
LLM4EFFI: Leveraging Large Language Models to Enhance
Code Efficiency and Correctness

Anonymous ACL submission

Abstract
Large Language Models have demonstrated im-001
pressive capabilities in generating syntactically002
and functionally correct code. However, most003
existing research has primarily focused on the004
correctness of generated code, while efficiency005
remains relatively underexplored. Recent ef-006
forts have attempted to enhance efficiency by007
refining the initially generated code. Nonethe-008
less, such post hoc optimizations are inherently009
constrained by the original algorithmic design010
and overall logic, often yielding only marginal011
gains. In this work, we propose LLM4EFFI,012
a novel framework that enables LLMs to gen-013
erate code that balances both efficiency and014
correctness. LLM4EFFI decomposes the effi-015
ciency optimization process into two distinct016
stages: algorithmic exploration at the logical017
level and implementation optimization at the018
code level. Correctness is subsequently ensured019
through an adaptive testing process based on020
synthetic test cases. By prioritizing efficiency021
early in the generation process and refining for022
correctness afterward, LLM4EFFI introduces a023
new paradigm for efficient code generation. Ex-024
perimental results show that LLM4EFFI consis-025
tently improves both efficiency and correctness026
of generated code, achieving state-of-the-art027
performance on three code efficiency bench-028
marks across five diverse LLM backbones.029

1 Introduction030

Large Language Models (LLMs), particularly Code031

LLMs, are transforming the field of software en-032

gineering at an unprecedented pace. A significant033

area of advancement lies in automated code genera-034

tion (Liu et al., 2023; Li et al., 2024a), where LLMs035

such as GPT-4o (OpenAI, 2024), Gemini (Team036

et al., 2023), the DeepSeek series (DeepSeek-AI,037

2024a), and the Qwen series (Yang et al., 2024a,b)038

have demonstrated remarkable capabilities. These039

LLMs have consistently broken new ground on040

code completion and generation benchmarks, in-041

cluding HumanEval (Chen et al., 2021), MBPP042

Existing works: Generate code, then Efficiency Optimization

Given Task Generated Code Optimization Strategy
& Execution profile

algorithm practice optimization

synthetic test cases Given Task
" checked" test cases

generated code

LLM4EFFI (ours): Algorithm Exploration and
Implementation Optimization, then Refinement

Figure 1: Comparison of LLM4EFFI with existing meth-
ods. Existing approaches typically generate code first
and then attempt to improve efficiency through strategy
or execution profiling. In contrast, LLM4EFFI reverses
this order by prioritizing efficiency during generation,
followed by refinement to ensure correctness.

(Austin et al., 2021), LiveCodeBench (Jain et al., 043

2024), and BigCodeBench (Zhuo et al., 2025). 044

While LLMs have achieved impressive accuracy 045

in code generation, practical software engineering 046

requires more than correctness—it also demands 047

efficiency (Shi et al., 2024; Niu et al., 2024). In real- 048

world scenarios, even functionally correct code of- 049

ten needs manual optimization before deployment, 050

which undermines the promise of truly "out-of-the- 051

box" code generation. Therefore, generating code 052

that is both correct and efficient is essential; yet au- 053

tomating this process remains largely unexplored. 054

Recent preliminary works (Huang et al., 2024b; 055

Waghjale et al., 2024) have explored feedback- 056

based approaches to improving the execution ef- 057

ficiency of generated code. As shown in Fig. 1, 058

these methods follow a "generate-then-optimize" 059

paradigm, where the model first generates code and 060

subsequently refines it through strategy prompts or 061

execution profiling. However, this paradigm raises 062

a fundamental question: 063

1

Task: Prime_fib returns n-th
number that is a Fibonacci
number and it's also prime.

1. Entry Point Function Name:
 • prime_fib

2. Input/Output Conditions
and Parameter Types:
 • Input: take a single integer
 • Output: return type is int

3. Edge Cases:
 • small values of n:
 • large values of n:
 • invalid values of n:

4. Expected Behavior:
 • The function should return
the correct n-th Fibonacci
number prime_fib(1) = 2

Given Task

Task Formalization

Efficiency First

Algorithm Exploration Implementation optimization

Correctness Later

Synthetic Test Cases

Algorithm Plan:
Dynamic Programming with Prime Caching: This
approach combines dynamic programming for
generating Fibonacci numbers and …

Complexity Analysis:
over time complexity is …

Pesudo Code:
Function is_prime(num):
…

assert prime_fib(1) == 2
assert prime_fib(10)== 1597
assert prime_fib(2) == 3
...
assert prime_fib(4) == 11
assert prime_fib(8) == 51429
assert prime_fib(5) == 89

Final Code

Optimization Suggestions:
1.Prime Checking Optimization: Use a Sieve of
Eratosthenes for Caching Primes…
2. Avoid Repeated Fibonacci Calculation…

Code Candidates:
import math
def sieve_of_eratosthenes(limit):
…
def prime_fib(n):# Initialize

assert prime_fib(1) == 2
assert prime_fib(10)== 1597
assert prime_fib(2) == 3
...
assert prime_fib(4) == 11
assert prime_fib(8) == 51429
assert prime_fib(5) == 89

"Checked " Test Cases

1 2
3

4

5 6
Bidirectional Verification

Figure 2: The workflow of LLM4EFFI. Given a programming task, LLM4EFFI formalizes it into a code-oriented
description, generates optimal algorithms and pseudocode in logic domain, and then produces implementation
suggestions in code domain. LLM4EFFI synthesizes test cases and uses a verification-based adaptive framework to
evaluate candidate solutions. The final code is selected based on the highest pass rate of the "checked" test cases.

