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Abstract

Large Language Models have demonstrated im-
pressive capabilities in generating syntactically
and functionally correct code. However, most
existing research has primarily focused on the
correctness of generated code, while efficiency
remains relatively underexplored. Recent ef-
forts have attempted to enhance efficiency by
refining the initially generated code. Nonethe-
less, such post hoc optimizations are inherently
constrained by the original algorithmic design
and overall logic, often yielding only marginal
gains. In this work, we propose LLM4EFFI,
a novel framework that enables LLMs to gen-
erate code that balances both efficiency and
correctness. LLM4EFFI decomposes the effi-
ciency optimization process into two distinct
stages: algorithmic exploration at the logical
level and implementation optimization at the
code level. Correctness is subsequently ensured
through an adaptive testing process based on
synthetic test cases. By prioritizing efficiency
early in the generation process and refining for
correctness afterward, LLM4EFFI introduces a
new paradigm for efficient code generation. Ex-
perimental results show that LLM4EFFI consis-
tently improves both efficiency and correctness
of generated code, achieving state-of-the-art
performance on three code efficiency bench-
marks across five diverse LLM backbones.

1 Introduction

Large Language Models (LLMs), particularly Code
LLMs, are transforming the field of software en-
gineering at an unprecedented pace. A significant
area of advancement lies in automated code genera-
tion (Liu et al., 2023; Li et al., 2024a), where LLMs
such as GPT-40 (OpenAl, 2024), Gemini (Team
et al., 2023), the DeepSeek series (DeepSeek-Al,
2024a), and the Qwen series (Yang et al., 2024a,b)
have demonstrated remarkable capabilities. These
LLMs have consistently broken new ground on
code completion and generation benchmarks, in-
cluding HumanEval (Chen et al., 2021), MBPP
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Figure 1: Comparison of LLM4EFFI with existing meth-
ods. Existing approaches typically generate code first
and then attempt to improve efficiency through strategy
or execution profiling. In contrast, LLM4EFFI reverses
this order by prioritizing efficiency during generation,
followed by refinement to ensure correctness.

(Austin et al., 2021), LiveCodeBench (Jain et al.,
2024), and BigCodeBench (Zhuo et al., 2025).

While LLMs have achieved impressive accuracy
in code generation, practical software engineering
requires more than correctness—it also demands
efficiency (Shi et al., 2024; Niu et al., 2024). In real-
world scenarios, even functionally correct code of-
ten needs manual optimization before deployment,
which undermines the promise of truly "out-of-the-
box" code generation. Therefore, generating code
that is both correct and efficient is essential; yet au-
tomating this process remains largely unexplored.

Recent preliminary works (Huang et al., 2024b;
Waghjale et al., 2024) have explored feedback-
based approaches to improving the execution ef-
ficiency of generated code. As shown in Fig. 1,
these methods follow a "generate-then-optimize"
paradigm, where the model first generates code and
subsequently refines it through strategy prompts or
execution profiling. However, this paradigm raises
a fundamental question:
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Figure 2: The workflow of LLM4EFFI. Given a programming task, LLM4EFFI formalizes it into a code-oriented
description, generates optimal algorithms and pseudocode in logic domain, and then produces implementation
suggestions in code domain. LLM4EFFI synthesizes test cases and uses a verification-based adaptive framework to
evaluate candidate solutions. The final code is selected based on the highest pass rate of the "checked" test cases.

“Is generating code first and then opti-
mizing for efficiency truly the optimal
solution for efficient code generation?”

To investigate this, we conduct a detailed analy-
sis of concrete examples, with representative cases
provided in Fig. 22 and 23 in Appendix B. This
analysis reveals that the "generate-then-optimize"
paradigm is fundamentally limited by the algorith-
mic design and structural choices made during ini-
tial code generation, often yielding only incremen-
tal efficiency gains. Such constraints hinder deeper,
algorithm-level restructuring necessary for achiev-
ing substantial improvements. In contrast, when
human developers write high-quality code, whether
in practical software engineering or algorithmic ed-
ucation, they typically begin by exploring multiple
potential solutions at a logical level. They ana-
lyze the task’s constraints, compare algorithmic
alternatives and their computational complexities,
and then proceed to implementation. During this
stage, they apply appropriate coding techniques to
optimize performance, followed by debugging and
refinement to ensure correctness and quality.

Inspired by this insight, we propose LLM4EFFI
(Large Language Model for Code Efficiency), a
novel paradigm that enables LLMs to generate
code that is both efficient and correct, as illustrated

in Fig. 2. Given a programming task described
in natural language, LLM4EFFI first formalizes it
into a code-oriented problem specification. That
is, it transforms the broad task description into a
clear and well-defined coding problem, enabling
accurate interpretation by the LLM. LLM4EFFI
then guides the LLM through logic-level reasoning
and algorithmic exploration. It considers multi-
ple candidate algorithms, analyzes their computa-
tional complexities, and generates corresponding
pseudocode. Based on these designs, LLM4EFFI
derives implementation strategies and proceeds to
code generation, incorporating optimization at the
implementation level. This reflects the understand-
ing that high-quality code requires not only sound
algorithmic foundations but also attention to practi-
cal implementation. To ensure functional correct-
ness while targeting efficiency, LLM4EFFI intro-
duces a bidirectional verification-based adaptive
testing framework that dynamically constructs and
validates synthetic test cases. The generated code
is iteratively executed and refined based on these
"checked" test cases. Ultimately, the solution with
the highest pass rate across the "checked" test cases
is selected as the final output.

LLM4EFFI introduces two key uniqueness:
Uniqueness 1: Separation of Efficiency Optimiza-



tion into Logic and Code Domains. L1L.M4EFFI
decomposes efficiency optimization into two dis-
tinct stages: the logic domain and the code do-
main. The logic domain focuses on identifying
optimal algorithmic strategies, while the code do-
main targets low-level implementation refinements.

This separation breaks down the complex task of

code efficiency optimization into manageable and

complementary phases, making the overall process
more systematic, interpretable and targeted.

Uniqueness 2: Reordering the Optimization of

Correctness and Efficiency. The order of opti-

mizing efficiency and correctness plays a crucial

role. LLMA4EFFI prioritizes efficiency first, en-
abling broader algorithmic exploration and allow-
ing multiple efficient solutions to emerge. Cor-
rectness is then incrementally ensured across these
candidates. This strategy avoids prematurely con-
straining the solution space by enforcing correct-
ness too early, which limit optimization potential.

By reversing traditional order, LLM4EFFI unlocks

greater potential for substantial efficiency gains.
We evaluate LLM4EFFI on three recently pro-

posed code efficiency benchmarks: EvalPerf (Liu
et al., 2024), ENAMEL (Qiu et al., 2024), and

Mercury (Du et al., 2024). Experimental results

demonstrate that LLM4EFFI consistently improves

both code correctness and efficiency across diverse

LLM backbones, achieving state-of-the-art perfor-

mance on efficiency-related metrics. Overall, the

contributions are threefold; code available at link:

* We propose LLM4EFFI, the first LLM-based
framework that integrates efficiency and correct-
ness as joint optimization objectives.

