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Abstract
Research on the theoretical expressiveness of
Graph Neural Networks (GNNs) has developed
rapidly, and many methods have been proposed
to enhance the expressiveness. However, most
methods do not have a uniform expressiveness
measure except for a few that strictly follow the k-
dimensional Weisfeiler-Lehman (k-WL) test hier-
archy, leading to difficulties in quantitatively com-
paring their expressiveness. Previous research has
attempted to use datasets for measurement, but
facing problems with difficulty (any model sur-
passing 1-WL has nearly 100% accuracy), gran-
ularity (models tend to be either 100% correct
or near random guess), and scale (only several
essentially different graphs involved). To address
these limitations, we study the realized expressive
power that a practical model instance can achieve
using a novel expressiveness dataset, BREC,
which poses greater difficulty (with up to 4-WL-
indistinguishable graphs), finer granularity (en-
abling comparison of models between 1-WL and
3-WL), a larger scale (consisting of 800 1-WL-
indistinguishable graphs that are non-isomorphic
to each other). We synthetically test 23 models
with higher-than-1-WL expressiveness on BREC.
Our experiment gives the first thorough measure-
ment of the realized expressiveness of those state-
of-the-art beyond-1-WL GNN models and reveals
the gap between theoretical and realized expres-
siveness. Dataset and evaluation codes are re-
leased at: https://github.com/GraphPKU/BREC.

1. Introduction
GNNs have been extensively utilized in bioinformatics, rec-
ommender systems, social networks, and others, yielding
remarkable outcomes (Duvenaud et al., 2015; Barabási et al.,
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2011; Fan et al., 2019; Wang et al., 2018b; Berg et al., 2017;
Zhou et al., 2020). Despite impressive empirical achieve-
ments, related investigations have revealed that GNNs ex-
hibit limited abilities to distinguish some similar but non-
isomorphic graphs. In practical situations, the inability
to recognize specific structures, such as benzene rings (6-
member rings), may cause misleading learning results. Xu
et al. (2019); Morris et al. (2019) established a connection
between the expressiveness of message-passing neural net-
works (MPNNs) and the WL test for graph isomorphism
testing, demonstrating that MPNN’s upper bound is 1-WL.
Numerous subsequent studies have proposed GNN vari-
ants with enhanced expressiveness (Bevilacqua et al., 2022;
Cotta et al., 2021; You et al., 2021; Zhang & Li, 2021).

Given the multitude of models employing different ap-
proaches, such as feature injection, equivariance mainte-
nance, and subgraph extraction, a unified framework that can
theoretically compare the expressive power among various
variants is highly desirable. In this regard, several attempts
have been made under the k-WL architecture. Maron et al.
(2019b) propose the concept of k-order invariant/equivariant
graph networks, which unify linear layers while preserving
permutation invariance/equivariance. Additionally, Frasca
et al. (2022) unify recent subgraph GNNs and establish
that their expressiveness upper bound is 3-WL. Zhang et al.
(2023a) further construct a comprehensive expressiveness
hierarchy for subgraph GNNs. Nonetheless, the magnitude
of the gaps remains unknown. Furthermore, there exist
methods that are difficult to categorize within the k-WL hi-
erarchy. For instance, Papp & Wattenhofer (2022) propose
four extensions of GNNs, each of which cannot strictly com-
pare with the other. Similarly, Feng et al. (2022) propose
a GNN that is partially stronger than 3-WL yet fails to dis-
tinguish many 3-WL-distinguishable graphs. In a different
approach, Huang et al. (2023) propose evaluating expres-
siveness by enumerating specific significant substructures,
such as 6-cycles. Zhang et al. (2023b) introduces bicon-
nectivity as a measurement. Zhang et al. (2024) employs
homomorphism to provide a more intricate framework.

Without a unified theoretical characterization of expressive-
ness, employing expressiveness datasets for empirical test-
ing proves valuable. Notably, three expressiveness datasets,
EXP, CSL, and SR25, and some other combinations of diffi-
cult graphs have been introduced by Abboud et al. (2021);
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Murphy et al. (2019); Balcilar et al. (2021); Bouritsas et al.
(2022) and have found widespread usage in recent studies.
However, the empirical results failed to contribute further to
the research due to notable limitations. Firstly, they lack suf-
ficient difficulty. The EXP and CSL datasets solely consist
of examples where 1-WL fails, and most recent GNN vari-
ants have achieved perfect accuracy on these datasets. Sec-
ondly, the granularity of these datasets is too coarse, which
means that graphs in these datasets are generated using a
single method, resulting in a uniform level of discrimination
difficulty. Consequently, the performance of GNN variants
often falls either at random guessing (completely indistin-
guishable) or 100% (completely distinguishable), thereby
hindering the provision of a nuanced measure of expressive-
ness. Lastly, these datasets suffer from small sizes, typically
comprising only a few substantially different graphs, raising
concerns of incomplete measurement.

To overcome the limitations of previous datasets for a more
meaningful empirical evaluation of realized expressiveness,
i.e., the expressiveness that a practical model instance can
achieve, we first propose BREC, a new expressiveness
dataset containing 1-WL-indistinguishable graphs in 4 ma-
jor categories: Basic, Regular, Extension, and CFI graphs.
Compared to previous datasets, BREC has a greater diffi-
culty (up to 4-WL-indistinguishable), finer granularity (can
compare models between 1-WL and 3-WL), and larger scale
(800 non-isomorphic graphs organized into 400 pairs, which
can be easily extended to 319600 pairs or even more).

Due to the increased size and diversity of the dataset, the tra-
ditional classification task may not be suitable for training-
based evaluation methods relying on generalization. Thus,
we propose a novel evaluation procedure based on directly
comparing the discrepancies between model outputs to test
pure practical expressiveness. Acknowledging the impact
of numerical precision owning to tiny differences between
graphs, we propose reliable paired comparisons building
upon a statistical method (Fisher, 1992; Johnson & Wichern,
2007), which offers a precise error bound. Experiments
verify that it aligns well with known theoretical results.

Finally, we comprehensively compared 23 representative
beyond-1-WL models on BREC. Our experiments for the
first time give a reliable empirical comparison of state-of-
the-art GNNs’ realized expressiveness. Our results facilitate
gaining deeper insights into various schemes to enhance
GNNs’ expressiveness. On BREC, GNN accuracies range
from 41.5% to 70.2%, with I2-GNN (Huang et al., 2023)
performing the best. The 70.2% highest accuracy also im-
plies that the dataset is far from saturation. Our evaluation
code is in https://github.com/GraphPKU/BREC.

2. Limitations of Existing Datasets
Preliminary. We utilize the notation {} to represent sets and
{{}} to represent multisets. The cardinality of a (multi)set S
is denoted as |S|. The index set is denoted as [n] = 1, . . . , n.
A graph is denoted as G = (V(G),E(G)), where V(G) rep-
resents the set of nodes or vertices and E(G) represents
the set of edges. Without loss of generality, we assume
|V(G)| = n and V(G) = [n].

The permutation or reindexing of G is denoted as Gπ =
(V(Gπ),E(Gπ)) with the permutation function π : [n] →
[n], s.t. (u, v) ∈ E(G) ⇐⇒ (π(u), π(v)) ∈ E(Gπ). Here
node and edge features are excluded from definitions for
briefness. Additional discussions are in Appendix B.

Graph Isomorphism (GI) Problem. Two graphs G and
H are considered isomorphic (denoted as G ≃ H) if ∃ ϕ(a
bijection mapping) :V(G) → V(H) s.t. (u, v) ∈ E(G)
iff. (ϕ(u), ϕ(v)) ∈ E(H). GI is essential in expressive-
ness. Only if a GNN successfully distinguishes two non-
isomorphic graphs can they be assigned different labels.
Some researchers (Chen et al., 2019; Geerts & Reutter,
2022) indicate the equivalence between GI and function ap-
proximation, underscoring the importance of GI. However,
we currently do not have polynomial-time algorithms for
solving the GI problem. A naive solution involves iterating
all n! permutations to test whether such a bijection exists.

Weisfeiler-Lehman algorithm (WL). WL is a well-known
isomorphism test relying on color refinement (Weisfeiler
& Leman, 1968). In each iteration, WL assigns a state
(or color) to each node by aggregating information from
its neighboring nodes’ states. This process continues until
convergence, resulting in a multiset of node states represent-
ing the final graph representation. While WL effectively
identifies most non-isomorphic graphs, it may fail in cer-
tain simple graphs, leading to the development of extended
versions. One such extension is k-WL, which treats each
k-tuple of nodes as a unit for aggregating information. An-
other slightly different method (Cai et al., 1989) is also
referred to as k-WL. To avoid confusion, we follow Morris
et al. (2019) to call the former k-WL and the latter k-FWL.
Further information can be found in Appendix C.

Given the significance of GI and WL, several expressiveness
datasets have been introduced, with the following three
being the most frequently utilized. We selected a pair of
graphs from each dataset, illustrated in Figure 1. Detailed
statistics for these datasets are presented in Table 1.

