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ABSTRACT

This paper addresses the problem of Online Convex-Concave Optimization, an
extension of Online Convex Optimization to two-player time-varying convex-
concave games. Our objective is to minimize the dynamic duality gap (D-DGap),
a key performance metric that evaluates the players’ strategies against arbitrary
comparator sequences. Existing algorithms struggle to achieve optimal perfor-
mance, particularly in stationary or predictable environments. We propose a novel,
modular algorithm comprising three key components: an Adaptive Module that
adjusts to varying levels of non-stationarity, a Multi-Predictor Aggregator that se-
lects the optimal predictor from multiple candidates, and an Integration Module
that seamlessly combines the strengths of both. Our algorithm guarantees a mini-
max optimal D-DGap upper bound, up to a logarithmic factor, while also achiev-
ing a prediction error-based D-DGap bound. Empirical results further demonstrate
the effectiveness and adaptability of the proposed method.

1 INTRODUCTION

Online Convex Optimization (OCO, Zinkevich, 2003) is a widely adopted framework for address-
ing dynamic challenges in various real-world domains, such as online learning (Shalev-Shwartz,
2012), resource allocation (Chen et al., 2017), computational finance (Guo et al., 2021), and on-
line ranking (Chaudhuri & Tewari, 2017). It models repeated interactions between a player and the
environment, where at each round t, the player selects xt from a convex set X , after which the en-
vironment reveals a convex loss function ℓt. The goal is to minimize dynamic regret, defined as the
difference between the cumulative loss incurred by the player and that of an arbitrary comparator
sequence:

D-RegT :=

T∑
t=1

ℓt (xt)−
T∑
t=1

ℓt (ut) , ∀ut ∈ X.

According to Zhang et al. (2018), the minimax optimal D-Reg bound is O(
√
(1 + PT )T ), where

PT represents the path length of the comparator sequence. Achieving this bound typically relies
on the meta-expert framework, which consists of a two-layer structure: the inner layer incorpo-
rates multiple experts, each operating a base algorithm with different learning rates, while the outer
layer aggregates their advice through a weighted decision-making process. The ADER algorithm,
introduced by Zhang et al. (2018), is the first method within this framework to achieve the min-
imax optimal bound, up to a logarithmic factor. Moreover, certain ADER-like algorithms using
implicit updates (Campolongo & Orabona, 2021) or optimistic strategies (Scroccaro et al., 2023) as
their base algorithms, can further reduce the D-Reg bound to O(1) in stationary environments or in
non-stationary environments with perfect predictability.

Online Convex-Concave Optimization (OCCO) extends the OCO framework by incorporating two
interacting players engaged in a sequence of time-varying convex-concave games. This framework
is relevant in scenarios such as dynamic pricing (Ferreira et al., 2018) and online advertising auc-
tions (Feng et al., 2023). At round t, the two players jointly select a strategy pair (xt, yt) from a
convex feasible set X × Y , with the x-player minimizing and the y-player maximizing their respec-
tive payoffs, followed by the environment revealing a continuous convex-concave payoff function
ft. Both players act without prior knowledge of the current or future payoff functions. Target-
ing a broad spectrum of non-stationary levels, we introduce the dynamic duality gap (D-DGap) as
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the performance metric, comparing the players’ strategies with an arbitrary comparator sequence in
hindsight:

D-DGapT :=

T∑
t=1

(
ft (xt, vt)− ft (ut, yt)

)
, ∀(ut, vt) ∈ X × Y. (1)

The primary challenge in non-stationary OCCO lies in efficiently adapting to environmental shifts
while maintaining a low D-DGap.

The state-of-the-art OCCO algorithm proposed by Zhang et al. (2022b) establishes upper bounds
for three metrics: static individual regret (corresponding to the D-DGap with fixed comparators),
duality gap (representing the worst-case D-DGap), and dynamic Nash equilibrium regret (addressing
intermediate scenarios). However, their algorithm does not guarantee the tightness of these bounds.
In fact, the minimax optimal D-DGap upper bound is O

(√
(1 + PT )T

)
, where PT =

∑T
t=1

(
∥ut−

ut−1∥ + ∥vt − vt−1∥
)

represents the path length of the comparator sequence. Approximating this
minimax optimal bound merely requires each player to independently apply the ADER algorithm.
This stems from the fact that OCCO can be interpreted as two interdependent OCO problems, with
the D-DGap being equivalent to the sum of two individual D-Regs.

However, applying implicit or optimistic methods to OCCO to further reduce the D-DGap in sta-
tionary environments or non-stationary environments with perfect predictions presents challenges.
For example, implementing a pair of ADER-like algorithms with optimistic implicit online mirror
descent (Scroccaro et al., 2023) as the base algorithms requires the use of predictors ht( · , yt) for
the x-player and −ht(xt, · ) for the y-player. This requirement conflicts with the fact that the strat-
egy pair (xt, yt) is computed based on the predictor ht, creating a contradiction in the algorithm’s
structure.

In this paper, we propose a modular algorithm to address these challenges. The algorithm con-
sists three components: the Adaptive Module, the Multi-Predictor Aggregator, and the Integration
Module, each serving specific functions:

• Adaptive Module: This module adapts to various levels of non-stationarity, ensuring a
minimax optimal D-DGap upper bound of Õ

(√
(1 + PT )T

)
. It achieves this by employing

a pair of ADER or ADER-like algorithms, which are designed to approximate the minimax
optimal D-Reg.

• Multi-Predictor Aggregator: This module enhances decision-making by automatically se-
lecting the most accurate prediction, ensuring a sharp Õ(1) D-DGap upper bound in sta-
tionary environments or non-stationary environments with perfect predictions. It achieves
this by employing the clipped Hedge algorithm.

• Integration Module: This module integrates the capabilities of the Adaptive Module and
Multi-Predictor Aggregator, enabling the final strategy to adapt across a wide range of non-
stationary levels while effectively tracking the best predictor. It serves as a specialized
variant of the meta-expert framework, characterized by the coupling of the meta and expert
layers, which necessitates a joint solution.

Our algorithm not only approximates the minimax optimal D-DGap upper bound but also achieves
bounds based on prediction error, with any further improvements constrained to at most a logarith-
mic factor. Specifically, with d available predictors, our algorithm yields

D-DGapT ≤ Õ
(
min

{
V 1
T , · · · , V dT ,

√
(1 + PT )T ,

√
(1 + CT )T

})
,

where V kT measures the prediction error of the k-th predictor, CT bounds the upper limit of PT .

2 RELATED WORK

D-Reg was first introduced by Zinkevich (2003), who demonstrated that greedy projection achieves
a D-Reg upper bound of O

(
(1 + PT )

√
T
)
. To approximate the minimax optimal D-Reg of

O
(√

(1 + PT )T
)
, Zhang et al. (2018) developed the ADER algorithm, which utilizes the meta-

expert framework — a two-layer structure employing multiple learning rates, as illustrated in Meta-
Grad (van Erven & Koolen, 2016). Since the introduction of ADER, the meta-expert framework

2
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has effectively addressed various levels of non-stationarity (Lu & Zhang, 2019; Zhao et al., 2020;
Zhang, 2020; Zhang et al., 2021; Zhao et al., 2021; Zhang et al., 2022a; Zhao et al., 2022; Lu et al.,
2023). To further reduce D-Reg, Campolongo & Orabona (2021) implemented implicit updates,
resulting in a D-Reg upper bound driven by the temporal variability of loss functions. Subsequently,
Scroccaro et al. (2023) refined this approach by establishing a predictor error-based D-Reg bound
using optimistic implicit updates.

OCCO represents a time-varying extension of the minimax problem, which was first introduced
by von Neumann (1928). The seminal work of Freund & Schapire (1999) connected the minimax
problem to online learning, sparking interest in no-regret algorithms for static environments (Anag-
nostides et al., 2022; Daskalakis et al., 2015; 2021; Ho-Nguyen & Kılınç-Karzan, 2019; Syrgkanis
et al., 2015). Recent research has broadened this focus to time-varying games (Anagnostides et al.,
2023; Fiez et al., 2021; Roy et al., 2019), with Cardoso et al. (2018) being the first to explicitly
investigate OCCO and introduce the concept of saddle-point regret, later redefined as Nash equilib-
rium regret (Cardoso et al., 2019). Zhang et al. (2022b) further refined the concept of dynamic Nash
equilibrium regret and proposed a parameter-free algorithm that guarantees upper bounds for three
metrics: static individual regret, duality gap, and dynamic Nash equilibrium regret. This paper ad-
vances Zhang et al. (2022b) by unifying metrics through the D-DGap, ensuring minimax optimality
for arbitrary comparators, and further reducing the D-DGap using multiple predictions.