“Is generating code first and then opti-064

mizing for efficiency truly the optimal065

solution for efficient code generation?”066

To investigate this, we conduct a detailed analy-067

sis of concrete examples, with representative cases068

provided in Fig. 22 and 23 in Appendix B. This069

analysis reveals that the "generate-then-optimize"070

paradigm is fundamentally limited by the algorith-071

mic design and structural choices made during ini-072

tial code generation, often yielding only incremen-073

tal efficiency gains. Such constraints hinder deeper,074

algorithm-level restructuring necessary for achiev-075

ing substantial improvements. In contrast, when076

human developers write high-quality code, whether077

in practical software engineering or algorithmic ed-078

ucation, they typically begin by exploring multiple079

potential solutions at a logical level. They ana-080

lyze the task’s constraints, compare algorithmic081

alternatives and their computational complexities,082

and then proceed to implementation. During this083

stage, they apply appropriate coding techniques to084

optimize performance, followed by debugging and085

refinement to ensure correctness and quality.086

Inspired by this insight, we propose LLM4EFFI087

(Large Language Model for Code Efficiency), a088

novel paradigm that enables LLMs to generate089

code that is both efficient and correct, as illustrated090

in Fig. 2. Given a programming task described 091

in natural language, LLM4EFFI first formalizes it 092

into a code-oriented problem specification. That 093

is, it transforms the broad task description into a 094

clear and well-defined coding problem, enabling 095

accurate interpretation by the LLM. LLM4EFFI 096

then guides the LLM through logic-level reasoning 097

and algorithmic exploration. It considers multi- 098

ple candidate algorithms, analyzes their computa- 099

tional complexities, and generates corresponding 100

pseudocode. Based on these designs, LLM4EFFI 101

derives implementation strategies and proceeds to 102

code generation, incorporating optimization at the 103

implementation level. This reflects the understand- 104

ing that high-quality code requires not only sound 105

algorithmic foundations but also attention to practi- 106

cal implementation. To ensure functional correct- 107

ness while targeting efficiency, LLM4EFFI intro- 108

duces a bidirectional verification-based adaptive 109

testing framework that dynamically constructs and 110

validates synthetic test cases. The generated code 111

is iteratively executed and refined based on these 112

"checked" test cases. Ultimately, the solution with 113

the highest pass rate across the "checked" test cases 114

is selected as the final output. 115

LLM4EFFI introduces two key uniqueness: 116

Uniqueness 1: Separation of Efficiency Optimiza- 117

2

tion into Logic and Code Domains. LLM4EFFI118

decomposes efficiency optimization into two dis-119

tinct stages: the logic domain and the code do-120

main. The logic domain focuses on identifying121

optimal algorithmic strategies, while the code do-122

main targets low-level implementation refinements.123

This separation breaks down the complex task of124

code efficiency optimization into manageable and125

complementary phases, making the overall process126

more systematic, interpretable and targeted.127

Uniqueness 2: Reordering the Optimization of128

Correctness and Efficiency. The order of opti-129

mizing efficiency and correctness plays a crucial130

role. LLM4EFFI prioritizes efficiency first, en-131

abling broader algorithmic exploration and allow-132

ing multiple efficient solutions to emerge. Cor-133

rectness is then incrementally ensured across these134

candidates. This strategy avoids prematurely con-135

straining the solution space by enforcing correct-136

ness too early, which limit optimization potential.137

By reversing traditional order, LLM4EFFI unlocks138

greater potential for substantial efficiency gains.139

We evaluate LLM4EFFI on three recently pro-140

posed code efficiency benchmarks: EvalPerf (Liu141

et al., 2024), ENAMEL (Qiu et al., 2024), and142

Mercury (Du et al., 2024). Experimental results143

demonstrate that LLM4EFFI consistently improves144

both code correctness and efficiency across diverse145

LLM backbones, achieving state-of-the-art perfor-146

mance on efficiency-related metrics. Overall, the147

contributions are threefold; code available at link1:148

• We propose LLM4EFFI, the first LLM-based149

framework that integrates efficiency and correct-150

ness as joint optimization objectives.151

• We introduce two key innovations: (i) Separation152

of efficiency optimization into logic and code153

domains and (ii) Reordering the optimization of154

correctness and efficiency, which offers a new155

paradigm for the code efficiency community.156

• Extensive experiments and analysis on three157

benchmarks across five different LLM back-158

bones demonstrate the effectiveness and robust-159

ness of LLM4EFFI in efficient code generation.160

2 Related Works161

2.1 LLMs for Code Generation162

LLMs have been widely applied to coding tasks163

and have demonstrated strong performance across164

a range of code scenarios. Most existing research165

1https://anonymous.4open.science/r/
LLM4EFFI-04B2

focuses on improving code generation quality, with 166

numerous techniques proposed for this purpose. 167

Some methods aim to improve the quality of syn- 168

thetic code data (Wei et al., 2024; Luo et al., 2024; 169

Lei et al., 2024), improve self-consistency (Le et al., 170

2024; Huang et al., 2024a), or incorporate feed- 171

back from human or LLM annotations (Chen et al., 172

2024; Wu et al., 2023; Tang et al., 2023). Other 173

approaches utilize multi-agent collaboration frame- 174

works to enhance code generation (Zhong et al., 175

2024; Shinn et al., 2023; Islam et al., 2024; Madaan 176

et al., 2023; Li et al., 2024b). Despite these ad- 177

vances, most of these methods primarily focus on 178

improving correctness, while largely overlooking 179

the efficiency of the generated code. 180

2.2 Code Efficiency 181

Until recently, the efficiency of generated code 182

had received attention from the academic com- 183

munity. Several efficiency-focused benchmarks 184

(HUANG et al., 2024; Du et al., 2024; Liu et al., 185

2024; Qiu et al., 2024) have been introduced to 186

more comprehensively evaluate the ability of LLMs 187

to produce efficient code. However, empirical 188

evaluations on these benchmarks show that cur- 189

rent LLMs still face significant challenges in effi- 190

cient code generation. To address this, recent work 191

such as ECCO (Waghjale et al., 2024) adopts self- 192

refinement, prompting LLMs to consider possible 193

optimization strategies and iteratively refine their 194

outputs. Effi-Learner (Huang et al., 2024b) pro- 195

poses a self-optimization framework that leverages 196

execution overhead profiles, feeding them back 197

into the LLM to revise the code and reduce run- 198

time overhead. However, these methods all follow 199

the "generate-then-optimize" paradigm, rather than 200

starting with the goal of generating both efficient 201

and correct code from the beginning. 202

3 Methodology 203

Problem Formulation. In the code efficiency 204

task, each instance is defined as a pair (Q,Th), 205

where Q denotes the task description, and Th repre- 206

sents the hidden test cases. The goal is to generate 207

a code solution S that passes all the hidden test 208

cases while achieving the highest efficiency (i.e., 209

the shortest execution time). Notably, to better 210

simulate real-world scenarios, we assume that no 211

public test cases are available. Th is only used dur- 212

ing the evaluation stage and is not visible during 213

the efficiency and correctness optimization stages. 214

3

https://anonymous.4open.science/r/LLM4EFFI-04B2
https://anonymous.4open.science/r/LLM4EFFI-04B2

3.1 Overview215

As shown in Fig.2, given a programming task in216

natural language, LLM4EFFI first formalizes it217

into a code-oriented problem specification (Section218

§3.2). LLM4EFFI then prompts the LLM to per-219

form logic-domain reasoning, generating multiple220

algorithmic candidates and corresponding pseu-221

docode (Section §3.3). Based on these, LLM4EFFI222

derives detailed implementation strategies and gen-223

erates optimized code (Section §3.4). To ensure224

correctness, it synthesizes test cases and applies225

a bidirectional verification-based adaptive frame-226

work to validate these synthetic test cases. These227

"checked" test cases are then used to evaluate and228

refine the candidate code solutions (Section §3.5).229

3.2 Task Formalization230

In the initial task formalization stage, LLM4EFFI231

ensures that the task description is clear and unam-232

biguous, which is crucial for subsequent stages. As233

highlighted by Han et al. (2024), errors in LLM-234

generated code often arise from an insufficient235

or unclear understanding of the task. Therefore,236

LLM4EFFI prompts the LLM to interpret the task237

from four key dimensions: (i) entry point function238

name, (ii) input/output conditions and parameter239

types, (iii) edge cases, and (iv) expected behavior.240

Based on these aspects, the LLM is further guided241

to engage in self-reflection to confirm whether it242

has fully understood the task, thus laying a solid243

foundation for subsequent stages. Formally, this244

process is represented as : Q→ Qformal
check←→ Q.245

3.3 Algorithmic Exploration in Logic Domain246

For the formalized task, LLM4EFFI prompts the247

LLM to engage in algorithmic reasoning at the log-248

ical level, rather than generating code directly. This249

approach mirrors the workflow of human program-250

mers, who first perform abstract, high-level reason-251

ing before moving to implementation. The LLM252

is guided to explore multiple optimal algorithms,253

analyze their complexities, and express the entire254

reasoning process using pseudocode. Formally, this255

is denoted as: Qformal → {Algo, Cplx, Pseudo},256

where Algo represents the algorithm plan, Cplx de-257

notes the complexity analysis, and Pseudo refers258

to the corresponding pseudocode.259

3.4 Implementation in Code Domain260

High-quality code requires not only well-designed261

algorithms but also careful optimization at the im-262

plementation level. Even when the underlying 263

algorithm is the same, different implementation 264

choices can lead to substantial variations in code 265

efficiency (Shypula et al., 2024; Coignion et al., 266

2024). Based on the algorithmic plan and cor- 267

responding pseudocode, LLM4EFFI prompts the 268

LLM to generate practical implementation sugges- 269

tions derived from Algo and Pseudo. For example, 270

replacing a manual binary exponentiation routine 271

with Python’s built-in pow function. 272

LLM4EFFI then generates candidate code im- 273

plementations based on Algo, Pseudo, and the 274

derived suggestions, while also identifying addi- 275

tional optimization opportunities. Formally, this 276

process is denoted as: 277

{Algo, Pseudo} → {Suggs} 278

{Algo, Pseudo, Suggs} → {Code Candidates} 279

3.5 Code Correctness Guarantee 280

To ensure the functional correctness of the gener- 281

ated code while targeting efficiency, LLM4EFFI 282

introduces a bidirectional verification-based adap- 283

tive testing framework. The process unfolds as 284

follows: LLM4EFFI first automatically synthesizes 285

a large number of test cases based on the formal- 286

ized task description Qformal. These test cases are 287

designed to cover a wide range of edge cases, rigor- 288

ously testing the robustness and reliability of can- 289

didate solutions. However, since the synthesized 290

test cases may contain errors, LLM4EFFI applies a 291

bidirectional verification method to validate them. 292

Forward Verification: If all candidate code im- 293

plementations pass a given test case, it is consid- 294

ered trusted. Otherwise, Reverse Review: If any 295

candidate fails a test case, LLM4EFFI performs a 296

Qformal-based review to determine whether the 297

test case aligns with the task intent. This includes 298

a semantic consistency check inspired by Test- 299

Driven Development (TDD) practices (Erdogmus 300

et al., 2010). Test cases that pass this review are re- 301

tained; otherwise, they are discarded. The retained 302

test cases are then marked as "checked" and used to 303

evaluate the code candidates. Any failures during 304

the evaluation phase trigger further refinement. Ul- 305

timately, the refined code candidate that passes the 306

most "checked" test cases is selected as the final 307

output. Formally, this process is denoted as: 308

Qformal → {Synthesized Test Cases} bidirectional−→
verification

309

{Checked Test Cases} refine−→
select

{Final Output} 310

4

LLMs Methods EvalPerf Mercury ENAMEL

DPS_norm Pass@1 Beyond@1 Pass@1 eff@1 Pass@1

Qwen2.5-Coder
-32B-Instruct

Instruct 80.92 85.59 76.97 94.14 50.44 85.21
ECCO 82.16 63.56 73.29 89.06 41.89 71.83
Effi-Learner 82.45 77.11 77.13 91.41 50.12 81.69
LLM4EFFI (ours) 86.20 +5.28 87.30 +1.71 78.96 +1.99 93.75 -0.39 51.26 +0.82 86.62 +1.41

Qwen2.5-72B
-Instruct

Instruct 79.29 88.14 72.50 86.72 49.78 83.80
ECCO 80.06 64.41 74.10 89.84 41.90 72.53
Effi-Learner 79.90 81.36 77.10 91.02 47.42 76.76
LLM4EFFI (ours) 84.00 +4.71 88.98 +0.84 77.45 +4.95 90.63 +3.91 51.49 +1.71 87.32 +3.52

GPT-4o-mini

Instruct 80.04 85.59 69.59 82.81 48.26 80.28
ECCO 75.18 44.07 72.29 86.33 30.75 57.75
Effi-Learner 79.80 81.36 73.45 88.67 45.69 77.46
LLM4EFFI (ours) 83.78 +3.74 88.14 +2.55 74.94 +5.35 89.45 +6.64 49.89 +1.63 80.99 +0.71

GPT-4o

Instruct 79.59 86.70 73.14 87.50 47.63 80.99
ECCO 80.65 61.02 77.70 92.18 38.63 64.79
Effi-Learner 79.39 79.67 79.24 93.36 48.52 81.69
LLM4EFFI (ours) 86.39 +6.80 88.98 +2.28 77.81 +4.67 93.75 +6.25 55.26 +7.63 83.80 +2.81

DeepSeek-V3

Instruct 80.45 89.84 79.90 94.53 51.14 86.62
ECCO 81.08 61.84 63.26 74.61 45.84 75.35
Effi-Learner 79.00 88.14 78.83 92.58 52.22 83.80
LLM4EFFI (ours) 87.08 +6.63 90.67 +0.83 82.76 +2.86 96.09 +1.56 60.41 +9.27 89.44 +2.82

Table 1: Main Result. Performance of LLM4EFFI and baseline methods on EvalPerf, Mercury, and ENAMEL
benchmarks, using five different LLM backbones. Efficiency is evaluated using each benchmark’s specific metric.