EXP Dataset. This dataset is generated pairwise. Each
graph in a pair includes two disconnected components, the
core component and planar component, where the former
are two 1-WL-indistinguishable counterexamples while the
latter are identical and only for adding noise. The task is
binary classification based on whether core component sat-
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(a) EXP dataset core pair sample (b) CSL graph(m = 10, r = 2/3) (c) SR25 dataset sample
Figure 1. Sample graphs in previous datasets

Table 1. Dataset statistics

Dataset # Graphs # Core graphsa # Nodes Distinguishing difficulty Evaluation metrics

EXP 1200 6 33-73 1-WL-indistinguishable 2-way classification
CSL 150 10 41 1-WL-indistinguishable 10-way classification
SR25 15 15 25 3-WL-indistinguishable 15-way classification
BREC 800 800 10-198 1-WL to 4-WL-indistinguishable Reliable Paired Comparisons
a Core graphs represent graphs that actually serve to measure expressiveness.

isfies the SAT condition. Although it is formally consistent
with general datasets, the insufficient difficulty and number
of different core components (only three substantially dif-
ferent pairs) results in most recent GNNs achieving nearly
100% accuracy, making detailed comparisons unavailable.

CSL Dataset. This dataset consists of Circulant Skip Links
(CSL) graphs, which are 1-WL-indistinguishable 4-degree
regular graphs. 10 distinct CSL graphs are generated and
reindexed 15 times, resulting in the dataset with 150 graphs.
The task is to train a 10-way classification model distinguish-
ing each type. Because of the relatively low difficulty and
their fixed structure (only ten essentially different graphs
with the same number of nodes and degree), many recent
expressive GNN models achieve close to 100% accuracy.
More details about CSL graphs are in Appendix D.

SR25 Dataset. This dataset consists of 15 3-WL-
indistinguishable Strongly Regular Graphs (SR) with pa-
rameter srg(25,12,5,6)1. In practice, SR25 is transformed
into a 15-way classification problem for mapping each graph
into a different class where the training and test graphs over-
lap. Most methods obtain 6.67% (1/15) accuracy due to
3-WL’s high expressiveness. However, some methods par-
tially surpassing 3-WL can even achieve 100% accuracy.

These three datasets have limitations regarding difficulty,
granularity, and scale. In terms of difficulty, they are all
bounded by 3-WL, failing to evaluate models (partly) be-
yond 3-WL (Feng et al., 2022). In terms of granularity, the
graphs are generated in one way with repetive parameters,
which easily leads to a 0/1 step function of model perfor-
mance and cannot measure subtle differences between mod-

1Strongly regular graphs can be described by four parameters.
More details can be found in Appendix A

els. In terms of scale, the number of substantially different
graphs in the datasets is small, and the test results may be
incomplete to reflect expressiveness measurement.

3. BREC: A New Dataset for Expressiveness
We propose a new expressiveness dataset, BREC, to address
the limitations regarding difficulty, granularity, and scale. It
consists of four major categories of graphs: Basic, Regular,
Extension, and CFI. Basic graphs include relatively simple
1-WL-indistinguishable graphs. Regular graphs include four
types of subcategorized regular graphs. Extension graphs
include special graphs that arise when comparing four kinds
of GNN extensions (Papp & Wattenhofer, 2022). CFI graphs
include graphs generated by CFI methods2 (Cai et al., 1989)
with high difficulty. Some samples are shown in Fig 2.

3.1. Dataset Composition

BREC includes 800 non-isomorphic graphs arranged in
a pairwise manner to construct 400 pairs, with detailed
composition as follows: (For detailed generation process,
please refer to Appendix P)

Basic Graphs. Basic graphs consist of 60 pairs of 1-WL-
indistinguishable graphs from an exhaustive search and in-
tentionally designed to be non-regular. This part can be
regarded as an augmentation of the EXP dataset with simi-
lar difficulty. Nevertheless, it offers a greater abundance of
instances and more intricate graph patterns. The relatively
small size also facilitates visualization and analysis.

Regular Graphs. Regular graphs consist of 140 pairs of reg-

2CFI is short for Cai-Furer-Immerman algorithm, which can
generate counterexample graphs for any k-WL.
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(a) Basic (b) Simple Regular (c) Strongly regular (d) Extension (e) CFI
Figure 2. BREC dataset samples

ular graphs, subcategoried to simple regular graphs, strongly
regular graphs, 4-vertex condition graphs and distance regu-
lar graphs. A regular graph refers to a graph where all nodes
possess the same degree. It is 1-WL-indistinguishable, and
some studies delve into the analysis of GNN expressiveness
from this perspective (Li et al., 2020; Zhang & Li, 2021). By
expanding upon the existing subdivisions of regular graphs,
this section widens the range of difficulty and complexity.
Moreover, unlike the previous datasets, regular graphs are
not limited to sharing identical parameters for all graphs
within each category, greatly enhancing diversity. More
details about regular graphs can be found in Appendix A.

Extension Graphs. Extension graphs consist of 100 pairs
of graphs inspired by Papp & Wattenhofer (2022). They
proposed 4 types of theoretical GNN extensions: k-WL hier-
archy (k-WL), substructure-counting (Sk), k-hop-subgraph
(Nk), and node-marking (Mk). These extensions do not
possess a strict comparative relationship with each other.
Leveraging the insights from theoretical analysis and some
empirically derived findings, we generated and sampled
graphs between 1-WL and 3-WL distinguishing difficulty
to improve granularity. For more detailed definition of the
GNN extensions, please refer to Appendix E.

CFI Graphs. CFI graphs consist of 100 pairs of graphs
inspired by Cai et al. (1989). They developed a method to
generate graphs distinguishable by k-WL but not by (k −
1)-WL for any k. We firstly implement it and create 100
pairs of graphs spanning up to 4-WL-indistinguishable, even
surpassing the current research’s upper bounds. As the most
challenging part, it pushes the upper limit of difficulty even
higher. Furthermore, the graph sizes in this section are
larger than other parts (up to 198 nodes). It intensifies the
challenge of the dataset, demanding a model’s ability to
process graphs with heterogeneous sizes effectively.

3.2. Advantages

Difficulty. The CFI graphs raise difficulty to 4-WL-
indistinguishable. The newly involved 4-vertex condition
and distance regular graphs also pose greater challenges.

Granularity. The different classes of graphs in BREC
exhibit varying difficulty levels, each contributing to the
dataset in distinct ways. Basic graphs contain fundamental
1-WL-indistinguishable graphs as a starting point. Regu-
lar graphs extend the CSL and SR25 datasets. The major
components of regular graphs are simple regular graphs
and strongly regular graphs, where 1-WL and 3-WL fail,
respectively. Including 4-vertex condition graphs and dis-
tance regular graphs further elevates the complexity. Ex-
tension graphs bridge the gap between 1-WL and 3-WL,
offering a finer-grained comparison for evaluating models
beyond 1-WL. CFI graphs span the difficulty up to 4-WL-
indistinguishable. By comprehensive compositions, BREC
explores the boundaries of graph pattern distinguishability.

Scale. While previous datasets relied on only a few essen-
tially different graphs, BREC utilizes a collection of 800
different graphs organized as 400 pairs. This significant
increase in the number of graphs greatly enhances the diver-
sity. The larger graph set in BREC also contributes to a more
varied distribution of graph statistics (Appendix F). In con-
trast, previous datasets such as CSL and SR25 only have the
same number of nodes and degrees across all graphs. BREC
can also be easily further scaled up to 319600 pairs by iter-
ating over all possible compare combinations, or even more
by adding more graphs as it is a small sample of what we
have done in the generation process (Appendix P). However,
we deliberately did not scale it to facilitate a lower testing
burden and balance the distribution of graphs with different
difficulties. The experiments also verify that current size is
enough to find subtle differences between models.
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Figure 3. Evaluation Method. (a) illustrates the training frame-
work, where two non-isomorphic graphs are input into a Siamese
network architecture to increase the distance between their respec-
tive representations. (b) presents the RPC (Reliability and Per-
formance Characterization) pipeline, which comprises two main
components: the Major Procedure and the Reliability Check. The
Major Procedure operates on non-isomorphic pairs to quantify the
external differences, whereas the Reliability Check is performed
on isomorphic pairs to assess internal fluctuations. We calculate
the corresponding T 2-statistics and compare them with a prede-
fined threshold. A pair is considered successfully distinguished
only if it passes both tests.