3 PRELIMINARIES

Let
(
X , ∥·∥X

)
and

(
Y , ∥·∥Y

)
be normed vector spaces. Throughout this paper, we omit norm

subscripts if the norm can be easily inferred from the context.

The Fenchel coupling (Mertikopoulos & Sandholm, 2016; Mertikopoulos & Zhou, 2016) induced
by a proper function φ is defined as Bφ (x, z) := φ (x) + φ⋆ (z) − ⟨z, x⟩, ∀(x, z) ∈ X ×X ∗,
where φ⋆ represents the convex conjugate of φ, given by φ⋆ (z) := supx∈X {⟨z, x⟩ − φ (x)}, and
the bilinear map ⟨ · , · ⟩ : X ∗ ×X → R denotes the canonical dual pairing. Here, X ∗ is the dual
space of X . Fenchel coupling extends the concept of Bregman divergence to more complex primal-
dual settings. According to the Fenchel-Young inequality, we have Bφ (x, z) ≥ 0, with equality
holding if and only if z is a subgradient of φ at x. To simplify notation, we use xφ to denote one
such subgradient of φ at x. By directly applying the definition of Fenchel coupling, we obtain
Bφ (x, y

φ) +Bφ (y, z)−Bφ (x, z) = ⟨z − yφ, x− y⟩. A function φ is called µ-strongly convex if
Bφ (x, y

φ) ≥ µ
2 ∥x− y∥

2, ∀x, y ∈X .

The standard simplex refers to the set of all non-negative vectors that sum to 1, defined as △d :=
{w ∈ Rd+ | ∥w∥1 = 1}. The clipped version modifies this by restricting the elements of w to lie
within a predefined range, resulting in△αd := {w ∈ Rd+ | ∥w∥1 = 1, wi ≥ α/d, ∀i = 1, 2, · · · , d},
where α represents the clipping coefficient. The Kullback-Leibler (KL) divergence can be viewed as
a specific case of Fenchel coupling, induced by the negative entropy, a 1-strongly convex function.
As a result, we have the inequality KL(w,u) ≥ 1

2 ∥w − u∥21, ∀w,u ∈ △d.

We use big O notation for asymptotic upper bounds and Õ to omit polylogarithmic terms.

4 MAIN RESULTS

In this section, we first formalize the OCCO framework and outline assumptions. Subsequently, we
analyze the Adaptive Module, the Integration Module, and the Multi-Predictor Aggregator in detail.
Finally, we elucidate the logical structure of our algorithm and highlight its performance advantages.

4.1 PROBLEM FORMALIZATION

OCCO can be formalized as follows: At round t,

• x-player chooses xt ∈ X and y-player chooses yt ∈ Y , where the feasible sets 0 ∈ X ⊂
X and 0 ∈ Y ⊂ Y are both compact and convex.

• The environment feeds back ft : X × Y → R, where ft is continuous and ft ( · , y) is
convex in X for every y ∈ Y and ft (x, · ) is concave in Y for every x ∈ X .

3
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The goal is to minimize D-DGap. Similar to previous studies in online learning, we introduce the
following standard assumptions.
Assumption 1. The diameter of X is denoted as DX , and the diameter of Y is denoted as DY .
Assumption 2. All payoff functions are bounded, and their subgradients are also bounded. Specif-
ically, ∃M , GX and GY , such that ∀x ∈ X , ∀y ∈ Y and ∀t, the following inequalities hold:

|ft (x, y)| ≤M, ∥∇xft (x, y)∥ ≤ GX , ∥∇y(−ft) (x, y)∥ ≤ GY .

4.2 ADAPTIVE MODULE

In algorithms that adapt automatically to varying levels of non-stationarity, existing methods gen-
erally rely on the meta-expert framework to approximate the minimax optimal D-Reg. The ADER
algorithm serves as an example of this framework, with variants that include replacing the base al-
gorithm with implicit updates (Campolongo & Orabona, 2021) or optimistic strategies (Scroccaro
et al., 2023). The following proposition illustrates the results achieved by decomposing the OCCO
problem into two OCO problems and independently executing two ADER or ADER-like algorithms.
Proposition 1. Consider running two ADER or ADER-like algorithms independently, both designed
to approximate the minimax optimal D-Reg. In round t, one algorithm outputs xt, receiving the con-
vex loss function ft( · , yt), while the other generates yt, receiving−ft(xt, · ). Under Assumptions 1
and 2, this setup yields the following inequality for all (ut, vt) ∈ X × Y :
T∑
t=1

(
ft (xt, vt)− ft (xt, yt)

)
+

T∑
t=1

(
ft (xt, yt)− ft (ut, yt)

)
≤ Õ

(√
(1 + min {PT , CT })T

)
,

where PT =
∑T
t=1

(
∥ut − ut−1∥ + ∥vt − vt−1∥

)
, CT =

∑T
t=1

( ∥∥x′t − x′t−1

∥∥ +
∥∥y′t − y′t−1

∥∥ )
bounds the upper limit of PT , x′t = argminx∈X ft (x, yt) and y′t = argmaxy∈Y ft (xt, y).

The two ADER or ADER-like algorithms outlined in Proposition 1 operate independently, with each
algorithm’s output influencing the other’s loss function. This mutual dependence introduces chal-
lenges in further tightening the upper bound of the D-DGap, particularly in favorable environments
such as stationary or predictable scenarios. In the OCCO setting, the two players can jointly formu-
late strategies to more effectively respond to environmental changes. As a result, we do not use the
output (xt, yt) from Proposition 1 as the final strategy. Instead, we treat the method in Proposition 1
as an Adaptive Module, designed to handle various levels of non-stationarity. Its outputs provide
recommendations that adapt to uncertainties in the path length of the comparator sequence. In the
following section, we explore how the two players can collaboratively update their strategies.

Before concluding this section, we state that the D-DGap upper bound, as presented in Proposition 1,
is minimax optimal up to a logarithmic factor. The following proposition guarantees this conclusion.
Proposition 2 (D-DGap Lower Bound). Regardless of the strategies adopted by the players, there
always exists a sequence of convex-concave payoff functions satisfying Assumption 2, and a com-
parator sequence satisfying PT ≤ P , ensuring a D-DGap of at least Ω

(√
(1 + min {P,CT })T

)
.

Proposition 2 can be intuitively justified. Specifically, the D-DGap is essentially the sum of two
individual D-Regs. According to Theorem 2 of Zhang et al. (2018), in adversarial environments, no
online algorithm can bound the individual D-Regs below Ω

(√
(1 + Pu)T

)
and Ω

(√
(1 + P v)T

)
,

respectively, where Pu ≥
∑T
t=1∥ut − ut−1∥, and P v ≥

∑T
t=1∥vt − vt−1∥. Consequently, the D-

DGap lower bound cannot be less than the sum of these regret lower bounds. Since the lower bound
depends on P , a preset upper limit for PT , setting P above CT would render the bound overly loose,
making CT the effective threshold. This reasoning validates Proposition 2.

4.3 INTEGRATION MODULE

Our goal is to design an algorithm that not only adapts automatically to arbitrary comparator se-
quences but also achieves a prediction error-based D-DGap upper bound. To this end, we propose a
specialized variant of the meta-expert framework, where the expert layer consists of two key experts:

• The first expert is tailored to ensure the algorithm achieves a D-DGap upper bound driven
by prediction errors, playing a crucial role in tightening the D-DGap in predictable envi-
ronments.

4
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• The second expert is an Adaptive Module that adjusts dynamically to any sequence of
comparators, guaranteeing minimax optimality across a broad spectrum of non-stationarity
levels.

The core innovation of this framework lies in its joint update mechanism, where the first expert
and the meta layer are updated in coordination. This design allows the framework to seamlessly
incorporate the first expert’s insights into the final strategy, ensuring both adaptability and precise
control over the D-DGap upper bound.

We refer to this framework as the Integration Module. Below, we provide a comprehensive analysis
of its implementation.

