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Abstract

Fine-tuning Large Language Models (LLMs) is
essential for adapting pre-trained models to down-
stream tasks. Yet traditional first-order optimizers
such as Stochastic Gradient Descent (SGD) and
Adam incur prohibitive memory and computa-
tional costs that scale poorly with model size. In
this paper, we investigate zero-order (ZO) opti-
mization methods as a memory- and compute-
efficient alternative, particularly in the context
of parameter-efficient fine-tuning techniques like
LoRA. We propose JAGUAR SignSGD, a ZO
momentum-based algorithm that extends ZO
SignSGD, requiring the same number of parame-
ters as the standard ZO SGD and only O(1) func-
tion evaluations per iteration. To the best of our
knowledge, this is the first study to establish rig-
orous convergence guarantees for SignSGD in the
stochastic ZO case. We further propose JAGUAR
Muon, a novel ZO extension of the Muon opti-
mizer that leverages the matrix structure of model
parameters, and we provide its convergence rate
under arbitrary stochastic noise. Through ex-
tensive experiments on challenging LLM fine-
tuning benchmarks, we demonstrate that the pro-
posed algorithms meet or exceed the convergence
quality of standard first-order methods, achiev-
ing significant memory reduction. Our theoreti-
cal and empirical results establish new ZO opti-
mization methods as a practical and theoretically
grounded approach for resource-constrained LLM
adaptation. Our code is available at https://
github.com/brain-mmo-lab/ZO_LLM
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1. Introduction
Fine-tuning pre-trained Large Language Models (LLMs)
has become the standard technique in modern natural lan-
guage processing (Howard & Ruder, 2018; Zhang et al.,
2019; 2024a; Lester et al., 2021), enabling rapid adaptation
to diverse downstream tasks with minimal labelled data (Raf-
fel et al., 2020; Sanh et al., 2021; Zaken et al., 2021). These
models, often trained on massive corpora, achieve state-
of-the-art results when fine-tuned on specific applications,
including question answering, summarization, and dialogue
generation. The fine-tuning setup can be considered as a
stochastic unconstrained optimization problem of the form

f∗ := min
x∈Rd

{f(x) := Eξ∼D [f(x, ξ)]} , (1)

where x are parameters of the fine-tuned LLM, D is the data
distribution available for training, and f(x, ξ) is the loss on
data point ξ.

The de facto standard for solving (1) is the use of First-
Order (FO) optimization methods. These approaches as-
sume access to the stochastic gradient ∇f(x, ξ). Classical
FO methods, such as Stochastic Gradient Descent (SGD)
(Amari, 1993) and Adam (Kingma & Ba, 2014), remain the
most widely used techniques for model adaptation due to
their efficiency and compatibility with the backpropagation
algorithm. Nevertheless, in contemporary fine-tuning tasks,
alternative FO algorithms are often preferred.

A recent trend in optimization for LLMs is to represent opti-
mization parameters in matrix form rather than as vectors
(Bernstein & Newhouse, 2024b;a; Pethick et al., 2025). Al-
gorithms such as Shampoo (Gupta et al., 2018) and SOAP
(Vyas et al., 2024) have demonstrated superior performance
on LLM training tasks compared to Adam and SGD (Dahl
et al., 2023), which operate in an element-wise manner and
do not utilize the underlying structure of the model param-
eters. Currently, the canonical matrix-based optimization
algorithm is Muon (Jordan et al., 2024; Liu et al., 2025; Li
& Hong, 2025), which integrates the principles of Shampoo
and SOAP but does not employ any preconditioning matri-
ces (Jordan et al., 2024). The central idea of this method
is to project the gradient at each iteration onto the space of
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semi-orthogonal matrices using the Newton–Schultz algo-
rithm (Bernstein & Newhouse, 2024b).

However, as LLMs continue to scale, the backpropagation
procedure, necessary for FO methods, becomes increas-
ingly expensive in terms of memory consumption. For
instance, the memory cost of computing gradients during
the training of OPT-13B is reported to be more than an or-
der of magnitude larger than that of inference (Zhu et al.,
2023b). This imbalance poses a serious bottleneck for de-
ploying LLM fine-tuning in resource-constrained environ-
ments such as edge devices (Zhu et al., 2023a; Gao et al.,
2024), consumer-grade GPUs (Liao et al., 2024; Yin et al.,
2023), or large-scale distributed settings (Han et al., 2015).
To overcome these limitations, researchers are exploring
various approaches to reduce the size of the required opti-
mizer statistics. One such approach is the SignSGD algo-
rithm, initially developed for distributed optimization (Yang
et al., 2020), but which has also proven effective in LLM
fine-tuning (Peng et al.), owing to its simplicity, memory
efficiency, and surprising empirical effectiveness across a
range of adaptation tasks (Jin et al., 2020; Mengoli et al.,
2025). SignSGD was first rigorously analyzed in the FO
setting by (Bernstein et al., 2018) and (Balles & Hennig,
2017). Minimal memory usage and straightforward hyper-
parameter tuning make SignSGD an attractive choice for
memory-constrained fine-tuning of LLMs (∼ 4/3× mem-
ory usage compared to Adam). Beyond SignSGD, other FO
methods also target memory reduction. AdaFactor (Shazeer
& Stern, 2018) was among the first, lowering memory us-
age by storing a single value per block (∼ 4/3×). Ad-
ditional techniques include quantizing optimizer states to
lower-precision formats (Dettmers et al., 2021; Li et al.,
2023) (∼ 4/3× and ∼ 16/9× respectively) and fusing
the backward pass with optimizer updates (Lv et al., 2023)
(∼ 4/3×), further decreasing memory demands during train-
ing.

Nevertheless, the most memory-efficient methods are based
on the Zero-Order (ZO) optimization technique, which
avoids backpropagation entirely by estimating gradients
using only forward passes. This flexibility allows us to treat
the model as a black box, optimizing performance with
minimal assumptions about its architecture or implemen-
tation details. Recent studies (Malladi et al., 2023a) have
demonstrated the practical benefits of this approach: for
example, the MeZO algorithm applies classical ZO SGD
(Ghadimi & Lan, 2013) to fine-tune LLMs while maintain-
ing four times lower memory requirements than traditional
FO methods (Malladi et al., 2023b) (∼ 10× compared to
Adam (Zhang et al., 2024b)). In ZO methods it is assumed
that we only have access to the values of the stochastic
function f(x, ξ) from (1) (Flaxman et al., 2005; Ghadimi
& Lan, 2013). Within LLMs pretraining or fine-tuning con-
text, oracles are forward passes with small perturbations in

parameters of the model. To estimate gradients, authors use
finite differences:

∇f(x, ξ) ≈ f(x+ τe, ξ)− f(x− τe, ξ)

2τ
e, (2)

where τ > 0 is a small number, frequently referred to as a
smoothing parameter, and e ∈ Rd is some random vector
(Nesterov & Spokoiny, 2017; Duchi et al., 2015; Malladi
et al., 2023b; Zhang et al., 2024b). In the next section, we
provide review about different ZO optimization methods,
that somehow utilize formula (2).

2. Related Work and Our Contributions
ZO gradient estimators. The simplest zero-order gradi-
ent estimator employs the estimate (2) as the stochastic
gradient. However, even this approach presents specific
challenges, particularly regarding the selection of an appro-
priate distribution from which to sample the random vector
e. The most commonly employed distributions include a
uniform sampling over the unit sphere: e ∼ RS(1)d∥·∥ (Flax-
man et al., 2005; Nesterov & Spokoiny, 2017), a Gaussian
distribution with zero mean and identity covariance ma-
trix: e ∼ N (0, I) (Nesterov & Spokoiny, 2017; Ghadimi
& Lan, 2013), and standard basis one-hot vectors (Duchi
et al., 2015; Shamir, 2013). Also, some papers (Lian et al.,
2016; Sahu et al., 2019; Akhtar & Rajawat, 2022) utilize the
so-called full coordinate estimate, which approximates the
gradient across all basis vectors. However, this approach
requires O(d) calls to the zero-order oracle, making it im-
practical for large-scale fine-tuning tasks. Despite the preva-
lence of these approaches, alternative and more complicated
sampling strategies have also been explored.