4. RPC: A New Evaluation Diagram
This section introduces a novel training framework and
evaluation diagram for BREC. Unlike previous datasets,
BREC departs from the conventional classification setting,
where each graph is assigned a label, a classification model
is trained, and the accuracy on test graphs serves as the
measure of expressiveness. The labeling schemes used in
previous datasets like semantic labels based on SAT con-
ditions in EXP, or distinct labels for essentially different
graphs in CSL and SR25, do not apply to BREC. There
are two primary reasons. First, BREC aims to enrich the
diversity of graphs, which precludes using a semantic la-
bel tied to SAT conditions, as it would significantly limit
the range of possible graphs. Second, assigning a distinct
label to each graph in BREC would result in an 800-class
classification problem, where performance could be influ-
enced by factors other than expressiveness. Our core idea
is to measure models’ practical ”separating power” directly.
Thus BREC is organized in pairs, where each pair is indi-

vidually tested (i.e., we train an individual GNN for each
pair) to determine whether a GNN can distinguish them. By
adopting a pairwise evaluation method, BREC provides a
more focused measure of models’ expressiveness, aligning
to assess distinguishing ability.

Nevertheless, how can we say a pair of graphs is success-
fully distinguished? Previous researchers tend to set a small
threshold (like 1E-4) manually. If the embedding distance
between them is larger than the threshold, the GNN is con-
sidered can distinguish them. This setting may satisfy pre-
vious datasets’ requirements due to the relatively simple
construction. However, it lacks reliability on numerical pre-
cision with more complex graphs where tiny differences may
even overlap with numerical fluctuations. In order to yield
dependable outcomes, we propose an evaluation method
measuring both external difference and internal fluctua-
tions. Furthermore, we introduce a training framework for
pairwise data, employing the siamese network design (Koch
et al., 2015) and contrastive loss (Hadsell et al., 2006; Wang
et al., 2018a). The pipeline is depicted in Fig 4(a). We
also did an ablation study on the effectiveness of our RPC,
shown in Appendix H.

4.1. Training Framework

We adhere to the siamese network design (Koch et al., 2015)
to train a model to distinguish each pair of graphs. The
central component consists of two identical models main-
taining identical parameters. For a pair of graphs inputted, it
outputs a pair of embeddings. Subsequently, the difference
between them is assessed using cosine similarity. The loss
function is formulated as follows:

L(f,G,H) = Max(0,
f(G) · f(H)

||f(G)|| ||f(H)||
− γ), (1)

where the GNN model f : {G} → Rd, G and H are two
graphs, and γ is a margin hyperparameter (set to 0 in our
experiments). The loss function aims to promote the cosine
similarity value lower than γ, thereby encouraging a greater
separation between the two graph embeddings.

The training process yields several benefits for the mod-
els. Firstly, it helps the GNN to achieve its theoretical
expressiveness. The GNN expressiveness analysis focuses
primarily on the network’s structure without imposing any
constraints on its parameters, which means it is exploring
the expressiveness of a group of functions. If a model
with particular parameters can distinguish a pair of graphs,
the model’s design and structure are considered possess-
ing sufficient expressiveness. However, it is impractical
to iterate all possible parameter combinations to test the
real upper bound. Hence, training can realize searching
in the function space, enabling models to achieve better
practical expressiveness. Furthermore, training aids com-
ponents to possess specific properties, such as injectivity
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and universal approximation, which are vital for attaining
theoretical expressiveness. These properties require specific
parameter configurations, but randomly initialized param-
eters may not satisfy. Moreover, through training, model-
distinguishable pairs are more easily discriminated from
model-indistinguishable pairs, which helps reducing the
false negative rate caused by numerical precision. The dif-
ference between model-distinguishable pairs’ embeddings
is further magnified in the pairwise contrastive training pro-
cess. However, the difference for model-indistinguishable
pairs caused by numerical precision remains unaffected
mainly. The framework is shown in Fig 4(a). We also con-
ducted an ablation study comparing training and random
weights, as presented in Appendix G.

4.2. Evaluation Method

We evaluate models by comparing the outputs of two non-
isomorphic graphs. If we notice a significant difference
between the outputs, we conclude that the GNN can dis-
tinguish the pair of graphs. However, setting a suitable
threshold can be challenging. A large threshold may yield
false negatives, which means the model can distinguish the
pair, but the observed difference falls short of the thresh-
old. Conversely, a small threshold may yield false positives,
which means the model cannot distinguish the pair, but fluc-
tuating errors cause the difference to exceed the threshold.

To address the issue of fluctuating errors, we draw inspira-
tion from Paired Comparisons (Fisher, 1992). It involves
comparing two groups of results instead of a single pair.
The influence of random errors is mitigated by repeatedly
generating results and comparing the two groups of results.
Building upon it, we introduce a method called Reliable
Paired Comparison (RPC) to verify whether a GNN gen-
uinely produces distinct outputs for a pair of graphs. The
pipeline is depicted in Fig 4(b).

RPC consists of two main components: Major Procedure
and Reliability Check. The Major Procedure is conducted
on a pair of non-isomorphic graphs to measure their dissim-
ilarity. In contrast, the Reliability Check is conducted on
graph automorphisms to capture internal fluctuations.

Major Procedure. Given two non-isomorphic graphs G,H,
we create q copies of each by random permutation (still
isomorphic to original graph) to generate two groups of
graphs, denoted as:

Gi, Hi, i ∈ [q]. (2)

Supposing the GNN f : {G} → Rd, we first calculate q
differences utilizing Paired Comparisons.

di = f(Gi)− f(Hi), i ∈ [q]. (3)

Assumption 4.1. di are independent N (µ,Σ) random vec-
tors.

The above assumption is based on a more basic assumption
that f(Gi), f(Hi) follow Gaussian distributions, which pre-
sumes that random permutation only introduces Gaussian
noise to the result.

If the GNN cannot distinguish G and H, the mean differ-
ence should satisfy µ = 0. To check whether the equation
holds, we can conduct an α-level Hotelling’s T-square test,
comparing the hypotheses H0 : µ = 0 against H1 : µ ̸= 0.
The T 2-statistic for µ is calculated as follows:

T 2 = q(d− µ)TS−1(d− µ), (4)

where

d =
1

q

q∑
i=1

di, S =
1

q − 1

q∑
i=1

(di − d)(di − d)T . (5)

Hotelling’s T-square test proves that T 2 is distributed as
an (q−1)d

q−d Fd,q−d random variable, where Fd,q−d represents
F -distribution with degree of freedom d, q − d (Hotelling,
1992). The theorem establishes a connection between the un-
known parameter µ and a definite distribution Fd,q−d, allow-
ing us to confirm the confidence interval of µ by testing the
distribution fit. To test the hypothesis H0 : µ = 0, we sub-
stitute µ = 0 into Equation (4), obtaining T 2

test = qd
T
S−1d.

Then an α-level test of H0 : µ = 0 versus H1 : µ ̸= 0
accepts H0 (the GNN cannot distinguish the pair) if:

T 2
test = qd

T
S−1d <

(q − 1)d

(q − d)
Fd,q−d(α), (6)

where Fd,q−d(α) is the upper (100α)th percentile of the
F -distribution Fd,q−d (Fisher, 1950) with d and q − d de-
grees of freedom. Similarly, we reject H0 (the GNN can
distinguish the pair) if

T 2
test = qd

T
S−1d >

(q − 1)d

(q − d)
Fd,q−d(α). (7)

Reliability Check. With an appropriate choice of α, the
Major Procedure provides a dependable confidence inter-
val for assessing the distinguishability. However, manually
selected α based on heuristics may not be optimal. Further-
more, computational precisions can introduce distribution
shifts in assumed Gaussian fluctuations. To address this is-
sue, we introduce the Reliability Check. It bridges external
differences between two graphs and internal fluctuations
within a single graph.

WLOG, we replace H by permutation of G, i.e., Gπ . We can
then obtain the internal fluctuations within G by comparing
it with Gπ, and the external difference between G and H
by comparing G and H. We utilize the same step as Major
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Procedure on G and Gπ , calculating the T 2-statistics as:

T 2
reliability = qd

T
S−1d, (8)

where d =
1

q

q∑
i=1

di,di = f(Gi)− f(Gπ
i ), i ∈ [q], (9)

S =
1

q − 1

q∑
i=1

(di − d)(di − d)T . (10)

Recalling that G and Gπ are isomorphic, the GNN should
not distinguish between them, implying that µ = 0. There-
fore, the test is considered reliable only if T 2

reliability <
(q−1)d
(q−d) Fd,q−d(α). Combining the reliability and distin-

guishability results, we get the complete RPC (Fig 4(b)):

For each pair of graphs G and H, we first calculate the
threshold value, denoted as Threshold = (q−1)d

(q−d) Fd,q−d(α).
Next, we conduct the Major Procedure on G and H for
distinguishability and perform the Reliability Check on G
and Gπ for Reliability. Only when T 2

test from the Major
Procedure, and T 2

reliability from the Reliability Check, satisfy-
ing T 2

reliability < Threshold < T 2
test, do we conclude that the

GNN can distinguishing G and H.

We further propose Reliable Adaptive Paired Comparisons
(RAPC), aiming to adaptively adjust the threshold and pro-
vide an upper bound for false positive rates. In practice, we
use RPC due to its less computational time and satisfactory
performance. For more details, please refer to Appendix I.