Let (x̂t, ŷt) represent the advice from the first expert, and (xt, yt) denote the strategy pair generated
by the second expert. The final strategies of the Integration Module are defined as xt = [x̂t, xt]wt

and yt = [ŷt, yt]ωt, where wt and ωt are the weights provided by the meta layer. Since the
second expert’s advice (xt, yt) is determined by the Adaptive Module, the Integration Module must
internally generate both the first expert’s advice (x̂t, ŷt) and the weight parameters wt and ωt.

Let the arbitrary convex-concave predictor ht serve as a hint for the two players. Define

At =

[
ft(x̂t, ŷt), ft(x̂t, yt)
ft(xt, ŷt), ft(xt, yt)

]
, Λt =

[
ht(x̂t, ŷt), ht(x̂t, yt)
ht(xt, ŷt), ht(xt, yt)

]
,

and let w = [w, 1− w]T, ω = [ω, 1− ω]T,

Ht (x, y;w,ω) = wT

[
ht(x, y), ht(x, yt)
ht(xt, y), ht(xt, yt)

]
ω +

w

ηt
Bϕ
(
x, x̃ϕt

)
− ω

γt
Bψ
(
y, ỹψt

)
,

Wt (w,ω;x, y) = wT

[
ht(x, y), ht(x, yt)
ht(xt, y), ht(xt, yt)

]
ω +

1

θt
KL(w, w̃t)−

1

ϑt
KL(ω, ω̃t).

(2)

The Integration Module can then be represented by the following updates:

First Expert:


(x̂t, ŷt) = argminx∈X maxy∈Y Ht (x, y;wt,ωt) ,

x̃t+1 = argminx∈X ηt
[
ft(x, ŷt), ft(x, yt)

]
ωt +Bϕ

(
x, x̃ϕt

)
,

ỹt+1 = argmaxy∈Y γt
[
ft(x̂t, y), ft(xt, y)

]
wt −Bψ

(
y, ỹψt

)
,

(3a)

(3b)

(3c)

Meta Layer:


(wt,ωt) = argminw∈△α

2
maxω∈△α

2
Wt (w,ω; x̂t, ŷt) ,

w̃t+1 = argminw∈△α
2
θtw

TAtωt + KL(w, w̃t),

ω̃t+1 = argmaxω∈△α
2
ϑtw

T
t Atω − KL(ω, ω̃t),

(3d)

(3e)

(3f)

where ηt, γt, θt and ϑt are learning rates, and α = 2/T . To facilitate our analysis, we assume that
the regularizers ϕ and ψ are both 1-strongly convex, and their Fenchel couplings satisfy Lipschitz
continuity with respect to the first variable, i.e., ∃Lϕ, Lψ < +∞, ∀α, x, x′ ∈ X , ∀β, y, y′ ∈ Y :∣∣Bϕ(x, αϕ)−Bϕ(x′, αϕ)∣∣ ≤ Lϕ ∥x− x′∥ , ∣∣Bψ(y, βψ)−Bψ(y′, βψ)∣∣ ≤ Lψ ∥y − y′∥ .
These assumptions are consistent with previous literature (Campolongo & Orabona, 2021; Zhang
et al., 2022b).

As Equations (3a) and (3d) necessitate a joint solution, we first postpone the discussion of the solu-
tion methodology and focus on how the above updates implement the functionality of the Integration
Module.

The following two theorems describe the performance of the first expert and the meta layer in the
Integration Module. The specifications for the adaptive learning rates align with the methodology
outlined by Campolongo & Orabona (2021). Refer to the full versions of the theorems in the ap-
pendix for details.
Theorem 3 (Performance Guarantee for the First Expert). Under Assumptions 1 and 2. If ηt and γt
follow adaptive learning rates, then the following inequality holds:

T∑
t=1

(
ft(xt, vt)−wT

t A
: ,1
t

)
+

T∑
t=1

(
A1, :
t ωt − ft(ut, yt)

)
≤ O

(
T∑
t=1

ρ(ft, ht)

)
,

where ρ(ft, ht) = maxx∈X, y∈Y |ft(x, y)− ht(x, y)| measures the distance between ft and ht.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Theorem 4 (Performance Guarantee for the Meta Layer). Under Assumption 2, and assume that
T ≥ 2. If θt and ϑt follow adaptive learning rates, then the meta layer of the Integration Module
enjoys the following inequality:

T∑
t=1

(
wT
t Atv − uTAtωt

)
≤ O

(
min

{
T∑
t=1

ρ(ft, ht),
√
(1 + lnT )T

})
, ∀u,v ∈ △2.

The following theorem provides performance guarantee for the Integration Module.
Theorem 5 (D-DGap for the Integration Module). Under the settings of Proposition 1 and Theo-
rems 3 and 4, the Integration Module achieves the following D-DGap bound:

D-DGapT ≤ Õ

(
min

{
T∑
t=1

ρ(ft, ht),
√(

1 + min{PT , CT }
)
T

})
.

Proof of Theorem 5. Following the first expert, the D-DGap can be equivalently transformed into
T∑
t=1

((
ft(xt, vt)−wT

t A
: ,1
t

)
+

(
wT
t At

[
1
0

]
− [1, 0]Atωt

)
+
(
A1, :
t ωt − ft(ut, yt)

))
.

By applying Theorems 3 and 4, the resulting bound is D-DGapT ≤ O
(∑T

t=1 ρ(ft, ht)
)
. On the

other hand, following the second expert, the upper bound for the D-DGap is
T∑
t=1

((
ft (xt, vt)− ft (xt, yt)

)
+

(
wT
t At

[
0
1

]
− [0, 1]Atωt

)
+
(
ft (xt, yt)− ft (ut, yt)

))
.

Applying Proposition 1 and Theorem 4 yields D-DGapT ≤ Õ
(√

(1 + min{PT , CT })T
)
. Combin-

ing the two results above yields the desired conclusion.

The rationale for designing Equations (3a) and (3d) as a joint update strategy is as follows: To
guarantee that the final D-DGap attains a prediction error-based bound, both the first expert and the
meta layer must achieve such bounds independently. This objective requires mutual dependence:
the first expert needs to be aware of the meta-layer’s weights to update its advice, while the meta
layer relies on advice from both experts to adjust its own weights. This inherent interdependence
necessitates a joint solution.

After analyzing the functionality of the Integration Module, we now turn to the methodology for
jointly solving Equations (3a) and (3d). The following theorem not only asserts the existence of
solutions to this problem but also suggests methods for solving it.
Theorem 6. Let Ht : (w,ω) 7→ (x̂, ŷ), where (x̂, ŷ) is the saddle point of Ht ( · , · ;w,ω), and let
Wt : (x̂, ŷ) 7→ (w,ω), where (w,ω) is the saddle point of Wt ( · , · ; x̂, ŷ). Then, the composition
map Wt ◦ Ht has a fixed point, which corresponds to the solution of Equations (3a) and (3d).
Furthermore, let σ = maxv∈△α

2
Wt (w,v; x̂, ŷ) − minu∈△α

2
Wt (u,ω; x̂, ŷ), and denote w =

[w, 1 − w]T, ω = [ω, 1 − ω]T. Then the map Ft : (w,ω) 7→ σ is continuous from the closed
rectangular region [1/T, 1 − 1/T ]2 to R≥0, and solving the fixed point of Wt ◦Ht is equivalent to
minimizing Ft to zero.

Now solving Equations (3a) and (3d) is equivalent to locating a point within the closed rectangular
region [1/T, 1−1/T ]2 that reduces the continuous map Ft to zero. Various methods can address this
minimization problem, including Particle Swarm Optimization (PSO, Kennedy & Eberhart, 1995)
or Successive Reduction of Search Space within feasible computational limits. As an illustration,
we provide a PSO-based approach (see Algorithm 1), where the PSO iteration can be guided by Shi
& Eberhart (1998) or Sun et al. (2004).