4 Experiments311

We evaluate LLM4EFFI on three code efficiency312

benchmarks: EvalPerf (Liu et al., 2024), Mercury313

(Du et al., 2024), and ENAMEL (Qiu et al., 2024).314

EvalPerf uses differential performance evaluation315

to assess efficiency across different LLMs and so-316

lutions. Its efficiency metric, DPS_norm, is cal-317

culated by determining the cumulative ratio of the318

reference solution that is immediately slower than319

the new solution, normalized by the total number320

of solutions. This ensures a fair comparison of321

code efficiency based on reference solutions with322

varying performance levels. Mercury introduces323

the Beyond metric to evaluate both correctness and324

code efficiency. The Beyond metric is calculated325

by normalizing the runtime percentiles of LLM326

solution samples over the runtime distribution for327

each task, ensuring consistent runtime comparisons328

across different environments and hardware con-329

figurations. ENAMEL evaluates efficiency using330

the eff@1 metric, which captures the worst-case331

execution time of a generated code sample across332

test cases with varying difficulty. The score is then333

adjusted using a weighted average across these lev-334

els to account for hardware fluctuations. The eff@1335

value ranges from 0 to 1, with higher values indi-336

cating better efficiency; values above 1 indicate337

performance exceeding expert-level solutions.338

4.1 Compared Methods. 339

We evaluate the direct instruction to generate both 340

correct and efficient code as the Instruct baseline. 341

We compare LLM4EFFI against two recent methods 342

for code efficiency: ECCO (Waghjale et al., 2024) 343

and Effi-Learner (Huang et al., 2024b). 344

• ECCO: A self-refinement method with natural 345

language feedback. It prompts the LLM to gener- 346

ate an initial solution, then asks whether the code 347

can be improved for efficiency, and refines the 348

solution based on the suggested optimizations. 349

• Effi-Learner: First, it generates code using the 350

same instruction prompt as the Instruct baseline. 351

It then executes the code on test cases to col- 352

lect performance profiles, including runtime and 353

memory usage. These profiles, along with the 354

original code, are fed back into the LLM to guide 355

efficiency-oriented refinement. It is worth noting 356

that Effi-Learner relies on test case oracles; in 357

this study, we use the visible test cases provided 358

with each task. In contrast, LLM4EFFI does not 359

depend on any test case oracles—all test cases are 360

synthetically generated within LLM4EFFI itself. 361

4.2 Experiment Setup. 362

To comprehensively evaluate the applicability of 363

LLM4EFFI, we selected five different LLM back- 364

bones: two proprietary LLMs: GPT-4o (OpenAI, 365

5

Models Methods EvalPerf Mercury ENAMEL

DPS_norm Pass@1 Beyond@1 Pass@1 eff@1 Pass@1

Qwen2.5-Coder
-32B-Instruct

LLM4EFFI 86.20 87.30 78.96 93.75 51.26 86.62
Variant-1 77.21 -8.99 80.51 -6.79 77.89 -1.07 93.34 -0.41 48.57 -2.69 81.69 -4.93

Variant-2 75.75 -10.45 81.36 -5.94 75.86 -3.10 92.19 -1.56 45.68 -5.58 83.10 -3.52

Variant-3 81.19 -5.01 72.03 -15.27 72.56 -6.40 85.16 -8.59 47.48 -3.78 77.46 -9.16

DeepSeek-V3

LLM4EFFI 87.08 90.67 82.76 96.09 60.41 89.44
Variant-1 79.72 -7.36 84.75 -5.92 81.58 -1.18 94.53 -1.56 53.23 -7.18 88.03 -1.41

Variant-2 77.07 -10.01 83.05 -7.62 80.10 -2.66 94.53 -1.56 53.62 -6.79 88.73 -0.71

Variant-3 82.62 -4.46 82.01 -8.66 79.75 -3.01 92.58 -3.51 54.58 -5.83 81.69 -7.75

Table 2: Ablation Study Results. Results of LLM4EFFI, Variant-1, Variant-2, and Variant-3 are presented using
Qwen2.5-Coder-32B-Instruct and DeepSeek-V3 as backbones on EvalPerf, Mercury, and ENAMEL benchmarks.

2024) and GPT-4o-mini, and three open-source366

LLMs, including DeepSeek-V3 (DeepSeek-AI,367

2024b), Qwen2.5-72B-Instruct (Yang et al., 2024b),368

and Qwen2.5-Coder-32B-Instruct (Hui et al., 2024).369

During the LLM4EFFI process, we set the number370

of algorithm plans to 5 and the number of synthetic371

test cases to 20, followed by one iteration to re-372

fine the code for correctness. All prompts used373

for LLM4EFFI and the baselines are provided in374

Appendix A. For fair comparison, all experiments375

are conducted with a temperature setting of 0 and376

repeated three times, with average results reported.377

4.3 Main Results.378

We compare LLM4EFFI with other methods on379

the EvalPerf, Mercury, and ENAMEL benchmarks,380

with results shown in Tab. 1. Direct instruction381

prompts (Instruct) yield strong performance, sug-382

gesting that LLMs possess a basic understanding of383

correct and efficient code. ECCO provides slight ef-384

ficiency gains on EvalPerf and Mercury, but these385

often come at the cost of correctness. On more386

complex benchmarks like ENAMEL, ECCO shows387

a drop in both efficiency and correctness, indicating388

that relying solely on code domain optimization is389

insufficient. Lacking alignment with the broader390

logic requirement of the task, such methods often391

fail to produce effective improvements.392

Effi-Learner shows moderate gains in certain393

settings, such as GPT-4o on Mercury, but its per-394

formance is inconsistent across LLMs and bench-395

marks, often falling short of the Instruct baseline.396

More importantly, it frequently compromises both397

efficiency and correctness. This is primarily due398

to its feedback mechanism, which emphasizes per-399

formance metrics (e.g., execution time) while ne-400

glecting functional correctness. Lacking algorith-401

mic reasoning, Effi-Learner tends to over-optimize402

for runtime at the expense of code reliability, ulti- 403

mately undermining both objectives. In compari- 404

son, LLM4EFFI achieves consistent improvements 405

in both correctness and efficiency. Notably, it is 406

the only method that delivers robust performance 407

gains across diverse benchmarks and LLMs. Under 408

DeepSeek-V3, LLM4EFFI improves DPS_norm by 409

6.63% on EvalPerf, increases eff@1 by 9.27% on 410

ENAMEL, and boosts Pass@1 by 2.82%. 411

4.4 Ablation Study. 412

LLM4EFFI incorporates several distinctive design 413

choices, such as separating efficiency optimization 414

into the logic and code domains. To assess the 415

impact of each part, we conduct following variants: 416

• Variant-1: (Without Algorithmic Exploration 417

in the Logic Domain): This variant skips al- 418

gorithmic exploration for logic-level efficiency 419

optimization. Instead, the LLM directly gen- 420

erates a fixed number of efficient code candi- 421

dates based on the formalized task, followed 422

by implementation-level optimization. All other 423

steps are identical to those in LLM4EFFI. 424

• Variant-2: (Without Implementation Optimiza- 425

tion in the Code Domain): This variant omits 426

the implementation-level optimization step. All 427

other stages remain the same as in LLM4EFFI. 428

• Variant-3: (Without Code Correctness Refine- 429

ment): In this setting, after generating the 430

efficiency-optimized code, the LLM directly se- 431

lects the final output it deems most efficient and 432

correct, without the correctness refinement phase. 433

We conduct the ablation study using Qwen2.5- 434

Coder-32B-Instruct and DeepSeek-V3 as LLM 435

backbones, with the results shown in Tab. 2. The 436

findings indicate that removing any component de- 437

grades both efficiency and correctness. Specifically, 438

excluding Algorithmic Exploration in the Logic 439

6

Models Methods EvalPerf Mercury ENAMEL

DPS_norm Pass@1 Beyond@1 Pass@1 eff@1 Pass@1

Qwen2.5-Coder
-32B-Instruct

LLM4EFFI 86.20 87.30 78.96 93.75 51.26 86.62
w/o Uniqueness-1 80.84 -5.36 79.66 -7.64 76.75 -2.21 94.14 +0.39 50.95 -0.31 80.98 -5.64

w/o Uniqueness-2 78.07 -8.13 70.34 -16.96 72.83 -6.13 87.11 -6.64 47.62 -3.64 77.46 -9.16

DeepSeek-V3
LLM4EFFI 87.08 90.67 82.76 96.09 60.41 89.44
w/o Uniqueness-1 80.91 -6.17 85.59 -5.08 81.79 -0.97 95.31 -0.78 54.70 -5.71 85.92 -3.52

w/o Uniqueness-2 80.42 -6.66 79.66 -11.01 62.90 -19.86 74.61 -21.48 53.92 -6.49 84.50 -4.94

Table 3: Uniqueness Analysis Results. Results of LLM4EFFI, w/o Uniqueness-1, and w/o Uniqueness-2 using
Qwen2.5-Coder-32B-Instruct and DeepSeek-V3 as backbones on EvalPerf, Mercury, and ENAMEL benchmarks.

Domain (Variant-1) or Implementation Optimiza-440

tion in the Code Domain (Variant-2) leads to a441

clear drop in efficiency metrics across all three442

benchmarks. Furthermore, removing Code Correct-443

ness Refinement (Variant-3) results in a notable444

decline in Pass@1. These outcomes are consistent445

with the design intent: algorithmic exploration and446

implementation optimization primarily contribute447

to efficiency, while correctness refinement ensures448

that the final output maintains functional correct-449

ness after efficiency-driven transformations.450

5 Deeper Analysis451

5.1 LLM4EFFI Uniqueness Analysis452

As discussed in the Introduction, LLM4EFFI has453

two key innovations: Uniqueness 1: Separation454

of efficiency optimization into logic and code do-455

mains, and Uniqueness 2: Reordering the opti-456

mization of correctness and efficiency. To gain457

a deeper understanding of these unique design458

choices, we conducted the following experiments:459

• w/o Uniqueness-1: Instead of separating effi-460

ciency optimization into logic and code domains,461

we prompt the LLM to generate code that is both462

efficient and correct. Based on the formalized463

task and generated code, the LLM is then asked464

to propose possible efficiency optimization strate-465

gies. The code is refined accordingly, with sub-466

sequent steps identical to those in LLM4EFFI.467

The key difference between w/o Uniqueness-1468

and ECCO is that ECCO generates optimization469

suggestions solely from the code, whereas w/o470

Uniqueness-1 leverages both the formalized task471

and generated code to produce efficiency-focused472

strategies, followed by correctness refinement.473

• w/o Uniqueness-2: This variant reverses the474

prioritization of correctness and efficiency. In475

this experiment, it first generates code based on476

the formalized task and refines it for correctness.477

Easy Medium Hard
40

50

60

70

80

90

100

Be
yo

nd
@

1

83.11 81.39

75.26

69.39

74.31

46.76

81.26 81.88

73.55

87.49
83.71

77.08

Original ECCO Effi-Learner LLM4EFFI

Figure 3: Beyond@1 of LLM4EFFI across difficulty
levels in Mercury, with DeepSeek-V3 as the backbone.

