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ABSTRACT

Deep reinforcement learning agents are notoriously sample inefficient, which
considerably limits their application to real-world problems. Recently, many
model-based methods have been designed to address this issue, with learning in
the imagination of a world model being one of the most prominent approaches.
However, while virtually unlimited interaction with a simulated environment sounds
appealing, the world model has to be accurate over extended periods of time.
Motivated by the success of Transformers in sequence modeling tasks, we introduce
IRIS, a data-efficient agent that learns in a world model composed of a discrete
autoencoder and an autoregressive Transformer. With the equivalent of only two
hours of gameplay in the Atari 100k benchmark, IRIS achieves a mean human
normalized score of 1.046, and outperforms humans on 10 out of 26 games, setting a
new state of the art for methods without lookahead search. To foster future research
on Transformers and world models for sample-efficient reinforcement learning, we
release our codebase at https://github.com/eloialonso/iris.

1 INTRODUCTION

Deep Reinforcement Learning (RL) has become the dominant paradigm for developing competent
agents in challenging environments. Most notably, human experts were surpassed by deep RL
algorithms in a multitude of arcade (Mnih et al., 2015; Schrittwieser et al., 2020; Hafner et al.,
2021), real-time strategy (Vinyals et al., 2019; Berner et al., 2019), board (Silver et al., 2016; 2018;
Schrittwieser et al., 2020) and imperfect information (Schmid et al., 2021; Brown et al., 2020a) games.
However, a common drawback of these methods is their extremely low sample efficiency. Indeed,
experience requirements range from months of gameplay for DreamerV2 (Hafner et al., 2021) in
Atari 2600 games (Bellemare et al., 2013b) to thousands of years for OpenAI Five in Dota2 (Berner
et al., 2019). While some environments can be sped up for training agents, real-world applications
often cannot. Besides, additional cost or safety considerations related to the number of environmental
interactions may arise (Yampolskiy, 2018). Hence, sample efficiency is a necessary condition to
bridge the gap between research and the deployment of deep RL agents in the wild.

Model-based methods (Sutton & Barto, 2018) constitute a promising direction to achieve data
efficiency. Recently, world models were leveraged in several ways: pure representation learning
(Schwarzer et al., 2021), lookahead search (Schrittwieser et al., 2020; Ye et al., 2021), and learning
in imagination (Ha & Schmidhuber, 2018; Kaiser et al., 2020; Hafner et al., 2020; 2021). The
latter approach is particularly appealing because training an agent inside a world model frees it
from sample efficiency constraints. Nevertheless, this framework relies heavily on accurate world
models since the policy is purely trained in imagination. In a pioneering work, Ha & Schmidhuber
(2018) successfully built imagination-based agents in toy environments. SimPLe recently showed
promise in the more challenging Atari 100k benchmark (Kaiser et al., 2020). Currently, the best
Atari agent learning in imagination is DreamerV2 (Hafner et al., 2021), although it was developed
and evaluated with two hundred million frames available, far from the sample-efficient regime.
Therefore, designing new world model architectures, capable of handling visually complex and
partially observable environments with few samples, is key to realize their potential as surrogate
training grounds.
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Figure 1: Unrolling imagination over time. This figure shows the policy π, depicted with purple
arrows, taking a sequence of actions in imagination. The green arrows correspond to the encoder
E and the decoder D of a discrete autoencoder, whose task is to represent frames in its learnt
symbolic language. The backbone G of the world model is a GPT-like Transformer, illustrated with
blue arrows. For each action that the policy π takes, G simulates the environment dynamics, by
autoregressively unfolding new frame tokens that D can decode. G also predicts a reward and a
potential episode termination. More specifically, an initial frame x0 is encoded with E into tokens
z0 = (z10 , . . . , z

K
0 ) = E(x0). The decoder D reconstructs an image x̂0 = D(z0), from which the

policy π predicts the action a0. From z0 and a0, G predicts the reward r̂0, episode termination
d̂0 ∈ {0, 1}, and in an autoregressive manner ẑ1 = (ẑ11 , . . . , ẑ

K
1 ), the tokens for the next frame. A

dashed box indicates image tokens for a given time step, whereas a solid box represents the input
sequence of G, i.e. (z0, a0) at t = 0, (z0, a0, ẑ1, a1) at t = 1, etc. The policy π is purely trained
with imagined trajectories, and is only deployed in the real environment to improve the world model
(E,D,G).

The Transformer architecture (Vaswani et al., 2017) is now ubiquitous in Natural Language Processing
(Devlin et al., 2019; Radford et al., 2019; Brown et al., 2020b; Raffel et al., 2020), and is also
gaining traction in Computer Vision (Dosovitskiy et al., 2021; He et al., 2022), as well as in Offline
Reinforcement Learning (Janner et al., 2021; Chen et al., 2021). In particular, the GPT (Radford
et al., 2018; 2019; Brown et al., 2020b) family of models delivered impressive results in language
understanding tasks. Similarly to world models, these attention-based models are trained with high-
dimensional signals and a self-supervised learning objective, thus constituting ideal candidates to
simulate an environment.