The efficiency of the computation is largely dependent on the saddle-point solver, particularly at
line 6 of Algorithm 1. Due to the specific structure of the payoff functions, a universal solution is
often unattainable. In some cases, closed-form solutions are feasible, especially when the regulariz-
ers ϕ and ψ are quadratic (e.g., squared Euclidean norms) and the payoff function ft is bilinear or
quadratic, which can significantly reduce computational costs. When closed-form solutions are not
available, numerical methods such as those demonstrated by Abernethy et al. (2018); Carmon et al.
(2020); Jin et al. (2022) have proven effective, offering both fast and reliable convergence.
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Algorithm 1 Particle Swarm Optimization for Solving Equations (3a) and (3d)

Input: Ht and Wt according to Equation (2)
1: Initialize N particles, each with a random position (wi, ωi) in [1/T, 1− 1/T ]2, i = 1, · · · , N
2: repeat
3: for each particle i = 1, 2, · · · , N do
4: Update position (wi, ωi) using Particle Swarm Optimization iteration
5: wi ← [wi, 1− wi]T and ωi ← [ωi, 1− ωi]T
6: Calculate the saddle point (x̂i, ŷi) = argminx∈X maxy∈Y Ht

(
x, y;wi,ωi

)
7: Get the duality gap σi = maxv∈△α

2
Wt

(
wi,v; x̂i, ŷi

)
−minu∈△α

2
Wt

(
u,ωi; x̂i, ŷi

)
8: Update σibest, the best known duality gap of particle i
9: end for

10: Update global best known duality gap σgbest, and record the corresponding particle index j
11: until σgbest ↓ 0
Output: x̂t ← x̂j , ŷt ← ŷj , wt ← wj , ωt ← ωj

4.4 MULTI-PREDICTOR AGGREGATOR

The output of the integrated module achieves minimax optimality and effectively reduces the D-
DGap when using an accurate predictor sequence. However, relying on a single predictor sequence
limits the algorithm’s adaptability to different environments. To address this, we consider having
d available predictor sequences, each potentially derived from distinct models of the underlying
environment. Our goal is to enhance the Integration Module by supporting multiple predictors,
enabling it to retain minimax optimality while dynamically adapting to the most effective predictor
sequence across these models.

We propose the following Multi-Predictor Aggregator: At each round t, there are d available predic-
tors, denoted as {h1t , h2t , · · · , hdt }. The Multi-Predictor Aggregator outputs an aggregated predictor
ht =

∑d
k=1 ξ

k
t h

k
t to the Integration Module. The weight vector ξt = [ξ1t , ξ

2
t , · · · , ξdt ]T is derived

using the clipped Hedge algorithm, which solves the following optimization problem:

ξt+1 = arg min
ξ∈△a

d

ζt ⟨Lt, ξ⟩+ KL(ξ, ξt), (4)

where a = d/T , ζt is the learning rate, and Lt denotes the loss vector:

Lt = [L1
t , L

2
t , · · · , Ldt ]T, Lkt = max

x∈{x̂t,xt,x̃t+1},y∈{ŷt,yt,ỹt+1}

∣∣ft(x, y)− hkt (x, y)∣∣ .
The following theorem states that the Multi-Predictor Aggregator effectively provides multiple pre-
dictor support for the Integration Module. The specification for the adaptive learning rate follows
the methodology described by Campolongo & Orabona (2021), as detailed in Theorem 10 in the
appendix.
Theorem 7 (D-DGap for the Integration Module Using a Multi-Predictor Aggregator). Assume the
payoff function ft and all predictors {h1t , h2t , · · · , hdt } satisfy Assumption 2. Let T ≥ d. If the
learning rate ζt of Multi-Predictor Aggregator follows the adaptive rule, then the D-DGap upper
bound for the Integration Module can be enhanced as follows:

D-DGapT ≤ Õ

(
min

{
min

k∈{1,2,··· ,d}

T∑
t=1

ρ(ft, h
k
t ),
√
(1 + min{PT , CT })T

})
.

The rationale for using the Hedge algorithm is its ability to perform consistently close to the best
expert’s strategy over time, making it an effective choice when multiple predictors are involved. An
efficient solution for the clipped Hedge can be found in Figure 3 of Herbster & Warmuth (2001).

4.5 STRUCTURE AND ADVANTAGES

In the previous subsections, we analyzed the Adaptive Module, Integration Module, and Multi-
Predictor Aggregator individually. To clarify how these modules work together to form the overall

7
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Equations (3a) to (3f), where
Equations (3a) and (3d) require a joint solution

ADER or ADER-like algorithm ADER or ADER-like algorithm

xt yt
(xt, yt)

Equation (4)

ht =
∑d

k=1 ξ
k
t h

k
t

Predictors {h1
t , h

2
t , · · · , hd

t }

∑(x̂t, ŷt), (xt, yt)

(wt,ωt)

Environment
xt = [x̂t, xt]wt

yt = [ŷt, yt]ωt

Feedbackft( · , yt) −ft(xt, · )

FeedbackLt

ft

Integration
Module

{
Adaptive

Module

{

Multi-Predictor
Aggregator

{

Figure 1: Structural Diagram of Our Algorithm.

Algorithm 2 Pseudocode for Our Algorithm

Require: X and Y satisfy Assumption 1. All payoff functions and predictors satisfy Assumption 2
Initialize: x̃1, ỹ1, w̃1, ω̃1, ξ1 and (x1, y1)

1: for t = 1, 2, · · · , T do
2: Receive d predictors h1t , h

2
t , · · · , hdt and compute ht =

∑d
k=1 ξ

k
t h

k
t

3: Obtain (x̂t, ŷt) and (wt,ωt) by jointly updating Equations (3a) and (3d)
4: Output xt = [x̂t, xt]wt, yt = [ŷt, yt]ωt, and then observe ft
5: Update x̃t+1, ỹt+1, w̃t+1 and ω̃t+1 according to Equations (3b), (3c), (3e) and (3f)
6: Update ξt+1 according to Equation (4)
7: Update (xt+1, yt+1) by running two ADER or ADER-like algorithms
8: end for

algorithm, we present a structural diagram (see Figure 1) and accompanying pseudocode (see Algo-
rithm 2).

Theorem 7 provides the D-DGap upper bound guarantee for the entire algorithm, which can be
rearranged as follows:

D-DGapT ≤ Õ
(
min

{
min

{
V 1
T , · · · , V dT

}︸ ︷︷ ︸
(5a)

,
√
(1 + min{PT , CT })T︸ ︷︷ ︸

(5b)

})
,

(5)

where V kT =
∑T
t=1 ρ(ft, h

k
t ) represents the prediction error of the k-th predictor.

The Adaptive Module establishes a minimax optimal bound as indicated in Equation (5b), enabling
the algorithm to effectively adapt to varying levels of non-stationarity. Concurrently, the Multi-
Predictor Aggregator contributes the bound described in Equation (5a). When any single predictor
accurately models the environment, the algorithm attains a sharp Õ(1) D-DGap, effectively func-
tioning as an automatic selection mechanism for the best predictor among the available options.

The Integration Module combines the strengths of the Adaptive Module and the Multi-Predictor
Aggregator, ensuring that the final strategy is both highly adaptive to non-stationary settings and
capable of efficiently tracking the most accurate predictor. This integration guarantees near-optimal
performance in diverse scenarios, with any potential improvement limited to at most a logarithmic
factor.

5 EXPERIMENTS

This section validates the effectiveness of our algorithm through experimental evaluation. We choose
the algorithm proposed by Zhang et al. (2022b) as the benchmark for comparison.

We consider a specific instance of the OCCO problem, where the feasible domain is defined as
X × Y = [−1, 1]2, and the environment provides the following convex-concave payoff function at
round t:

ft (x, y) =
1

2
(x− x∗t )

2 − 1

2
(y − y∗t )

2
+ (x− x∗t ) (y − y∗t ) ,

8
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Table 1: Four Environment Settings. In this table, the saddle point (x∗t , y
∗
t ) is expressed in the

complex form p∗t = x∗t + iy∗t , where i is the imaginary unit, satisfying i2 = −1. z1(t) = ln(1 + t),
z2(t) = ln ln(e + t). As t increases, the growth rates of both z1 and z2 gradually decelerate. ε ∼
U(0, 1) is random variable that follows a uniform distribution on the interval [0, 1], and φ ∼ N(π, 1)
is a random angle that follows a Gaussian distribution with mean π.

