among applicable actions.

One of the tasks, specifically the new *next action* task shows a higher than expected accuracy for such a computationally hard task. To better understand the phenomena, Table 7 shows the per-domain split. The bolded and underlined values depict the top accuracy values per domain across the tested models. Note, the accuracy is not uniform across domains. Some more complex domains such as *depot* shows better performance across models than easy domains such as *grippers*, which is hard for all models. There are some domains, such as *logistics* and *ferry* that are hard for some models

Figure 8: Domain-wise accuracy of small size language models.

Figure 9: Domain-wise accuracy of small and medium size language models.

and easy for other. There are domains like *floortile* and *alfworld* that are very hard for almost all models.

A.7 DOMAIN-WISE ACCURACY OF TESTED MODELS

Figures 8 and 9 show the domain-wise accuracy of tested small and medium language models, while Figure 10 presents the domain-wise accuracy of tested large language and reasoning models.

A.8 LIMITATIONS

Our work aims to propose a reliable benchmark the evaluates LLM’s ability to reason about action, change and planning. However, there are a few limitations to our work.

- Captures a subset of planning problems: classical domains - closed world, deterministic dynamics, full observability, described in a standard planning language PDDL.
- Requires specifying the corresponding natural language mapping of facts and actions per domain.
- Generation and validation are both computationally challenging and therefore time consuming. The validation makes use of lenient grammar, resulting in possibly capturing a wrong part of the answer, when multiple answers are given in one response.
- Evaluating generated output is hard, while we counted on the model to not produce multiple conflicting answers, LLMs are known to do so.
- The evaluations only measures the final answer and do not evaluate the reasoning process of LLMs.
- We use same set of prompts to evaluate all the LLM. Having different prompts and approaches might result in different performance on the benchmark.

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Figure 10: Domain-wise accuracy of large language and reasoning models.