Transformers particularly shine when they operate over sequences of discrete tokens (Devlin et al.,
2019; Brown et al., 2020b). For textual data, there are simple ways (Schuster & Nakajima, 2012;
Kudo & Richardson, 2018) to build a vocabulary, but this conversion is not straightforward with
images. A naive approach would consist in treating pixels as image tokens, but standard Transformer
architectures scale quadratically with sequence length, making this idea computationally intractable.
To address this issue, VQGAN (Esser et al., 2021) and DALL-E (Ramesh et al., 2021) employ a discrete
autoencoder (Van Den Oord et al., 2017) as a mapping from raw pixels to a much smaller amount
of image tokens. Combined with an autoregressive Transformer, these methods demonstrate strong
unconditional and conditional image generation capabilities. Such results suggest a new approach to
design world models.

In the present work, we introduce IRIS (Imagination with auto-Regression over an Inner Speech),
an agent trained in the imagination of a world model composed of a discrete autoencoder and an
autoregressive Transformer. IRIS learns behaviors by accurately simulating millions of trajectories.
Our approach casts dynamics learning as a sequence modeling problem, where an autoencoder
builds a language of image tokens and a Transformer composes that language over time. With
minimal tuning and a drastically different architecture, IRIS outperforms a line of recent methods
(Kaiser et al., 2020; Hessel et al., 2018; Laskin et al., 2020; Yarats et al., 2021; Schwarzer et al.,
2021) for sample-efficient RL in the Atari 100k benchmark (Kaiser et al., 2020). After only two
hours of real-time experience, it achieves a mean human normalized score of 1.046, and reaches
superhuman performance on 10 out of 26 games. We describe IRIS in Section 2 and present our
results in Section 3.
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Figure 2: Four imagined trajectories in KungFuMaster. We use the same conditioning frame across
the four rows, in green, and let the world model imagine the rest. As the initial frame only contains
the player, there is no information about the enemies that will come next. Consequently, the world
model generates different types and numbers of opponents in each simulation. It is also able to reflect
an essential game mechanic, highlighted in the blue box, where the first enemy disappears after
getting hit by the player.

2 METHOD

We formulate the problem as a Partially Observable Markov Decision Process (POMDP) with image
observations xt ∈ Rh×w×3, discrete actions at ∈ {1, . . . , A}, scalar rewards rt ∈ R, episode termi-
nation dt ∈ {0, 1}, discount factor γ ∈ (0, 1), initial observation distribution ρ0, and environment
dynamics xt+1, rt, dt ∼ p(xt+1, rt, dt | x≤t, a≤t). The reinforcement learning objective is to train a
policy π that yields actions maximizing the expected sum of rewards Eπ[

∑
t≥0 γ

trt].

Our method relies on the three standard components to learn in imagination (Sutton & Barto, 2018):
experience collection, world model learning, and behavior learning. In the vein of Ha & Schmidhuber
(2018); Kaiser et al. (2020); Hafner et al. (2020; 2021), our agent learns to act exclusively within its
model of the world, and we only make use of real experience to learn the environment dynamics.

We repeatedly perform the three following steps:

• collect_experience: gather experience in the real environment with the current policy.

• update_world_model: improve rewards, episode ends and next observations predictions.

• update_behavior: in imagination, improve the policy and value functions.

The world model is composed of a discrete autoencoder (Van Den Oord et al., 2017), to convert
an image to tokens and back, and a GPT-like autoregressive Transformer (Vaswani et al., 2017;
Radford et al., 2019; Brown et al., 2020b), whose task is to capture environment dynamics. Figure 1
illustrates the interplay between the policy and these two components during imagination. We first
describe the autoencoder and the Transformer in Sections 2.1 and 2.2, respectively. Section 2.3 then
details the procedure to learn the policy and value functions in imagination. Appendix A provides a
comprehensive description of model architectures and hyperparameters. Algorithm 1 summarizes the
training protocol.

2.1 FROM IMAGE OBSERVATIONS TO TOKENS

The discrete autoencoder (E,D) learns a symbolic language of its own to represent high-dimensional
images as a small number of tokens. The back and forth between frames and tokens is illustrated
with green arrows in Figure 1.
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Figure 3: Pixel perfect predictions in Pong. The top row displays a test trajectory collected in the
real environment. The bottom row depicts the reenactment of that trajectory inside the world model.
More precisely, we condition the world model with the first two frames of the true sequence, in green.
We then sequentially feed it the true actions and let it imagine the subsequent frames. After only 120
games of training, the world model perfectly simulates the ball’s trajectory and players’ movements.
Notably, it also captures the game mechanic of updating the scoreboard after winning an exchange,
as shown in the blue box.

More precisely, the encoder E : Rh×w×3 → {1, . . . , N}K converts an input image xt into K
tokens from a vocabulary of size N . Let E = {ei}Ni=1 ∈ RN×d be the corresponding embedding
table of d-dimensional vectors. The input image xt is first passed through a Convolutional Neural
Network (CNN) (LeCun et al., 1989) producing output yt ∈ RK×d. We then obtain the output
tokens zt = (z1t , . . . , z

K
t ) ∈ {1, . . . , N}K as zkt = argmini

∥∥ykt − ei
∥∥
2
, the index of the closest

embedding vector in E (Van Den Oord et al., 2017; Esser et al., 2021). Conversely, the CNN decoder
D : {1, . . . , N}K → Rh×w×3 turns K tokens back into an image.