5. Experiment
In this section, we evaluate the expressiveness of 23 repre-
sentative models using our BREC dataset.

Model selection. We evaluate six categories of meth-
ods: non-GNN methods, subgraph-based GNNs, k-
WL-hierarchy-based GNNs, substructure-based GNNs,
transformer-based GNNs, and random GNNs. We imple-
ment four types of non-GNN baselines based on Papp &
Wattenhofer (2022); Ying et al. (2021), including WL test
(3-WL and SPD-WL), counting substructures (S3 and S4),
k-hop neighbors (N1 and N2), and node marking (M1).
We implemented them by adding additional features during
the WL test update or using heterogeneous message pass-
ing. Note that they are more theoretically significant than
practical since they may require exhaustive enumeration or
exact isomorphism encoding of various substructures. We
additionally included 16 state-of-the-art GNNs, including
NGNN (Zhang & Li, 2021), DE+NGNN (Li et al., 2020),
DS/DSS-GNN (Bevilacqua et al., 2022), SUN (Frasca et al.,
2022), SSWL P (Zhang et al., 2023a), GNN-AK (Zhao et al.,
2022a), KP-GNN (Feng et al., 2022), I2-GNN (Huang et al.,
2023), PPGN (Maron et al., 2019a), δ-k-LGNN (Morris
et al., 2020), KC-SetGNN (Zhao et al., 2022b), GSN (Bourit-

sas et al., 2022), DropGNN (Papp et al., 2021), OSAN (Qian
et al., 2022), and Graphormer (Ying et al., 2021).

Observation 1. The realized expressiveness closely con-
forms to the anticipated theoretical expectations in gen-
eral. Moreover, it posits an empirical measurement for
GNNs lacking precise theoretical expressiveness.

Table 2 showcases the principal findings. N2 performs best
among non-GNNs, and I2-GNN attains the highest accuracy
among GNNs. Subgraph-based GNNs generally exhibit out-
comes comparable to theoretical comparative results. The
results on k-WL hierarchy-based GNNs reveal distinctions
between global and local methods. Regarding substructure
GNNs and random GNNs, we initially provide empirical
evaluation results on expressiveness. Detailed experimental
specifications are included in Appendix O. We also firstly
implemented the tight bound expressiveness of GNNs to
provide a more precise understanding of the realized expres-
siveness compared to the theoretical expressiveness. The
detailed results can be found in Appendix N.

Non-GNN baselines. 3-WL successfully distinguishes all
Basic graphs, Extension graphs, simple regular graphs and
60 CFI graphs as expected. S3, S4, N1, and N2 demonstrate
excellent performance on small-radius graphs such as Basic,
Regular, and Extension graphs. However, due to their lim-
ited receptive fields, they struggle to distinguish large-radius
graphs like CFI graphs. Noting that the expressiveness of S3

and S4 is bounded by N1 and N2, respectively, as analyzed
by Papp & Wattenhofer (2022). Conversely, M1 is imple-
mented by heterogeneous message passing, which makes
it unaffected by large graph diameters, thus maintaining its
performance across different graphs. SPD-WL is another
1-WL extension operated on a complete graph with shortest
path distances as edge features. It may degrade to 1-WL on
low-radius graphs, causing its relatively poor performance.

Subgraph-based GNNs. Regarding subgraph-based mod-
els, they can generally distinguish almost all Basic graphs,
simple regular graphs and Extension graphs. However, an
exception lies with NGNN, which performs poorly in Ex-
tension graphs due to its simplicial node selection policy
and lack of node labeling. Two other exceptions are KP-
GNN and I2-GNN, both exhibiting exceptional performance
in Regular graphs. KP-GNN can differentiate a substan-
tial number of strongly regular graphs and 4-vertex condi-
tion graphs by peripheral subgraphs, surpassing the 3-WL
partially. And I2-GNN surpasses the limitations of 3-WL
partially through its enhanced cycle-counting power.

Observation 2. The realized expressiveness does not
consistently increase as the subgraph radius expands.
Hence, optimizing the realized expressiveness necessi-
tates identifying an optimal subgraph radius value.

A salient factor affecting the performance lies in the sub-
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Table 2. Pair distinguishing accuracies on BREC

Basic Graphs (60) Regular Graphs (140) Extension Graphs (100) CFI Graphs (100) Total (400)

Type Model Number Accuracy Number Accuracy Number Accuracy Number Accuracy Number Accuracy

Non-GNNs

3-WL 60 100% 50 35.7% 100 100% 60 60.0% 270 67.5%
SPD-WL 16 26.7% 14 11.7% 41 41% 12 12% 83 20.8%

S3 52 86.7% 48 34.3% 5 5% 0 0% 105 26.2%
S4 60 100% 99 70.7% 84 84% 0 0% 243 60.8%
N1 60 100% 99 85% 93 93% 0 0% 252 63%
N2 60 100% 138 98.6% 100 100% 0 0% 298 74.5%
M1 60 100% 50 35.7% 100 100% 41 41% 251 62.8%

Subgraph GNNs

NGNN 59 98.3% 48 34.3% 59 59% 0 0% 166 41.5%
DE+NGNN 60 100% 50 35.7% 100 100% 21 21% 231 57.8%

DS-GNN 58 96.7% 48 34.3% 100 100% 16 16% 222 55.5%
DSS-GNN 58 96.7% 48 34.3% 100 100% 15 15% 221 55.2%

SUN 60 100% 50 35.7% 100 100% 13 13% 223 55.8%
SSWL P 60 100% 50 35.7% 100 100% 38 38% 248 62%
GNN-AK 60 100% 50 35.7% 97 97% 15 15% 222 55.5%
KP-GNN 60 100% 106 75.7% 98 98% 11 11% 275 68.8%
I2-GNN 60 100% 100 71.4% 100 100% 21 21% 281 70.2%

k-WL GNNs
PPGN 60 100% 50 35.7% 100 100% 23 23% 233 58.2%

δ-k-LGNN 60 100% 50 35.7% 100 100% 6 6% 216 54%
KC-SetGNN 60 100% 50 35.7% 100 100% 1 1% 211 52.8%

Substructure GNNs GSN 60 100% 99 70.7% 95 95% 0 0% 254 63.5%

Random GNNs DropGNN 52 86.7% 41 29.3% 82 82% 2 2% 177 44.2%
OSAN 56 93.3% 8 5.7% 79 79% 5 5% 148 37%

Transformer GNNs Graphormer 16 26.7% 12 8.6% 41 41% 10 10% 79 19.8%

graph radius. GNNs yield superior real expressiveness as the
subgraph radius expands and is expected as well for realized
expressiveness. Nonetheless, in practical implementation,
the expansion of the radius may engender the dilution of in-
formation, wherein the receptive field expands to encompass
some extraneous or noisy data. Consequently, we consider
the subgraph radius as a hyperparameter, fine-tuning it for
each model, and present the optimal hyperparameters in
Table 10. Further details can be found in Appendix J.

Observation 3. Profound design and encoding elevate
realized expressiveness and practical performance even
without theoretical expressiveness improvement.

The inclusion of distance encoding in DE+NGNN and I2-
GNN facilitates enhanced differentiation among distinct
hops within a specified subgraph radius, particularly in
larger subgraph radii. While certain node labeling tech-
niques have been proven to possess equivalent expressive-
ness capabilities (Zhang et al., 2023a), it is consistently
observed that distance encoding effectively amplifies real-
ized expressiveness and real-world performance. Regarding
DS-GNN, DSS-GNN, GNN-AK, SUN, and SSWL P, they
employ analogous aggregation schemes with minor varia-
tions in their operations. These models showcase compa-
rable performance, with SSWL P outperforming the rest,
which aligns with the notion that SSWL P achieves the high-
est degree of expressiveness through the implementation of
meticulously selected components (Zhang et al., 2023a).

k-WL hierarchy-based GNNs. For the k-WL-hierarchy-

based models, we adopt two implemented approaches: high-
order simulation and local-WL simulation. PPGN serves
as the representative work for the former, while δ-k-LGNN
and KCSet-GNN as the latter.

Observation 4. The realized expressiveness does not
consistently increase as the number of layer increases.
Hence, optimizing the realized expressiveness necessi-
tates identifying optimal number of layers .

For GNNs emulating k-WL, the number of layers becomes
a pivotal factor as each layer represents one WL iteration.
Increasing the number of layers results in a progressive en-
hancement of expressiveness; nevertheless, it may encounter
over-smoothing issues. Consequently, a diligent exploration
of the optimal hyperparameters is conducted as in K. PPGN
perfectly aligns its performance with 3-WL across all graphs
except for CFI graphs with large radii. Nonetheless, PPGN
still surpasses most GNNs in CFI graphs due to global k-
WL’s global receptive field. For δ-k-LGNN, we set k = 2,
while for KCSet-GNN, we set k = 3, c = 2 to simulate
local 3-WL, adhering to the original configuration. By com-
paring the output results with relatively small diameters, we
observed that local WL matches the performance of general
k-WL. However, local WL exhibits lower performance for
CFI graphs due to insufficient receptive fields.