In (Roberts & Royer, 2023; Nozawa et al., 2025), the au-
thors explore low-dimensional perturbations within random
subspaces. The central concept of random subspace meth-
ods involves generating the perturbation vector e within a
subspace spanned by a projection matrix P ∈ Rd×r and
a low-dimensional random vector ẽ ∈ Rr: e = P ẽ. Typi-
cally, P and ẽ are sampled from a Gaussian distribution and
r ≪ d. The primary motivation for this method lies in the
fact that gradients during the fine-tuning process exhibit a
low-dimensional structure (Nozawa et al., 2025). In (Liu
et al., 2024; Wang et al., 2024), the authors employ a masked
random vector e, wherein at each iteration a random mask
with r non-zero elements mr ∈ {0, 1}d is generated and ap-
plied element-wise to a Gaussian vector e. This procedure
accelerates the optimization step, as only the parameters
corresponding to the active entries in mr are updated, rather
than the entire parameter set. In contrast, the authors of
(Guo et al., 2024b) depart from random mask sampling at
each iteration and instead select an optimal mask mr prior
to training, according to a specific criterion. Consequently,
the update rule (2) modifies only the parameters selected
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by the optimal mask during optimization. In our approach,
we similarly do not utilize all coordinates of the random
vector e in each estimation of (2), instead, we select a single
coordinate at each step. However, unlike previous works
(Liu et al., 2024; Wang et al., 2024; Guo et al., 2024b), we
do not discard information from the remaining coordinates,
but accumulate information from previous iterations. We
employ the JAGUAR zero-order gradient estimation tech-
nique (Veprikov et al., 2024; Nazykov et al., 2024), which
integrates the concept of sampling one-hot basis vectors
with the utilization of a SAGA-like momentum update (De-
fazio et al., 2014). This approach facilitates convergence
in the stochastic setting by leveraging memory from past
iterations, while using the same amount of memory as stan-
dard zero-order methods like ZO SGD (MeZO) (Malladi
et al., 2023b). In the original paper (Veprikov et al., 2024),
the authors do not incorporate a momentum parameter, dis-
carding coordinate information from previous iterations. In
contrast, we introduce a momentum parameter, 0 ≤ β ≤ 1
(see Algorithms 1 and 2), which controls the utilization of
gradients from past iterations. We demonstrate that adding
this momentum β allows the method to converge in the
stochastic non-convex case (see Theorems 3.5 and A.1).

Momentum techniques. Numerous zero-order methods
in the literature incorporate momentum techniques in vari-
ous forms. However, these approaches typically introduce
multiple additional variables of dimension d. Since zero-
order methods are often chosen for fine-tuning tasks to save
memory, the inclusion of such extra variables becomes a
critical limitation in these settings. In (Huang et al., 2022),
authors use variance reduction technique SPIDER (Fang
et al., 2018), that uses approximately 5d parameters: 2d for
ZO gradients, 2d for model parameters and 1d for momen-
tum. In (Chen et al., 2019; Jiang et al., 2024), the authors
employ the Adam optimization technique (Kingma & Ba,
2014), which is frequently used for stochastic non-convex
optimization problems (Chen et al., 2019; et al., 2024). How-
ever, this technique incurs a significant memory overhead,
requiring 4d parameters. The paper (Reddy & Vidyasagar,
2023) utilizes classical heavy-ball momentum within a zero-
order framework, provided, only demonstrating almost sure
convergence to a constant in the non-convex setting. In our
work, we successfully incorporated a momentum technique
using only 2d+ 1 parameters and proved the convergence
rate within the standard stochastic non-convex setting (see
Algorithm 1 and Theorem 3.5). It is worth noting that nu-
merous other zero-order techniques exist in the literature to
achieve convergence when the function f is convex (Gor-
bunov et al., 2022; Nesterov & Spokoiny, 2017; Duchi et al.,
2015), satisfies conditions like PL (Reddy & Vidyasagar,
2023) or ABG (Rando et al., 2024), or in deterministic
settings (Gorbunov et al., 2022). Since our focus is on fine-
tuning problems, which fall under the stochastic non-convex

case, we will not discuss these methods in detail.

Matrix ZO optimization. In the context of zero-order opti-
mization, transitioning to matrix-valued parameters necessi-
tates replacing the random vector e ∈ Rd in zero-order gra-
dient approximation (2) with a random matrix E ∈ Rm×n,
and correspondingly, projecting this matrix E onto a semi-
orthogonal space, as is done in the Muon algorithm (Jordan
et al., 2024). Since the random matrix E is typically drawn
from a known distribution, it is possible to directly sample
orthogonal matrices when computing the gradient estimator
(2). A similar approach has previously appeared in the zero-
order optimization literature (Chen et al., 2024); however,
that work did not consider the Muon algorithm, but rather
focused on sampling two Gaussian matrices V ∈ Rm×r and
U ∈ Rn×r of rank r ≪ min{m,n}. This approach does
not correspond to the decomposition of the random matrix
E, as E is almost surely of full rank. Additionally, alterna-
tive techniques for sampling low-rank matrices have been
proposed in the literature. For instance, in (Yu et al., 2024),
a method analogous to the sampling of low-rank vectors
described in (Roberts & Royer, 2023; Nozawa et al., 2025)
is utilized. In our work, we extend our memory-efficient
momentum method to the ZO version of the matrix-based
Muon algorithm (Jordan et al., 2024) (see Algorithm 2 and
Theorem A.1), keeping the 2d+1 parameter efficiency while
also broadening our analysis to more modern algorithms
that leverage the matrix structure of parameters.

We present a summary of relevant results from the existing
zero-order literature in Table 1.

Table 1: Summary of relevant results from the existing zero-order
literature.

Method Parameter Count Convergence Rate
Stochastic Non-convex Case

Momentum Fine-tuning (LLM) Setup

Ve
ct

or
Pa

ra
m

et
er

s
x

∈
R

d

ZO-SGD (Ghadimi & Lan, 2013) 2 · d ✓ ✗ ✗

ZO-PSGD (Ghadimi et al., 2016) 2 · d ✓ ✗ ✗

ZO-SCD (Lian et al., 2016) (1) 2 · d ✓ ✗ ✗(2)

ZO-SPIDER (Fang et al., 2018) 5 · d ✓ ✓ ✗

ZO-AdaMM (Chen et al., 2019) 4 · d ✓ ✓ ✗

ZO-SignSGD (Liu et al., 2019a) 2 · d ✗ ✓(3) ✗ ✗(4)

Acc-ZOM (Huang et al., 2022) 5 · d ✓ ✓ ✗

DSFBSD (Roberts & Royer, 2023) (1 + r) · d (5) ✗ ✗ ✗

MeZO (Malladi et al., 2023b) 2 · d ✗ ✗ ✓

ZO-ProxSTORM (Qian & Zhao, 2023) 5 · d ✓ ✓ ✗

HB ZO-SGD (Reddy & Vidyasagar, 2023) 3 · d ✗(6) ✓ ✗

Sparse ZO-SGD (Guo et al., 2024a) (2 + r) · d (5) ✗ ✗ ✓

Sparse MeZO (Liu et al., 2024) 3 · d ✗ ✗ ✓

LeZO (Wang et al., 2024) 2 · d ✗ ✗ ✓

ZO-AdaMU (Jiang et al., 2024) 4 · d ✓ ✓ ✓

ZO-SGD-Cons (Kim et al., 2025) 2 · d ✗ ✗ ✓

SGFM (Nozawa et al., 2025) (2 + r) · d (5) ✗ ✗ ✗

CompSGD (Kornilov et al., 2025) 2 · d ✗ ✓(3) ✗ ✓

JAGUAR SignSGD

Algorithm 1
2 · d + 1 ✓ ✓ ✓

M
at

ri
x

Pa
ra

m
et

er
s

X
∈

R
m

×
n

ZO-RMS (Maass et al., 2021) (7) 2 · mn ✗ ✓(3) ✗ ✗

MeZO (Malladi et al., 2023b) 2 · mn ✗ ✗ ✓

LOZO (Chen et al., 2024) (m + n)r + 2 · mn (5) ✓ ✗ ✓

SubZero (Yu et al., 2024) (8) (m + n + r)r + 2 · mn (5) ✗ ✗ ✓

JAGUAR Muon

Algorithm 2
2 · mn + 1 ✓ ✓ ✓

(1) Uses a full coordinate ZO estimator. (2) Considers asynchronous algorithms. (3) Convergence only to a neighborhood of the solution. (4)

Addresses adversarial attacks in deep learning. (5) r ≪ d,m, n is a small number. (6) Only asymptotic convergence to a constant. (7)

Assumes that parameters are symmetric matrices. (8) Assumes sparsity of parameters.