* We introduce two key innovations: (i) Separation
of efficiency optimization into logic and code
domains and (ii) Reordering the optimization of
correctness and efficiency, which offers a new
paradigm for the code efficiency community.

» Extensive experiments and analysis on three
benchmarks across five different LLM back-
bones demonstrate the effectiveness and robust-
ness of LLM4EFFI in efficient code generation.

2 Related Works

2.1 LLMs for Code Generation

LLMs have been widely applied to coding tasks
and have demonstrated strong performance across
a range of code scenarios. Most existing research
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focuses on improving code generation quality, with
numerous techniques proposed for this purpose.
Some methods aim to improve the quality of syn-
thetic code data (Wei et al., 2024; Luo et al., 2024;
Lei et al., 2024), improve self-consistency (Le et al.,
2024; Huang et al., 2024a), or incorporate feed-
back from human or LLM annotations (Chen et al.,
2024; Wu et al., 2023; Tang et al., 2023). Other
approaches utilize multi-agent collaboration frame-
works to enhance code generation (Zhong et al.,
2024; Shinn et al., 2023; Islam et al., 2024; Madaan
et al., 2023; Li et al., 2024b). Despite these ad-
vances, most of these methods primarily focus on
improving correctness, while largely overlooking
the efficiency of the generated code.

2.2 Code Efficiency

Until recently, the efficiency of generated code
had received attention from the academic com-
munity. Several efficiency-focused benchmarks
(HUANG et al., 2024; Du et al., 2024; Liu et al.,
2024; Qiu et al., 2024) have been introduced to
more comprehensively evaluate the ability of LLMs
to produce efficient code. However, empirical
evaluations on these benchmarks show that cur-
rent LLMs still face significant challenges in effi-
cient code generation. To address this, recent work
such as ECCO (Waghjale et al., 2024) adopts self-
refinement, prompting LL.Ms to consider possible
optimization strategies and iteratively refine their
outputs. Effi-Learner (Huang et al., 2024b) pro-
poses a self-optimization framework that leverages
execution overhead profiles, feeding them back
into the LLM to revise the code and reduce run-
time overhead. However, these methods all follow
the "generate-then-optimize" paradigm, rather than
starting with the goal of generating both efficient
and correct code from the beginning.

3 Methodology

Problem Formulation. In the code efficiency
task, each instance is defined as a pair (Q,T}),
where () denotes the task description, and T}, repre-
sents the hidden test cases. The goal is to generate
a code solution .S that passes all the hidden test
cases while achieving the highest efficiency (i.e.,
the shortest execution time). Notably, to better
simulate real-world scenarios, we assume that no
public test cases are available. T}, is only used dur-
ing the evaluation stage and is not visible during
the efficiency and correctness optimization stages.
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3.1 Overview

As shown in Fig.2, given a programming task in
natural language, LLM4EFFI first formalizes it
into a code-oriented problem specification (Section
§3.2). LLM4EFFI then prompts the LLM to per-
form logic-domain reasoning, generating multiple
algorithmic candidates and corresponding pseu-
docode (Section §3.3). Based on these, LLM4EFFI
derives detailed implementation strategies and gen-
erates optimized code (Section §3.4). To ensure
correctness, it synthesizes test cases and applies
a bidirectional verification-based adaptive frame-
work to validate these synthetic test cases. These
"checked" test cases are then used to evaluate and
refine the candidate code solutions (Section §3.5).

3.2 Task Formalization

In the initial task formalization stage, LLM4EFFI
ensures that the task description is clear and unam-
biguous, which is crucial for subsequent stages. As
highlighted by Han et al. (2024), errors in LLM-
generated code often arise from an insufficient
or unclear understanding of the task. Therefore,
LLM4EFFI prompts the LLM to interpret the task
from four key dimensions: (i) entry point function
name, (ii) input/output conditions and parameter
types, (iii) edge cases, and (iv) expected behavior.
Based on these aspects, the LLM is further guided
to engage in self-reflection to confirm whether it
has fully understood the task, thus laying a solid

foundation for subsequent stages. Formally, this

. check
process is represented as : Q — Q formal < Q.

3.3 Algorithmic Exploration in Logic Domain

For the formalized task, LLM4EFFI prompts the
LLM to engage in algorithmic reasoning at the log-
ical level, rather than generating code directly. This
approach mirrors the workflow of human program-
mers, who first perform abstract, high-level reason-
ing before moving to implementation. The LLM
is guided to explore multiple optimal algorithms,
analyze their complexities, and express the entire
reasoning process using pseudocode. Formally, this
is denoted as: Q formar — {Algo, Cplx, Pseudo},
where Algo represents the algorithm plan, C'plx de-
notes the complexity analysis, and Pseudo refers
to the corresponding pseudocode.

3.4 Implementation in Code Domain

High-quality code requires not only well-designed
algorithms but also careful optimization at the im-

plementation level. Even when the underlying
algorithm is the same, different implementation
choices can lead to substantial variations in code
efficiency (Shypula et al., 2024; Coignion et al.,
2024). Based on the algorithmic plan and cor-
responding pseudocode, LLM4EFFI prompts the
LLM to generate practical implementation sugges-
tions derived from Algo and Pseudo. For example,
replacing a manual binary exponentiation routine
with Python’s built-in pow function.

LLM4EFFI then generates candidate code im-
plementations based on Algo, Pseudo, and the
derived suggestions, while also identifying addi-
tional optimization opportunities. Formally, this
process is denoted as:

{Algo, Pseudo} — {Suggs}
{Algo, Pseudo, Suggs} — {Code Candidates}

3.5 Code Correctness Guarantee

To ensure the functional correctness of the gener-
ated code while targeting efficiency, LLM4EFFI
introduces a bidirectional verification-based adap-
tive testing framework. The process unfolds as
follows: LLM4EFFI first automatically synthesizes
a large number of test cases based on the formal-
ized task description Q) formaqi- These test cases are
designed to cover a wide range of edge cases, rigor-
ously testing the robustness and reliability of can-
didate solutions. However, since the synthesized
test cases may contain errors, LLM4EFFI applies a
bidirectional verification method to validate them.
Forward Verification: If all candidate code im-
plementations pass a given test case, it is consid-
ered trusted. Otherwise, Reverse Review: If any
candidate fails a test case, LLM4EFFI performs a
@ formal-based review to determine whether the
test case aligns with the task intent. This includes
a semantic consistency check inspired by Test-
Driven Development (TDD) practices (Erdogmus
et al., 2010). Test cases that pass this review are re-
tained; otherwise, they are discarded. The retained
test cases are then marked as "checked" and used to
evaluate the code candidates. Any failures during
the evaluation phase trigger further refinement. Ul-
timately, the refined code candidate that passes the
most "checked" test cases is selected as the final
output. Formally, this process is denoted as:

Q formal — {Synthesized Test Cases}

verification

{Checked Test Cases} refine {Final Output}

select

bidirectional
—



LLMs Methods EvalPerf Mercury ENAMEL
DPS_norm Pass@1 Beyond@1 Pass@1 eff@1 Pass@1
Instruct 80.92 85.59 76.97 94.14 50.44 85.21
Qwen2.5-Coder ECCO 82.16 63.56 73.29 89.06 41.89 71.83
-32B-Instruct Effi-Learner 82.45 77.11 77.13 91.41 50.12 81.69
LLM4EFFI (ours) 86.20 +5.28 87.30 +1.71 7896 +1.99 93.75-0.39 51.26 +0.82 86.62 +1.41
Instruct 79.29 88.14 72.50 86.72 49.78 83.80
Qwen2.5-72B ECCO 80.06 64.41 74.10 89.84 41.90 72.53
-Instruct Effi-Learner 79.90 81.36 77.10 91.02 47.42 76.76
LLM4EFFI (ours) 84.00 +4.71 88.98 +0.84 77.45 +4.95 90.63+391 51.49 +1.71 87.32 +3.52
Instruct 80.04 85.59 69.59 82.81 48.26 80.28
GPT-40-mini ECCO 75.18 44.07 72.29 86.33 30.75 57.75
Effi-Learner 79.80 81.36 73.45 88.67 45.69 77.46
LLM4EFFI (ours) 83.78 +3.74 88.14 +2.55 7494 +5.35 89.45 +6.64 49.89 +1.63 80.99 +0.71
Instruct 79.59 86.70 73.14 87.50 47.63 80.99
GPTo4o ECCO 80.65 61.02 77.70 92.18 38.63 64.79
Effi-Learner 79.39 79.67 79.24 93.36 48.52 81.69
LLM4EFFI (ours) 86.39 +6.80 88.98 +2.28 77.81 +4.67 93.75 +6.25 55.26 +7.63 83.80 +2.81
Instruct 80.45 89.84 79.90 94.53 51.14 86.62
DeepSeek-V3 ECCO 81.08 61.84 63.26 74.61 45.84 75.35
Effi-Learner 79.00 88.14 78.83 92.58 52.22 83.80
LLM4EFFI (ours) 87.08 +6.63 90.67 +0.83 82.76 +2.86 96.09 +1.56 60.41 +9.27 89.44 +2.82

Table 1: Main Result. Performance of LLM4EFFI and baseline methods on EvalPerf, Mercury, and ENAMEL
benchmarks, using five different LLM backbones. Efficiency is evaluated using each benchmark’s specific metric.

4 Experiments

We evaluate LLM4EFFI on three code efficiency
benchmarks: EvalPerf (Liu et al., 2024), Mercury
(Du et al., 2024), and ENAMEL (Qiu et al., 2024).
EvalPerf uses differential performance evaluation
to assess efficiency across different LLLMs and so-
lutions. Its efficiency metric, DPS_norm, is cal-
culated by determining the cumulative ratio of the
reference solution that is immediately slower than
the new solution, normalized by the total number
of solutions. This ensures a fair comparison of
code efficiency based on reference solutions with
varying performance levels. Mercury introduces
the Beyond metric to evaluate both correctness and
code efficiency. The Beyond metric is calculated
by normalizing the runtime percentiles of LLM
solution samples over the runtime distribution for
each task, ensuring consistent runtime comparisons
across different environments and hardware con-
figurations. ENAMEL evaluates efficiency using
the eff @1 metric, which captures the worst-case
execution time of a generated code sample across
test cases with varying difficulty. The score is then
adjusted using a weighted average across these lev-
els to account for hardware fluctuations. The eff@1
value ranges from O to 1, with higher values indi-
cating better efficiency; values above 1 indicate
performance exceeding expert-level solutions.

4.1 Compared Methods.

We evaluate the direct instruction to generate both

correct and efficient code as the Instruct baseline.

We compare LLM4EFFI against two recent methods

for code efficiency: ECCO (Waghjale et al., 2024)

and Effi-Learner (Huang et al., 2024b).

¢ ECCO: A self-refinement method with natural
language feedback. It prompts the LLM to gener-
ate an initial solution, then asks whether the code
can be improved for efficiency, and refines the
solution based on the suggested optimizations.

 Effi-Learner: First, it generates code using the
same instruction prompt as the Instruct baseline.
It then executes the code on test cases to col-
lect performance profiles, including runtime and
memory usage. These profiles, along with the
original code, are fed back into the LLM to guide
efficiency-oriented refinement. It is worth noting
that Effi-Learner relies on test case oracles; in
this study, we use the visible test cases provided
with each task. In contrast, LLM4EFFI does not
depend on any test case oracles—all test cases are
synthetically generated within LLM4EFFI itself.

4.2 Experiment Setup.

To comprehensively evaluate the applicability of
LLMA4EFFI, we selected five different LLM back-
bones: two proprietary LLMs: GPT-40 (OpenAl,



Models Methods EvalPerf Mercury ENAMEL
DPS_norm Pass@1 Beyond@1 Pass@1 eff@1 Pass@1
LLM4EFFI  86.20 87.30 78.96 93.75 51.26 86.62
Qwen2.5-Coder  Variant-1 77.21 -8.99 80.51 -6.79 77.89 -1.07 93.34 041 48.57-269 81.69 -4.93
-32B-Instruct Variant-2 75.75 -1045  81.36-594  75.86-3.10 92.19-156 45.68 558 83.10-3.52
Variant-3 81.19 -5.01 72.03 -1527  72.56 -6.40 85.16-859 47.48 -378 77.46 9.16
LLM4EF¥F1  87.08 90.67 82.76 96.09 60.41 89.44
DeepSeek-V3 Variant-1 79.72 -1.36 84.75 -5.92 81.58 -1.18 94.53 -1.56  53.23 -7.18  88.03 -1.41
Variant-2 77.07 -10.01 83.05 -7.62 80.10 -2.66 94.53 -1.56  53.62-6.79  88.73-0.71
Variant-3 82.62 -4.46 82.01 -8.66 79.75 -3.01 92.58 351 54.58 583  81.69 -7.75

Table 2: Ablation Study Results. Results of LLM4EFFI, Variant-1, Variant-2, and Variant-3 are presented using
Qwen2.5-Coder-32B-Instruct and DeepSeek-V3 as backbones on EvalPerf, Mercury, and ENAMEL benchmarks.