Case I II III IV

x∗t + iy∗t
1
3z2(t)e

iz1(t) 1
3z2(t)e

i 2π3 t+iz2(t) 1
2e

1
7 (ε+i2πt) 1

2e
i(φ+arg(xt+iyt))

Trajectories −0.5 0.5 1

−0.5

0.5

𝑋

𝑌

−0.5 0.5 1

−0.5

0.5

𝑋

𝑌

−0.5 0.5

−0.5

0.5

𝑋

𝑌

−0.5 0.5

−0.5

0.5 (𝑥𝑡,𝑦𝑡)

(𝑥∗𝑡,𝑦∗𝑡)

𝜑 𝑋

𝑌

Property ρ(ft, ft−1)→ 0 ρ(ft, ft−3)→ 0
∣∣p∗t − p∗t−7

∣∣ ≤ 1−e1/7

2 Adversarial

Table 2: Three Levels on Comparator Sequence Non-Stationarity.

Level i ii iii

Comparator (ut, vt) ≡ (0, 0) (ut, vt) = (x∗t , y
∗
t )/ ln(1 + t) (ut, vt) = (x′t, y

′
t)

where (x∗t , y
∗
t ) ∈ X × Y denotes the saddle point of ft. This setup satisfies Assumptions 1 and 2.

The evolution of the saddle point (x∗t , y
∗
t ) reflects specific environmental characteristics. We identify

four distinct cases, as outlined in Table 1:

• Case I indicates a gradually stationary environment, with the movement of the saddle point
diminishing over time.

• Case II and III represent approximate periodic environments. In Case II, the saddle point
cycles among three branches, while in Case III, it cycles among seven, with its position in
each branch chosen randomly.

• Case IV depicts an adversarial environment where the saddle point cannot be effectively
approximated. In this case, upon selecting a strategy pair (xt, yt), the environment gener-
ates the saddle point (x∗t , y

∗
t ) by rotating the strategy pair by a random angle φ ∼ N(π, 1)

and then projecting it onto the circle of radius 1/2.

To capture a range of non-stationarity levels, we select three comparator sequences representing
different dynamics, from fully stationary to highly non-stationary settings, as detailed in Table 2.

We instantiate our algorithm as follows: Let ϕ(x) = x2/2 and ψ(y) = y2/2. Both Bϕ and Bψ
are bounded, 1-strongly convex, and exhibit Lipschitz continuity with respect to their first variables.
For the Multi-Predictor Aggregator, we configure four predictors: h1t = ft−5, h2t = ft−6, h3t =
ft−7, and h4t = ft−8. This setup enables our algorithm to achieve a sharp D-DGap bound of
Õ(1) in stationary environments or periodic scenarios with cycles of 2, 3, 4, 5, 6, 7, or 8. In the
Integration Module, we employ Successive Reduction of Search Space for joint updates, maintaining
computational costs within acceptable limits. We also apply the doubling trick (Schapire et al., 1995)
to eliminate the algorithms’ dependence on the time horizon T .

We conduct 106 rounds for each case and record the time-averaged D-DGap. The results in Figure 2
align with theoretical expectations. In Case I, both algorithms achieve near-Õ(1) D-DGaps with sta-
ble comparators, as demonstrated by their similar performance in Figure 2a. However, with highly
non-stationary comparators, our algorithm maintains this bound, while Zhang et al. (2022b)’s de-
grades to Õ(

√
T ), as shown in Figure 2c, where our advantage grows over time. In Cases II and III,

our algorithm consistently outperforms Zhang et al. (2022b). Notably, in Figure 2f, our algorithm
converges successfully, while Zhang et al. (2022b)’s fails to converge. In Case IV, both algorithms
perform comparably, as shown in Figures 2j to 2l. Our algorithm guarantees minimax optimality,
while Zhang et al. (2022b)’s algorithm, despite lacking tight bounds, demonstrates empirical success
due to the meta-expert framework.
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Figure 2: Time-Averaged D-DGaps of Algorithms

6 CONCLUSION

This paper presents the first investigation into the dynamic duality gap (D-DGap) in Online Convex-
Concave Optimization (OCCO). By utilizing a modular algorithmic structure, it efficiently adapts
to varying degrees of non-stationarity and leverages the most accurate predictors. The Integration
Module extends the idea of meta-expert framework, guaranteeing optimal performance across vary-
ing environments.

To achieve the optimal D-DGap upper bound, our Integrated Module requires a joint optimization
subroutine. This subroutine involves a two-dimensional bounded optimization problem with a con-
tinuous objective function, which is generally not considered computationally intensive. However,
in online scenarios that demand rapid decision-making, the computational cost can become substan-
tial. A promising direction for future research is to explore a trade-off between relaxing the strict
guarantees on the D-DGap bound and reducing computational costs, thereby achieving a better bal-
ance between these two factors in time-sensitive applications.

REPRODUCIBILITY

The technical appendix, located after the References, provides detailed proofs for all propositions
and theorems presented in the main text. Additionally, the code for the proposed algorithm is in-
cluded in the Supplementary Material to facilitate experimental validation.
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A PROOF OF PROPOSITION 1

Proof of Proposition 1. Independently applying two ADER or ADER-like algorithms results in the
following bounds:

T∑
t=1

(
ft(xt, yt)− ft(ut, yt)

)
≤ Õ

(√
(1 + PuT )T

)
,

T∑
t=1

(
ft(xt, vt)− ft(xt, yt)

)
≤ Õ

(√
(1 + P vT )T

)
,

where PuT =
∑T
t=1∥ut − ut−1∥ and P vT =

∑T
t=1∥vt − vt−1∥. For specially chosen comparators

x′t = argminx∈X ft (x, yt) and y′t = argmaxy∈Y ft (xt, y), we also have:
T∑
t=1

(
ft(xt, yt)− ft(ut, yt)

)
≤

T∑
t=1

(
ft(xt, yt)− ft(x′t, yt)

)
≤ Õ

(√
(1 + CxT )T

)
,

T∑
t=1

(
ft(xt, vt)− ft(xt, yt)

)
≤

T∑
t=1

(
ft(xt, y

′
t)− ft(xt, yt)

)
≤ Õ

(√
(1 + CyT )T

)
,

where CxT =
∑T
t=1∥x′t − x′t−1∥ and CyT =

∑T
t=1∥y′t − y′t−1∥.

The desired result follows by combining these inequalities.

B PROOF OF PROPOSITION 2

Proof of Proposition 2. Let F denote all convex-concave functions satisfying Assumption 2, and
let LX(G) =

{
ℓ is convex

∣∣ supx∈X ∥∂ℓ(x)∥ ≤ G}. The key to the proof is to convert OCCO into
a pair of OCO problems:

sup
f1,··· ,fT∈F

(
sup
PT≤P

(
ft (xt, vt)− ft (ut, yt)

))

≥ sup
ft(x,y)=αt(x)−βt(y)∈F , t∈{1,··· ,T}

(
max

Pu
T ≤p, Pv

T≤P−p

T∑
t=1

(
ft (xt, vt)− ft (ut, yt)

))

= sup
α1,··· ,αT∈LX(GX)

(
max
Pu

T ≤p

T∑
t=1

(
αt (xt)− αt (ut)

))
(6a)

+ sup
β1,··· ,βT∈LY (GY )

(
max

Pv
T≤P−p

T∑
t=1

(
βt (yt)− βt (vt)

))
, (6b)

where the first “≥” results from the consideration of the special form of ft as ft(x, y) = αt(x) −
βt(y), αt and βt are both convex functions, PuT =

∑T
t=1∥ut−ut−1∥, and P vT =

∑T
t=1∥vt− vt−1∥.

Note that

Equation (6a) ≥ min


sup

α1,··· ,αT∈LX(GX)

(
max
Pu

T ≤p

T∑
t=1

(
αt (xt)− αt (ut)

))
,

sup
α1,··· ,αT∈LX(GX)

(
max
Pu

T ≤Cx
T

T∑
t=1

(
αt (xt)− αt (ut)

))


≥ Ω

(
min

{√
(1 + p)T ,

√
(1 + CxT )T

})
,

where CxT =
∑T
t=1

∥∥x′t − x′t−1

∥∥, x′t = argminx∈X ft (x, yt), and the second “≥” is derived from
Theorem 2 in Zhang et al. (2018), which establishes the lower bound on regret for OCO. Likewise,

Equation (6b) ≥ Ω

(
min

{√
(1 + P − p)T ,

√
(1 + CyT )T

})
,
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where CyT =
∑T
t=1

∥∥y′t − y′t−1

∥∥, y′t = argmaxy∈Y ft (xt, y). In conclusion, we have that

sup
f1,··· ,fT∈F

(
sup
PT≤P

(
ft (xt, vt)− ft (ut, yt)

))
≥ Ω

(
min

{√
(1 + P )T ,

√
(1 + CT )T

})
.