Substructure-based GNNs For substructure-based GNNs,
we select GSN, which incorporates substructure isomor-
phism counting as features. The best result obtained for
GSN-e is reported when setting k = 4. For further explo-

8



An Empirical Study of Realized GNN Expressiveness

ration of policy and size, please refer to Appendix L.

Random GNNs Random GNNs are unsuitable for GI prob-
lems since even identical graphs can yield different out-
comes due to inherent randomness. However, the RPC can
quantify fluctuations in the randomization process, thereby
enabling testing for random GNNs. We test DropGNN
and OSAN. For more details regarding the crucial factor of
random samples, please refer to Appendix M.

Transformer-based GNNs For transformer-based GNNs,
we select Graphormer, which is anticipated to possess ex-
pressiveness with SPD-WL. The results also verify that.

6. Conclusion and Future Work
This paper undertakes a thorough empirical re-evaluation
of GNN expressiveness, presenting the most comprehen-
sive findings thus far. To address previous limitations on
measurement, this study introduces a novel dataset called
BREC, along with a test methodology named RPC. The ex-
periment reveals a noticeable disparity between theoretical
expectations and realized expressiveness. The algorithms
implemented for the first time also provide valuable tools.

In addition to the expressiveness comparison primarily
based on graph isomorphism (GI), there exist several al-
ternative metrics for expressiveness evaluation, such as sub-
structure countings. However, they are often conducted on
datasets not specifically designed for expressiveness (Huang
et al., 2023; Zhao et al., 2022a; Chen et al., 2020), which
can lead to biased results caused by spurious correlations.
Certain methods may encounter difficulties in identifying a
specific substructure, but they might successfully capture an-
other property that is correlated with substructures, thereby
yielding false indications of high performance. This prob-
lem can be alleviated by BREC with difficult graphs. We
reveal the generation process of BREC in Appendix P to be
utilized in more tasks. We also hope realized expressiveness
will aid researchers exploring in other domains.
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A. Details on Regular Graphs
In this section, we introduce the relationship between four types of regular graphs. The inclusion relations of them are
shown in Figure 4, but their difficulty relations and inclusion relations are not consistent.

Regular Graph

Distance Regular Graph

Strongly Regular Graph

4-Vertex Condition Graph 

Figure 4. Regular graphs relationship

A graph is deemed a regular graph when all of its vertices possess an identical degree. If a regular graph, with v vertices and
degree k, satisfies the additional conditions wherein any two adjacent vertices share λ common neighbors, and any two
non-adjacent vertices share µ common neighbors, it is categorized as a strongly regular graph. Hence, it can be represented
as srg(v, k, λ, µ), denoting its four associated parameters. It is worth mentioning that the diameter of a connected strongly
regular graph is always 2 (Brouwer et al., 2012).

Regular graphs and strongly regular graphs find wide application in expressiveness analysis. The difficulty of strongly
regular graphs surpasses that of general regular graphs due to the imposition of additional requirements. Notably, the
simplest strongly regular graphs with identical parameters (srg(16, 6, 2, 2)) are exemplified by the Shrikhande graph and the
4× 4-Rook’s graph, as depicted in Figure 2(c).

Both 4-vertex condition graphs and distance regular graphs introduce heightened complexities, albeit in opposing directions.
A 4-vertex condition graph is a strongly regular graph with an additional property that mandates the determination of
the number of edges between the common neighbors of two vertices based on their connectivity (Brouwer et al., 2023).
Conversely, distance regular graphs expand upon the definition of strongly regular graphs by specifying that for any two
vertices v and w, the count of vertices at a distance j from v and at a distance k from w relies solely on j, k, and the distance
between v and w. Notably, a distance regular graph with a radius of 2 is equivalent to a strongly regular graph.

The 4-vertex condition graph has yet to be explored in previous research endeavors. Similarly, instances of distance regular
graphs are relatively scarce and analyzing them through examples proves to be challenging. To encourage further research
in these domains, we have incorporated them into BREC.

B. Node Features
In this section, we present the concept of node features and edge features in graphs.

We commence by providing the definition of graphs using an adjacency matrix representation. Consider a graph where
the node features are represented by a dn-dimensional vector, and the edge features are represented by a de-dimensional
vector. This graph can be denoted as G = (V(G),E(G)), where V(G) ∈ Rn×dn represents the node features, and
E(G) ∈ Rn×n×(de+1) represents the edge features, with n being the number of nodes in the graph. The adjacency matrix
of the graph is denoted as A(G) ∈ Rn×n = E(G):,:,(de+1), where A(G)i,j = 1 if (i, j) ∈ E(G) (i.e., if nodes i and j are
connected by an edge), otherwise A(G)i,j = 0. The feature of node i is represented by V (G)i,:, and the feature of edge (i, j)
is represented by E(G)i,j,1:de

. The permutation (or reindexing) of G is denoted as Gπ = (V(G),E(G)) with permutation
π : [n] → [n], such that V (G)i,: = V (G)π(i),: and E(G)i,j,: = E(G)π(i),π(j),:.

Next, we explore the utilization of features. It is evident that incorporating node features during initialization and edge
features during message passing can enhance the performance of GNNs, given appropriate hyperparameters and training.
However, we should consider whether features can truly represent graph structures or provide additional expressiveness. Let
us categorize features into two types.

12
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The first type involves fully utilizing the original features, such as distances to other nodes or spectral embeddings. While
using these features can aid GNNs in solving Graph Isomorphism (GI) problems, this type of feature requires a dedicated
design to effectively utilize them. For instance, if we aim to recognize a 6-cycle in a graph, we can manually identify the
cycle and assign distinct features to each node within the cycle. In this way, the GNN can recognize the cycle by aggregating
the six distinctive features. However, the injecting strategy influences expressiveness and requires further analysis. Utilizing
distance can also enhance expressiveness but also need a suitable design (like subgraph distance encoding and SPD-WL).

The second type entails incorporating additional features, such as manually selected node identifiers. it is important to note
that this improvement stems from reduced difficulty rather than increased expressiveness. For instance, given a pair of
non-isomorphic graphs with high similarity, we can manually find the components causing the distinguishing difficulty and
assign identifiers to help models overcome them. However, this process is generally unavailable in practice.

In summary, we can conclude that features have the potential to introduce expressiveness, but this should be accomplished
through model design rather than relying solely on the dataset. In the case of BREC, a dataset created specifically for testing
expressiveness, we do not include additional meaningful features. Instead, we employ the same vector for all node features
and edge features and adhere to specific model settings to incorporate graph-specific features, such as the distance between
nodes in distance encoding based models.

C. WL Algorithm
This section briefly introduces the WL algorithm and two high-order variants.

The 1-WL algorithm, short for ”1-Weisfeiler-Lehman,” is an initial version of the WL algorithm. It serves as a graph
isomorphism algorithm and can be employed to generate a distinctive label for each graph.

In the 1-WL algorithm, every node in the graph maintains a state or color, which undergoes refinement during each iteration
by incorporating information from the states of its neighboring nodes. As the algorithm progresses, the graph representation
evolves into a multiset of node states, ultimately converging to a final representation.

To circumvent these examples, researchers have devised a technique to augment each node in the 1-WL test, resulting in the
development of the k-WL test (Babai & Kucera, 1979). The k-dimensional Weisfeiler-Lehman test expands the scope of the
test to consider colorings of k-tuples of nodes instead of individual nodes. This extension allows for a more comprehensive
analysis of graph structures and assists in overcoming the limitations posed by certain examples.

In addition to the k-WL test, Cai et al. (1989) proposed an alternative WL test algorithm that also extends to k-tuples. This
variant is commonly referred to as the k-FWL (k-folklore-WL) test. The k-FWL test differs from the k-WL test in terms of
how neighbors are defined and the order in which aggregation is performed on tuples and multisets.

There are three notable results associated with these tests:

1 1-WL = 2-WL

2 k-WL > (k − 1)-WL, (k > 2)

3 (k − 1)-FWL = k-WL

More details can be found in Sato (2020); Huang & Villar (2021).

D. Circulant Skip Links (CSL) Graphs
A CSL graph is defined as follows: Let r and m be co-prime natural numbers with r < m − 1. G(m, r) = (V,E) is
an undirected 4-regular graph with V = [m], where the edges form a cycle and include skip links. Specifically, for the
cycle, (j, j + 1) ∈ E for j ∈ [m − 1], and (m, 1) ∈ E. For the skip links, the sequence is recursively defined as s1 = 1,
si+1 = (si + r) mod m+ 1, and (si, si+1) ∈ E for any i ∈ N. Two Sample graphs with m = 10, r = 2 or 3 are shown in
Fig 1(b).

In the CSL dataset, 10 CSL graphs with m = 41 and r = 2, 3, 4, 5, 6, 9, 11, 12, 13, 16 are generated. Thus resulting in 10
non-isomorphic but 1-WL-indistinguishable graphs.
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Figure 5. BREC Statistics

E. GNN Extensions
In this section, we revisit definitions of the four GNN extensions as proposed by Papp & Wattenhofer (2022).

k-WL hierarchy (k-WL). The same as k-dimensional Weisfeiler-Leman algorithm.