2.1. Our Contributions

While zero-order optimization methods have recently at-
tracted attention for LLM fine-tuning, previous work has
primarily focused on basic algorithms. In this paper, we
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broaden the scope of zero-order optimization by introducing
advanced momentum techniques, specifically adapting the
JAGUAR approach (Veprikov et al., 2024) to the SignSGD
algorithm in the zero-order setting (see Algorithms 1). We
consider this algorithm because SignSGD has demonstrated
state-of-the-art performance in LLM fine-tuning tasks, out-
performing even AdamW (Peng et al.). Our key contribu-
tions are as follows:

• We provide the first convergence analysis in the stochastic
non-convex setting for zero-order SignSGD with momen-
tum (Algorithm 1 and Theorem 3.5), requiring only 2d+1
parameters and O(1) ZO oracle calls per iteration.

• We extend our memory-efficient momentum method to
the Muon algorithm (Algorithm 2 in Appendix A), intro-
ducing the first zero-order variant of Muon that preserves
memory efficiency. We also establish its convergence rate
in the stochastic non-convex setting (Theorem A.1).

• We empirically evaluate the proposed zero-order methods
on challenging LLM fine-tuning benchmarks, demonstrat-
ing their effectiveness and practical relevance.

3. Main results
3.1. Preliminaries

Notations. We denote the ℓ1 and ℓ2 (Euclidean) norms
of a vector x ∈ Rd as ∥x∥1 :=

∑d
i=1 |xi| and ∥x∥22 :=∑d

i=1 x
2
i , respectively. For clarity, matrix-valued vari-

ables are denoted by capital letters. For matrices X ∈
Rm×n, we use the Schatten 1-norm (S1) and Schatten
2-norm (S2, Frobenius): ∥X∥S1

:=
∑d

i=1 |(ΣX)i,i| and
∥X∥2S2

:=
∑d

i=1(ΣX)2i,i =
∑m

i=1

∑n
j=1 X

2
i,j =: ∥X∥2F ,

where X = UXΣXV T
X is the reduced Singular Value De-

composition (SVD) of X . The standard dot product be-
tween two vectors x, y ∈ Rd is defined as ⟨x, y⟩ := xT y.
For matrices X,Y ∈ Rm×n, we define the inner product as
⟨X,Y ⟩ := tr(XTY ).

We now provide several assumptions that are necessary for
the analysis.

Assumption 3.1 (Smoothness). The functions f(x, ξ) are
L(ξ)-smooth on the Rd with respect to the Euclidean norm
∥·∥, i.e., for all x, y ∈ Rd it holds that ∥∇f(x, ξ) −
∇f(y, ξ)∥2 ≤ L(ξ)∥x − y∥2. We also assume that exists
constant L2 := E

[
L(ξ)2

]
.

Assumption 3.2 (Bounded variance of the gradient). The
variance of the ∇f(x, ξ) is bounded with respect to the
Euclidean norm, i.e., there exists σ > 0, such that for all
x ∈ Rd it holds that E

[
∥∇f(x, ξ)−∇f(x)∥22

]
≤ σ2.

We assume access only to a zero-order oracle, which re-
turns a noisy evaluation of the function f(x, ξ). Therefore,

we are limited to using this noisy value f̂(x, ξ) in the es-
timation of the ZO gradient (2). This noise may originate
not only from inherent randomness (stochastic noise), but
also from systematic effects (deterministic noise), such as
computer rounding errors. Therefore, we make a common
assumption about the function f̂(x, ξ) returned by the oracle
(Dvurechensky et al., 2021; Veprikov et al., 2024).

Assumption 3.3 (Bounded oracle noise). The noise in the
oracle is bounded with respect to the Euclidean norm, i.e.,
there exists ∆ > 0, such that for all x ∈ Rd it holds that
E
[∣∣f̂(x, ξ)− f(x, ξ)

∣∣2] ≤ ∆2.

Assumptions 3.1 and 3.2 are standard in the theoretical anal-
ysis of stochastic non-convex zero-order optimization prob-
lems (Reddy & Vidyasagar, 2023; Guo et al., 2024b; Liu
et al., 2024; Wang et al., 2024). In contrast, Assumption 3.3
is frequently omitted in the existing literature, as it is com-
monly presumed that ∆ = 0, implying access to an ideal
zero-order oracle. However, this assumption does not hold
in practice, as numerical errors such as machine precision
inevitably introduce a non-zero perturbation. Consequently,
while ∆ is typically small, it is never zero, which does not
allow us to restore a true gradient along the direction e in
the estimation (2) if we set τ → 0.

3.2. Zero-Order Momentum SignSGD with JAGUAR
Gradient Approximation

In this section, we introduce zero-order SignSGD algorithm
with JAGUAR gradient approximation (Veprikov et al.,
2024; Nazykov et al., 2024) and momentum of the form:

Algorithm 1 Zero-Order Momentum SignSGD with
JAGUAR (JAGUAR SignSGD)

1: Parameters: stepsize γ, momentum β, gradient ap-
proximation parameter τ , number of iterations T .

2: Initialization: choose x0 ∈ Rd and m−1 = 0 ∈ Rd.
3: for t = 0, 1, 2, . . . , T do
4: Sample it ∼ Uniform(1, d)
5: Set one-hot vector et with 1 in the it coordinate
6: Sample stochastic variable ξt ∼ D
7: Compute ∇̃itf(X

t, ξt) := f+−f−
2τ ∈ R,

where f+ = f̂(Xt+τEt, ξt), f− = f̂(Xt−τEt, ξt)

8: Set mt
it

= βmt−1
it

+ (1 − β)∇̃itf(x
t, ξt) and

mt
i̸=it

= mt−1
i ̸=it

for all i ∈ 1, d

9: Set xt+1 = xt − γ · sign(mt)
10: end for
11: Return: xN(T ), where N(T ) ∼ Uniform(1, T ).

The gradient approximation employed in Algorithm 1 de-
viates from that of the original JAGUAR method, as we
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introduce a momentum variable β. The estimator from the
original work can be recovered by setting β = 0.

We now present a lemma characterizing the closeness be-
tween the momentum variable mt from line 8 of Algorithm
1 and the true gradient ∇f(xt).

Lemma 3.4. Consider mt from line 8 of Algorithm 1. Under
Assumptions 3.1, 3.2, 3.3 it holds that:

E
[∥∥mt−∇f(xt)

∥∥2
2

]
= O

[
d3L2γ2

(1−β)2
+ (1−β)dσ2

+ dL2τ2 +
2d∆2

τ2
+

(
1−β

d

)t ∥∥∇f(x0)
∥∥2
2

]
.