C PROOF OF THEOREM 3

Theorem 8 presents the comprehensive version of Theorem 3, offering detailed specifications for the
adaptive learning rates, in accordance with the methodology described by Campolongo & Orabona
(2021).
Theorem 8 (Performance Guarantee for the First Expert). Under Assumptions 1 and 2. If the
learning rates satisfy the following equations:

ηt = LϕDX(T + 1)
/(
ϵ+

∑t−1
τ=1 δ

x
τ

)
, γt = LψDY (T + 1)

/(
ϵ+

∑t−1
τ=1 δ

y
τ

)
,

δxt =
[
ft(x̂t, ŷt), ft(x̂t, yt)

]
ωt −

[
ht(x̂t, ŷt), ht(x̂t, yt)

]
ωt

+
[
ht(x̃t+1, ŷt), ht(x̃t+1, yt)

]
ωt −

[
ft(x̃t+1, ŷt), ft(x̃t+1, yt)

]
ωt,

δyt =
[
ht(x̂t, ŷt), ht(xt, ŷt)

]
wt −

[
ft(x̂t, ŷt), ft(xt, ŷt)

]
wt

+
[
ft(x̂t, ỹt+1), ft(xt, ỹt+1)

]
wt −

[
ht(x̂t, ỹt+1), ht(xt, ỹt+1)

]
wt,

where ϵ > 0 prevents initial learning rates from being infinite. Then the following inequality holds:
T∑
t=1

(
ft(xt, vt)−wT

t A
: ,1
t

)
+

T∑
t=1

(
A1, :
t ωt − ft(ut, yt)

)
≤ 2ϵ+ 8

T∑
t=1

ρ(ft, ht),

where ρ(ft, ht) = maxx∈X, y∈Y |ft(x, y)− ht(x, y)| measures the distance between ft and ht.

Proof. The updates for the first expert can be rearranged as follows:

(x̂t, ŷt) = arg min
x∈X

max
y∈Y

wT
t

[
ht(x, y), ht(x, yt)
ht(xt, y), ht(xt, yt)

]
ωt +

w1
t

ηt
Bϕ
(
x, x̃ϕt

)
− ω1

t

γt
Bψ
(
y, ỹψt

)
,

x̃t+1 = argminx∈X ηt
[
ft(x, ŷt), ft(x, yt)

]
ωt +Bϕ

(
x, x̃ϕt

)
,

ỹt+1 = argmaxy∈Y γt
[
ft(x̂t, y), ft(xt, y)

]
wt −Bψ

(
y, ỹψt

)
,

(7)

Let’s derive the upper bound for the right-hand side of the metric. Note that

A1, :
t ωt − ft(ut, yt) ≤

[
ft(x̂t, ŷt), ft(x̂t, yt)

]
ωt −

[
ht(x̂t, ŷt), ht(x̂t, yt)

]
ωt

+
[
ht(x̂t, ŷt), ht(x̂t, yt)

]
ωt −

[
ht(x̃t+1, ŷt), ht(x̃t+1, yt)

]
ωt

+
[
ht(x̃t+1, ŷt), ht(x̃t+1, yt)

]
ωt −

[
ft(x̃t+1, ŷt), ft(x̃t+1, yt)

]
ωt

+
[
ft(x̃t+1, ŷt), ft(x̃t+1, yt)

]
ωt −

[
ft(ut, ŷt), ft(ut, yt)

]
ωt.

By applying the first-order optimality condition to Equation (7), we obtain〈
ηt
[
∇xht(x̂t, ŷt), ∇xht(x̂t, yt)

]
ωt + x̂ϕt − x̃

ϕ
t , x̂t − x′

〉
≤ 0, ∀x′ ∈ X,〈

ηt
[
∇xft(x̃t+1, ŷt), ∇xft(x̃t+1, yt)

]
ωt + x̃ϕt+1 − x̃

ϕ
t , x̃t+1 − x′

〉
≤ 0, ∀x′ ∈ X,

which implies that[
ht(x̂t, ŷt), ht(x̂t, yt)

]
ωt −

[
ht(x̃t+1, ŷt), ht(x̃t+1, yt)

]
ωt

≤
〈[
∇xht(x̂t, ŷt), ∇xht(x̂t, yt)

]
ωt, x̂t − x̃t+1

〉
≤
〈
x̃ϕt − x̂

ϕ
t , x̂t − x̃t+1

〉
/ηt

=
(
Bϕ
(
x̃t+1, x̃

ϕ
t

)
−Bϕ

(
x̃t+1, x̂

ϕ
t

)
−Bϕ

(
x̂, x̃ϕt

))
/ηt,

(8a)

[
ft(x̃t+1, ŷt), ft(x̃t+1, yt)

]
ωt −

[
ft(ut, ŷt), ft(ut, yt)

]
ωt

≤
〈[
∇xft(x̃t+1, ŷt), ∇xft(x̃t+1, yt)

]
ωt, x̃t+1 − ut

〉
≤
〈
x̃ϕt − x̃

ϕ
t+1, x̃t+1 − ut

〉
/ηt

=
(
Bϕ
(
ut, x̃

ϕ
t

)
−Bϕ

(
ut, x̃

ϕ
t+1

)
−Bϕ

(
x̃t+1, x̃

ϕ
t

))
/ηt.

(8b)
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Now we have that

A1, :
t ωt − ft(ut, yt) ≤

[
ft(x̂t, ŷt), ft(x̂t, yt)

]
ωt −

[
ht(x̂t, ŷt), ht(x̂t, yt)

]
ωt

+
[
ht(x̃t+1, ŷt), ht(x̃t+1, yt)

]
ωt −

[
ft(x̃t+1, ŷt), ft(x̃t+1, yt)

]
ωt

+
(
Bϕ
(
ut, x̃

ϕ
t

)
−Bϕ

(
ut, x̃

ϕ
t+1

))
/ηt

=
(
Bϕ
(
ut, x̃

ϕ
t

)
−Bϕ

(
ut, x̃

ϕ
t+1

))
/ηt + δxt ,

(9)

where δxt ≥ 0. This can be obtained by adding Equation (8a) and the following inequality:[
ft(x̂t, ŷt), ft(x̂t, yt)

]
ωt +Bϕ

(
x̂t, x̃

ϕ
t

)
/ηt ≥

[
ft(x̃t+1, ŷt), ft(x̃t+1, yt)

]
ωt +Bϕ

(
x̃t+1, x̃

ϕ
t

)
/ηt,

which corresponds to the optimality of x̃t+1.

Summing Equation (9) over time yields

T∑
t=1

(
A1, :
t ωt − ft(ut, yt)

)
≤

T∑
t=1

1

ηt

(
Bϕ
(
ut, x̃

ϕ
t

)
−Bϕ

(
ut, x̃

ϕ
t+1

))
+

T∑
t=1

δxt ,

Due to the non-increasing nature of the learning rate ηt, Bϕ is upper bounded by LϕDX and is
Lϕ-Lipschitz with respect to its first variable. Therefore, we have that

T∑
t=1

1

ηt

(
Bϕ
(
ut, x̃

ϕ
t

)
−Bϕ

(
ut, x̃

ϕ
t+1

))
≤

T∑
t=1

1

ηt

(
Bϕ
(
ut, x̃

ϕ
t

)
−Bϕ

(
ut−1, x̃

ϕ
t

))
+
Bϕ
(
u0, x̃

ϕ
1

)
η1

+

T∑
t=2

(
1

ηt
− 1

ηt−1

)
Bϕ
(
ut−1, x̃

ϕ
t

)
≤ LϕDX

ηT
+

T∑
t=1

Lϕ
ηt
∥ut − ut−1∥ .