2024) and GPT-40-mini, and three open-source
LLMs, including DeepSeek-V3 (DeepSeek-Al,
2024b), Qwen2.5-72B-Instruct (Yang et al., 2024b),
and Qwen2.5-Coder-32B-Instruct (Hui et al., 2024).
During the LLM4EFFI process, we set the number
of algorithm plans to 5 and the number of synthetic
test cases to 20, followed by one iteration to re-
fine the code for correctness. All prompts used
for LLM4EFFI and the baselines are provided in
Appendix A. For fair comparison, all experiments
are conducted with a temperature setting of 0 and
repeated three times, with average results reported.

4.3 Main Results.

We compare LLM4EFFI with other methods on
the EvalPerf, Mercury, and ENAMEL benchmarks,
with results shown in Tab. 1. Direct instruction
prompts (Instruct) yield strong performance, sug-
gesting that LLLMs possess a basic understanding of
correct and efficient code. ECCO provides slight ef-
ficiency gains on EvalPerf and Mercury, but these
often come at the cost of correctness. On more
complex benchmarks like ENAMEL, ECCO shows
a drop in both efficiency and correctness, indicating
that relying solely on code domain optimization is
insufficient. Lacking alignment with the broader
logic requirement of the task, such methods often
fail to produce effective improvements.
Effi-Learner shows moderate gains in certain
settings, such as GPT-40 on Mercury, but its per-
formance is inconsistent across LL.Ms and bench-
marks, often falling short of the Instruct baseline.
More importantly, it frequently compromises both
efficiency and correctness. This is primarily due
to its feedback mechanism, which emphasizes per-
formance metrics (e.g., execution time) while ne-
glecting functional correctness. Lacking algorith-
mic reasoning, Effi-Learner tends to over-optimize

for runtime at the expense of code reliability, ulti-
mately undermining both objectives. In compari-
son, LLM4EFFI achieves consistent improvements
in both correctness and efficiency. Notably, it is
the only method that delivers robust performance
gains across diverse benchmarks and LLMs. Under
DeepSeek-V3, LLM4EFFI improves DPS_norm by
6.63% on EvalPerf, increases eff@1 by 9.27% on
ENAMEL, and boosts Pass@1 by 2.82%.

4.4 Ablation Study.

LLM4EFFI incorporates several distinctive design

choices, such as separating efficiency optimization

into the logic and code domains. To assess the

impact of each part, we conduct following variants:

* Variant-1: (Without Algorithmic Exploration
in the Logic Domain): This variant skips al-
gorithmic exploration for logic-level efficiency
optimization. Instead, the LLM directly gen-
erates a fixed number of efficient code candi-
dates based on the formalized task, followed
by implementation-level optimization. All other
steps are identical to those in LLM4EFFIL.

* Variant-2: (Without Implementation Optimiza-
tion in the Code Domain): This variant omits
the implementation-level optimization step. All
other stages remain the same as in LLM4EFFI.

e Variant-3: (Without Code Correctness Refine-
ment): In this setting, after generating the
efficiency-optimized code, the LLLM directly se-
lects the final output it deems most efficient and
correct, without the correctness refinement phase.

We conduct the ablation study using Qwen2.5-

Coder-32B-Instruct and DeepSeek-V3 as LLM

backbones, with the results shown in Tab. 2. The

findings indicate that removing any component de-
grades both efficiency and correctness. Specifically,
excluding Algorithmic Exploration in the Logic



Models Methods EvalPerf Mercury ENAMEL
DPS_norm Pass@1 Beyond@1 Pass@1 eff@1 Pass@1
Qwen2.5-Coder LLM4EFFI 86.20 87.30 78.96 93.75 51.26 86.62
-%2B-instruct w/o Uniqueness-1 ~ 80.84 -536  79.66-7.64  76.75 -2.21 94.14 +039  50.95-031  80.98 -5.64
) w/o Uniqueness-2  78.07 -8.13 70.34 -16.96  72.83 -6.13 87.11 -6.64  47.62-364 77.46-9.16
LLM4EFFI 87.08 90.67 82.76 96.09 60.41 89.44
DeepSeek-V3 w/o Uniqueness-1 ~ 80.91 -6.17 85.59 508  81.79 -097 95.31-078 54770571 85.92-352
w/o Uniqueness-2 ~ 80.42 -6.66 79.66 -11.01  62.90-19.86  74.61 2148 5392 649 84.50 -4.94

Table 3: Uniqueness Analysis Results. Results of LLM4EFFI, w/o Uniqueness-1, and w/o Uniqueness-2 using
Qwen2.5-Coder-32B-Instruct and DeepSeek-V3 as backbones on EvalPerf, Mercury, and ENAMEL benchmarks.

Domain (Variant-1) or Implementation Optimiza-
tion in the Code Domain (Variant-2) leads to a
clear drop in efficiency metrics across all three
benchmarks. Furthermore, removing Code Correct-
ness Refinement (Variant-3) results in a notable
decline in Pass@]1. These outcomes are consistent
with the design intent: algorithmic exploration and
implementation optimization primarily contribute
to efficiency, while correctness refinement ensures
that the final output maintains functional correct-
ness after efficiency-driven transformations.

5 Deeper Analysis

5.1 LLM4EFFI Uniqueness Analysis

As discussed in the Introduction, LLM4EFFI has
two key innovations: Uniqueness 1: Separation
of efficiency optimization into logic and code do-
mains, and Uniqueness 2: Reordering the opti-
mization of correctness and efficiency. To gain
a deeper understanding of these unique design
choices, we conducted the following experiments:
* w/o Uniqueness-1: Instead of separating effi-
ciency optimization into logic and code domains,
we prompt the LLM to generate code that is both
efficient and correct. Based on the formalized
task and generated code, the LLM is then asked
to propose possible efficiency optimization strate-
gies. The code is refined accordingly, with sub-
sequent steps identical to those in LLM4EFFI.
The key difference between w/o Uniqueness-1
and ECCO is that ECCO generates optimization
suggestions solely from the code, whereas w/o
Uniqueness-1 leverages both the formalized task
and generated code to produce efficiency-focused
strategies, followed by correctness refinement.

* w/o Uniqueness-2: This variant reverses the
prioritization of correctness and efficiency. In
this experiment, it first generates code based on
the formalized task and refines it for correctness.
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Figure 3: Beyond@1 of LLM4EFFI across difficulty
levels in Mercury, with DeepSeek-V3 as the backbone.