This discrete autoencoder is trained on previously collected frames, with an equally weighted
combination of a L1 reconstruction loss, a commitment loss (Van Den Oord et al., 2017; Esser et al.,
2021), and a perceptual loss (Esser et al., 2021; Johnson et al., 2016; Larsen et al., 2016). We use a
straight-through estimator (Bengio et al., 2013) to enable backpropagation training.

2.2 MODELING DYNAMICS

At a high level, the Transformer G captures the environment dynamics by modeling the language of
the discrete autoencoder over time. Its central role of unfolding imagination is highlighted with the
blue arrows in Figure 1.

Specifically, G operates over sequences of interleaved frame and action tokens. An input se-
quence (z10 , . . . , z

K
0 , a0, z

1
1 , . . . , z

K
1 , a1, . . . , z

1
t , . . . , z

K
t , at) is obtained from the raw sequence

(x0, a0, x1, a1, . . . , xt, at) by encoding the frames with E, as described in Section 2.1.

At each time step t, the Transformer models the three following distributions:

Transition: ẑt+1 ∼ pG
(
ẑt+1| z≤t, a≤t

)
with ẑkt+1 ∼ pG

(
ẑkt+1 | z≤t, a≤t, z

<k
t+1

)
(1)

Reward: r̂t ∼ pG
(
r̂t | z≤t, a≤t

)
(2)

Termination: d̂t ∼ pG
(
d̂t | z≤t, a≤t

)
(3)

Note that the conditioning for the k-th token also includes z<k
t+1 := (z1t+1, . . . , z

k−1
t+1 ), the tokens that

were already predicted, i.e. the autoregressive process happens at the token level.

We train G in a self-supervised manner on segments of L time steps, sampled from past experience.
We use a cross-entropy loss for the transition and termination predictors, and a mean-squared error
loss or a cross-entropy loss for the reward predictor, depending on the reward function.

2.3 LEARNING IN IMAGINATION

Together, the discrete autoencoder (E,D) and the Transformer G form a world model, capable
of imagination. The policy π, depicted with purple arrows in Figure 1, exclusively learns in this
imagination MDP.
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Figure 4: Imagining rewards and episode ends in Breakout (top) and Gopher (bottom). Each row
depicts an imagined trajectory initialized with a single frame from the real environment. Yellow
boxes indicate frames where the world model predicts a positive reward. In Breakout, it captures that
breaking a brick yields rewards, and the brick is correctly removed from the following frames. In
Gopher, the player has to protect the carrots from rodents. The world model successfully internalizes
that plugging a hole or killing an enemy leads to rewards. Predicted episode terminations are
highlighted with red boxes. The world model accurately reflects that missing the ball in Breakout, or
letting an enemy reach the carrots in Gopher, will result in the end of an episode.

At time step t, the policy observes a reconstructed image observation x̂t and samples action at ∼
π(at|x̂≤t). The world model then predicts the reward r̂t, the episode end d̂t, and the next observation
x̂t+1 = D(ẑt+1), with ẑt+1 ∼ pG(ẑt+1 | z0, a0, ẑ1, a1, . . . , ẑt, at). This imagination procedure is
initialized with a real observation x0 sampled from past experience, and is rolled out for H steps,
the imagination horizon hyperparameter. We stop if an episode end is predicted before reaching the
horizon. Figure 1 illustrates the imagination procedure.

As we roll out imagination for a fixed number of steps, we cannot simply use a Monte Carlo estimate
for the expected return. Hence, to bootstrap the rewards that the agent would get beyond a given time
step, we have a value network V that estimates V (x̂t) ≃ Eπ

[∑
τ≥t γ

τ−tr̂τ
]
.

Many actor-critic methods could be employed to train π and V in imagination (Sutton & Barto, 2018;
Kaiser et al., 2020; Hafner et al., 2020). For the sake of simplicity, we opt for the learning objectives
and hyperparameters of DreamerV2 (Hafner et al., 2021), that delivered strong performance in Atari
games. Appendix B gives a detailed breakdown of the reinforcement learning objectives.

3 EXPERIMENTS

Sample-efficient reinforcement learning is a growing field with multiple benchmarks in complex
visual environments (Hafner, 2022; Kanervisto et al., 2022). In this work, we focus on the well
established Atari 100k benchmark (Kaiser et al., 2020). We present the benchmark and its baselines
in Section 3.1. We describe the evaluation protocol and discuss the results in Section 3.2. Qualitative
examples of the world model’s capabilities are given in Section 3.3.
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Table 1: Returns on the 26 games of Atari 100k after 2 hours of real-time experience, and human-
normalized aggregate metrics. Bold numbers indicate the top methods without lookahead search
while underlined numbers specify the overall best methods. IRIS outperforms learning-only methods
in terms of number of superhuman games, mean, interquartile mean (IQM), and optimality gap.