Discussion. This lemma closely parallels Lemma 1 from
(Veprikov et al., 2024), with the key distinction that our
analysis incorporates the momentum parameter β, which
was not present in (Veprikov et al., 2024). The introduc-
tion of momentum is essential for proving convergence of
algorithms such as SignSGD (Algorithm 1) and Muon (see
Algorithm 2 in the next section) in the stochastic zero-order
setting (Sun et al., 2023), as it enables more careful handling
of variance σ in the gradient estimates (2). Another impor-
tant difference from prior works is that result from Lemma
3.4 does not involve the term ∥∇f(xt)∥22, which typically
appears in analyses where the zero-order gradient estimator
(2) is constructed using random uniform or Gaussian vec-
tors e (Cai et al., 2021; Kozak et al., 2021; Gorbunov et al.,
2022; Qian & Zhao, 2023). With the presence of the term
∥∇f(xt)∥22, it is not possible to achieve convergence guar-
antees for SignSGD (Algorithm 1) and Muon (Algorithm
2 in Appendix A) even with momentum in the stochastic
zero-order setting. It is worth noting that a similar result can
be obtained when using a full coordinate estimator (Lian
et al., 2016). However, this approach requires O(d) calls
to the zero-order oracle per iteration, which can be com-
putationally expensive. In contrast, the JAGUAR method
achieves the same result with only O(1) oracle calls and
with the same number of parameters, offering significant
improvements in efficiency. This makes our approach par-
ticularly attractive for large-scale optimization tasks, where
reducing oracle complexity is critical.

With the help of Lemma 3.4, we provide convergence analy-
sis of JAGUAR SignSGD (Algorithm 1).

Theorem 3.5. Consider Assumptions 3.1, 3.2 and 3.3. Then
JAGUAR SignSGD (Algorithm 1) has the following con-
vergence rate:

E
[∥∥∥∇f

(
xN(T )

)∥∥∥
1

]
= O

[
δ0
γT

+
d
∥∥∇f(x0)

∥∥
2

T
√
1− β

+
d2Lγ

1− β
+
√
1− βdσ + dLτ +

d∆

τ

]
,

where we used a notation δ0 := f(x0)− f∗.

Corollary 3.6. Consider the conditions of Theorem 3.5. In
order to achieve the ε-approximate solution (in terms of
E
[∥∥∇f(xN(T ))

∥∥
1

]
≤ ε), Algorithm 1 needs T iterations

(ZO oracle calls), with:

γ =

√
δ0(1− β)

d2LT
, β = 1−min

{
1;

√
Lδ0
Tσ2

}
,

τ = (∆/L)
1/2

, ε ≥ d
√
∆L :

T = O

[
δ0Ld

2

ε2
+

δ0Ld
2

ε2
·
(
dσ

ε

)2
]
.

Discussion. The convergence rate established in Theorem
3.5 is similar to what is known for first-order methods (Bern-
stein et al., 2018; Jin et al., 2020; Safaryan & Richtárik,
2021; Kornilov et al., 2025), however our bounds include
an additional factor of d, which is typical for all coordinate-
based methods (Nesterov, 2012; Richtárik & Takáč, 2016),
not just zero-order ones. This dependence on the dimension
arises because coordinate methods process one direction at
a time, accumulating complexity proportional to d. It is also
important to note that without momentum (β = 0), the algo-
rithm can only guarantee convergence to a neighbourhood of
the optimum of size proportional to σ, as shown in previous
works on zero-order SignSGD (Liu et al., 2019a; Kornilov
et al., 2025). Let us also point out that we cannot choose an
arbitrary ε in Corollary 3.6, since there exists an irreducible
(Dvurechensky et al., 2021; Veprikov et al., 2024) error ∆ in
the zero-order oracle (see Assumption 3.3). However, since
∆ is very small, we can still achieve an acceptable accuracy
ε. In our analysis, we use the ℓ1-norm of the gradient as
the convergence criterion, while the standard in non-convex
optimization is the ℓ2-norm (Euclidean) (Ghadimi & Lan,
2013; 2016). By setting εℓ1 =

√
d · εℓ2 , we can rescale our

result of Corollary 3.6 as

TEuclidean = O
[δ0Ld

ε2
+

δ0Ld

ε2
·
(√dσ

ε

)2]
.

This substitution allows us to obtain improved results in
terms of the dependence on d.

4. Experiments
In this section, we present a comprehensive empirical eval-
uation to validate the theoretical contributions of our pro-
posed ZO optimization methods for fine-tuning large lan-
guage models. Our study aims to assess both the accuracy
and memory efficiency of these methods, comparing them
against established ZO and FO baselines. We build upon the
experimental framework proposed in (Zhang et al., 2024b),
extending it to incorporate our novel algorithms: JAGUAR
SignSGD (Algorithm 1) and JAGUAR Muon (Algorithm
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2 in Appendix A). The primary objective is to achieve com-
petitive test accuracy on downstream tasks while maintain-
ing memory efficiency comparable to the baseline methods.
Additionally, we introduce ZO-Muon (Algorithm 3 in Ap-
pendix B), a direct zero-order adaptation of Muon (Jordan
et al., 2024), utilizing the standard Gaussian zero-order gra-
dient estimation (2).

4.1. Experimental Setup

Fine-Tuning Task and Schemes. Fine-tuning LLMs is
a pivotal process in adapting pre-trained models to down-
stream tasks, enabling high performance with limited task-
specific data. To explore the efficacy of our ZO methods,
we focus on the SST2 dataset (Socher et al., 2013), a widely-
used benchmark for binary sentiment classification (Zhang
et al., 2024b; Chen et al., 2024; Malladi et al., 2023b). Addi-
tionally, we measure performance of Llama2-7B (Touvron
et al., 2023) and OPT-13B (Zhang et al., 2022) on Wino-
Grande (Sakaguchi et al., 2021) and COPA (Roemmele
et al., 2011) datasets (see Appendix C). We consider two
fine-tuning schemes:

• Full Fine-Tuning (FT): Updates all parameters of the
pre-trained model.

• Low-Rank Adaptation (LoRA): Introduces a small set
of trainable parameters while keeping the original model
parameters frozen (Hu et al., 2021).

Models. We conduct experiments using four prominent
LLMs: OPT-1.3B (Zhang et al., 2022), a 1.3 billion parame-
ter model from the OPT family; RoBERTa-Large (Liu et al.,
2019b), a 355 million parameter model known for its robust
performance in natural language processing tasks; Llama
2 (Touvron et al., 2023) and OPT-13B (Zhang et al., 2022),
state-of-the-art open-source models widely used for research
and applications. These models represent a range of sizes
and architectures, allowing us to assess the scalability and
generality of our methods.

Methods. We evaluate the following ZO optimization meth-
ods proposed in this work:

• JAGUAR SignSGD: Combines the JAGUAR gradient
approximation with SignSGD and momentum for efficient
updates (Algorithm 1).

• JAGUAR Muon: Integrates JAGUAR with the Muon op-
timizer, incorporating momentum and orthogonalization
(Algorithm 2 in Appendix A).

• ZO-Muon: A novel ZO adaptation of the Muon opti-
mizer, leveraging matrix-based optimization principles
(Algorithm 3 in Appendix B).

Comparison procedure. For comparison, we include base-
line methods from (Zhang et al., 2024b): ZO-SGD (Ghadimi
& Lan, 2013), Acc-ZOM (Huang et al., 2022), ZO-SGD-
Cons (Kim et al., 2025), ZO-SignSGD (Liu et al., 2019a),
ZO-AdaMM (Chen et al., 2019), Forward-Grad (Baydin
et al., 2022), and the FO method FO-SGD (Amari, 1993).
The results for which are given in the benchmark paper. Ad-
ditionally, we compare our methods with LeZO (Wang et al.,
2024), which employs a comparable layer-wise selection
mechanism similar to JAGUAR SignSGD coordinate-wise
updates. We perform experiments for our methods in accor-
dance with similar experiments from (Zhang et al., 2024b).
See other experiments with large-size models and technical
details in Appendix C.

4.2. Results

Table 2: Test accuracy on SST2 for OPT-1.3B and RoBERTa-Large
with FT and LoRA. Best performance among ZO methods is in
bold. Blue indicates outperformance of all baseline ZO methods,
red indicates matching or exceeding FO-SGD.