Substructure-counting (Sk). Let us define an Sk GNN as follows: we assume that there is a preprocessing phase where for
each k′ ∈ {1, 2, ..., k}, we consider every different connected graph G on k′ nodes (up to isomorphism), and we count the
number of times this graph G′ appears as an induced subgraph such that u is one of the nodes of G′. We add these numbers
as new features to each node u in the graph, and then we run a standard GNN on the graph with these extended features.

k-hop-subgraph (Nk). We assume that there is a mapping from all possible induced k-hop neighborhoods (that is, all
graphs of radius at most k up to isomorphism) to the real numbers, and each node u is equipped with this number as an extra
feature in a preprocessing step. This is then followed by regular message passing (i.e. a standard GNN) for enough rounds.

node-marking (Mk). We define Mk as the GNN which combines a standard GNN run over all distinct k′-markings of u,
for every k′ ∈ {0, 1, ..., k}. That is, Mk considers every version of the d-hop neighborhood around u obtained by marking
at most k distinct nodes, computes an embedding for u with the same GNN in each case, and then combines these into a
final embedding for u.

Extension graphs are generated by comparing various GNN extensions with specific examples. For a detailed description of
the generation process, please refer to Appendix P.

F. BREC Statistics
Here we give some statistics of the BREC dataset, shown in Figure 5.

G. Ablation Study on Training and Random Weight
In this section, we conducted an ablation study to investigate the necessity of training. By examining the performance
degradation resulting from the removal of the training phase, we confirmed the essential nature of the training process. The
results are presented in Table 3.

H. Abliation Study on RPC
To evaluate the necessity of RPC, we conducted an ablation study to compare it with a simple threshold strategy. The datasets,
training parameters, and sample sizes remained constant; the only variable was the evaluation method. We calculated the
mean embeddings for two graph sets requiring differentiation and used the L2 norm of their differences as the distance
metric. We then compared the outcomes using various threshold levels, with the results detailed in Table 4.

The configuration ’Different 1E-4’ indicates that two distinct sets of graphs are differentiated with a threshold of 1E-4;
the number associated with this configuration reflects the count of successfully distinguished graph pairs. Conversely,
’Same 1E-4’ applies to graph sets from identical graphs with the same threshold. Here, a result of 0 would imply complete
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Table 3. Ablation study on training

Model Random Performance Training Performance Performance Degradation Compared to Original Results

NGNN 166 166 0 %
DE+NGNN 226 231 2.2 %
DS-GNN 80 222 64.0 %
DSS-GNN 142 221 35.7 %
SUN 216 223 3.1 %
SSWL P 224 248 9.7 %
GNN-AK 219 222 1.4 %
KP-GNN 253 275 8.0 %
I2-GNN 267 281 5.0 %
PPGN 212 233 9.0 %
δ-k-LGNN 58 216 73.1 %
KC-SetGNN 207 211 1.9 %
GSN 254 254 0 %
DropGNN 8 177 95.5 %
OSAN 124 148 16.2 %
Graphormer 79 79 0 %

Table 4. Ablation study on RPC

Model Different 1E-4 Same 1E-4 Different 1E-1 Same 1E-1 Each Pair Threshold Largest Threshold RPC

NGNN 331 160 191 25 290 161 166
DE+NGNN 400 214 297 75 322 221 231
DS-GNN 241 88 223 19 260 201 222
DSS-GNN 247 168 186 41 261 15 221
SUN 263 221 199 48 255 44 223
SSWL P 255 109 223 0 264 229 248
GNN-AK 234 18 128 0 244 217 222
KP-GNN 304 136 260 9 295 206 275
I2-GNN 336 123 261 0 304 281 281
PPGN 392 189 339 107 315 0 233
δ-k-LGNN 209 0 131 0 245 211 216
KC-SetGNN 270 237 211 0 234 211 211
GSN 260 4 254 0 259 254 254
DropGNN 400 400 400 400 327 191 177
OSAN 0 0 0 0 236 1 148
Graphormer 0 0 0 0 167 68 79
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Figure 6. RAPC pipeline.

accuracy, as no false positives—incorrectly distinguished pairs—are expected. Under the ’Largest Threshold’ setting, the
threshold is determined by the greatest distance among identical graphs and then applied to different graphs to secure optimal
and trustworthy outcomes. Conversely, in the ’Each Pair Threshold’ configuration, a unique threshold for each graph pair is
set based on the distance among identical graphs, but this method is still considered undependable. For indistinguishable
graphs, the distances between identical sets and different sets are thought to be from the same statistical distribution. Hence,
there is a 50% chance that the distance between identical sets could be greater than that between different sets, potentially
resulting in erroneous identification. The ’RPC’ describes the outcomes when using RPC for evaluations with the same
results as in main Table 2.

The study revealed that a small fixed threshold often leads to unreliable results, as shown by the misclassified samples in
’Same 1E-4’. The issue persists with larger thresholds and is further compounded by performance decline. Using a specific
threshold for each graph pair (’Each Pair Threshold’) is also unreliable. Certain methods, such as DE+NGNN and PPGN,
have at times failed to outperform 3-WL. Nevertheless, these methods have demonstrated superior performance to 3-WL,
which reliably discriminates between 270 graph pairs. While the ’Largest Threshold’ method appears reliable, we noted a
decline in performance, especially for some models.

In conclusion, our RPC illustrates a clear advantage in providing robust and dependable results with a user-friendly and
widely applicable approach, underscoring its importance.

I. RAPC: a Reliable and Adaptive Evaluation Method
In this section, we propose RAPC with an additional stage called adaptive confidence interval based on RPC. Though RPC
performs excellently in experiments with a general theoretical guarantee in reliability, with manually setting α. We still
want to make the procedure more automated. In addition, we found that the inner fluctuations of each pair, i.e. T 2

reliability,
vary from pairs. This means some graph outputs are more stable than others, and their threshold can be larger than others.
However, it is impossible to manually set the confidence interval (α) for all pairs, thus, we propose an adaptive confidence
interval method to solve this problem. The key idea is to set the threshold according to minimum internal fluctuations.

Given a pair of non-isomorphic graphs G and H to be tested. For simplicity, we rename G as G1, H as G2. For each graph
(G1 and G2), we generate p groups of graphs, with each group containing 2q graphs, represented by:

Gi,j,k, i ∈ [2], j ∈ [p], k ∈ [2q]. (11)

Similarly, we can calculate T 2-statistics for each group (2p groups in total):

T 2
i,j = qd

T

i,jSi,jdi,j , i ∈ [2], j ∈ [p]. (12)
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where

di,j =
1

q

q∑
k=1

di,j,k, di,j,k = f(Gi,j,k)− f(Gi,j,k+q), i ∈ [2], j ∈ [p], k ∈ [q],

Si,j =
1

q − 1

q∑
j=1

(di,j,k − di,j)(di,j,k − di,j)
T .

(13)

Similar to major procedure, we can conduct an α-level test of H0 : δ = 0 versus H1 : δ ̸= 0, it should always accept H0(the
GNN cannot distinguish them) since the 2q graphs in each group are essentially the same. And T 2-statistics should satisfy
the:

T 2
i,j = qd

T

i,jSi,jdi,j <
(q − 1)n

(q − n)
Fn,q−n(α). (14)

If the GNN can distinguish the pair, T 2
test in major procedure and T 2

i,j in adaptive confidence interval should satisfy the:

T 2
test >

(q − 1)n

(q − n)
Fn,q−n(α) > T 2

i,j ,∀i ∈ [2], j ∈ [p]. (15)

Thus we set the adaptive confidence interval as Threshold = Maxi∈{1,2}, p∈{1,...,P}{T 2
i,p}. Then we conduct Major

Procedure and Reliability Check based on Threshold similar to RPC. The pipeline is shown in Fig 6.

In our analysis of the current evaluation method, we take into account the probabilities of false positives and false negatives.
Typically, achieving extremely low levels of both probabilities simultaneously is challenging, and there is often a trade-off
between them. However, since false positives can undermine the reliability of the methods, we prioritize establishing
stringent bounds for this type of error. On the other hand, false negatives are explained in a more intuitive manner,
acknowledging their presence but placing greater emphasis on minimizing false positives.

Regarding false positives, we give the following theorem.

Theorem I.1. The false positive rate with adaptive confidence interval is 1
22P

.

Proof. We first define false positives more formally. False positives mean the GNN f cannot distinguish G and H, but we
reject H0 and accept H1. f cannot distinguish G and H means f(G) = f(H) = f(Gπ) ∼ N (µG ,ΣG). Since di in major
procedure and di,j,k in adaptive confidence interval are derived from paired comparison by same function outputs, i.e., from
f(G) and f(H), and from f(G) and f(Gπ), respectively. di and di,j,k should follow the same distribution, leading that
T 2

test and T 2
i,j are independently random variables following the same distribution. Thus P (T 2

test > T 2
i,j) =

1
2 . Then we can

calculate the probability of false positives as

P (Rejecting H0) = P (T 2
test > Threshold = Maxi∈[2], j∈[p]{T 2

i,j}) =
1

22p
. (16)

Thus we proof theorem I.1.