Lookahead search No lookahead search

Game Random Human MuZero EfficientZero SimPLe CURL DrQ SPR IRIS (ours)

Alien 227.8 7127.7 530.0 808.5 616.9 711.0 865.2 841.9 420.0
Amidar 5.8 1719.5 38.8 148.6 74.3 113.7 137.8 179.7 143.0
Assault 222.4 742.0 500.1 1263.1 527.2 500.9 579.6 565.6 1524.4
Asterix 210.0 8503.3 1734.0 25557.8 1128.3 567.2 763.6 962.5 853.6
BankHeist 14.2 753.1 192.5 351.0 34.2 65.3 232.9 345.4 53.1
BattleZone 2360.0 37187.5 7687.5 13871.2 4031.2 8997.8 10165.3 14834.1 13074.0
Boxing 0.1 12.1 15.1 52.7 7.8 0.9 9.0 35.7 70.1
Breakout 1.7 30.5 48.0 414.1 16.4 2.6 19.8 19.6 83.7
ChopperCommand 811.0 7387.8 1350.0 1117.3 979.4 783.5 844.6 946.3 1565.0
CrazyClimber 10780.5 35829.4 56937.0 83940.2 62583.6 9154.4 21539.0 36700.5 59324.2
DemonAttack 152.1 1971.0 3527.0 13003.9 208.1 646.5 1321.5 517.6 2034.4
Freeway 0.0 29.6 21.8 21.8 16.7 28.3 20.3 19.3 31.1
Frostbite 65.2 4334.7 255.0 296.3 236.9 1226.5 1014.2 1170.7 259.1
Gopher 257.6 2412.5 1256.0 3260.3 596.8 400.9 621.6 660.6 2236.1
Hero 1027.0 30826.4 3095.0 9315.9 2656.6 4987.7 4167.9 5858.6 7037.4
Jamesbond 29.0 302.8 87.5 517.0 100.5 331.0 349.1 366.5 462.7
Kangaroo 52.0 3035.0 62.5 724.1 51.2 740.2 1088.4 3617.4 838.2
Krull 1598.0 2665.5 4890.8 5663.3 2204.8 3049.2 4402.1 3681.6 6616.4
KungFuMaster 258.5 22736.3 18813.0 30944.8 14862.5 8155.6 11467.4 14783.2 21759.8
MsPacman 307.3 6951.6 1265.6 1281.2 1480.0 1064.0 1218.1 1318.4 999.1
Pong -20.7 14.6 -6.7 20.1 12.8 -18.5 -9.1 -5.4 14.6
PrivateEye 24.9 69571.3 56.3 96.7 35.0 81.9 3.5 86.0 100.0
Qbert 163.9 13455.0 3952.0 13781.9 1288.8 727.0 1810.7 866.3 745.7
RoadRunner 11.5 7845.0 2500.0 17751.3 5640.6 5006.1 11211.4 12213.1 9614.6
Seaquest 68.4 42054.7 208.0 1100.2 683.3 315.2 352.3 558.1 661.3
UpNDown 533.4 11693.2 2896.9 17264.2 3350.3 2646.4 4324.5 10859.2 3546.2

#Superhuman (↑) 0 N/A 5 14 1 2 3 6 10
Mean (↑) 0.000 1.000 0.562 1.943 0.332 0.261 0.465 0.616 1.046
Median (↑) 0.000 1.000 0.227 1.090 0.134 0.092 0.313 0.396 0.289
IQM (↑) 0.000 1.000 N/A N/A 0.130 0.113 0.280 0.337 0.501
Optimality Gap (↓) 1.000 0.000 N/A N/A 0.729 0.768 0.631 0.577 0.512

3.1 BENCHMARK AND BASELINES

Atari 100k consists of 26 Atari games (Bellemare et al., 2013a) with various mechanics, evaluating
a wide range of agent capabilities. In this benchmark, an agent is only allowed 100k actions in
each environment. This constraint is roughly equivalent to 2 hours of human gameplay. By way of
comparison, unconstrained Atari agents are usually trained for 50 million steps, a 500 fold increase
in experience.

Multiple baselines were benchmarked on Atari 100k. SimPLe (Kaiser et al., 2020) trains a policy
with PPO (Schulman et al., 2017) in a video generation model. CURL (Laskin et al., 2020) develops
off-policy agents from high-level image features obtained with contrastive learning. DrQ (Yarats
et al., 2021) augments input images and averages Q-value estimates over several transformations.
SPR (Schwarzer et al., 2021) enforces consistent representations of input images across augmented
views and neighbouring time steps. The aforementioned baselines carry additional techniques to
improve performance. Instead, IRIS does not rely on prioritized experience replay (Schaul et al.,
2016), epsilon-greedy scheduling, or data augmentations.

We make a distinction between methods with and without lookahead search. Indeed, algorithms
such as Monte Carlo Tree Search (MCTS) (Silver et al., 2016; 2018; Schrittwieser et al., 2020) can
vastly improve agent performance, but they come at a premium in computational resources and code
complexity. On the contrary, IRIS and the baselines above do not require distributed infrastructures
and multiple GPUs. Moreover, IRIS could be combined with MCTS, both in imagination and in
the real environment. Therefore, methods involving lookahead search should not be seen as direct
competitors but rather as potential extensions to learning-only methods.

MuZero (Schrittwieser et al., 2020) and EfficientZero (Ye et al., 2021) are the current standard for
search-based methods. MuZero leverages MCTS as a policy improvement operator, by unrolling
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(Agarwal et al., 2021).
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Figure 6: Performance profiles (left) and probabilities of improvement (right) (Agarwal et al., 2021).

multiple hypothetical trajectories in the latent space of a world model. EfficientZero improves upon
MuZero by introducing a self-supervised consistency loss, predicting returns over short horizons in
one shot, and correcting off-policy trajectories with its world model.