Method OPT-1.3B RoBERTa-Large

FT LoRA FT LoRA

FO-SGD 91.1 93.6 91.4 91.2
Forward-Grad 90.3 90.3 90.1 89.7
ZO-SGD 90.8 90.1 89.4 90.8
Acc-ZOM 85.2 91.3 89.6 90.9
ZO-SGD-Cons 88.3 90.5 89.6 91.6
ZO-SignSGD 87.2 91.5 52.5 90.2
ZO-AdaMM 84.4 92.3 89.8 89.5
LeZO 85.1 92.3 90.4 91.8

JAGUAR SignSGD 94.0 ± 0.1 92.5 ± 0.5 92.2 ± 0.2 92.2 ± 0.4
ZO-Muon 86.5 ± 0.1 93.5 ± 0.1 72.0 ± 0.1 86.0 ± 0.2
JAGUAR Muon 84.0 ± 0.1 94.0 ± 0.1 85.0 ± 0.1 92.2 ± 0.2

Discussion. Based on the results presented in the Table 2,
proposed methods (Algorithms 1 and 2) that leverage the
JAGUAR approximation of gradient outperform compara-
ble approaches utilizing standard random vector sampling
e in equation (2) or vanilla momentum techniques origi-
nally designed for FO algorithms. JAGUAR SignSGD and
JAGUAR Muon achieve superior performance, demonstrat-
ing the effectiveness and robustness of our method compared
to existing baselines.

4.3. Memory Efficiency

Table 3: GPU allocated memory (GB) for OPT-1.3B (half-
precision, F16) on SST2 with FT and LoRA.

Method FT Memory LoRA Memory

FO-SGD 12.246 5.855
ZO-SGD 4.171 4.125
ZO-AdaMM 13.046 6.132

JAGUAR SignSGD 4.172 4.128
ZO-Muon 4.177 4.130
JAGUAR Muon 4.179 4.132
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A. Zero-Order Muon with JAGUAR Gradient Approximation
In this section, we address the matrix optimization setting, where the optimization variables Xt are elements of the matrix
space Rm×n, rather than the standard vector space Rd. Such a formulation allows for a more direct representation of model
parameters, helping to better capture their underlying structure (Bernstein & Newhouse, 2024b; Pethick et al., 2025). For
the first time in the literature, we introduce a zero-order version of the Muon (Jordan et al., 2024) algorithm (Algorithm 2),
broadening the applicability to matrix-structured optimization tasks where only function evaluations are available.

Algorithm 2 Zero-Order Muon with JAGUAR (JAGUAR Muon)

1: Parameters: stepsize (learning rate) γ, momentum β, gradient approximation parameter τ , number of Newton-Schulz
steps ns_steps, number of iterations T .

2: Initialization: choose X0 ∈ Rm×n and M−1 = 0 ∈ Rm×n.
3: for t = 0, 1, 2, . . . , T do
4: Sample it ∼ Uniform(1,m) and jt ∼ Uniform(1, n)
5: Set one-hot matrix Et with 1 in the (it, jt) coordinate
6: Sample stochastic variable ξt ∼ D
7: Compute ∇̃itf(X

t, ξt) := f̂(Xt+τEt,ξt)−f̂(Xt−τEt,ξt)
2τ ∈ R

8: Set M t
it,jt

= βM t−1
it,jt

+ (1− β)∇̃itf(x
t, ξt) and M t

i ̸=it,j ̸=jt
= M t−1

i ̸=it,j ̸=jt

9: Set Xt+1 = Xt − γ · Newton_Schulz(M t,K = ns_steps)
10: end for
11: Return: XN(T ), where N(T ) ∼ Uniform(1, T ).

1: Subroutine Newton_Schulz(A ∈ Rm×n,K = 10) (Bernstein & Newhouse, 2024b):
2: Set A0 = A/∥A∥F
3: for k = 0, 1, 2, . . . ,K do
4: Ak+1 = 3/2 ·Ak − 1/2 ·Ak(Ak)TAk

5: end for
6: Return: AK ≈ UA · V T

A .

Algorithm 2 is similar to the first-order Muon algorithm (Jordan et al., 2024), the only difference is that we use zero-order
gradient approximation JAGUAR (Veprikov et al., 2024) in line 8.

Let us note that when extending to matrix-valued parameters, it is necessary to slightly modify Assumptions 3.1 and 3.2: all
occurrences of the ℓ2 norm ∥ · ∥2 should be replaced with the Frobenius norm ∥ · ∥F . This modification is justified, as the
following property holds for all matrices A ∈ Rm×n: ∥A∥F = ∥vec(A)∥2. We now provide the convergence analysis of
JAGUAR Muon (Algorithm 2).

Theorem A.1. Consider Assumptions 3.1, 3.2 (with Frobenius norm) and 3.3. Then JAGUAR Muon (Algorithm 2) has the
following convergence rate:

E
[∥∥∥∇f

(
XN(T )

)∥∥∥
S1

]
= O

[
δ0
γT

+
m1/2n

∥∥∇f(X0)
∥∥
2

T
√
1− β

+
m3/2n2γ

1− β
+
√
1− βm1/2nσ

+m1/2nLτ +
m1/2n∆

τ

]
,

where we used a notation δ0 := f(x0)− f∗. We also assume that n ≤ m.

Corollary A.2. Consider the conditions of Theorem A.1. In order to achieve the ε-approximate solution (in terms of
E[∥∇f(XN(T ))∥S1

] ≤ ε), Algorithm 2 needs T iterations (ZO calls), for:

Arbitrary tuning: γ = γ0 · T−3/4(mn)−1, β = 1− T−1/2, τ = (∆/L)
1/2

, ε ≥ m1/2n
√
∆L :

T = O

(mnδ0/γ0 +m1/2n
∥∥∇f(X0)

∥∥
2
+m1/2nLγ0 +m1/2nσ

ε

)4
 .
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Optimal tuning: γ =
√

δ0(1−β)
m3/2n2LT

, β = 1−min

{
1;
√

Lδ0
Tσ2

}
, τ = (∆/L)

1/2
, ε ≥ m1/2n

√
∆L :

T = O

[
δ0Lm

3/2n2

ε2
+

δ0Lm
3/2n2

ε2
·
(
m3/2n2σ

ε

)2
]
.

Discussion. The convergence rate established in Theorem A.1 is consistent with the first-order case (Li & Hong, 2025;
Kovalev, 2025). However, there remain zero-order terms depending on τ and ∆, as for Algorithm 1 (see Theorem 3.5 and
Discussion part after it). From a proof perspective, Theorems 3.5 and A.1 are very similar, since the orthogonalization
operation (Newton_Schulz) in Algorithm 2 can be interpreted as taking the sign of the gradient matrix eigenvalues.
Accordingly, both the form and the convergence rate criterion are analogous (the ℓ1 norm for Algorithm 1 and the S1 norm
for Algorithm 2). Nevertheless, the convergence rates of the two algorithms differ slightly. We examine the two boundary
cases in the following remark.
Remark A.3. For optimal tuning from Corollary A.2 we can specify the number of iterations of Algorithm 2 to achieve the
ε-approximate solution in terms of the total number of parameters d = m · n in the two boundary cases:

• If n ≪ m ≈ d:

Tn≪m≈d = O

[
δ0Ld

3/2

ε2
+

δ0Ld
3/2

ε2
·
(
d3/2σ

ε

)2
]
.

• If n ≈ m ≈
√
d:

Tn≈m≈
√
d = O

[
δ0Ld

7/4

ε2
+

δ0Ld
7/4

ε2
·
(
d7/4σ

ε

)2
]
.

Accordingly, comparing these convergence rates with that obtained in Corollary A.2, we observe an improvement by factors
of d1/2 and d1/4, respectively.