Then, algorithm exploration is performed based 478

on the formalized task and refined code, followed 479

by optimization using implementation strategies. 480

The results of the uniqueness analysis are shown 481

in Tab. 3. Without Uniqueness-1, performance of 482

Qwen2.5-Coder-32B-Instruct on Mercury showed 483

a slight increase in Pass@1, but in other cases, 484

the performance declined, particularly in terms of 485

DPS_norm on EvalPerf and eff@1 on ENAMEL. 486

This highlights the value of separating efficiency 487

optimization into logic and code domains, as it 488

decomposes the complex challenge of code effi- 489

ciency into manageable and focused stages. On 490

the other hand, removing Uniqueness-2 resulted 491

in notable drops in both efficiency and correctness 492

across all benchmarks and LLM backbones. This 493

is primarily because prioritizing correctness before 494

efficiency limits the LLM’s ability to explore effec- 495

tive algorithmic and implementation strategies. In 496

practice, this reversal often backfires: overempha- 497

sizing efficiency after correctness can inadvertently 498

compromise correctness itself. These findings un- 499

derscore the effectiveness of the "efficiency-first, 500

correctness-later" strategy as a critical paradigm for 501

generating code that is both correct and efficient. 502

7

Methods BigCodeBench-Hard

Pass@1 Relative Time Cost

Instruct 32.43 1
ECCO 15.54 -11.58% (Faster)
Effi-Learner 25.68 +11.98% (Slower)
LLM4EFFI 36.50 -33.37% (Faster)

Table 4: Performance of LLM4EFFI vs. Baselines on
BigCodeBench-Hard, using DeepSeek-V3 as backbone.

5.2 Performance on Varying Difficulty Levels503

To assess LLM4EFFI’s performance across differ-504

ent difficulty levels, we evaluate it in three cate-505

gories: Easy, Medium, and Hard, using Mercury506

benchmark with DeepSeek-V3 as the backbone. As507

shown in Fig. 3, LLM4EFFI consistently achieves508

the highest Beyond@1 scores, outperforming all509

baselines across difficulty levels. This consistent510

performance highlights LLM4EFFI ’s effectiveness511

in handling a broad range of coding challenges.512

In contrast, ECCO exhibits a significant drop on513

hard-level tasks, primarily due to the difficulty of514

generating valid optimization suggestions for com-515

plex code, a persistent challenge for current LLMs.516

5.3 Generalization to More Complex Tasks517

To further assess the effectiveness and scalability of518

LLM4EFFI in more complex software engineering519

scenarios, we conducted additional experiments520

using the BigCodeBench (Zhuo et al., 2025) bench-521

mark, a comprehensive suite designed to evaluate522

the code generation capabilities of LLMs in real-523

world, large-scale programming tasks. Specifically,524

we selected the BigCodeBench-Hard subset, which525

consists of 148 high-difficulty tasks. All other ex-526

perimental settings remained consistent with the527

main experiments. In the evaluation, we normal-528

ized the execution time of code generated via direct529

instruction prompting as the baseline (set to 1) and530

computed the relative time costs of different meth-531

ods. Results are shown in Table 4. We observe that532

methods such as ECCO and Effi-Learner, which533

adopt a "generate-then-optimize" paradigm, suffer534

significant drops in accuracy. Notably, Effi-Learner535

often produces less efficient code under complex536

tasks, leading to longer execution times. In con-537

trast, LLM4EFFI maintains robust and consistent538

performance, improving code efficiency by 33.37%539

while also enhancing correctness. These results540

demonstrate LLM4EFFI’s effectiveness in handling541

challenging, real-world programming tasks.542

Methods EvalPerf ENAMEL

DPS_norm Pass@1 eff@1 Pass@1

Effi-Learner 79.00 88.14 52.22 83.80
Effi-Learner with
synthetic test cases 80.16 87.29 52.98 87.32

LLM4EFFI 87.08 90.67 60.41 89.44

Table 5: Performance comparison of LLM4EFFI and
Effi-Learner with synthetic test cases, using DeepSeek-
V3 as the LLM backbone.

5.4 Effectiveness of Synthetic Test Cases 543

In its original design, Effi-Learner relies on ora- 544

cle test cases. To further assess the effectiveness 545

of LLM4EFFI’s synthetic test cases, we conducted 546

an additional comparison with Effi-Learner using 547

synthetic test cases. The results are shown in 548

Tab. 5. When using synthetic test cases for exe- 549

cution refinement, Effi-Learner achieves efficiency 550

metrics (DPS_norm and eff@1) comparable to, and 551

in some cases slightly better than, its original ver- 552

sion using oracle test cases. This is largely because 553

the synthetic test cases generated by LLM4EFFI 554

are designed to provide more comprehensive code 555

coverage and finer-grained difficulty differentia- 556

tion. The Pass@1 results vary across benchmarks, 557

primarily due to the increased difficulty of the syn- 558

thetic test cases. In more challenging benchmarks 559

such as ENAMEL, higher-difficulty test cases lead 560

to more significant improvements in correctness. 561

5.5 Case Study and Computational Cost 562

To provide a clearer understanding of LLM4EFFI, 563

we present a case study, detailed in Appendix B. 564

Methods like ECCO and Effi-Learner are con- 565

strained by the algorithmic design and structure of 566

the initial code. In contrast, LLM4EFFI overcomes 567

these limitations by enabling high-level algorithmic 568

exploration from the outset, allowing it to achieve 569

more substantial improvements in code efficiency. 570

Additionally, we provide the computational costs 571

of LLM4EFFI and the baselines in Appendix C. 572

6 Conclusion 573

In this paper, we introduce LLM4EFFI, a novel 574

framework for efficient code generation. By de- 575

coupling efficiency optimization into logic and 576

code domains and adopting an "efficiency-first, 577

correctness-later" paradigm, LLM4EFFI enables 578

broader algorithmic exploration while ensuring cor- 579

rectness. Extensive experimental results demon- 580

strate LLM4EFFI ’s effectiveness and robustness. 581

8

Limitation582

Although LLM4EFFI demonstrates strong perfor-583

mance in generating both efficient and correct code,584

it still faces certain limitations. One key challenge585

is balancing code efficiency with readability. To586

optimize runtime performance, the system often587

employs complex algorithms or heavily optimized588

built-in functions. While this improves efficiency,589

it can also increase cognitive load, particularly590

for users with limited programming experience,591

thereby raising the barrier to understanding and592

applying the generated code in practical scenarios.593

Improving the readability of LLM-generated code594

is therefore an important direction, as it can help595

lower the entry threshold for users. However, this596

remains a relatively independent research problem,597

which we plan to investigate further in future work.598

References599

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten600
Bosma, Henryk Michalewski, David Dohan, Ellen601
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.602
Program synthesis with large language models. arXiv603
preprint arXiv:2108.07732.604

Angelica Chen, Jérémy Scheurer, Tomasz Korbak,605
Jon Ander Campos, Jun Shern Chan, Samuel R. Bow-606
man, Kyunghyun Cho, and Ethan Perez. 2024. Im-607
proving code generation by training with natural lan-608
guage feedback. Preprint, arXiv:2303.16749.609

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming610
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-611
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,612
Greg Brockman, et al. 2021. Evaluating large613
language models trained on code. arXiv preprint614
arXiv:2107.03374.615

Tristan Coignion, Clément Quinton, and Romain616
Rouvoy. 2024. A performance study of llm-617
generated code on leetcode. In Proceedings of618
the 28th International Conference on Evaluation and619
Assessment in Software Engineering, EASE 2024,620
page 79–89. ACM.621

DeepSeek-AI. 2024a. Deepseek-v2: A strong, economi-622
cal, and efficient mixture-of-experts language model.623
Preprint, arXiv:2405.04434.624

DeepSeek-AI. 2024b. Deepseek-v3 technical report.625
Preprint, arXiv:2412.19437.626

Mingzhe Du, Anh Tuan Luu, Bin Ji, Qian Liu,627
and See-Kiong Ng. 2024. Mercury: A code628
efficiency benchmark for code large language629
models. In The Thirty-eight Conference on630
Neural Information Processing Systems Datasets631
and Benchmarks Track.632

Hakan Erdogmus, Grigori Melnik, and Ron Jeffries. 633
2010. Test-driven development. In Encyclopedia of 634
Software Engineering. 635

Hojae Han, Jaejin Kim, Jaeseok Yoo, Youngwon Lee, 636
and Seung-won Hwang. 2024. ArchCode: In- 637
corporating software requirements in code genera- 638
tion with large language models. In Proceedings 639
of the 62nd Annual Meeting of the Association 640
for Computational Linguistics (Volume 1: Long 641
Papers), pages 13520–13552, Bangkok, Thailand. 642
Association for Computational Linguistics. 643

Baizhou Huang, Shuai Lu, Xiaojun Wan, and Nan 644
Duan. 2024a. Enhancing large language models in 645
coding through multi-perspective self-consistency. 646
In Proceedings of the 62nd Annual Meeting of the 647
Association for Computational Linguistics (Volume 648
1: Long Papers), pages 1429–1450, Bangkok, Thai- 649
land. Association for Computational Linguistics. 650