3.2 RESULTS

The human normalized score is the established measure of performance in Atari 100k. It is defined as
score_agent−score_random
score_human−score_random , where score_random comes from a random policy, and score_human is
obtained from human players (Wang et al., 2016).

Table 1 displays returns across games and human-normalized aggregate metrics. For MuZero and
EfficientZero, we report the averaged results published by Ye et al. (2021) (3 runs). We use results
from the Atari 100k case study conducted by Agarwal et al. (2021) for the other baselines (100 new
runs for CURL, DrQ, SPR, and 5 existing runs for SimPLe). Finally, we evaluate IRIS by computing
an average over 100 episodes collected at the end of training for each game (5 runs).

Agarwal et al. (2021) discuss the limitations of mean and median scores, and show that substantial
discrepancies arise between standard point estimates and interval estimates in RL benchmarks.
Following their recommendations, we summarize in Figure 5 the human normalized scores with
stratified bootstrap confidence intervals for mean, median, and interquartile mean (IQM). For finer
comparisons, we also provide performance profiles and probabilities of improvement in Figure 6.

With the equivalent of only two hours of gameplay, IRIS achieves a superhuman mean score of 1.046
(+70%), an IQM of 0.501 (+49%), an optimality gap of 0.512 (+11%), and outperforms human
players on 10 out of 26 games (+67%), where the relative improvements are computed with respect
to SPR (Schwarzer et al., 2021). These results constitute a new state of the art for methods without
lookahead search in the Atari 100k benchmark. We also note that IRIS outperforms MuZero, although
the latter was not designed for the sample-efficient regime.
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Figure 7: Three consecutive levels in the games Frostbite (left) and Krull (right). In our experiments,
the world model struggles to simulate subsequent levels in Frostbite, but not in Krull. Indeed, exiting
the first level in Frostbite requires a long and unlikely sequence of actions to first build the igloo,
and then go back to it from the bottom of the screen. Such rare events prevent the world model
from internalizing new aspects of the game, which will therefore not be experienced by the policy
in imagination. While Krull features more diverse levels, the world model successfully reflects this
variety, and IRIS even sets a new state of the art in this environment. This is likely due to more
frequent transitions from one stage to the next in Krull, resulting in a sufficient coverage of each level.

In addition, performance profiles (Figure 6a) reveal that IRIS is on par with the strongest baselines
for its bottom 50% of games, at which point it stochastically dominates (Agarwal et al., 2021; Dror
et al., 2019) the other methods. Similarly, the probability of improvement is greater than 0.5 for all
baselines (Figure 6b).

In terms of median score, IRIS overlaps with other methods (Figure 5). Interestingly, Schwarzer et al.
(2021) observe that the median is only influenced by a few decisive games, as evidenced by the width
of the confidence intervals for median scores, even with 100 runs for DrQ, CURL and SPR.

We observe that IRIS is particularly strong in games that do not suffer from distributional shifts as the
training progresses. Examples of such games include Pong, Breakout, and Boxing. On the contrary,
the agent struggles when a new level or game mechanic is unlocked through an unlikely event. This
sheds light on a double exploration problem. IRIS has to first discover a new aspect of the game for
its world model to internalize it. Only then may the policy rediscover and exploit it. Figure 7 details
this phenomenon in Frostbite and Krull, two games with multiple levels. In summary, as long as
transitions between levels do not depend on low-probability events, the double exploration problem
does not hinder performance.

Another kind of games difficult to simulate are mazes with moving enemies, such as MsPacman,
BankHeist, and Alien. As discussed in Appendix E, this is due to the small number of tokens used to
encode frames. When we increase that amount, the world model is able to situate enemies, albeit at
the cost of increased computation.

3.3 WORLD MODEL ANALYSIS

As IRIS learns behaviors entirely in its imagination, the quality of the world model is the cornerstone
of our approach. For instance, it is key that the discrete autoencoder correctly reconstructs elements
like a ball, a player, or an enemy. Similarly, the potential inability of the Transformer to capture
important game mechanics, like reward attribution or episode termination, can severely hamper the
agent’s performance. Hence, no matter the amount of imagined trajectories, the agent will learn
suboptimal policies if the world model is flawed.

While Section 3.2 provides a quantitative evaluation, we aim to complement the analysis with
qualitative examples of the abilities of the world model. Figure 2 shows the generation of many
plausible futures in the face of uncertainty. Figure 3 depicts pixel-perfect predictions in Pong. Finally,
we illustrate in Figure 4 predictions for rewards and episode terminations, which are crucial to the
reinforcement learning objective.
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4 RELATED WORK

LEARNING IN THE IMAGINATION OF WORLD MODELS

The idea of training policies in a learnt model of the world was first investigated in tabular environ-
ments (Sutton & Barto, 2018). Ha & Schmidhuber (2018) showed that simple visual environments
could be simulated with autoencoders and recurrent networks. SimPLe (Kaiser et al., 2020) demon-
strated that a PPO policy (Schulman et al., 2017) trained in a video prediction model outperformed
humans in some Atari games. Improving upon Dreamer (Hafner et al., 2020), DreamerV2 (Hafner
et al., 2021) was the first agent learning in imagination to achieve human-level performance in the
Atari 50M benchmark. Its world model combines a convolutional autoencoder with a recurrent
state-space model (RSSM) (Hafner et al., 2019) for latent dynamics learning. More recently, Chen
et al. (2022) explored a variant of DreamerV2 where a Transformer replaces the recurrent network in
the RSSM.