B. Classical ZO Muon
Using gradient estimate in the form (2), we adapt the Muon algorithm (Jordan et al., 2024) into zero-order form:

Algorithm 3 Zero-Order Muon (ZO-Muon)

1: Parameters: stepsize (learning rate) γ, gradient approximation parameter τ , number of iterations T .
2: Initialization: choose X0 ∈ Rm×n

3: for t = 0, 1, 2, . . . , T do
4: Sample Et ∈ Rm×n from N (0, 1)

5: Compute Gt = f̂(Xt+τEt)−f̂(Xt−τEt)
2τ Et

6: Set Xt+1 = Xt − γ · Newton_Schulz(Gt)
7: end for
8: Return: XT

C. Additional Experiments and Fine-Tuning Setup
C.1. Additional experiments

To justify reliability of the proposed in this paper methods we conduct additional experiments with large-size models:
Llama2-7B (Touvron et al., 2023) and OPT-13B (Zhang et al., 2022) on WinoGrande (Sakaguchi et al., 2021) and COPA
(Roemmele et al., 2011) tasks. Within this series of evaluations we implement learning scheduler - cosine scheduler for
Llama2-7B and polynomial decay scheduler for OPT-13B. We repeat the evaluation results from (Zhang et al., 2024b)
as baselines in Table 4. However, in the mentioned work authors do not report memory efficiency which is a necessary
indicator in parameter-efficient fine-tuning competition.
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Table 4: Test accuracy on COPA and WinoGrande for OPT-13B and Llama2-7B with LoRA. Best performance among ZO methods is in
bold. Blue indicates outperformance of all baseline ZO methods, red indicates matching or exceeding FO-SGD.

Method OPT-13B LLaMA2-7B

COPA

FO-SGD 88 85
Forward-Grad 89 82
ZO-SGD 87 86
ZO-SGD-CONS 88 85

JAGUAR SignSGD 89 ± 0.3 88 ± 0.2
ZO-Muon 87 ± 0.2 85 ± 0.2
JAGUAR Muon 87 ± 0.2 88 ± 0.1

WinoGrande

FO-SGD 66.9 66.9
Forward-Grad 62.9 64.3
ZO-SGD 62.6 64.3
ZO-SGD-CONS 63.3 64.6

JAGUAR SignSGD 63.7± 0.1 64.9± 0.1
ZO-Muon 61.9 ± 0.3 61.6 ± 0.2
JAGUAR Muon 62.3 ± 0.2 62.8 ± 0.2

Discussion. This series of experiments on large-scale models further reinforces that the proposed methods consistently
outperform the baselines.The ZO-Adam method was not considered in our experiments due to its prohibitively high memory
requirements. The results demonstrate the effectiveness and scalability of our approach, confirming its advantages even in
challenging, high-capacity settings.

C.2. Evaluation Procedure

Schedulers. We conducted experiments with different scheduling types. Therefore, results for Jaguar Muon (Algorithm
2) and Muon (Algorithm 3) from Tables 2 and 4 are obtained using polynomial scheduling technique with F32-precision.

Hyperparameter Tuning. To ensure optimal performance, we conducted a grid search over key hyperparameters for each
method:

• Momentum parameter: β ∈ {10−3, 10−2, 10−1, 8 · 10−1},

• Learning rate: γ ∈ [10−6, 10−1],

• Smoothing parameter: τ ∈ {10−1, 10−2, 10−3}.

Additional fixed parameters include an epsilon of 10−3 for numerical stability. The best-performing hyperparameters for
each algorithm are detailed on our github https://github.com/brain-mmo-lab/ZO_LLM.

Evaluation Metrics. We assess performance using:

• Test Accuracy: Measured as the percentage of correct predictions on the test set, reflecting model effectiveness.

• GPU allocated memory: Quantified in gigabytes (GB) during training, indicating memory efficiency.

Implementation Details. Experiments were conducted with three independent runs per configuration, each with a randomly
selected seed fixed at the start to ensure reproducibility. We report the mean and standard deviation of test accuracy.
Following (Malladi et al., 2023b), we employed half-precision (F16) training for ZO methods and mixed-precision (FP16)
training for FO methods to optimize memory usage. We use LoRA (Hu et al., 2021) fine-tuning strategy with r = 16.

13
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Training was performed on a single NVIDIA A100 GPU and a single NVIDIA H100 GPU, with memory profiling conducted
using standard PyTorch utilities.

We report the GPU memory allocation for our methods and baselines in Table 5.

Table 5: GPU allocated memory (GB) for OPT-13B and LLaMA2-7B on WinoGrande and COPA with LoRA

Method Llama-7B OPT-13B

COPA

ZO-SGD 13.219 24.710
ZO-Adam 27.971 38.612
JAGUAR SignSGD 13.219 24.712
ZO-Muon 15.021 25.740
JAGUAR Muon 16.032 25.880

WinoGrande

ZO-SGD 14.670 26.407
ZO-Adam 29.440 39.872
JAGUAR SignSGD 14.672 26.408
ZO-Muon 16.992 27.416
JAGUAR Muon 17.992 27.440

C.3. Experimental Methodology

Our experimental procedure was designed to rigorously evaluate the proposed methods under controlled conditions. We
consider diffiren datasets (SST2, COPA, WinoGrande), models (OPT-1.3B, RoBERTa-Large, Llama2 7B, OPT-13B),
fine-tuning schemes (FT, LoRA), and ZO and FO optimization methods (see Tables 2 and 4). We executed the following
steps:

1. Initialization: Loaded the pre-trained model and initialized trainable parameters (all for FT, LoRA-specific for LoRA).

2. Hyperparameter Selection: Performed a preliminary parameter search to identify the best hyperparameters per method,
iterating over the specified ranges and selecting based on validation accuracy.

3. Evaluation: Computed test accuracy on the dataset test set after each run, averaging results across three runs with
different seeds.

4. Memory Profiling: Recorded GPU allocated memory during training, ensuring consistency by maintaining identical
hardware settings.

This methodology ensures a fair comparison across methods, capturing both performance and resource utilization compre-
hensively.
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D. Proofs for ZO Momentum SignSGD with JAGUAR (Algorithm 1)
D.1. Proof of Lemma 3.4

Proof. We start with applying one step recursion to the momentum form the Algorithm 1:

E
[∥∥mt −∇f(xt)

∥∥2
2

]
= E

[∥∥∥mt−1 − (1− β)
〈
mt−1, et

〉
et

+ (1− β)∇̃itf(x
t, ξt)−∇f(xt)

∥∥∥2
2

]
= E

[∥∥∥{I − (1− β)et(et)T
}{

mt−1 −∇f(xt−1)
}︸ ︷︷ ︸

=:at

+ (1− β)et(et)T
{
∇̃f(xt, ξt)−∇f(xt)

}
︸ ︷︷ ︸

=:bt

(3)

−
{
I − (1− β)et(et)T

}{
∇f(xt)−∇f(xt−1)

}︸ ︷︷ ︸
=:ct

∥∥∥2
2

]
,

where we used a notation ∇̃f(x, ξ) :=
∑d

i=1
f̂(x+τei,ξ)−f̂(x−τei,ξ)

2τ ei, and ei is the one-hot vector with 1 in the i-th
coordinate. In equation (3) we also used the classical notation of the identity matrix I ∈ Rd×d.

Now using axillary notations at, bt, ct from equation (3), we divide it into six parts:

E
[∥∥at+1

∥∥2
2

]
= E

[∥∥{I − (1− β)et(et)T
}
at
∥∥2
2

]
︸ ︷︷ ︸

①

+ E
[∥∥(1− β)et(et)T bt

∥∥2
2

]
︸ ︷︷ ︸

②

+ E
[∥∥{I − (1− β)et(et)T

}
ct
∥∥2
2

]
︸ ︷︷ ︸

③

+ E
[
2
〈{

I − (1− β)et(et)T
}
at, (1− β)et(et)T bt

〉]︸ ︷︷ ︸
④

+ E
[
2
〈{

I − (1− β)et(et)T
}
at,
{
I − (1− β)et(et)T

}
ct
〉]︸ ︷︷ ︸

⑤

+ E
[
2
〈
(1− β)et(et)T bt,

{
I − (1− β)et(et)T

}
ct
〉]︸ ︷︷ ︸

⑥

.