Then, algorithm exploration is performed based

on the formalized task and refined code, followed

by optimization using implementation strategies.
The results of the uniqueness analysis are shown
in Tab. 3. Without Uniqueness-1, performance of
Qwen2.5-Coder-32B-Instruct on Mercury showed
a slight increase in Pass@1, but in other cases,
the performance declined, particularly in terms of
DPS_norm on EvalPerf and eff@1 on ENAMEL.
This highlights the value of separating efficiency
optimization into logic and code domains, as it
decomposes the complex challenge of code effi-
ciency into manageable and focused stages. On
the other hand, removing Uniqueness-2 resulted
in notable drops in both efficiency and correctness
across all benchmarks and LLM backbones. This
is primarily because prioritizing correctness before
efficiency limits the LLM’s ability to explore effec-
tive algorithmic and implementation strategies. In
practice, this reversal often backfires: overempha-
sizing efficiency after correctness can inadvertently
compromise correctness itself. These findings un-
derscore the effectiveness of the "efficiency-first,
correctness-later” strategy as a critical paradigm for
generating code that is both correct and efficient.



BigCodeBench-Hard

Methods

Pass@1 Relative Time Cost
Instruct 32.43 1
ECCO 15.54 -11.58% (Faster)
Effi-Learner 25.68 +11.98% (Slower)
LLM4EFFI 36.50 -33.37% (Faster)

Table 4: Performance of LLM4EFFI vs. Baselines on
BigCodeBench-Hard, using DeepSeek-V3 as backbone.

5.2 Performance on Varying Difficulty Levels

To assess LLM4EFFI’s performance across differ-
ent difficulty levels, we evaluate it in three cate-
gories: Easy, Medium, and Hard, using Mercury
benchmark with DeepSeek-V3 as the backbone. As
shown in Fig. 3, LLM4EFFI consistently achieves
the highest Beyond@1 scores, outperforming all
baselines across difficulty levels. This consistent
performance highlights LLM4EFFI s effectiveness
in handling a broad range of coding challenges.
In contrast, ECCO exhibits a significant drop on
hard-level tasks, primarily due to the difficulty of
generating valid optimization suggestions for com-
plex code, a persistent challenge for current LLMs.

5.3 Generalization to More Complex Tasks

To further assess the effectiveness and scalability of
LLMA4EFFI in more complex software engineering
scenarios, we conducted additional experiments
using the BigCodeBench (Zhuo et al., 2025) bench-
mark, a comprehensive suite designed to evaluate
the code generation capabilities of LLMs in real-
world, large-scale programming tasks. Specifically,
we selected the BigCodeBench-Hard subset, which
consists of 148 high-difficulty tasks. All other ex-
perimental settings remained consistent with the
main experiments. In the evaluation, we normal-
ized the execution time of code generated via direct
instruction prompting as the baseline (set to 1) and
computed the relative time costs of different meth-
ods. Results are shown in Table 4. We observe that
methods such as ECCO and Effi-Learner, which
adopt a "generate-then-optimize" paradigm, suffer
significant drops in accuracy. Notably, Effi-Learner
often produces less efficient code under complex
tasks, leading to longer execution times. In con-
trast, LLM4EFFI maintains robust and consistent
performance, improving code efficiency by 33.37%
while also enhancing correctness. These results
demonstrate LLM4EFFI’s effectiveness in handling
challenging, real-world programming tasks.

Methods EvalPerf ENAMEL
DPS_norm Pass@1 eff@l Pass@1

Effi-Learner 79.00 88.14 52.22 83.80

Lo Py i 80.16 8729 5298 8732

synthetic test cases

LLM4EFFI 87.08 90.67 60.41 89.44

Table 5: Performance comparison of LLM4EFFI and
Effi-Learner with synthetic test cases, using DeepSeek-
V3 as the LLM backbone.

5.4 Effectiveness of Synthetic Test Cases

In its original design, Effi-Learner relies on ora-
cle test cases. To further assess the effectiveness
of LLM4EFFI’s synthetic test cases, we conducted
an additional comparison with Effi-Learner using
synthetic test cases. The results are shown in
Tab. 5. When using synthetic test cases for exe-
cution refinement, Effi-Learner achieves efficiency
metrics (DPS_norm and eff@ 1) comparable to, and
in some cases slightly better than, its original ver-
sion using oracle test cases. This is largely because
the synthetic test cases generated by LLM4EFFI
are designed to provide more comprehensive code
coverage and finer-grained difficulty differentia-
tion. The Pass@]1 results vary across benchmarks,
primarily due to the increased difficulty of the syn-
thetic test cases. In more challenging benchmarks
such as ENAMEL, higher-difficulty test cases lead
to more significant improvements in correctness.

5.5 Case Study and Computational Cost

To provide a clearer understanding of LLM4EFFI,
we present a case study, detailed in Appendix B.
Methods like ECCO and Effi-Learner are con-
strained by the algorithmic design and structure of
the initial code. In contrast, LLM4EFFI overcomes
these limitations by enabling high-level algorithmic
exploration from the outset, allowing it to achieve
more substantial improvements in code efficiency.
Additionally, we provide the computational costs
of LLM4EFFI and the baselines in Appendix C.

6 Conclusion

In this paper, we introduce LLM4EFFI, a novel
framework for efficient code generation. By de-
coupling efficiency optimization into logic and
code domains and adopting an "efficiency-first,
correctness-later" paradigm, LLM4EFFI enables
broader algorithmic exploration while ensuring cor-
rectness. Extensive experimental results demon-
strate LLM4EFFI ’s effectiveness and robustness.



Limitation

Although LLM4EFFI demonstrates strong perfor-
mance in generating both efficient and correct code,
it still faces certain limitations. One key challenge
is balancing code efficiency with readability. To
optimize runtime performance, the system often
employs complex algorithms or heavily optimized
built-in functions. While this improves efficiency,
it can also increase cognitive load, particularly
for users with limited programming experience,
thereby raising the barrier to understanding and
applying the generated code in practical scenarios.
Improving the readability of LLM-generated code
is therefore an important direction, as it can help
lower the entry threshold for users. However, this
remains a relatively independent research problem,
which we plan to investigate further in future work.
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A Detailed Prompts
A.1 Prompts of LLM4EFFI.

System:

As a professional algorithm engineer, please analyze
the given algorithm problem according to the follow-
ing categories. Do not provide any example imple-
mentation:

* Entry Point Function Name
¢ Input/Output Conditions

» Edge Cases and Parameter Types (Int, String,
etc.)

* Expected Behavior

User:
The algorithm problem description is as follows:
<natural language description>

Figure 4: Task Formalization.

System:

As an excellent algorithm engineer, please analyze
whether the explanation of the problem matches the
original requirements. If they are consistent, output
“Yes”. If they are not consistent, output “No” and
provide the reason, as shown below: {"Yes":"NULL"}
{"No":"The reason is"}

User:

<natural language description>

<task description>

Figure 5: Checking the Task Formalization Result.
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System:

As a tester, your task is to create comprehensive test
inputs for the function based on its definition and doc-
string. These inputs should focus on edge scenarios
to ensure the code’s robustness and reliability. Please
output all test cases in a single line, starting with in-
put.