Dong Huang, Jianbo Dai, Han Weng, Puzhen Wu, 651
Yuhao Qing, Heming Cui, Zhijiang Guo, and Jie M. 652
Zhang. 2024b. Effilearner: Enhancing efficiency 653
of generated code via self-optimization. Preprint, 654
arXiv:2405.15189. 655

Dong HUANG, Yuhao QING, Weiyi Shang, Hem- 656
ing Cui, and Jie Zhang. 2024. Effibench: Bench- 657
marking the efficiency of automatically gener- 658
ated code. In The Thirty-eight Conference on 659
Neural Information Processing Systems Datasets 660
and Benchmarks Track. 661

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day- 662
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, 663
Bowen Yu, Kai Dang, et al. 2024. Qwen2.5-coder 664
technical report. arXiv preprint arXiv:2409.12186. 665

Md. Ashraful Islam, Mohammed Eunus Ali, and 666
Md Rizwan Parvez. 2024. MapCoder: Multi-agent 667
code generation for competitive problem solving. 668
In Proceedings of the 62nd Annual Meeting of the 669
Association for Computational Linguistics (Volume 670
1: Long Papers), pages 4912–4944, Bangkok, Thai- 671
land. Association for Computational Linguistics. 672

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia 673
Yan, Tianjun Zhang, Sida Wang, Armando Solar- 674
Lezama, Koushik Sen, and Ion Stoica. 2024. Live- 675
codebench: Holistic and contamination free eval- 676
uation of large language models for code. arXiv 677
preprint. 678

Hung Le, Hailin Chen, Amrita Saha, Akash Gokul, 679
Doyen Sahoo, and Shafiq Joty. 2024. Codechain: 680
Towards modular code generation through chain of 681
self-revisions with representative sub-modules. In 682
The Twelfth International Conference on Learning 683
Representations. 684

Bin Lei, Yuchen Li, and Qiuwu Chen. 2024. Autocoder: 685
Enhancing code large language model with AIEV- 686
INSTRUCT. Preprint, arXiv:2405.14906. 687

9

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2303.16749
https://arxiv.org/abs/2303.16749
https://arxiv.org/abs/2303.16749
https://arxiv.org/abs/2303.16749
https://arxiv.org/abs/2303.16749
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/3661167.3661221
https://doi.org/10.1145/3661167.3661221
https://doi.org/10.1145/3661167.3661221
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2412.19437
https://openreview.net/forum?id=vyraA7xt4c
https://openreview.net/forum?id=vyraA7xt4c
https://openreview.net/forum?id=vyraA7xt4c
https://openreview.net/forum?id=vyraA7xt4c
https://openreview.net/forum?id=vyraA7xt4c
https://api.semanticscholar.org/CorpusID:44264817
https://doi.org/10.18653/v1/2024.acl-long.730
https://doi.org/10.18653/v1/2024.acl-long.730
https://doi.org/10.18653/v1/2024.acl-long.730
https://doi.org/10.18653/v1/2024.acl-long.730
https://doi.org/10.18653/v1/2024.acl-long.730
https://doi.org/10.18653/v1/2024.acl-long.78
https://doi.org/10.18653/v1/2024.acl-long.78
https://doi.org/10.18653/v1/2024.acl-long.78
https://arxiv.org/abs/2405.15189
https://arxiv.org/abs/2405.15189
https://arxiv.org/abs/2405.15189
https://openreview.net/forum?id=30XanJanJP
https://openreview.net/forum?id=30XanJanJP
https://openreview.net/forum?id=30XanJanJP
https://openreview.net/forum?id=30XanJanJP
https://openreview.net/forum?id=30XanJanJP
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://doi.org/10.18653/v1/2024.acl-long.269
https://doi.org/10.18653/v1/2024.acl-long.269
https://doi.org/10.18653/v1/2024.acl-long.269
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://openreview.net/forum?id=vYhglxSj8j
https://openreview.net/forum?id=vYhglxSj8j
https://openreview.net/forum?id=vYhglxSj8j
https://openreview.net/forum?id=vYhglxSj8j
https://openreview.net/forum?id=vYhglxSj8j
https://arxiv.org/abs/2405.14906
https://arxiv.org/abs/2405.14906
https://arxiv.org/abs/2405.14906
https://arxiv.org/abs/2405.14906
https://arxiv.org/abs/2405.14906

Jia Li, Ge Li, Xuanming Zhang, Yihong Dong, and688
Zhi Jin. 2024a. Evocodebench: An evolving code689
generation benchmark aligned with real-world code690
repositories. Preprint, arXiv:2404.00599.691

Jierui Li, Hung Le, Yingbo Zhou, Caiming Xiong, Sil-692
vio Savarese, and Doyen Sahoo. 2024b. Codetree:693
Agent-guided tree search for code generation with694
large language models. Preprint, arXiv:2411.04329.695

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and696
Lingming Zhang. 2023. Is your code generated697
by chatGPT really correct? rigorous evaluation698
of large language models for code generation. In699
Thirty-seventh Conference on Neural Information700
Processing Systems.701

Jiawei Liu, Songrun Xie, Junhao Wang, Yuxiang Wei,702
Yifeng Ding, and Lingming Zhang. 2024. Evaluat-703
ing language models for efficient code generation.704
Preprint, arXiv:2408.06450.705

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-706
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,707
Qingwei Lin, and Daxin Jiang. 2024. Wizardcoder:708
Empowering code large language models with evol-709
instruct. In The Twelfth International Conference on710
Learning Representations.711

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler712
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,713
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,714
Shashank Gupta, Bodhisattwa Prasad Majumder,715
Katherine Hermann, Sean Welleck, Amir Yaz-716
danbakhsh, and Peter Clark. 2023. Self-refine:717
Iterative refinement with self-feedback. In718
Thirty-seventh Conference on Neural Information719
Processing Systems.720

Changan Niu, Ting Zhang, Chuanyi Li, Bin Luo,721
and Vincent Ng. 2024. On evaluating the effi-722
ciency of source code generated by llms. Preprint,723
arXiv:2404.06041.724

OpenAI. 2024. Gpt-4o system card. Preprint,725
arXiv:2410.21276.726

Ruizhong Qiu, Weiliang Will Zeng, Hanghang Tong,727
James Ezick, and Christopher Lott. 2024. How ef-728
ficient is llm-generated code? a rigorous & high-729
standard benchmark. Preprint, arXiv:2406.06647.730

Jieke Shi, Zhou Yang, and David Lo. 2024. Efficient731
and green large language models for software engi-732
neering: Literature review, vision, and the road ahead.733
Preprint, arXiv:2404.04566.734

Noah Shinn, Federico Cassano, Edward Berman, Ash-735
win Gopinath, Karthik Narasimhan, and Shunyu Yao.736
2023. Reflexion: Language agents with verbal rein-737
forcement learning. Preprint, arXiv:2303.11366.738

Alexander G Shypula, Aman Madaan, Yimeng Zeng,739
Uri Alon, Jacob R. Gardner, Yiming Yang, Mi-740
lad Hashemi, Graham Neubig, Parthasarathy Ran-741
ganathan, Osbert Bastani, and Amir Yazdanbakhsh.742

2024. Learning performance-improving code ed- 743
its. In The Twelfth International Conference on 744
Learning Representations. 745

Zilu Tang, Mayank Agarwal, Alexander Shypula, Bailin 746
Wang, Derry Wijaya, Jie Chen, and Yoon Kim. 2023. 747
Explain-then-translate: an analysis on improving pro- 748
gram translation with self-generated explanations. 749
In Findings of the Association for Computational 750
Linguistics: EMNLP 2023, pages 1741–1788, Sin- 751
gapore. Association for Computational Linguistics. 752

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean- 753
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan 754
Schalkwyk, Andrew M Dai, Anja Hauth, Katie 755
Millican, et al. 2023. Gemini: a family of 756
highly capable multimodal models. arXiv preprint 757
arXiv:2312.11805. 758

Siddhant Waghjale, Vishruth Veerendranath, Zhiruo 759
Wang, and Daniel Fried. 2024. ECCO: Can we im- 760
prove model-generated code efficiency without sacri- 761
ficing functional correctness? In Proceedings of the 762
2024 Conference on Empirical Methods in Natural 763
Language Processing, pages 15362–15376, Miami, 764
Florida, USA. Association for Computational Lin- 765
guistics. 766

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and 767
Lingming Zhang. 2024. Magicoder: Empowering 768
code generation with OSS-instruct. In Proceedings 769
of the 41st International Conference on Machine 770
Learning, volume 235 of Proceedings of Machine 771
Learning Research, pages 52632–52657. PMLR. 772

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane 773
Suhr, Prithviraj Ammanabrolu, Noah A. Smith, Mari 774
Ostendorf, and Hannaneh Hajishirzi. 2023. Fine- 775
grained human feedback gives better rewards for lan- 776
guage model training. In Thirty-seventh Conference 777
on Neural Information Processing Systems. 778

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, 779
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan 780
Li, Dayiheng Liu, Fei Huang, et al. 2024a. Qwen2 781
technical report. arXiv preprint arXiv:2407.10671. 782

An Yang, Baosong Yang, Beichen Zhang, Binyuan 783
Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayi- 784
heng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian 785
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, 786
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, 787
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei 788
Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, 789
Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, 790
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, 791
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and 792
Zihan Qiu. 2024b. Qwen2.5 technical report. arXiv 793
preprint arXiv:2412.15115. 794

Li Zhong, Zilong Wang, and Jingbo Shang. 2024. De- 795
bug like a human: A large language model debug- 796
ger via verifying runtime execution step by step. 797
In Findings of the Association for Computational 798
Linguistics: ACL 2024, pages 851–870, Bangkok, 799
Thailand. Association for Computational Linguistics. 800