(4)

Consider ①. Since it from Algorithm 1 is generated independent and uniform and {ms−1, xs}ts=0 do not depend on it, we
can apply tower property:

① = E
[∥∥{I − (1− β)et(et)T

}
at
∥∥2
2

]
= E

[
(at)T

{
I − (1− β)et(et)T

}T {
I − (1− β)et(et)T

}
at
]

= E
[
(at)T

{
I − (1− β)(2− (1− β))et(et)T

}
at
]

= E
[
(at)T · Eit∼U [1;d]

[
I − (1− β2)et(et)T

]
· at
]

= E
[
(at)T ·

(
1− 1− β2

d

)
I · at

]
=

(
1− 1− β2

d

)
E
[∥∥at∥∥2

2

]
. (5)

Here we used the fact that
(
et(et)T

)T
et(et)T = et(et)T and Eit∼U [1;d]

[
et(et)T

]
= 1

dI .
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Similarly to equation (5), we can estimate ② and ③:

② = E
[∥∥(1− β)et(et)T bt

∥∥2
2

]
=

(1− β)2

d
E
[∥∥bt∥∥2] ,

③ = E
[∥∥{I − (1− β)et(et)T

}
ct
∥∥2
2

]
=

(
1− 1− β2

d

)
E
[∥∥ct∥∥2] .

Since bt = ∇̃f(xt, ξt)−∇f(xt), we can use Lemma 4 from (Veprikov et al., 2024) with σf = 0, σ∇ = σ and obtain the
result of the form:

② ≤ (1− β)2

d
·
(
dL2τ2 + 2dσ2 +

2d∆2

τ2

)
, (6)

where L, σ and ∆ come from Assumptions 3.1, 3.2 and 3.3.

Since ct = ∇f(xt)−∇f(xt−1), we can use Assumption 3.1 and obtain:

③ ≤
(
1− 1− β2

d

)
L2
∥∥xt − xt−1

∥∥2
2
=

(
1− 1− β2

d

)
L2
∥∥sign(mt)

∥∥2
2

=

(
1− 1− β2

d

)
dL2γ2 ≤ dL2γ2. (7)

Consider ④. Let us move all matrixes to the left side of the dot product:

④ = E
[
2
〈
(1− β)

{
I − (1− β)et(et)T

}
et(et)T · at, bt

〉]
= E

[
2
〈
(1− β)βet(et)T · at, bt

〉]
.

Now we use tower property for it as we did for ①,②,③ and use the definitions of at and bt:

④ =
(1− β)β

d
· E
[
2
〈
at, bt

〉]
=

(1− β)β

d
· E
[
2
〈
mt−1 −∇f(xt−1), ∇̃f(xt, ξt)−∇f(xt)

〉]
.

We now again use tower property, but with stochastic variable ξt. Since {ms−1, xs}ts=0 do not depend on ξt, we can obtain
that:

④ =
(1− β)β

d
· E
[
2
〈
mt−1 −∇f(xt−1),Eξt

[
∇̃f(xt, ξt)

]
−∇f(xt)

〉]
≤ (1− β)β

2d
· E
[∥∥mt−1 −∇f(xt−1)

∥∥2
2

]
(8)

+
2(1− β)β

d
· E
[∥∥∥Eξt

[
∇̃f(xt, ξt)

]
−∇f(xt)

∥∥∥2
2

]
.

In (8) we use Fenchel-Young inequality. For estimating ∥Eξt [∇̃f(xt, ξt)]−∇f(xt)∥22 we again can use Lemma 4 from

(Veprikov et al., 2024) but now with σ∇ = σf = 0 since we have no randomness in Eξt

[
∇̃f(xt, ξt)

]
. Therefore ④ is

bounded as:

④ ≤ (1− β)β

2d
· E
[∥∥at∥∥2

2

]
+

2(1− β)β

d
·
(
dL2τ2 +

2d∆2

τ2

)
. (9)

Consider ⑤. Similar to ④ we can obtain:

⑤ = E
[
2
〈{

I − (1− β)et(et)T
}
at,
{
I − (1− β)et(et)T

}
ct
〉]

= E
[
2
〈{

I − (1− β2)et(et)T
}
at, ct

〉]
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=

(
1− 1− β2

d

)
· E
[
2
〈
at, ct

〉]
≤
(
1− 1− β2

d

)
· 1− β

2d
· E
[∥∥at∥∥2

2

]
+

(
1− 1− β2

d

)
· 2d

1− β
· E
[∥∥ct∥∥2

2

]
≤ 1− β

2d
· E
[∥∥at∥∥2

2

]
+

2d

1− β
· dL2γ2. (10)

Finally, we estimate ⑥ in the same way:

⑥ = E
[
2
〈
(1− β)et(et)T bt,

{
I − (1− β)et(et)T

}
ct
〉]

= E
[
2
〈
(1− β)βet(et)T bt, ct

〉]
=

(1− β)β

d
· E
[
2
〈
bt, ct

〉]
≤ (1− β)β

d
· E
[∥∥∥Eξt

[
∇̃f(xt, ξt)

]
−∇f(xt)

∥∥∥2
2

]
+

(1− β)β

d
· E
[∥∥ct∥∥2

2

]
≤ (1− β)β

d
·
(
dL2τ2 +

2d∆2

τ2

)
+

(1− β)β

d
· dL2γ2. (11)

We made it! Now let us combine equations (5), (6), (7), (9), (10) and (11) to bound E[∥at+1∥22] from equation (4):

E
[∥∥at+1

∥∥2
2

]
≤

1− 1− β

d

1 + β︸ ︷︷ ︸
(5)

− β

2︸︷︷︸
(9)

− 1

2︸︷︷︸
(10)


 · E

[∥∥at∥∥2
2

]

+
1− β

d

1− β︸ ︷︷ ︸
(6)

+ 2β︸︷︷︸
(9)

+ β︸︷︷︸
(11)

 ·
(
dL2τ2 +

2d∆2

τ2

)
+

(1− β)2

d︸ ︷︷ ︸
(6)

·2dσ2

+

 1︸︷︷︸
(7)

+
2d

1− β︸ ︷︷ ︸
(10)

+
(1− β)β

d︸ ︷︷ ︸
(11)

 · dL2γ2

≤
(
1− 1− β2

2d

)
· E
[∥∥at∥∥2

2

]
+ 3

1− β

d
·
(
dL2τ2 +

2d∆2

τ2

)
+ 2

(1− β)2

d
· dσ2 +

4d

1− β
· dL2γ2.

By unrolling the recursion in the last inequality we obtain:

E
[∥∥mt −∇f(xt)

∥∥2
2

]
≤ 8

d2

(1− β)(1− β2)
· dL2γ2 + 4

(1− β)2

1− β2
· dσ2

+ 6
1− β

1− β2
·
(
dL2τ2 +

2d∆2

τ2

)
+

(
1− β2

2d

)t ∥∥∇f(x0)
∥∥2
2

= O

[
d3

(1− β)2
L2γ2 + (1− β)dσ2 + dL2τ2 +

2d∆2

τ2

+

(
1− 1− β

2d

)t ∥∥∇f(x0)
∥∥2
2

]
.

This finishes the proof.
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D.2. Proof of Theorem 3.5

Proof. We start from using Lemma 1 from (Sun et al., 2023). For the points xt, generated by Algorithm 1 it holds that:

f(xt+1)− f(xt) ≤ −γ
∥∥∇f(xt)

∥∥
1
+ 2

√
dγ
∥∥mt −∇f(xt)

∥∥
2
+

dLγ2

2
. (12)

Now we take mathematical expectation of the both sides of the inequality (12) and use the results from Lemma 3.4:

E
[
f(xt+1)

]
− E

[
f(xt)

]
≤ −γE

[∥∥∇f(xt)
∥∥
1

]
+ 2

√
dγE

[∥∥mt −∇f(xt)
∥∥
2

]
+

dLγ2

2

= −γE
[∥∥∇f(xt)

∥∥
1

]
+O

[
d2

1− β
· Lγ2 +

√
1− βdγσ + dγLτ

+
dγ∆

τ
+

√
dγ

(
1− 1− β

d

)t/2 ∥∥∇f(x0)
∥∥
2

]
+

dLγ2

2
.