Regarding false negatives, we propose the following explanation. A small threshold can decrease the false negative rate.
Thus without compromising the rest of the theoretical analysis, we give the minimum value of the threshold. Equation 14
introduces a minimum threshold restriction. We obtain the threshold strictly based on it by taking the maximum value,
which is the theoretical minimum threshold that minimizes the false negative rate.

J. Subgraph GNNs
In this section, we discuss settings for subgraph GNN models. The most important setting is the subgraph radius. As
discussed before, a larger radius can capture more structural information, increasing the model’s expressiveness. However, it
will include more invalid information, making reaching the theoretical upper bound harder. Thus we need to find a balance
between the two.

To achieve this, we first explore the maximum structural information that can be obtained under a given radius. Following
Papp & Wattenhofer (2022), we implement Nk method, which embeds the isomorphic type of k-hop subgraph when
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Table 5. A general theoretical expressiveness upper bound of subgraph with radius k

Radius 1 2 3 4 5 6 7 8 9 10

#Accurate on BREC 252 298 300 327 326 385 398 398 399 400

Table 6. The performance of 3-WL with different iteration times

Iterations 1 2 3 4 5

#Accurate on BREC 193 209 217 264 270

initializing. This method is only available in the theoretical analysis as one can not solve the GI problem by manually giving
graph isomorphic type. We mainly use it as a general expressiveness upper bound of subgraph GNNs. The performance of
Nk on BREC is shown in Table 5. Actually, N3 already successfully distinguishes all graphs except for CFI graphs. k = 6
is an important threshold as Nk outperforms 3-WL (expressiveness upper bound for most subgraph GNNs (Frasca et al.,
2022; Zhang et al., 2023a)) in all types of graphs. An interesting discovery is that increasing the radius does not always lead
to expressiveness increasing as expected. This is caused by the fact that we only encode the exact k-hop subgraph instead of
1 to k-hop subgraphs. This phenomenon is similar to subgraph GNNs, revealing the advantages of using distance encoding.

We then test the subgraph GNNs’ radii by increasing them until reaching the best performance, which is expected to be a
perfect balance. For some methods, radius= 6 is the best selection, which is consistent with the theory. The exceptions
are NGNN, NGNN+DE, KPGNN, I2-GNN and SSWL P. NGNN directly uses an inner GNN to calculate subgraph
representation, whose expressiveness is restricted by the inner GNN. As the subgraph radius increases, though the subgraph
contains information, the simple inner GNN can hardly give a correct representation. That’s why radius= 1 is the best
setting for NGNN. NGNN+DE and I2-GNN add distance encodings, making the subgraph with a large radius can always
clearly extract a subgraph with a small radius. Therefore, a large radius= 8 is available. KPGNN utilizes a similar setting
by incorporating distance to subgraph representation, and radius= 8 is also the best setting. KPGNN can also use graph
diffusion to replace the shortest path distance. Though graph diffusion outperforms some graphs, the shortest path distance
is generally a better solution. Previous findings reveal the advantages of using distance, which we hope can be more widely
used in further research. SSWL P achieves better expressiveness with theoretical minimum components, making more
information available.

K. k-WL Hierarchy GNNs
In this section, we discuss settings for k-WL hierarchy GNN models. k-WL algorithm requires a converged tuple embedding
distribution for GI. However, k-WL hierarchy GNNs do not have the definition of converging. It will output the final
embeddings after a specific number of layers, i.e., the iteration times of k-WL. Thus we need to give a suitable number of
layers where the k-WL converged after the number of iteration times. In theory, increasing the number of layers always
leads to a non-decreasing expressiveness, since the converged distribution will not change furthermore. However, more
layers may cause over-smoothing, leading to worse performance in practice.

To keep a balance, we utilize similar methods for subgraph GNNs. We first analyze the iteration times of 3-WL, shown in
Table 6. One can see 6 iteration times are enough for all types of graphs. Then we increase the layers of k-WL GNNs until
reaching the best performance. We finally set 5 layers for PPGN, 4 layers for KCSet-GNN and 6 layers for δ-k-LGNN.

L. Substructure-based GNNs
In this section, we discuss the performance of substructure-based GNN models. Specifically, we focus on the GSN
(Graph Substructure Network) model proposed by Bouritsas et al. (2022), which offers a straightforward neural network
implementation, denoted as GSN-v, of the Sk substructure. Additionally, we introduce GSN-e, a slightly stronger version of
GSN-v that incorporates features on edges instead of just nodes.

Experimental results presented in Table 7 demonstrate that GSN-v achieves a perfect match with the performance of Sk.
Furthermore, GSN-e outperforms GSN-v, indicating superior performance when edge features are included.
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Table 7. Substructure-based model performance on BREC

Basic Graphs (60) Regular Graphs (140) Extension Graphs (100) CFI Graphs (100) Total (400)

Model Number Accuracy Number Accuracy Number Accuracy Number Accuracy Number Accuracy

S3 52 86.7% 48 34.3% 5 5% 0 0% 105 26.2%
S4 60 100% 99 70.7% 84 84% 0 0% 243 60.8%

GSN-v(k=3) 52 86.7% 48 34.3% 5 5% 0 0% 105 26.2%
GSN-v(k=4) 60 100% 99 70.7% 84 84% 0 0% 243 60.8%
GSN-e(k=3) 59 98.3% 48 34.3% 52 52% 0 0% 159 39.8%
GSN 60 100% 99 70.7% 95 95% 0 0% 254 63.5%

Table 8. The performance of DropGNN with different sample numbers

#Samples 100 200 400 800 1200 1600

#Accurate on BREC 177 222 242 253 260 OOM

M. Random GNNs
In this section, we delve into the settings for random GNNs. Random GNNs leverage samples from graphs using specific
strategies, and both the number of samples and the sampling strategies have an impact on performance.

For DropGNN, the sampling strategy revolves around a relatively straightforward approach of deleting nodes. As for the
number of samples, it is recommended to set it to the average number of nodes in the dataset. In our reported results, we set
the number of samples to 100, which aligns with the average number of nodes. The ablation study results on the number of
samples can be found in Table 8.

Another approach, OSAN, proposes a data-driven method that achieves similar performance with fewer samples. This is
achieved by training the model to select diverse samples. However, it requires an additional training framework and may not
necessarily lead to improved performance. In our case, we select the edge-deleting strategy and set the number of samples to
20.

N. Tight Bound Expressiveness Measurement
In this section, we aim to clarify two concepts: “expressiveness upperbound” and “expressiveness tight bound.” It is
important to differentiate between these two concepts, with the former typically referring to a model whose expressiveness
upperbound is aligned with a specific hierarchy (e.g., 3-WL), and the latter indicating the precise expressiveness achievable
through an implementation. While previous research has predominantly focused on the “expressiveness upperbound” due to
its connection to other frameworks and ease of analysis and comparison, the concept of “expressiveness tight bound” has
received less attention as it is often considered in isolation from existing work.

Nevertheless, a tight bound can offer significant benefits within our benchmark, serving as a universal framework for
evaluating and comparing all results. To address this gap, we have collected the exact theoretical approximations of various
models and initially implemented them to improve the understanding of expressiveness, as shown in Table 9.

For SWL, GSWL, and SSWL, we recommend referencing the paper by Zhang et al. (2023a). When referring to “unlimited,”
we are discussing OSAN utilizing a random edge deletion strategy, which theoretically offers unlimited expressiveness
but is challenging to achieve in practical applications. In the context of S4 on the edge, we are describing the process of
incorporating substructure information into edges and utilizing the 1-WL algorithm. As for NGNN-WL, KPGNN-WL,
I2-GNN-WL, LWL-Plus, and KC-SetWL, we are referring to enhancing the original models by replacing model layers with
appropriate multiset and hash functions
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Table 9. Tight bound expressiveness

Model Expressiveness Tight Bound Theoretical Performance Practical Performance

NGNN NGNN-WL with k = 1 167 166
DE+NGNN DENGNN-WL with k = 8 247 231
DS-GNN SWL(VS) with k = 6 243 222
DSS-GNN GSWL(VS) with k = 6 232 221
SUN GSWL(VS) with k = 6 232 223
SSWL P SSWL(VS) with k = 8 262 258
GNN-AK GSWL(VS) with k = 6 232 222
KP-GNN KPGNN-WL with k =8 291 275
I2-GNN I2-GNN-WL 301 281
PPGN 3-WL 270 233
δ-k-LGNN LWL-Plus 267 216
KC-SetGNN KC-SetWL 213 211
GSN S4 on edge 254 254
DropGNN M1 251 177
OSAN Unlimited 400 148
Graphormer SPD-WL 83 79