REINFORCEMENT LEARNING WITH TRANSFORMERS

Following spectacular advances in natural language processing (Manning & Goldie, 2022), the
reinforcement learning community has recently stepped into the realm of Transformers. Parisotto
et al. (2020) make the observation that the standard Transformer architecture is difficult to optimize
with RL objectives. The authors propose to replace residual connections by gating layers to stabilize
the learning procedure. Our world model does not require such modifications, which is most likely
due to its self-supervised learning objective. The Trajectory Transformer (Janner et al., 2021) and the
Decision Transformer (Chen et al., 2021) represent offline trajectories as a static dataset of sequences.
The Trajectory Transformer is trained to predict future returns, states and actions. At inference time,
it can thus plan for the optimal action with a reward-driven beam search, yet the approach is limited
to low-dimensional states. On the contrary, the Decision Transformer can handle image inputs but
it cannot be easily extended as a world model. Ozair et al. (2021) introduce an offline variant of
MuZero (Schrittwieser et al., 2020) capable of handling stochastic environments by performing an
hybrid search with a Transformer over both actions and trajectory-level discrete latent variables.

VIDEO GENERATION WITH DISCRETE AUTOENCODERS AND TRANSFORMERS

VQGAN (Esser et al., 2021) and DALL-E (Ramesh et al., 2021) use discrete autoencoders to compress
a frame into a small sequence of tokens, that a transformer can then model autoregressively. Other
works extend the approach to video generation. GODIVA (Wu et al., 2021) models sequences of
frames instead of a single frame for text conditional video generation. VideoGPT (Yan et al., 2021)
introduces video-level discrete autoencoders, and Transformers with spatial and temporal attention
patterns, for unconditional and action conditional video generation.

5 CONCLUSION

We introduced IRIS, an agent that learns purely in the imagination of a world model composed of a
discrete autoencoder and an autoregressive Transformer. IRIS sets a new state of the art in the Atari
100k benchmark for methods without lookahead search. We showed that its world model acquires a
deep understanding of game mechanics, resulting in pixel perfect predictions in some games. We
also illustrated the generative capabilities of the world model, providing a rich gameplay experience
when training in imagination. Ultimately, with minimal tuning compared to existing battle-hardened
agents, IRIS opens a new path towards efficiently solving complex environments.

In the future, IRIS could be scaled up to computationally demanding and challenging tasks that would
benefit from the speed of its world model. Besides, its policy currently learns from reconstructed
frames, but it could probably leverage the internal representations of the world model. Another
exciting avenue of research would be to combine learning in imagination with MCTS. Indeed, both
approaches deliver impressive results, and their contributions to agent performance are orthogonal.
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REPRODUCIBILITY STATEMENT

The different components and their training objectives are introduced in Section 2 and Appendix B. We
describe model architectures and list hyperparameters in Appendix A. We specify the resources used
to produce our results in Appendix F. Algorithm 1 makes explicit the interplay between components
in the training loop. In Section 3.2, we provide the source of the reported results for the baselines, as
well as the evaluation protocol.

The code is part of the supplementary materials, and will be open-sourced to ensure reproducible
results and foster future research. Minimal dependencies are required to run the codebase and we
provide a thorough user guide to get started. Training and evaluation can be launched with simple
commands, customization is possible with configuration files, and we include scripts to visualize
agents playing and let users interact with the world model.

ETHICS STATEMENT

The development of autonomous agents for real-world environments raises many safety and envi-
ronmental concerns. During its training period, an agent may cause serious harm to individuals and
damage its surroundings. It is our belief that learning in the imagination of world models greatly
reduces the risks associated with training new autonomous agents. Indeed, in this work, we propose
a world model architecture capable of accurately modeling environments with very few samples.
However, in a future line of research, one could go one step further and leverage existing data to
eliminate the necessity of interacting with the real world.
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Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale
deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Noam Brown, Anton Bakhtin, Adam Lerer, and Qucheng Gong. Combining deep reinforcement
learning and search for imperfect-information games. Advances in Neural Information Processing
Systems, 33:17057–17069, 2020a.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020b.

Chang Chen, Yi-Fu Wu, Jaesik Yoon, and Sungjin Ahn. Transdreamer: Reinforcement learning with
transformer world models. arXiv preprint arXiv:2202.09481, 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In International Conference
on Learning Representations, 2021.

Rotem Dror, Segev Shlomov, and Roi Reichart. Deep dominance-how to properly compare deep
neural models. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pp. 2773–2785, 2019.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution im-
age synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 12873–12883, 2021.

F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual prediction with LSTM.
Neural Computation, 12(10):2451–2471, 2000.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. Advances in
neural information processing systems, 31, 2018.

Danijar Hafner. Benchmarking the spectrum of agent capabilities. In International Conference on
Learning Representations, 2022.

11



Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2020.

Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. In International Conference on Learning Representations, 2021.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 16000–16009, 2022.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Thirty-second AAAI conference on artificial intelligence, 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34, 2021.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. In European conference on computer vision, pp. 694–711. Springer, 2016.

Łukasz Kaiser, Mohammad Babaeizadeh, Piotr Miłos, Błażej Osiński, Roy H Campbell, Konrad
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A MODELS AND HYPERPARAMETERS

A.1 DISCRETE AUTOENCODER

Our discrete autoencoder is based on the implementation of VQGAN (Esser et al., 2021). We removed
the discriminator, essentially turning the VQGAN into a vanilla VQVAE (Van Den Oord et al., 2017)
with an additional perceptual loss (Johnson et al., 2016; Larsen et al., 2016).

Table 2: Encoder / Decoder hyperparameters. We list the hyperparameters for the encoder, the same
ones apply for the decoder.

Hyperparameter Value

Frame dimensions (h, w) 64× 64
Layers 4
Residual blocks per layer 2
Channels in convolutions 64
Self-attention layers at resolution 8 / 16

Table 3: Embedding table hyperparameters.

Hyperparameter Value

Vocabulary size (N) 512
Tokens per frame (K) 16
Token embedding dimension (d) 512

Note that during experience collection in the real environment, frames still go through the autoencoder
to keep the input distribution of the policy unchanged. See Algorithm 1 for details.

A.2 TRANSFORMER

Our autoregressive Transformer is based on the implementation of minGPT (Karpathy, 2020). It
takes as input a sequence of L(K + 1) tokens and embeds it into a L(K + 1)×D tensor using an
A×D embedding table for actions, and a N ×D embedding table for frames tokens. This tensor
is forwarded through M Transformer blocks. We use GPT2-like blocks (Radford et al., 2019), i.e.
each block consists of a self-attention module with layer normalization of the input, wrapped with a
residual connection, followed by a per-position multi-layer perceptron with layer normalization of
the input, wrapped with another residual connection.

Table 4: Transformer hyperparameters

Hyperparameter Value

Timesteps (L) 20
Embedding dimension (D) 256
Layers (M) 10
Attention heads 4
Weight decay 0.01
Embedding dropout 0.1
Attention dropout 0.1
Residual dropout 0.1
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A.3 ACTOR-CRITIC

The weights of the actor and critic are shared except for the last layer. The actor-critic takes as input
a 64× 64× 3 frame, and forwards it through a convolutional block followed by an LSTM cell (Mnih
et al., 2016; Hochreiter & Schmidhuber, 1997; Gers et al., 2000). The convolutional block consists of
the same layer repeated four times: a 3x3 convolution with stride 1 and padding 1, a ReLU activation,
and 2x2 max-pooling with stride 2. The dimension of the LSTM hidden state is 512. Before starting
the imagination procedure from a given frame, we burn-in (Kapturowski et al., 2019) the 20 previous
frames to initialize the hidden state.

Table 5: Training loop & Shared hyperparameters

Hyperparameter Value

Epochs 600
# Collection epochs 500
Environment steps per epoch 200
Collection epsilon-greedy 0.01
Eval sampling temperature 0.5
Start autoencoder after epochs 5
Start transformer after epochs 25
Start actor-critic after epochs 50
Autoencoder batch size 256
Transformer batch size 64
Actor-critic batch size 64

Training steps per epoch 200
Learning rate 1e-4
Optimizer Adam
Adam β1 0.9
Adam β2 0.999
Max gradient norm 10.0
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B ACTOR-CRITIC LEARNING OBJECTIVES

We follow Dreamer (Hafner et al., 2020; 2021) in using the generic λ-return, that balances
bias and variance, as the regression target for the value network. Given an imagined trajectory
(x̂0, a0, r̂0, d̂0, . . . , x̂H−1, aH−1, r̂H−1, d̂H−1, x̂H), the λ-return can be defined recursively as fol-
lows:

Λt =

{
r̂t + γ(1− d̂t)

[
(1− λ)V (x̂t+1) + λΛt+1

]
if t < H

V (x̂H) if t = H
(4)

The value network V is trained to minimize LV , the expected squared difference with λ-returns over
imagined trajectories.

LV = Eπ

[H−1∑
t=0

(
V (x̂t)− sg(Λt)

)2]
(5)

Here, sg(·) denotes the gradient stopping operation, meaning that the target is a constant in the
gradient-based optimization, as classically established in the literature (Mnih et al., 2015; Hessel
et al., 2018; Hafner et al., 2020).

As large amounts of trajectories are generated in the imagination MDP, we can use a straightforward
reinforcement learning objective for the policy, such as REINFORCE (Sutton & Barto, 2018). To
reduce the variance of REINFORCE gradients, we use the value V (x̂t) as a baseline (Sutton & Barto,
2018). We also add a weighted entropy maximization objective to maintain a sufficient exploration.
The actor is trained to minimize the following REINFORCE objective over imagined trajectories:

Lπ = −Eπ

[H−1∑
t=0

log(π(at|x̂≤t)) sg(Λt − V (x̂t)) + ηH(π(at|x̂≤t))
]

(6)