User:

EXAMPLES:

Function:

from typing import *
def find_the_median(arr: List[int]) ->
float:

Given an unsorted array of
integers “arr”, find the
median of the array.

The median is the middle value in
an ordered list of numbers.

If the length of the array is
even, then the median is the
average of the two middle
numbers.

Test Inputs (OUTPUT format):
input: [1]

input: [-1,-2, -3, 4, 5]

input: [4, 4, 4]

input: [....]

input: [....]

END OF EXAMPLES.
Function:

<task description>

Figure 6: Synthesize Test Case Inputs.

System:

As a professional Python algorithm programming ex-
pert, please provide suggestions for improving code
efficiency based on the potential inefficiencies men-
tioned above. For example:

1. Using xxx instead of xxx can significantly improve
code efficiency.

Please provide at least 20 suggestions.

User:

<algorithm description>

Figure 7: Implementation Optimization in Code Do-
main.
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System:

As a programmer, your task is to calculate all test out-
puts and write the test case statement corresponding
to the test input for the function, given its definition
and docstring. Write one test case as a single-line
assert statement.

User:

EXAMPLES:

Function:

from typing import List
def find_the_median(arr: List[int]) ->
float:

Given an unsorted array of
integers “arr”, find the
median of the array. The
median is the middle value in
an ordered list of numbers.

If the length of the array is
even, then the median is the
average of the two middle
numbers.

Test Input:

input: [1, 3, 2, 5]

Test Case:

assert find_the_median([1, 3, 2, 5]) == 2.5

END OF EXAMPLES.
FUNCTION:
<task description> <input case>

Figure 8: Complete Test Case Generation.
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System:

As a professional algorithm engineer, you can effec-
tively design multiple algorithms to solve the problem
with low time complexity and output them in pseudo
algorithm format. A pseudo algorithm is a nonlin-
ear, high-level programming language for algorithmic
logic. It combines natural language and programming
structures to express the steps and sums of algorithms.
The main purpose of process algorithms is to clearly
display the core ideas and logic of the algorithm with-
out relying on specific programming language syntax.
Please design 5 excellent algorithm solutions based
on the problem description provided. The time com-
plexity of the algorithm needs to be as small as pos-
sible, and try to output 5 algorithms in the form of a
pseudo-algorithm in the following format: PS: DO
NOT provide implementation examples!

“~algorithmi

{algorithm key description: this
algorithm using xxx, the key is to
make sure xxx}

{pseudo algorithm: ..}

{algorithm key description: this
algorithm using xxx, the key is to
make sure xxx}

{pseudo algorithm: ..}

{algorithm key description: this
algorithm using xxx, the key is to
make sure xxx}

{pseudo algorithm: ..}

{algorithm key description: this
algorithm using xxx, the key is to
make sure xxx}

{pseudo algorithm: ..}

{algorithm key description: this
algorithm using xxx, the key is to
make sure xxx}

{pseudo algorithm: ..}

User:
<task description>

Figure 9: Algorithmic Exploration in Logic Domain.



Code Candidates Generation

System:

As a professional algorithm engineer, please convert
the selected algorithm into corresponding code. En-
sure the code is complete and well-formatted. When
converting to a standardized format, be sure to follow
the guidelines specified in the “original question for-
mat”:

1. Use the same function name as given in the original
question format; do not rename it.

2. You may incorporate practical optimization details
drawn from the knowledge base.

The final output format should be as follows:

“python
{<code>

User:

<task description>

<algorithm description>

<efficiency optimization suggestions>

Figure 10: Code Candidates Generation.

Code Refinement for Correctness

System:

As a professional code programming algorithm expert,
your task is to correct the code and ensure that the
code is fixed without impacting its time complexity
or practical efficiency. Then I will provide you with
specific code and test cases.

Important Notes:

1. Do not alter the algorithm itself

2. Do not change the format, such as the function
name.

3. Please output in the specified format.

4. Ensure there are no syntax errors.

Please output in this format:

* T Tpython
{code}

User:

<task description>

<algorithm description>

<efficiency optimization suggestions>

Figure 11: Code Refinement for Correctness.
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Final Results Selection on Code Candi-
dates

System:

As a professional algorithm engineer, please help me
choose the most efficient code from the following
codes. It is worth mentioning that it is necessary
to consider the time complexity and practical level
comprehensively:

INPUT:

{ "1":"def ...()....",

"2": "def ...()..."

1
OUTPUT:

TS text
{key}

EXAMPLE:
INPUT:
{"1":"def ...0)....",
"2": "def ...()..."

}
OUTPUT:

T T text
1

User:
<corrected code candidate>

Figure 12: Final Results Selection on Code Candidates
(Optional).

Direct Code Generation Prompt for
Variant-1

System:

As a professional Python algorithm engineer, please
solve the algorithms problem and generate a solution
code. The final output format should be as follows:

“python
{code}

User:
<task description>

-

Figure 13: Direct Code Generation Prompt for Variant-
1.



Direct Code Generation Prompt for w/o Efficiency Optimization Prompt in Effi-
Uniqueness-1&w/o Uniqueness-2 Learner.

System:

As a professional Python algorithm engineer, please
solve the algorithm problem and generate 5 solution
codes. Please improve the efficiency of the code as
much as possible while ensuring the correctness of the
code. The final output format should be as follows:

* T Tpythoni
{code}
* T python2
{code}
* T Tpython3
{code}
** Tpython4
{code}
** “python5
{code}

User:
<task description>

Figure 14: Direct Code Generation Prompt for w/o
Uniqueness-1&w/o Uniqueness-2.

A.2 Prompts of Effi-Learner.

Original Code Generation Prompt in Effi-

Learner

Please complete Python code based on the task de-
scription.

# Task description:<Task description>

#Solution:

Figure 15: Original Code Generation Prompt in Effi-
Learner.
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Optimize the efficiency of the following Python code
based on the task, test case, and overhead analysis
provided. Ensure the optimized code can pass the
given test case.

Task Description:

<task description>

Test Case:

<test case>

Original Code:

T Tpython
<original code>

Overhead Analysis:

<profile of original code>

Optimization Rules:

- Encapsulate the optimized code within a Python
code block (i.e., python[ Your Code Here]).

- Do not include the test case within the code block.

- Focus solely on code optimization; test cases are
already provided.

- Ensure the provided test case passes with your
optimized solution.

Figure 16: Efficiency Optimization Prompt in Effi-
Learner.

A.3 Prompts of ECCO.

Original Code Generation Prompt in

ECCO

Write a python code which is efficient in terms of
runtime and memory usage for the following problem
description. Wrap the optimized code in a block of 3
backticks

Figure 17: Original Code Generation Prompt in ECCO.

Feedback Generation Prompt in ECCO

Give feedback in english for why the code solution

below is incorrect or inefficient and how the program
can be fixed based on the problem description.
<original code>

Figure 18: Feedback Generation Prompt in ECCO.