Table 10. Model hyperparameters

Model Radius Layers Inner dim Learning rate Weight decay Batch size Epoch Early stop threshold

NGNN 1 6 16 1e− 4 1e− 5 32 20 0.01
DE+NGNN 8 6 128 1e− 4 1e− 5 32 30 0.01
DS-GNN 6 10 32 1e− 4 1e− 5 32 30 0
DSS-GNN 6 9 32 1e− 4 1e− 4 32 20 0.01
SUN 6 9 32 1e− 4 1e− 4 32 20 0.01
SSWL P 8 8 64 1e− 5 1e− 5 8 20 0.1
GNN-AK 6 4 32 1e− 4 1e− 4 32 10 0.1
KP-GNN 8 8 32 1e− 4 1e− 4 32 20 0.3
I2GNN 8 5 32 1e− 5 1e− 4 16 20 0.2
PPGN / 5 32 1e− 4 1e− 4 32 20 0.2
δ-k-LGNN / 6 16 1e− 4 1e− 4 16 20 0.2
KC-SetGNN / 4 64 1e− 4 1e− 4 16 15 0.3
GSN / 4 64 1e− 4 1e− 5 16 20 0.1
DropGNN / 10 16 1e− 3 1e− 5 16 100 0
OSAN / 8 64 1e− 3 1e− 5 16 40 0
Graphormer / 12 80 2e− 5 0 16 100 0
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O. Experiment Settings
All experiments were performed on a machine equipped with an Intel Core i9-10980XE CPU, an NVIDIA RTX4090
graphics card, and 256GB of RAM.

RPC settings. For non-GNN methods, the output results are uniquely determined, and as such, this part of the experiment
does not require RPC. It is worth noting that most non-GNN baselines involve running graph isomorphism testing software
on subgraphs, and they mainly serve as theoretical references in our evaluation.

Regarding GNNs, we employ RPC with q = 32 and d = 16 to evaluate their performance. Considering a confidence level of
α = 0.95, which is a typical setting in statistics, the threshold should be set to (q−1)d

(q−d) Fd,q−d(α) = 31F16,16(0.95) = 72.34.

To ensure robustness, we repeat all evaluation methods ten times using different seeds selected from the set
{100, 200, . . . , 1000}. We consider the final results reliable only if the model passes the Reliability Check for all graphs
with any seed, meaning that the quantification of the output embedding distance between isomorphic pairs is always smaller
than the threshold. The reported results are selected as the best results rather than the average, as we aim to explore the
upper bound of expressiveness.

Training settings. We employ a Siamese network design and utilize the cosine similarity loss function. Another commonly
used loss function is contrastive loss (Hadsell et al., 2006), which directly calculates the difference between two outputs.
However, we opt for cosine similarity loss due to its advantage of measuring output difference under the same scale through
normalization. This approach prevents model outputs from being excessively amplified, which could otherwise magnify
minor precision errors and treat them as differentiated results of the model.

We use the Adam optimizer with a learning rate searched from {1e − 3, 1e − 4, 1e − 5}, weight decay selected from
{1e − 3, 1e − 4, 1e − 5}, and batch size chosen from {8, 16, 32}. Graphormer, on the other hand, follows the original
training settings on ZINC.

We incorporate an early stopping strategy, which halts training when the loss reaches a small value. While for random
GNNs, we do not utilize early stopping. The maximum number of epochs is typically set to around 20 since the model can
often distinguish a pair relatively quickly.

Model hyperparameters. The most crucial hyperparameters related to expressiveness, such as the subgraph radius for
subgraph GNNs and the number of layers for k-WL hierarchy GNNs, are determined through theoretical analysis, as
outlined in Appendix J and K. These hyperparameters have a direct impact on the expressiveness of the models.

Other hyperparameters also implicitly influence expressiveness. We generally adopt the same settings as previous expres-
siveness datasets, with two exceptions: inner embedding dimension and batch normalization.

The inner embedding dimension reflects the model’s capacity. For smaller and simpler expressiveness datasets used in
the past, a small embedding dimension has been sufficient. However, the appropriate embedding dimension for BREC is
unknown, so we generally conduct a search within the range of 16, 32, 64, 128.

Additionally, we utilize batch normalization for all models, even though it may not have been used in all previous models.
Batch normalization helps control the outputs within a suitable range, which can be beneficial for distinguishing graph pairs.

The detailed hyperparameter settings for each method are provided in Table 10.

Model Costs. We present the time consumption and model parameter size in Table 11 to offer additional information
that helps users to better utilize or optimize the models. Time consumption is divided into two parts: preprocessing time
and evaluation time. Preprocessing time refers to the time taken to prepare the dataset, including tasks like computing
substructures or preprocessing subgraphs. Usually, preprocessing occurs once during hyperparameter tuning, except in
cases such as when adjustments to the subgraph radius are made. Evaluation time denotes the time required to assess each
particular combination of hyperparameters.

To address potential memory constraints or prolonged processing times encountered by some methods when handling
complex graphs, we have excluded 4-vertex condition graphs and 40 pairs of 3-WL-indistinguishable CFI graphs from
their evaluation. The time consumption for these methods is indicated as ‘> K’, showing that processing time exceeds
a certain threshold K. The symbol ‘>> K’ signifies that only those graphs distinguishable by the 3-WL test have been
retained. Consequently, strongly regular graphs, 4-vertex condition graphs, distance-regular graphs, and 40 pairs of 3-WL-
indistinguishable CFI graphs have been removed. By implementing this strategy, we guarantee that the performance of the
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Table 11. Model costs

Model Preprocess Time(s) Evaluation Time(s) Total Time(s) Parameter Size (KB)

NGNN 516 388 904 14
DE+NGNN 3123 1087 4200 787
DS-GNN 2343 3300 5643 173
DSS-GNN 2343 1008 3351 162
SUN 2343 1925 4268 748
SSWL P >>644 >>4085 >>4729 924
GNN-AK 768 1048 1816 4742
KP-GNN 73113 873 73986 366
I2GNN >10460 >7013 >17473 236
PPGN 47 156 477 90
δ-k-LGNN 5 2532 2537 62
KC-SetGNN >>118005 >>5670 >>123675 1416
GSN >5231 >150 >5381 431
DropGNN 393 533 926 33
OSAN <1 187023 187023 749
Graphormer >>66 >>13681 >>13747 3667

models under evaluation is not overestimated, as they fall behind the discriminative power of the 3-WL test.

P. Graph Generation
In this section, we provide an overview of how the graphs in the BREC dataset were generated.

Basic graphs. This category consists of 60 pairs of graphs, each containing 10 nodes. To generate these graphs, the 1-WL
algorithm was applied to all 11.7 million graphs with 10 nodes, resulting in a hash value for each graph. Among these
graphs, 83,074 happened to have identical hash values as others. From this set, 60 pairs of graphs were randomly selected.

Regular graphs. This category includes 140 pairs of regular graphs. For the 50 simple regular graphs, the search was
conducted for regular graphs with 6 to 10 nodes, and 50 pairs of regular graphs with the same parameters were randomly
selected. For the 50 strongly regular graphs, the number of nodes ranged from 16 to 35. The graphs were obtained from
sources such as http://www.maths.gla.ac.uk/ es/srgraphs.php and http://users.cecs.anu.edu.au/ bdm/data/graphs.html. For
the 20 4-vertex condition graphs, a search was conducted on http://math.ihringer.org/srgs.php, and the simplest 20 pairs
of 4-vertex condition graphs with the same parameters were selected. For the 20 distance regular graphs, a search was
performed on https://www.distanceregular.org/, and the simplest 20 pairs of distance regular graphs with the same parameters
were chosen.

Extension graphs. This category consists of 100 pairs of graphs based on comparing results between GNN extensions.
The S3, S4, and N1 algorithms were applied to all 1-WL-indistinguishable graphs with 10 nodes. This yielded 4,612
S3-indistinguishable graphs, 1,132 N1-indistinguishable graphs, and 136 S4-indistinguishable graphs. From these sets, 60
pairs of S3-indistinguishable graphs, 20 pairs of N1-indistinguishable graphs, and 10 pairs of S4-indistinguishable graphs
were randomly selected. Care was taken to ensure that no graphs were repeated. Additionally, 10 pairs of graphs were added
using a virtual node strategy, including 5 pairs obtained by adding a virtual node to a 10-node regular graph and 5 pairs
based on C2l and Cl,l as described in Papp & Wattenhofer (2022).

CFI graphs. This category consists of 100 pairs of graphs generated based on the CFI methods proposed by Cai et al.
(1989). All CFI graphs with backbones ranging from 3 to 7-node graphs were generated. From this set, 60 pairs of
1-WL-indistinguishable graphs, 20 pairs of 3-WL-indistinguishable graphs, and 20 pairs of 4-WL-indistinguishable graphs
were randomly selected.

These different categories of graphs provide a diverse range of graph structures and properties for evaluating the expressive-
ness of GNN models.
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