Table 6: RL training hyperparameters

Hyperparameter Value

Imagination horizon (H) 20
γ 0.995
λ 0.95
η 0.001

C OPTIMALITY GAP

0.56 0.64 0.72
SimPLe

CURL
DrQ
SPR

IRIS (ours)
Optimality Gap

Human Normalized Score

Figure 8: Optimality gap, lower is better. The amount by which the algorithm fails to reach a
human-level score (Agarwal et al., 2021).
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D IRIS ALGORITHM

Algorithm 1: IRIS

Procedure training_loop():
for epochs do

collect_experience(steps_collect)
for steps_world_model do

update_world_model()

for steps_behavior do
update_behavior()

Procedure collect_experience(n):
x0 ← env.reset()
for t = 0 to n− 1 do

x̂t ← D(E(xt)) // forward frame through discrete autoencoder
Sample at ∼ π(at|x̂t)
xt+1, rt, dt ← env.step(at)
if dt = 1 then

xt+1 ← env.reset()

D ← D ∪ {xt, at, rt, dt}n−1
t=0

Procedure update_world_model():
Sample {xt, at, rt, dt}τ+L−1

t=τ ∼ D
Compute zt := E(xt) and x̂t := D(zt) for t = τ, . . . , τ + L− 1
Update E and D

Compute pG(ẑt+1, r̂t, d̂t | zτ , aτ , . . . , zt, at) for t = τ, . . . , τ + L− 1
Update G

Procedure update_behavior():
Sample x0 ∼ D
z0 ← E(x0)
x̂0 ← D(z0)
for t = 0 to H − 1 do

Sample at ∼ π(at|x̂t)

Sample ẑt+1, r̂t, d̂t ∼ pG(ẑt+1, r̂t, d̂t | z0, a0, . . . , ẑt, at)
x̂t+1 ← D(ẑt+1)

Compute V (x̂t) for t = 0, . . . ,H
Update π and V
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E AUTOENCONDING FRAMES WITH VARYING AMOUNTS OF TOKENS

The length of the input sequence of G is determined by the number of tokens K used to encode a
single frame and the number of timesteps L in memory. Increasing the number of tokens per frame
results in better reconstructions, although it requires more compute and memory.

This tradeoff is particularly important in Atari games where enemies and players are moving in mazes
with rewards to collect. Due to the high number of possible configurations, the discrete autoencoder
struggles to properly encode frames with only K = 16 tokens. Indeed, sometimes the player, its
enemies, or rewards are not correctly reconstructed, which severely hinders agent performance.

In Figure 9, we show that when increasing the number of tokens per frame to 64, the discrete
autoencoder is perfectly capable of dealing with detailed environments such as Alien. However, this
increases the sequence length of G from 340 to 1300. Therefore, with more computational resources,
IRIS would most likely improve in these settings.

Figure 9: Tradeoff between the number of tokens per frame and reconstructions quality in Alien.
Each column displays a 64 × 64 frame from the real environment (top), its reconstruction with a
discrete encoding of 16 tokens (center), and its reconstruction with a discrete encoding of 64 tokens
(bottom). In Alien, the player is the dark blue character, and the enemies are the large colored sprites.
With 16 tokens per frame, the autoencoder often erases the player, switches colors, and misplaces
rewards. When increasing the amount of tokens, it properly reconstructs the frame.
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F COMPUTATIONAL RESOURCES

For each Atari environment, we repeatedly trained IRIS with 5 different random seeds. We ran our
experiments with 8 Nvidia A100 40GB GPUs. With two Atari environments running on the same
GPU, training takes around 7 days, resulting in an average of 3.5 days per environment.

SimPLe (Kaiser et al., 2020), the only baseline that involves learning in imagination, trains for 3
weeks with a P100 GPU on a single environment. As for SPR (Schwarzer et al., 2021), the strongest
baseline without lookahead search, it trains notably fast in 4.6 hours with a P100 GPU.

Regarding baselines with lookahead search, MuZero (Schrittwieser et al., 2020) originally used 40
TPUs for 12 hours to train in a single Atari environment. Ye et al. (2021) train both EfficientZero and
their reimplementation of MuZero in 7 hours with 4 RTX 3090 GPUs. EfficientZero’s implementation
relies on a distributed infrastructure with CPU and GPU threads running in parallel, and a C++/Cython
implementation of MCTS. By contrast, IRIS and the baselines without lookahead search rely on
straightforward single GPU / single CPU implementations.

G EXPLORATION IN FREEWAY

The reward function in Freeway is sparse since the agent is only rewarded when it completely crosses
the road. In addition, bumping into cars will drag it down, preventing it from smoothly ascending the
highway. This poses an exploration problem for newly initialized agents because a random policy
will almost surely never obtain a non-zero reward with a 100k frames budget.

Figure 10: A game of Freeway. Cars will bump the player down, making it very unlikely to cross the
road and be rewarded for random policies.

The solution to this problem is actually straightforward and simply requires stretches of time when the
UP action is oversampled. Most Atari 100k baselines fix the issue with epsilon-greedy schedules and
argmax action selection, where at some point the network configuration will be such that the UP action
is heavily favored. In this work, we opted for the simpler strategy of having a fixed epsilon-greedy
parameter and sampling from the policy. However, we lowered the sampling temperature from 1 to
0.01 for Freeway, in order to avoid random walks that would not be conducive to learning in the early
stages of training. As a consequence, once it received its first few rewards through exploration, IRIS
was able to internalize the sparse reward function in its world model.
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