Applying the prescribed learning rate yields

T∑
t=1

(
A1, :
t ωt − ft(ut, yt)

)
≤ Lϕ
ηT

(DX + PuT ) +

T∑
t=1

δxt ≤ ϵ+ 2

T∑
t=1

δxt ,

where PuT =
∑T
t=1 ∥ut − ut−1∥ ≤ DXT . Note that

δxt =
[
ft(x̂t, ŷt), ft(x̂t, yt)

]
ωt −

[
ht(x̂t, ŷt), ht(x̂t, yt)

]
ωt

+
[
ht(x̃t+1, ŷt), ht(x̃t+1, yt)

]
ωt −

[
ft(x̃t+1, ŷt), ft(x̃t+1, yt)

]
ωt

≤ 2 max
x∈{x̂t,xt,x̃t+1},y∈{ŷt,yt}

|ft(x, y)− ht(x, y)|

≤ 2ρ(ft, ht),

(10)

So we have that
T∑
t=1

(
A1, :
t ωt − ft(ut, yt)

)
≤ ϵ+ 4

T∑
t=1

ρ(ft, ht).

Likewise, the upper bound for the left-hand side of the metric is as follows:

T∑
t=1

(
ft(xt, vt)−wT

t A
: ,1
t

)
≤ ϵ+ 4

T∑
t=1

ρ(ft, ht).

Adding the above two inequalities yields the desired conclusion.

D PROOF OF THEOREM 4

Theorem 9 presents the full version of Theorem 4, offering detailed settings for the adaptive learning
rates, in accordance with the methodology described by Campolongo & Orabona (2021).
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Theorem 9 (Performance Guarantee for the Meta Layer). Under Assumption 2, and assume that
T ≥ 2. If the learning rates satisfy the following inequalities:

θt = (lnT )
/(
ϵ+

∑t−1
τ=1 ∆

x
τ

)
, ∆x

t = (wt − w̃t+1)
T (At −Λt)ωt − KL(w̃t+1,wt)/θt,

ϑt = (lnT )
/(
ϵ+

∑t−1
τ=1 ∆

y
τ

)
, ∆y

t = −wT
t (At −Λt) (ωt − ω̃t+1)− KL(ω̃t+1,ωt)/ϑt,

where ϵ > 0 prevents initial learning rates from being infinite. Then the meta layer of the Integration
Module enjoys the following inequality: ∀u,v ∈ △2,

T∑
t=1

(
wT
t Atv − uTAtωt

)
≤ O(1) + 4min

{
2

T∑
t=1

ρ(ft, ht),

√
(4 + lnT )

∑T

t=1
ρ2(ft, ht)

}
.

Proof. The meta layer updates of the Integration Module can be rearranged as follows:

(wt,ωt) = argminw∈△α
2
maxω∈△α

2
wTΛtω + KL(w, w̃t)/θt − KL(ω, ω̃t)/ϑt,

w̃t+1 = argminw∈△α
2
⟨θtAtωt,w⟩+ KL(w, w̃t),

ω̃t+1 = argmaxω∈△α
2
⟨ϑtAT

t wt,ω⟩ − KL(ω, ω̃t),

(11)

where α = 2/T . Let 1 = [1, 1]T. By inserting an auxiliary term w = α1/2 + (1− α)u, we get

T∑
t=1

(wt − u)TAtωt =

T∑
t=1

(wt −w)TAtωt +

T∑
t=1

(w − u)TAtωt, ∀u ∈ △2,

where
T∑
t=1

(w − u)TAtωt ≤ T
∥∥∥α
2
1− αu

∥∥∥
1
∥At∥∞ ≤ 2αTM = 4M.

Let ℓt = Atωt and ht = Λtωt. Applying the first-order optimality condition to Equation (11)
yields

(wt −w′)
T
(θtht + lnwt + 1− ln w̃t) ≤ 0, ∀w′ ∈ △α2 ,

(w̃t+1 −w′)
T
(θtℓt + ln w̃t+1 + 1− ln w̃t) ≤ 0, ∀w′ ∈ △α2 .

Thus we have that

(wt −w)TAtωt

= (wt − w̃t+1)
T (ℓt −ht) + (wt − w̃t+1)

Tht + (w̃t+1 −w)Tℓt

≤ (wt − w̃t+1)
T (ℓt −ht) +

1

θt
(wt − w̃t+1)

T ln
w̃t

wt
+

1

θt
(w̃t+1 −w)T ln

w̃t

w̃t+1

≤ (wt − w̃t+1)
T (ℓt −ht)−

1

θt
KL(w̃t+1,wt)−

1

θt
KL(wt, w̃t) +

1

θt
wT ln

w̃t+1

w̃t

≤ ∆x
t +wT (ln w̃t+1 − ln w̃t) /θt.

Summing over time yields
T∑
t=1

(wt −w)TAtωt ≤
T∑
t=1

∆x
t +

T∑
t=1

1

θt

(
KL(w, w̃t)− KL(w, w̃t+1)

)
=

T∑
t=1

∆x
t +

KL(w, w̃1)

θ1
+

T∑
t=2

(
1

θt
− 1

θt−1

)
KL(w, w̃t)−

KL(w, w̃T+1)

θT

≤
T∑
t=1

∆x
t +

lnT

θ1
+

T∑
t=2

(
1

θt
− 1

θt−1

)
lnT =

lnT

θT
+

T∑
t=1

∆x
t ,

where the last “≤” follows from the two facts that 0 ≤ KL(a, b) ≤ lnT for all a, b ∈ △α2 , and the
learning rate is non-increasing. The derivation for the first fact is as follows:

0 ≤ KL(a, b) = aT ln
a

b
≤ lnaTa

b
≤ ln

∥∥∥a
b

∥∥∥
∞
≤ lnT.
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The reason for the second fact is ∆x
t ≥ 0, which can be obtained by adding the following two

inequalities:

wT
t ℓt + KL(wt, w̃t)/θt ≥ w̃T

t+1ℓt + KL(w̃t+1, w̃t)/θt, // The optimality of w̃t+1,

(wt − w̃t+1)
T
(θtht + lnwt − ln w̃t) ≤ 0, // First-order optimality condition.

Now applying the prescribed learning rate yields

T∑
t=1

(wt −w)TAtωt ≤ ϵ+ 2

T∑
t=1

∆x
t .

Next, we estimate the upper bound of the above inequality. Note that

∆x
t ≤ ∥wt − w̃t+1∥1 ∥At −Λt∥∞ −

1

2θt
∥wt − w̃t+1∥21

≤ min

{
2 ∥At −Λt∥∞ ,

θt
2
∥At −Λt∥2∞

}
Thus we have that(

T∑
t=1

∆x
t

)2

=

T∑
t=1

(∆x
t )

2
+ 2

T∑
t=1

∆x
t

t−1∑
τ=1

∆x
τ ≤

T∑
t=1

(∆x
t )

2
+ 2

T∑
t=1

∆x
t

(
lnT

θt
− ϵ
)

≤
T∑
t=1

4 ∥At −Λt∥2∞ +

T∑
t=1

lnT ∥At −Λt∥2∞

= (4 + lnT )

T∑
t=1

∥At −Λt∥2∞ .

Combining the above three inequalities yields

T∑
t=1

(wt −w)TAtωt ≤ ϵ+ 2min

{
2

T∑
t=1

∥At −Λt∥∞ ,

√
(4 + lnT )

∑T

t=1
∥At −Λt∥2∞

}
.

In conclusion, ∀u ∈ △2:

T∑
t=1

(wt − u)TAtωt =

T∑
t=1

(wt −w)TAtωt +

T∑
t=1

(w − u)TAtωt

≤ ϵ+ 2min

{
2

T∑
t=1

ρ(ft, ht),

√
(4 + lnT )

∑T

t=1
ρ2(ft, ht)

}
+ 4M,

where the inequality holds since

∥At −Λt∥∞ = max
x∈{x̂t,xt},y∈{ŷt,yt}

|ft(x, y)− ht(x, y)| ≤ ρ(ft, ht). (12)

Likewise, ∀v ∈ △2:

T∑
t=1

wT
t At(v − ωt) ≤ ϵ+ 2min

{
2

T∑
t=1

ρ(ft, ht),

√
(4 + lnT )

∑T

t=1
ρ2(ft, ht)

}
+ 4M.

Adding the above two individual regrets yields

T∑
t=1

(
wT
t Atv − uTAtωt

)
≤ O(1) + 4min

{
2

T∑
t=1

ρ(ft, ht),

√
(4 + lnT )

∑T

t=1
ρ2(ft, ht)

}
,

which meets the stated bound.
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E PROOF OF THEOREM 6

Proof of Theorem 6. We begin by proving that the saddle point map Ht : (w,ω) 7→ (x̂, ŷ), where
(x̂, ŷ) is the saddle point of Ht( · , · ;w,ω), is well-defined and continuous.