DeepSeek-V3  Tokens on Synthetic Test Case Tokens on Framework Cost

Test Case Input ~ Test Case Output  Input tokens to LLM  LLM output tokens
ECCO - - ~3730 tokens ~1027 tokens ~0.0014$
Effi-Learner - - ~1241 tokens ~364 tokens ~0.0006$
LLM4EFFI ~2612 tokens ~818 tokens ~8170 tokens ~4351 tokens ~0.0096%

Table 6: Computational cost of LLM4EFFI and baseline methods using DeepSeek-V3 as the LLM backbone.

Refine the given incorrect or sub-optimal code
solution based on the feedback specified below. Wrap
the refined code in a block of 3 backticks
<optimization suggestion>

<original code>

Figure 19: Refine Prompt in ECCO.

A.4 Prompts of Instruct.

Please generate an efficient and correct code directly

Figure 20: Prompt for Instruction Baseline.

B Case Study

B.1 The Execution Details of Each Stage of
LLM4EFFI.

As shown in Fig. 21, LLM4EF¥I firstly analyzes the
algorithm problem, "returns the n-th number that
is both a Fibonacci number and a prime number",
providing a detailed explanation of key aspects,
including the entry point, input/output conditions,
expected behavior, and edge cases. Based on this
analysis and the problem description, LLM4EFFI
explores potential algorithms and generates five
efficient solutions, such as using the Fibonacci
sequence generation method and Binet’s formula.
Next, LLM4EFFI examines the implementation de-
tails of these algorithms and identifies the optimal
practical approaches. For example, it uses Python’s
built-in pow() function for efficient exponentiation
and applies the Miller-Rabin primality test (based
on Monte Carlo method) to enhance the efficiency
of prime number detection for large numbers.
Then, LLM4EFFI combines the explored algo-
rithms and practical operations to generate five dis-
tinct code implementations. To validate the cor-
rectness of these codes, LLM4EFFI generates 20

15

test cases based on the algorithm description and
outputs them in the format "assert prime_fib(3) ==
5". Each code candidate is then executed with these
20 test cases, recording the number of passed test
cases (Pass; < 20) and the number of successful
executions for each test case (Pass. < 5). Subse-
quently, LLM4EFFI checks the test cases that are
not passed by the code implementations, ensuring
that correct test cases are not excluded due to code
errors and preventing incorrect test cases from be-
ing misused in subsequent iterations.

After filtering, LLM4EFFI generates a new batch
of test cases and executes them again to obtain
updated results. For the test cases that fail, an itera-
tive feedback mechanism is applied to optimize the
code. The code, now enhanced with this iterative
feedback, is executed once more, and the final pass-
ing results are recorded. All codes are then ranked
in descending order of correctness, with the most
accurate code being selected. This process ensures
the identification of the optimal solution, while
maintaining both high efficiency and accuracy in
the code implementation.

B.2 Comparison of Methods.

In Fig. 22 and Fig. 23, we compare the code effi-
ciency optimization processes of LLM4EFFI and
baselines.

C Computational Cost

To evaluate the computational cost, we conducted
additional experiments to measure the total number
of generated tokens for LLM4EFFI. Specifically,
we calculated the average total number of tokens
for each problem task using various approaches un-
der DeepSeek-V3 backbone. The results are shown
in Tab.6, with the "Cost" column calculated based
on DeepSeek’s official pricing documentation.

* LLM4EFFI is the only method that requires the
generation of synthetic test cases. This is be-
cause LLM4EFFI is designed to simulate more
realistic real-world scenarios, where public
test cases are often unavailable. In contrast,



: Prime_fib returns the n-th number that is both a
: Fibonacci number and a prime.

______ ¢ import math

¢ import random

£ defis_prime(n, k=5):
fibmy: 3 - : Ioifn<2

return False

retum \"Invalid

inputt”
I while True: memo =[] - : —
fib = binet_formula(k): ab=0,1 H H H H : return n == p

‘while len(memo) <
n

if miller_rabin(fib)
count+= 1

iod=n-1
Ios=0

if count = n: ifis_prime(b) : whiled % 2==0:
return fib memo.append(b) di=2
[ S R b=b,a+b s+=1

t for_in range(k)
a= random.randint(2, min(n - 2, 1 << 3
X =pow(a, d, )
ifx==1lorx==n-1

continue
for _in range(s - 1):

X = pow(x, 2, n)

ifx=n-1:

break

else:

"
Efficient Primality
ting**: Use the

Precompute Small
Fibonacci Primes: &
Precompute and store &
the first few :
Fibonacci primes ¢
(eg.upton=20)in i
alist. :

ich is faster for
¢ numbers.

return False

i return True

I def prime_fib(n):

I ifn<=0
return None

I ocount=0

:oab=0,1

+  while True:
ifb%21=00orb==2:

ifis_prime(b):

Implementation Optimization

ib(s) == 89

ih(s) — 32 —_
ib(20) == 433494437 % H

E (5) assert prime_fib(15) == 28657 H H count += |
H H : if count == n:
LT e N O T S count
. Prr ab=ba+b om-klogn
Task Formalization Code Correctness e N2
eff@1=1.28

Figure 21: The figure illustrates the specific output of each subtask process of LLM4EFFI in solving algorithm
problems.

the baseline method, Effi-Learner, relies on
test case oracles provided with the problems.

* LLM4EFFI indeed requires more generated to-
kens from LL.Ms compared to baseline meth-
ods. However, considering the significant per-
formance gains achieved, we believe the cost
remains within an acceptable range.

» LLMA4EFFI offers significant flexibility. Users
can customize and adjust various parameters,
such as the number of synthetic test cases and
algorithm explorations, to optimize token us-
age and reduce associated costs.
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Implement a function that takes an non-negative integer and returns an array of the first n.integers that are prime numbers and less than n

LLM4EFFI

Algorithm Candidates

Effi-Learner

‘Algorithm key description:
This algorithm uses the Sieve of Eratosthenes.
The key idea is to efficiently mark non-prime
numbers in a boolean array and collect primes
less than "n’.
Pseudo algorithm:
function count_up_to(n):
ifn<=1:
return empty list
create a boolean array ‘is_prime® of size
'n’, initialized to True
set ‘is_prime[0]' and ‘is_prime[1]' to False

{algorithm key description: this
algorithm using trial division, the
key is to check divisibility of each
number up to sqri(n) to determine
primality}
Pseudo algorithm:
function count_up_to(n):
ifn<=1:
return empty list
create an empty list primes
for i from 2 to n-1:
is_prime = True

def is_prime(num):

""Helper function to check if a number
is prime.""

if num <2:

return False

int(num ** 0.5) + 1):
o

return False
return True

def count_up_to(n):