10

https://arxiv.org/abs/2404.00599
https://arxiv.org/abs/2404.00599
https://arxiv.org/abs/2404.00599
https://arxiv.org/abs/2404.00599
https://arxiv.org/abs/2404.00599
https://arxiv.org/abs/2411.04329
https://arxiv.org/abs/2411.04329
https://arxiv.org/abs/2411.04329
https://arxiv.org/abs/2411.04329
https://arxiv.org/abs/2411.04329
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://arxiv.org/abs/2408.06450
https://arxiv.org/abs/2408.06450
https://arxiv.org/abs/2408.06450
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://arxiv.org/abs/2404.06041
https://arxiv.org/abs/2404.06041
https://arxiv.org/abs/2404.06041
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2406.06647
https://arxiv.org/abs/2406.06647
https://arxiv.org/abs/2406.06647
https://arxiv.org/abs/2406.06647
https://arxiv.org/abs/2406.06647
https://arxiv.org/abs/2404.04566
https://arxiv.org/abs/2404.04566
https://arxiv.org/abs/2404.04566
https://arxiv.org/abs/2404.04566
https://arxiv.org/abs/2404.04566
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://openreview.net/forum?id=ix7rLVHXyY
https://openreview.net/forum?id=ix7rLVHXyY
https://openreview.net/forum?id=ix7rLVHXyY
https://doi.org/10.18653/v1/2023.findings-emnlp.119
https://doi.org/10.18653/v1/2023.findings-emnlp.119
https://doi.org/10.18653/v1/2023.findings-emnlp.119
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://doi.org/10.18653/v1/2024.emnlp-main.859
https://doi.org/10.18653/v1/2024.emnlp-main.859
https://doi.org/10.18653/v1/2024.emnlp-main.859
https://doi.org/10.18653/v1/2024.emnlp-main.859
https://doi.org/10.18653/v1/2024.emnlp-main.859
https://proceedings.mlr.press/v235/wei24h.html
https://proceedings.mlr.press/v235/wei24h.html
https://proceedings.mlr.press/v235/wei24h.html
https://openreview.net/forum?id=CSbGXyCswu
https://openreview.net/forum?id=CSbGXyCswu
https://openreview.net/forum?id=CSbGXyCswu
https://openreview.net/forum?id=CSbGXyCswu
https://openreview.net/forum?id=CSbGXyCswu
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2412.15115
https://doi.org/10.18653/v1/2024.findings-acl.49
https://doi.org/10.18653/v1/2024.findings-acl.49
https://doi.org/10.18653/v1/2024.findings-acl.49
https://doi.org/10.18653/v1/2024.findings-acl.49
https://doi.org/10.18653/v1/2024.findings-acl.49

Terry Yue Zhuo, Vu Minh Chien, Jenny Chim, Han Hu,801
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani802
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon803
Brunner, Chen GONG, James Hoang, Armel Randy804
Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kad-805
dour, Ming Xu, Zhihan Zhang, Prateek Yadav, Na-806
man Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu,807
Qian Liu, Zijian Wang, David Lo, Binyuan Hui,808
Niklas Muennighoff, Daniel Fried, Xiaoning Du,809
Harm de Vries, and Leandro Von Werra. 2025. Big-810
codebench: Benchmarking code generation with di-811
verse function calls and complex instructions. In The812
Thirteenth International Conference on Learning813
Representations.814

A Detailed Prompts815

A.1 Prompts of LLM4EFFI.816

Task Formalization

System:
As a professional algorithm engineer, please analyze
the given algorithm problem according to the follow-
ing categories. Do not provide any example imple-
mentation:

• Entry Point Function Name

• Input/Output Conditions

• Edge Cases and Parameter Types (Int, String,
etc.)

• Expected Behavior

User:
The algorithm problem description is as follows:
<natural language description>

Figure 4: Task Formalization.

Task Formalization Check

System:
As an excellent algorithm engineer, please analyze
whether the explanation of the problem matches the
original requirements. If they are consistent, output
“Yes”. If they are not consistent, output “No” and
provide the reason, as shown below: {"Yes":"NULL"}
{"No":"The reason is"}
User:
<natural language description>
<task description>

Figure 5: Checking the Task Formalization Result.

Synthesize Test Case Inputs

System:
As a tester, your task is to create comprehensive test
inputs for the function based on its definition and doc-
string. These inputs should focus on edge scenarios
to ensure the code’s robustness and reliability. Please
output all test cases in a single line, starting with in-
put.
User:
EXAMPLES:
Function:

from typing import *
def find_the_median(arr: List[int]) ->

float:
Given an unsorted array of

integers `arr`, find the
median of the array.

The median is the middle value in
an ordered list of numbers.

If the length of the array is
even, then the median is the
average of the two middle
numbers.

Test Inputs (OUTPUT format):
input: [1]
input: [-1, -2, -3, 4, 5]
input: [4, 4, 4]
input: [....]
input: [....]
END OF EXAMPLES.
Function:
<task description>

Figure 6: Synthesize Test Case Inputs.

Implementation Optimization in Code
Domain

System:
As a professional Python algorithm programming ex-
pert, please provide suggestions for improving code
efficiency based on the potential inefficiencies men-
tioned above. For example:
1. Using xxx instead of xxx can significantly improve
code efficiency.
Please provide at least 20 suggestions.
User:
<algorithm description>

Figure 7: Implementation Optimization in Code Do-
main.

11

https://openreview.net/forum?id=YrycTjllL0
https://openreview.net/forum?id=YrycTjllL0
https://openreview.net/forum?id=YrycTjllL0
https://openreview.net/forum?id=YrycTjllL0
https://openreview.net/forum?id=YrycTjllL0

Complete Test Case Generation

System:
As a programmer, your task is to calculate all test out-
puts and write the test case statement corresponding
to the test input for the function, given its definition
and docstring. Write one test case as a single-line
assert statement.
User:
EXAMPLES:
Function:

from typing import List
def find_the_median(arr: List[int]) ->

float:
Given an unsorted array of

integers `arr`, find the
median of the array. The
median is the middle value in
an ordered list of numbers.

If the length of the array is
even, then the median is the
average of the two middle
numbers.

Test Input:
input: [1, 3, 2, 5]
Test Case:

assert find_the_median([1, 3, 2, 5]) == 2.5

END OF EXAMPLES.
FUNCTION:
<task description> <input case>

Figure 8: Complete Test Case Generation.

Algorithmic Exploration in Logic Domain

System:
As a professional algorithm engineer, you can effec-
tively design multiple algorithms to solve the problem
with low time complexity and output them in pseudo
algorithm format. A pseudo algorithm is a nonlin-
ear, high-level programming language for algorithmic
logic. It combines natural language and programming
structures to express the steps and sums of algorithms.
The main purpose of process algorithms is to clearly
display the core ideas and logic of the algorithm with-
out relying on specific programming language syntax.
Please design 5 excellent algorithm solutions based
on the problem description provided. The time com-
plexity of the algorithm needs to be as small as pos-
sible, and try to output 5 algorithms in the form of a
pseudo-algorithm in the following format: PS: DO
NOT provide implementation examples!

```algorithm1
{algorithm key description: this

algorithm using xxx, the key is to
make sure xxx}

{pseudo algorithm: ..}

{algorithm key description: this
algorithm using xxx, the key is to
make sure xxx}

{pseudo algorithm: ..}

{algorithm key description: this
algorithm using xxx, the key is to
make sure xxx}

{pseudo algorithm: ..}

{algorithm key description: this
algorithm using xxx, the key is to
make sure xxx}

{pseudo algorithm: ..}

{algorithm key description: this
algorithm using xxx, the key is to
make sure xxx}

{pseudo algorithm: ..}

User:
<task description>

Figure 9: Algorithmic Exploration in Logic Domain.

12



Code Candidates Generation

System:
As a professional algorithm engineer, please convert
the selected algorithm into corresponding code. En-
sure the code is complete and well-formatted. When
converting to a standardized format, be sure to follow
the guidelines specified in the “original question for-
mat”:
1. Use the same function name as given in the original
question format; do not rename it.
2. You may incorporate practical optimization details
drawn from the knowledge base.
The final output format should be as follows:

```python
{<code>
```

User:
<task description>
<algorithm description>
<efficiency optimization suggestions>

Figure 10: Code Candidates Generation.

Code Refinement for Correctness

System:
As a professional code programming algorithm expert,
your task is to correct the code and ensure that the
code is fixed without impacting its time complexity
or practical efficiency. Then I will provide you with
specific code and test cases.
Important Notes:
1. Do not alter the algorithm itself
2. Do not change the format, such as the function
name.
3. Please output in the specified format.
4. Ensure there are no syntax errors.
Please output in this format:

```python
{code}
```

User:
<task description>
<algorithm description>
<efficiency optimization suggestions>

Figure 11: Code Refinement for Correctness.

Final Results Selection on Code Candi-
dates

System:
As a professional algorithm engineer, please help me
choose the most efficient code from the following
codes. It is worth mentioning that it is necessary
to consider the time complexity and practical level
comprehensively:
INPUT:
{ "1":"def ...()....",
"2": "def ...()..."
}
OUTPUT:

```text
{key}
```

EXAMPLE:
INPUT:
{ "1":"def ...()....",
"2": "def ...()..."
}
OUTPUT:

```text
1
```

User:
<corrected code candidate>

Figure 12: Final Results Selection on Code Candidates
(Optional).

Direct Code Generation Prompt for
Variant-1

System:
As a professional Python algorithm engineer, please
solve the algorithms problem and generate a solution
code. The final output format should be as follows:

```python
{code}
```

User:
<task description>

Figure 13: Direct Code Generation Prompt for Variant-
1.

13



Direct Code Generation Prompt for w/o
Uniqueness-1&w/o Uniqueness-2

System:
As a professional Python algorithm engineer, please
solve the algorithm problem and generate 5 solution
codes. Please improve the efficiency of the code as
much as possible while ensuring the correctness of the
code. The final output format should be as follows:

```python1
{code}
```
```python2
{code}
```
```python3
{code}
```
```python4
{code}
```
```python5
{code}
```

User:
<task description>

Figure 14: Direct Code Generation Prompt for w/o
Uniqueness-1&w/o Uniqueness-2.

A.2 Prompts of Effi-Learner.817

Original Code Generation Prompt in Effi-
Learner

Please complete Python code based on the task de-
scription.
# Task description:<Task description>
#Solution:

Figure 15: Original Code Generation Prompt in Effi-
Learner.

Efficiency Optimization Prompt in Effi-
Learner.

Optimize the efficiency of the following Python code
based on the task, test case, and overhead analysis
provided. Ensure the optimized code can pass the
given test case.
Task Description:
<task description>
Test Case:
<test case>
Original Code:

```python
<original code>
```

Overhead Analysis:
<profile of original code>
Optimization Rules:
- Encapsulate the optimized code within a Python
code block (i.e., python[Your Code Here]).
- Do not include the test case within the code block.
- Focus solely on code optimization; test cases are
already provided.
- Ensure the provided test case passes with your
optimized solution.

Figure 16: Efficiency Optimization Prompt in Effi-
Learner.

A.3 Prompts of ECCO. 818

Original Code Generation Prompt in
ECCO

Write a python code which is efficient in terms of
runtime and memory usage for the following problem
description. Wrap the optimized code in a block of 3
backticks

Figure 17: Original Code Generation Prompt in ECCO.

Feedback Generation Prompt in ECCO

Give feedback in english for why the code solution
below is incorrect or inefficient and how the program
can be fixed based on the problem description.
<original code>

Figure 18: Feedback Generation Prompt in ECCO.

14



DeepSeek-V3 Tokens on Synthetic Test Case Tokens on Framework Cost

Test Case Input Test Case Output Input tokens to LLM LLM output tokens

ECCO - - ∼3730 tokens ∼1027 tokens ∼0.0014$
Effi-Learner - - ∼1241 tokens ∼364 tokens ∼0.0006$
LLM4EFFI ∼2612 tokens ∼818 tokens ∼8170 tokens ∼4351 tokens ∼0.0096$

Table 6: Computational cost of LLM4EFFI and baseline methods using DeepSeek-V3 as the LLM backbone.

Refine Prompt in ECCO

Refine the given incorrect or sub-optimal code
solution based on the feedback specified below. Wrap
the refined code in a block of 3 backticks
<optimization suggestion>
<original code>

Figure 19: Refine Prompt in ECCO.

A.4 Prompts of Instruct.819

Prompt for Instruction Baseline

Please generate an efficient and correct code directly

Figure 20: Prompt for Instruction Baseline.

B Case Study820

B.1 The Execution Details of Each Stage of821

LLM4EFFI.822

As shown in Fig. 21, LLM4EFFI firstly analyzes the823

algorithm problem, "returns the n-th number that824

is both a Fibonacci number and a prime number",825

providing a detailed explanation of key aspects,826

including the entry point, input/output conditions,827

expected behavior, and edge cases. Based on this828

analysis and the problem description, LLM4EFFI829

explores potential algorithms and generates five830

efficient solutions, such as using the Fibonacci831

sequence generation method and Binet’s formula.832

Next, LLM4EFFI examines the implementation de-833

tails of these algorithms and identifies the optimal834

practical approaches. For example, it uses Python’s835

built-in pow() function for efficient exponentiation836

and applies the Miller-Rabin primality test (based837

on Monte Carlo method) to enhance the efficiency838

of prime number detection for large numbers.839

Then, LLM4EFFI combines the explored algo-840

rithms and practical operations to generate five dis-841

tinct code implementations. To validate the cor-842

rectness of these codes, LLM4EFFI generates 20843

test cases based on the algorithm description and 844

outputs them in the format "assert prime_fib(3) == 845

5". Each code candidate is then executed with these 846

20 test cases, recording the number of passed test 847

cases (Passt ≤ 20) and the number of successful 848

executions for each test case (Passc ≤ 5). Subse- 849

quently, LLM4EFFI checks the test cases that are 850

not passed by the code implementations, ensuring 851

that correct test cases are not excluded due to code 852

errors and preventing incorrect test cases from be- 853

ing misused in subsequent iterations. 854

After filtering, LLM4EFFI generates a new batch 855

of test cases and executes them again to obtain 856

updated results. For the test cases that fail, an itera- 857

tive feedback mechanism is applied to optimize the 858

code. The code, now enhanced with this iterative 859

feedback, is executed once more, and the final pass- 860

ing results are recorded. All codes are then ranked 861

in descending order of correctness, with the most 862

accurate code being selected. This process ensures 863

the identification of the optimal solution, while 864

maintaining both high efficiency and accuracy in 865

the code implementation. 866

B.2 Comparison of Methods. 867

In Fig. 22 and Fig. 23, we compare the code effi- 868

ciency optimization processes of LLM4EFFI and 869

baselines. 870

C Computational Cost 871

To evaluate the computational cost, we conducted 872

additional experiments to measure the total number 873

of generated tokens for LLM4EFFI. Specifically, 874

we calculated the average total number of tokens 875

for each problem task using various approaches un- 876

der DeepSeek-V3 backbone. The results are shown 877

in Tab.6, with the "Cost" column calculated based 878

on DeepSeek’s official pricing documentation. 879

• LLM4EFFI is the only method that requires the 880

generation of synthetic test cases. This is be- 881

cause LLM4EFFI is designed to simulate more 882

realistic real-world scenarios, where public 883

test cases are often unavailable. In contrast, 884

15



function prime_fib(n):
    if n < 1: return 
invalid_input
    count = 0
    k = 1
    while True:
        fib = binet_formula(k)
        if miller_rabin(fib):
            count += 1
            if count == n:
                return fib
        k += 1

{ pseudo algorithm:
 function prime_fib(n):
    if n <= 0:
      return \"Invalid 
input\"
    memo = []
    a, b = 0, 1
    while len(memo) < 
n:
      if is_prime(b):
        memo.append(b)\
     a, b = b, a + b
    return memo[n-1]
}

Algorithm Candidates

Optimization Suggestions

import math
import random

def is_prime(n, k=5):
    if n < 2:
        return False
    for p in [2, 3, 5, 7, 11, 13]:
        if n % p == 0:
            return n == p
    d = n - 1
    s = 0
    while d % 2 == 0:
        d //= 2
        s += 1
    for _ in range(k):
        a = random.randint(2, min(n - 2, 1 << 30))
        x = pow(a, d, n)
        if x == 1 or x == n - 1:
            continue
        for __ in range(s - 1):
            x = pow(x, 2, n)
            if x == n - 1:
                break
        else:
            return False
    return True

def prime_fib(n):
    if n <= 0:
        return None
    count = 0
    a, b = 0, 1
    while True:
        if b % 2 != 0 or b == 2: 
            if is_prime(b):
                count += 1
                if count == n:
                    return b
        a, b = b, a + b

eff@1=1.28

**Efficient Primality 
Testing**: Use the 
Miller-Rabin 
primality test for 
probabilistic 
primality checking, 
which is faster for 
large numbers.

O(� ∙ �푙���)

import math
import random

def is_prime(n, k=5):
    if n < 2:
        return False
    for p in [2, 3, 5, 7, 11, 13]:
        if n % p == 0:
            return n == p
    d = n - 1
    s = 0
    while d % 2 == 0:
        d //= 2
        s += 1
    for _ in range(k):
        a = random.randint(2, min(n - 2, 1 << 30))
        x = pow(a, d, n)
        if x == 1 or x == n - 1:
            continue
        for __ in range(s - 1):
            x = pow(x, 2, n)
            if x == n - 1:
                break
        else:
            return False
    return True

def prime_fib(n):
    if n <= 0:
        return None
    count = 0
    a, b = 0, 1
    while True:
        if b % 2 != 0 or b == 2: 
            if is_prime(b):
                count += 1
                if count == n:
                    return b
        a, b = b, a + b

（1）assert prime_fib(3) == 5
（2）assert prime_fib(5) == 89
（3）assert prime_fib(8) == 32
（4）assert prime_fib(20) == 433494437
（5）assert prime_fib(15) == 28657

......

from typing import List
import math
from functools import lru_cache

def is_prime(n: int) -> bool:
    if n < 2:
        return False
    for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]:
        if n % p == 0:
            return n == p
    d = n - 1
    s = 0
    while d % 2 == 0:
        d //= 2
        s += 1
    for a in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]:
        if a >= n:
            continue
        x = pow(a, d, n)
        if x == 1 or x == n - 1:
            continue
        for _ in range(s - 1):
            x = pow(x, 2, n)
            if x == n - 1:
                break
        else:
            return False
    return True

def prime_fib(n: int) -> int:
    if n <= 0:
        raise ValueError("Invalid input")
    count = 0
    i = 0
    while count < n:
        f = fib(i)
        if is_prime(f):
            count += 1
        i += 1
        return fib(i - 1)

1

（1）assert prime_fib(3) == 5
（2）assert prime_fib(5) == 89
（3）
（4）assert prime_fib(20) == 433494437
（5）assert prime_fib(15) == 28657

......

Precompute Small 
Fibonacci Primes：
Precompute and store 
the first few 
Fibonacci primes 
(e.g., up to n = 20) in 
a list.
......

2

def prime_fib(n: int):
    """
    prime_fib returns the n-th number that is both a 
Fibonacci number and a prime.

    Args:
        n (int): The position of the desired Fibonacci prime 
number.

    Returns:
        int: The n-th Fibonacci number that is also a prime 
number.

    Examples:
        >>> prime_fib(1)
        2
        >>> prime_fib(2)
        3
        >>> prime_fib(3)
        5
        >>> prime_fib(4)
        13
        >>> prime_fib(5)
        89

    Notes:
        1. The entry point function name is `prime_fib`.
        2. The function takes a single integer input `n`, which 
represents the position of the desired Fibonacci prime 
number in the sequence of Fibonacci primes.
        3. The function returns an integer, which is the `n-th` 
Fibonacci number that is also a prime number.
        4. Edge cases include `n = 1` (first Fibonacci prime is 
2), `n = 0` (invalid input), and large values of `n` 
(Fibonacci primes become rare).
        5. The input parameter `n` is of type `int` and must be 
a positive integer.
        6. The function should generate Fibonacci numbers, 
check for primality, and return the `n-th` Fibonacci prime.
        7. The function should handle edge cases gracefully 
and be optimized for large values of `n`.
    """
    # Function implementation here

Prime_fib returns the n-th number that is both a 