By Sion’s Minimax Theorem (Sion, 1958), since Ht( · , · ;w,ω) is convex in X , concave in Y , and
continuous, and given that bothX and Y are compact and convex, it follows that for every fixed pair
(w,ω), there exists a saddle point (x̂, ŷ). Furthermore, as Ht( · , · ;w,ω) is strictly convex in X
and strictly concave in Y , the saddle point (x̂, ŷ) is unique. To substantiate this uniqueness, assume
for contradiction that there exists another saddle point (x̂′, ŷ′). In such a case, the following two
inequalities must hold:

Ht(x̂
′, ŷ′;w,ω) < Ht(x̂, ŷ

′;w,ω) < Ht(x̂, ŷ;w,ω),

Ht(x̂, ŷ;w,ω) < Ht(x̂
′, ŷ;w,ω) < Ht(x̂

′, ŷ′;w,ω),

which leads to a contradiction. Therefore, the saddle point (x̂, ŷ) is unique, and Ht is well-defined.

Now, assume that the sequence (wn,ωn) converges to (w0,ω0) as n → +∞. To prove that Ht is
continuous, we must show that the corresponding sequence of saddle points (x̂n, ŷn) converges to
(x̂0, ŷ0). Suppose, for contradiction, that (x̂n, ŷn) ̸→ (x̂0, ŷ0). Since X × Y is compact, there must
exist a subsequence (x̂nk

, ŷnk
) converging to some point (x̂′0, ŷ

′
0) ̸= (x̂0, ŷ0). By the continuity of

Ht, the saddle point inequalities are preserved along the subsequence, yielding:

Ht(x̂nk
, y;wnk

,ωnk
) ≤ Ht(x̂nk

, ŷnk
;wnk

,ωnk
) ≤ Ht(x, ŷnk

;wnk
,ωnk

), ∀x ∈ X, y ∈ Y.

Taking the limit as k → +∞, we obtain:

Ht(x̂
′
0, y;w0,ω0) ≤ Ht(x̂

′
0, ŷ

′
0;w0,ω0) ≤ Ht(x, ŷ

′
0;w0,ω0), ∀x ∈ X, y ∈ Y.

This implies that (x̂′0, ŷ
′
0) satisfies the saddle point conditions for Ht( · , · ;w0,ω0). However, since

the saddle point is unique, it follows that (x̂′0, ŷ
′
0) = (x̂0, ŷ0). This contradicts the assumption that

(x̂′0, ŷ
′
0) ̸= (x̂0, ŷ0). Therefore, Ht is continuous.

Similarly, the map Wt is also well-defined and continuous. Hence, the composition Wt ◦ Ht is
a continuous map from the compact convex set △α2 × △α2 to itself. By Brouwer’s fixed-point
theorem (Brouwer, 1911; Karapınar & Agarwal, 2022), there exists a point (w′,ω′) such that
(w′,ω′) = Wt ◦Ht(w′,ω′), and this point corresponds to the solution of Equations (3a) and (3d).

We now turn our attention to proving the second statement. Define

Φt : (w,ω) 7→ arg max
v∈△α

2

Wt (w,v;Ht(w,ω)) ,

Ψt : (w,ω) 7→ arg min
u∈△α

2

Wt (u,ω;Ht(w,ω)) .

Both Φt and Ψt are well-defined and continuous, as can be established following the previous proof.
Then Ft : (w,ω) 7→ (w,ω) 7→ Wt (w,Φt(w,ω);Ht(w,ω)) −Wt (Ψt(w,ω),ω;Ht(w,ω)) = σ
is continuous.

Note that maxv∈△α
2
Wt (w,v; x̂, ŷ) ≥ Wt (w,ω; x̂, ŷ) ≥ minu∈△α

2
Wt (u,ω; x̂, ŷ), so σ ≥ 0, and

equality holds if and only if (w,ω) is the saddle point of Wt ( · , · ; x̂, ŷ). Therefore, combining this
with the fact that (x̂, ŷ) is the saddle point of Ht( · , · ;w,ω), we conclude that solving the fixed
point of Wt ◦Ht is equivalent to minimizing the continuous map Ft to zero.

F PROOF OF THEOREM 7

Theorem 10 is the full version of Theorem 7, providing detailed settings for the adaptive learning
rate, in accordance with the methodology described by Campolongo & Orabona (2021).

Theorem 10 (D-DGap for the Integration Module Using a Multi-Predictor Aggregator). Assume
the payoff function ft and all predictors {h1t , h2t , · · · , hdt } satisfy Assumption 2. Let T ≥ d. If the
Multi-Predictor Aggregator updates its learning rate according to the following equations:

ζt = (lnT )
/(
ϵ+

∑t−1
τ=1 ∆τ

)
, ϵ > 0, ∆t =

〈
Lt, ξt − ξt+1

〉
− KL(ξt+1, ξt)/ζt.
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Then, the D-DGap upper bound for the Integration Module can be enhanced as follows:

D-DGapT ≤ Õ

(
min

{
min

k∈{1,2,··· ,d}

T∑
t=1

ρ(ft, h
k
t ),
√
(1 + min{PT , CT })T

})
.

Proof. In the proofs of Theorems 3 and 4, the relaxed inequalities δxt , δ
y
t ≤ 2ρ(ft, ht) and

∥At −Λt∥∞ ≤ ρ(ft, ht) are utilized (refer to Equations (10) and (12)). However, by appropri-
ately setting the loss vector Lt, these upper bounds can be tightened further, as follows:

δxt , δ
y
t , 2 ∥At −Λt∥∞ ≤ 2 ⟨Lt, ξt⟩ .

Applying Lemma 11, we derive:

T∑
t=1

⟨Lt, ξt⟩ ≤
T∑
t=1

⟨Lt,1k⟩+ 2

√
2M (1 + lnT )

∑T

t=1
⟨Lt,1k⟩+O (lnT )

=

T∑
t=1

⟨Lt,1k⟩+O
(√

lnT
)√∑T

t=1
⟨Lt,1k⟩+O (lnT )

≤ 2

T∑
t=1

⟨Lt,1k⟩+O (lnT ) ≤ 2

T∑
t=1

ρ
(
ft, h

k
t

)
+O (lnT ) , ∀k = 1, 2, · · · , d,

where 1k is a d-dimensional one-hot vector with the k-th element being 1. Given the arbitrariness
of k, it follows that:

T∑
t=1

⟨Lt, ξt⟩ ≤ 2 min
k∈{1,2,··· ,d}

T∑
t=1

ρ
(
ft, h

k
t

)
+O (lnT ) .

Therefore, the term
∑T
t=1 ρ(ft, ht) in the performance bounds of both the meta layer and expert

layer can be replaced with Õ
(
mink∈{1,2,··· ,d}

∑T
t=1 ρ(ft, h

k
t )
)
, resulting in the following D-DGap

upper bound:

D-DGapT ≤ Õ

(
min

{
min

k∈{1,2,··· ,d}

T∑
t=1

ρ(ft, h
k
t ),
√

(1 + min{PT , CT })T

})
.

Lemma 11 (Static Regret for Clipped Hedge, Static Version of Corollary B.0.1 in Campolongo &
Orabona (2021)). Let △αd be a d-dimensional α-clipped simplex, T ≥ d and α = d/T . Assume
that all bounded linear losses satisfy Lt ≥ 0 and maxt∈1:T ∥Lt∥∞ = L∞. If ξt follows the clipped
Hedge:

ξt+1 = arg min
ξ∈△a

d

ζt ⟨Lt, ξ⟩+ KL(ξ, ξt),

where the learning rate ζt is determined by the following equations:

ζt = (lnT )
/(
ϵ+

∑t−1
τ=1 ∆τ

)
, ϵ > 0, ∆t =

〈
Lt, ξt − ξt+1

〉
− KL(ξt+1, ξt)/ζt.

Then we have that
T∑
t=1

〈
Lt, ξt − u

〉
≤ 2

√
(1 + lnT )L∞

∑T

t=1

〈
Lt,u

〉
+O (lnT ) , ∀u ∈ △d.
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