ECCO

def count_up_to(n):
ifn<2:
return []

sieve = [True] * n
sieve[0] = sieve[1] = False

for current in range(2, int(n ** 0.5) + 1):
if sieve[current]:
for multiple in range(current * current, n, current):
sieve[multiple] = False

for i from 2 to sqri(n):

for j from 2 to sqri(i):
if is_prime[i]" s True:

""Returns a list of prime numbers less

primes = [num for num, is_prime in enumerate(sieve) if
i3 %3 = 0 than n.""" is_prime]
forj from 'i *i' to 'n’ with step 'i": is_prime = False primes =[] Teturn primes
set “is_prime[j]' to False break for num in range(2, n):
collect all indices ‘i’ where ‘is_prime[i]" s

ifis_prime:
append i to primes
return primes

ifis_prime(num):
primes.append(num)
return primes

True and i <n"
return the collected list

Optimi: Suggestions

1. Initialize the boolean array with "bytearray" instead of list
2.Avoid unnecessary checks in the inner loop
3.Use list comprehension for collecting primes

eff@1=0.30

$ ) 4 $

def count_up_to(n):

eff@1=0.57

import math

def count_up_to(n):

A "Returns a list of prime numbers less than n using the Sieve of ifn<2:
def count_up_to(n): Eratosthenes."" return []
ifn<=1: ifn<2:
return [] rotum []

is_prime = bytearray([1]) * n
is_prime[0] = is_prime[1]=0

sieve = [True] * n

sieve  [True] * sieve[0] = sieve[1] = False # 0 and 1 are not prime numbers

sieve[0] = sieve[1] = False

for current in range(2, int(n ** 0.5) + 1):
if sieve[current]:

sqrt_n = math.isqri(n)
for i in range(2, sqrt_n + 1):
ifis_prime[i]:
is_primefi * i:n:i] = b'x00' * len(range(i * i, n, 1))

for current_num in range(2, int(n ** 0.5) + 1):
if sieve[current_num]:
for multiple in range(current * current, n, current):

for multiple in range(current_num * current_num, n, current_num):
sieve[multiple] = False

sieve[multiple] = False

primes = [num for num, is_prime in enumerate(sieve) if is_prime]

primes = [i for i, prime in enumerate(is_prime) if prime] eturn primes

primes = [num for num, is_prime in enumerate(sieve) if is_prime]
return primes

return primes

eff@1=1.15

eff@1=0.56 eff@1=0.57

Figure 22: The diagram demonstrates how LLM4EFFI, Effi-Learner, and ECCO generate code. LLM4EFFI, through
deep exploration of the algorithm domain, generates a set of efficient and high-quality algorithm candidates.
However, the time complexity of these algorithms is similar, and there is no significant difference from the original
code generated by Effi-Learner and ECCO. Subsequently, LLM4EFFI identifies key optimization suggestions in
its practical recommendations, such as replacing list with bytearray, among others. As a result, although the final

code has a similar time complexity to the other two tools, it significantly outperforms them in the final ENAMEL
efficiency evaluation metrics.

17



Prime_fib returns n-th number that is a Fibonacci number and it's also prime.

LLMA4EFFI

Algorithm Candidates

: function prime_fib(n):
i ifn<1:return
invalid_input
count =0
k=1
while True:
fib = binet_formula(k)
if miller_rabin(fib):

: function prime_fib(n):

ifn<lI:
return invalid_input

count = 0

k=1

while True:
fib = matrix_exponentiation(k)
if fermat_primality_test(fib):

count += 1 count += 1
if count == n: if count == n:
return fib return fib
k+=1 k+=1
Optimization Suggestions

i **Efficient Primality Testing**:

Use the Miller-Rabin

primality test for probabilistic primality checking, which is

: faster for large numbers.

import math
import random

defis_prime(n, k=5):
ifn<2:
return False

for _ in range(k):
X =pow(a, d, n)
continue

X =pow(x, 2, n)
ifx==n-1:
break
else:
return False
return True

def prime_fib(n):
ifn<=0:
return None
count = 0
a,b=0,1
while True:

if is_prime(b):
count += 1
if count == n:
return b
a,b=b,a+b

forpin[2,3,5,7, 11,
ifn%p==0:
return n==p
d=n-1
s=0
whiled % 2==0:
d/=2
s+=1

a = random.randint(2, min(n - 2, 1 << 30))
ifx==1orx==n-

for __ inrange(s - 1):

ifb%2!=00orb==2:

13]:

1:

Om-klogn)

eff@1=1.28

Effi-Learner
Original Code

def is_prime(num: int) -> bool:
"""Check if a number is
prime."""
if num < 2:
return False
for i in range(2, int(num**0.5) +
1):
ifnum % i==0:
return False
return True

def prime_fib(n: int) -> int:
count = 0
a,b=1,1
while True:
a,b=b,a+b
if is_prime(a):
count += 1
if count ==n:
return a

eff@1=0.34

def is_prime(num: int) -> bool:
if num < 2:
return False
if num ==2:
return True
if num % 2 == 0:
return False
1,2):
if num % i==0:
return False
return True

def prime_fib(n: int) -> int:
count = 0
a,b=1,1
while True:
a,b=b,a+b
if is_prime(a):
count += 1
if count ==n:
return a

om«vF,)

eff@1=0.34

ECCO

def is_prime(n: int) -> bool:
ifn<2:
return False
ifnin (2, 3):
return True
ifn%2==00rn%3==0:
return False
i=5
while i *i<=n:
ifn%i=0o0rn%(i+2)==0:
return False
i+t=6
return True

def prime_fib(n: int) -> int:
count =0
a,b=0,1
while True:
a,b=b,a+b
if is_prime(a):
count += |
if count == n:
return a

eff@1=0.34

import math
from functools import Iru_cache

@]Iru_cache(maxsize=None)
defis_prime(n: int) -> bool:
ifn<2:
return False
ifnin (2, 3):
return True
ifn%2==00rn%3==0:
return False
i=5
while i *i<=n:
ifn%i==0o0rn%(i+2)==0:
return False
it=6
return True

def prime_fib(n: int) -> int:
count = 0
a,b=0,1
while True:
a,b=b,a+b
if is_prime(a):
count += 1
if count == n:
return a

eff@1=0.34

Figure 23: The figure illustrates the code generation process of LLM4EFFI, Effi-Learner, and ECCO. LLM4EFFI,
through deep exploration of the algorithm domain, generates a set of efficient and high-quality algorithm candidates.
By incorporating practical optimization suggestions, it ultimately produces an algorithm with a time complexity of
only O(n - klogn), achieving a high score of 1.28 on the ENAMEL test set. In contrast, Effi-Learner and ECCO,
constrained by the O(n - /F,,) time complexity of their code algorithms, can only perform local optimizations on
certain implementations, resulting in minimal improvements, with the final efficiency index reaching only 0.34.
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