Consequently, after summing all T steps, we obtain:

γ

T∑
t=0

E
[∥∥∇f(xt)

∥∥
1

]
= O

[
f(x0)− f(xT ) + T ·

(
d2

1− β
· Lγ2 +

√
1− βdγσ + dγLτ

)

+ T · dγ∆
τ

+
√
dγ

T∑
t=0

(
1− 1− β

d

)t/2 ∥∥∇f(x0)
∥∥
2

]
.

(13)

Now, we divide equation (13) by γT from both sides and obtain:

1

T

T∑
t=0

E
[∥∥∇f(xt)

∥∥
1

]
= O

[
δ0
γT

+
d
∥∥∇f(x0)

∥∥
2

T
√
1− β

+
d2Lγ

1− β
+
√
1− βdσ + dLτ +

d∆

τ

]
,

where we used a notation δ0 := f(x0)− f∗. This finishes the proof.

E. Proofs for ZO Muon with JAGUAR (Algorithm 2)
E.1. Technical Lemmas

Lemma E.1. Consider two arbitrary matrixes A,B of the same shape and their SVD decomposition: A = UAΣAV
T
A ,

B = UBΣBV
T
B . Define rA and rB as ranks of A and B, then it holds that∣∣〈A,UAV

T
A − UBV

T
B

〉∣∣ ≤ 2 ∥A−B∥S1
≤ 2
√
rank(A−B) ∥A−B∥F .

Proof. We first provide an axillary notation:

δ :=
〈
A,UAV

T
A − UBV

T
B

〉
.

Because UA and VA have orthonormal columns:

⟨A, UAV
⊤
A ⟩ = tr

(
VAΣAU

⊤
AUAV

⊤
A

)
= tr(ΣA) = ∥A∥S1

.

Hence
δ = ∥A∥S1

− ⟨A, UBV
⊤
B ⟩.

Insert B and regroup:

δ = ∥A∥S1 −
(
⟨B, UBV

⊤
B ⟩+ ⟨A−B, UBV

⊤
B ⟩
)
= ∥A∥S1 − ∥B∥S1 − ⟨A−B, UBV

⊤
B ⟩.

18



The first difference is controlled by the triangle inequality for the nuclear norm:∣∣∥A∥S1
− ∥B∥S1

∣∣ ≤ ∥A−B∥S1
.

For the second term, Hölder’s inequality with ∥UBV
⊤
B ∥2 = 1 gives∣∣⟨A−B, UBV

⊤
B ⟩
∣∣ ≤ ∥A−B∥S1

.

Therefore

|δ| ≤ ∥A−B∥S1
+ ∥A−B∥S1

= 2 ∥A−B∥S1
.

Using the connection between the Frobenius (S2) by nuclear (S1) norms we obtain that:

|δ| =
〈
A,UAV

T
A − UBV

T
B

〉
≤ 2 ∥A−B∥S1 ≤ 2

√
rank(A−B) ∥A−B∥F .

The factor 2 in the nuclear norm bound is sharp, as equality holds for B = −A. This finishes the proof.

We now provide lemma similar to the step Lemma 1 from (Sun et al., 2023), but in the matrix case.

Lemma E.2 (Step lemma for Muon with momentum). Let f be an L-smooth function (Assumption 3.1), and let X†,M ∈
Rm×n with m ≥ n be an arbitrary matrixes. We define

X‡ := X† − γ · UMV T
M ,

where γ > 0 and UMV T
M comes from SVD decomposition of M : M = UMΣMV T

M . Then, it holds that:

f
(
X‡)− f

(
X†) ≤ −γ

∥∥∇f
(
X†)∥∥

S1
+ 2

√
nγ
∥∥∇f

(
X†)−M

∥∥
F
+

Lnγ2

2
.

Proof. The L-smoothness of the gradient (Assumption 3.1) gives us

f
(
X‡)− f

(
X†) ≤ 〈∇f

(
X†) , X‡ −X†〉+ L

2

∥∥X‡ −X†∥∥2
F

= −γ
〈
∇f

(
X†) , UMV T

M

〉
+

Lnγ2

2

= −γ
〈
∇f

(
X†) , U∇V T

∇
〉
+ γ

〈
∇f

(
X†) , U∇V T

∇ − UMV T
M

〉
+

Lnγ2

2
,

where U∇V T
∇ comes from SVD decomposition of ∇f

(
X†): ∇f

(
X†) = U∇Σ∇V T

∇ . Therefore the first dot product takes
form:

−γ
〈
∇f

(
X†) , U∇V T

∇
〉
= −γtr

(
V∇Σ∇UT

∇U∇V T
∇
)
= −γtr (Σ∇) = −γ

∥∥∇f
(
X†)∥∥

S1
.

Now we utilize Lemma E.1 with A = ∇f
(
X†) and B = M :

f
(
X‡)− f

(
X†) ≤ −γ

∥∥∇f
(
X†)∥∥

S1
+ 2γ

∥∥∇f
(
X†)−M

∥∥
S1

+
Lnγ2

2

≤ −γ
∥∥∇f

(
X†)∥∥

S1
+ 2

√
nγ
∥∥∇f

(
X†)−M

∥∥
F
+

Lnγ2

2
.

This finishes the proof.
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E.2. Proof of Theorem A.1

Proof. We start from using Lemma E.2. For the points Xt, generated by Algorithm 2 it holds that:

f
(
Xt+1

)
− f

(
Xt
)
≤ −γ

∥∥∇f
(
Xt
)∥∥

S1
+ 2

√
nγ
∥∥∇f

(
Xt
)
−M t

∥∥
F
+

Lnγ2

2
. (14)

Now we take mathematical expectation of the both sides if (14) and bound the term E[∥∇f (Xt) − M t∥F ] we again
use Lemma 3.4 with xt = vec(Xt) and mt = vec(M t). The result of Lemma 3.4 holds true with d = m · n, since
∥A∥F = ∥vec(A)∥2. Therefore (14) takes form:

E
[
f(Xt+1)

]
− E

[
f(Xt)

]
≤ −γE

[∥∥∇f(Xt)
∥∥
S1

]
+ 2

√
nγE

[∥∥M t −∇f(Xt)
∥∥
2

]
+

nLγ2

2

= −γE
[∥∥∇f(Xt)

∥∥
S1

]
+ n1/2O

[
(mn)3/2

1− β
· Lγ2

+
√
1− β(mn)1/2γσ + (mn)1/2γLτ +

(mn)1/2γ∆

τ

+ n1/2γ

(
1− 1− β

mn

)t/2 ∥∥∇f(X0)
∥∥
2

]
+

nLγ2

2
.

= −γE
[∥∥∇f(Xt)

∥∥
S1

]
+O

[
m3/2n2

1− β
· Lγ2

+
√
1− βm1/2nγσ +m1/2nγLτ +

m1/2nγ∆

τ

+ n1/2γ

(
1− 1− β

mn

)t/2 ∥∥∇f(X0)
∥∥
2

]
.

Consequently, after summing all T steps, we obtain:

γ

T∑
t=0

E
[∥∥∇f(Xt)

∥∥
S1

]
= O

[
f(X0)− f(XT )

+ T ·
(
m3/2n2

1− β
· Lγ2 +

√
1− βm1/2nγσ

)
+ T ·

(
m1/2nγLτ +

m1/2nγ∆

τ

)
+ n1/2γ

T∑
t=0

(
1− 1− β

mn

)t/2 ∥∥∇f(X0)
∥∥
2

]
.

(15)

Now, we divide equation (15) by γT from both sides and obtain:

1

T

T∑
t=0

E
[∥∥∇f(Xt)

∥∥
S1

]
= O

[
δ0
γT

+
m1/2n

∥∥∇f(x0)
∥∥
2

T
√
1− β

+
m3/2n2γ

1− β
+
√
1− βm1/2nσ

+m1/2nLτ +
m1/2n∆

τ

]
,

where we used a notation δ0 := f(x0)− f∗. This finishes the proof.
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