Fibonacci number and a prime.

Check

Correct

Correct

1 2

1 2
1

Task Formalization

Algorithm Exploration
&

Implementation Optimization

Code Correctness

Code Candidates

Figure 21: The figure illustrates the specific output of each subtask process of LLM4EFFI in solving algorithm
problems.

the baseline method, Effi-Learner, relies on885

test case oracles provided with the problems.886

• LLM4EFFI indeed requires more generated to-887

kens from LLMs compared to baseline meth-888

ods. However, considering the significant per-889

formance gains achieved, we believe the cost890

remains within an acceptable range.891

• LLM4EFFI offers significant flexibility. Users892

can customize and adjust various parameters,893

such as the number of synthetic test cases and894

algorithm explorations, to optimize token us-895

age and reduce associated costs.896

16



Implement a function that takes an non-negative integer and returns an array of the first n.integers that are prime numbers and less than n.

Algorithm key description: 
This algorithm uses the Sieve of Eratosthenes. 
The key idea is to efficiently mark non-prime 
numbers in a boolean array and collect primes 
less than `n`.
Pseudo algorithm:
function count_up_to(n):
    if n <= 1:
        return empty list
        create a boolean array `is_prime` of size 
`n`, initialized to True
    set `is_prime[0]` and `is_prime[1]` to False
    for i from 2 to sqrt(n):
        if `is_prime[i]` is True:
            for j from `i * i` to `n` with step `i`:
                set `is_prime[j]` to False
    collect all indices `i` where `is_prime[i]` is 
True and `i < n`
    return the collected list

LLM4EFFI

1 Algorithm Candidates

Effi-Learner ECCO

def count_up_to(n):
    if n < 2:
        return []

    sieve = [True] * n
    sieve[0] = sieve[1] = False  # 0 and 1 are not prime numbers

    for current_num in range(2, int(n ** 0.5) + 1):
        if sieve[current_num]:
            for multiple in range(current_num * current_num, n, current_num):
                sieve[multiple] = False

    primes = [num for num, is_prime in enumerate(sieve) if is_prime]
    return primes

def count_up_to(n):
    """Returns a list of prime numbers less than n using the Sieve of 
Eratosthenes."""
    if n < 2:
        return []

    sieve = [True] * n
    sieve[0] = sieve[1] = False
    for current in range(2, int(n ** 0.5) + 1):
        if sieve[current]:
            for multiple in range(current * current, n, current):
                sieve[multiple] = False

    primes = [num for num, is_prime in enumerate(sieve) if is_prime]
    return primes

def count_up_to(n):
    if n < 2:
        return []

    sieve = [True] * n
    sieve[0] = sieve[1] = False

    for current in range(2, int(n ** 0.5) + 1):
        if sieve[current]:
            for multiple in range(current * current, n, current):
                sieve[multiple] = False

    primes = [num for num, is_prime in enumerate(sieve) if 
is_prime]
    return primes

def is_prime(num):
    """Helper function to check if a number 
is prime."""
    if num < 2:
        return False
    for i in range(2, int(num ** 0.5) + 1):
        if num % i == 0:
            return False
    return True

def count_up_to(n):
    """Returns a list of prime numbers less 
than n."""
    primes = []
    for num in range(2, n):
        if is_prime(num):
            primes.append(num)
    return primes

eff@1=0.57eff@1=0.56eff@1=1.15

Optimization Suggestions
1. Initialize the boolean array with `bytearray` instead of list
2.Avoid unnecessary checks in the inner loop
3.Use list comprehension for collecting primes

import math

def count_up_to(n):
    if n <= 1:
        return []

    is_prime = bytearray([1]) * n
    is_prime[0] = is_prime[1] = 0

    sqrt_n = math.isqrt(n)
    for i in range(2, sqrt_n + 1):
        if is_prime[i]:
            is_prime[i * i:n:i] = b'\x00' * len(range(i * i, n, i))

    primes = [i for i, prime in enumerate(is_prime) if prime]
    return primes

eff@1=0.30 eff@1=0.57

{algorithm key description: this 
algorithm using trial division, the 
key is to check divisibility of each 
number up to sqrt(n) to determine 
primality}
Pseudo algorithm:
  function count_up_to(n):
    if n <= 1:
      return empty list
    create an empty list primes
    for i from 2 to n-1:
      is_prime = True
      for j from 2 to sqrt(i):
        if i % j == 0:
          is_prime = False
          break
      if is_prime:
        append i to primes
    return primes

2 Original Code Original Code

Figure 22: The diagram demonstrates how LLM4EFFI, Effi-Learner, and ECCO generate code. LLM4EFFI, through
deep exploration of the algorithm domain, generates a set of efficient and high-quality algorithm candidates.
However, the time complexity of these algorithms is similar, and there is no significant difference from the original
code generated by Effi-Learner and ECCO. Subsequently, LLM4EFFI identifies key optimization suggestions in
its practical recommendations, such as replacing list with bytearray, among others. As a result, although the final
code has a similar time complexity to the other two tools, it significantly outperforms them in the final ENAMEL
efficiency evaluation metrics.

17



Prime_fib returns n-th number that is a Fibonacci number and it's also prime.

function prime_fib(n):
        if n < 1:
             return invalid_input
        count = 0
        k = 1
        while True:
            fib = matrix_exponentiation(k)
            if fermat_primality_test(fib):
                count += 1
                if count == n:
                    return fib
            k += 1

function prime_fib(n):
    if n < 1: return 
invalid_input
    count = 0
    k = 1
    while True:
        fib = binet_formula(k)
        if miller_rabin(fib):
            count += 1
            if count == n:
                return fib
        k += 1

LLM4EFFI

1 2Algorithm Candidates

Effi-Learner ECCO

import math
from functools import lru_cache

@lru_cache(maxsize=None)
def is_prime(n: int) -> bool:
    if n < 2:
        return False
    if n in (2, 3):
        return True
    if n % 2 == 0 or n % 3 == 0:
        return False
    i = 5
    while i * i <= n:
        if n % i == 0 or n % (i + 2) == 0:
            return False
        i += 6
    return True

def prime_fib(n: int) -> int:
    count = 0
    a, b = 0, 1
    while True:
        a, b = b, a + b
        if is_prime(a):
            count += 1
            if count == n:
                return a

def is_prime(num: int) -> bool:
    if num < 2:
        return False
    if num == 2:
        return True
    if num % 2 == 0:
        return False
    for i in range(3, int(num**0.5) + 
1, 2):
        if num % i == 0:
            return False
    return True

def prime_fib(n: int) -> int:
    count = 0
    a, b = 1, 1
    while True:
        a, b = b, a + b
        if is_prime(a):
            count += 1
            if count == n:
                return a

import math
def is_prime(n: int) -> bool:
    if n < 2:
        return False
    if n in (2, 3):
        return True
    if n % 2 == 0 or n % 3 == 0:
        return False
    i = 5
    while i * i <= n:
        if n % i == 0 or n % (i + 2) == 0:
            return False
        i += 6
    return True

def prime_fib(n: int) -> int:
    count = 0
    a, b = 0, 1
    while True:
        a, b = b, a + b
        if is_prime(a):
            count += 1
            if count == n:
                return a

def is_prime(num: int) -> bool:
    """Check if a number is 
prime."""
    if num < 2:
        return False
    for i in range(2, int(num**0.5) + 
1):
        if num % i == 0:
            return False
    return True

def prime_fib(n: int) -> int:
    count = 0
    a, b = 1, 1
    while True:
        a, b = b, a + b
        if is_prime(a):
            count += 1
            if count == n:
                return a

Optimization Suggestions

import math
import random

def is_prime(n, k=5):
    if n < 2:
        return False
    for p in [2, 3, 5, 7, 11, 13]:
        if n % p == 0:
            return n == p
    d = n - 1
    s = 0
    while d % 2 == 0:
        d //= 2
        s += 1
    for _ in range(k):
        a = random.randint(2, min(n - 2, 1 << 30))
        x = pow(a, d, n)
        if x == 1 or x == n - 1:
            continue
        for __ in range(s - 1):
            x = pow(x, 2, n)
            if x == n - 1:
                break
        else:
            return False
    return True

def prime_fib(n):
    if n <= 0:
        return None
    count = 0
    a, b = 0, 1
    while True:
        if b % 2 != 0 or b == 2: 
            if is_prime(b):
                count += 1
                if count == n:
                    return b
        a, b = b, a + b

eff@1=1.28

**Efficient Primality Testing**: Use the Miller-Rabin 
primality test for probabilistic primality checking, which is 
faster for large numbers.

O(� ∙ �푙�� �)

O(� ∙ ��)O(� ∙ ��)

eff@1=0.34

Original Code Original Code

eff@1=0.34

eff@1=0.34 eff@1=0.34

Figure 23: The figure illustrates the code generation process of LLM4EFFI, Effi-Learner, and ECCO. LLM4EFFI,
through deep exploration of the algorithm domain, generates a set of efficient and high-quality algorithm candidates.
By incorporating practical optimization suggestions, it ultimately produces an algorithm with a time complexity of
only O(n · k log n), achieving a high score of 1.28 on the ENAMEL test set. In contrast, Effi-Learner and ECCO,
constrained by the O(n ·

√
Fn) time complexity of their code algorithms, can only perform local optimizations on

certain implementations, resulting in minimal improvements, with the final efficiency index reaching only 0.34.

18


	Introduction
	Related Works
	LLMs for Code Generation
	Code Efficiency

	Methodology
	Overview
	Task Formalization
	Algorithmic Exploration in Logic Domain
	Implementation in Code Domain
	Code Correctness Guarantee

	Experiments
	Compared Methods.
	Experiment Setup.
	Main Results.
	Ablation Study.

	Deeper Analysis
	Llm4Effi Uniqueness Analysis
	Performance on Varying Difficulty Levels
	Generalization to More Complex Tasks
	Effectiveness of Synthetic Test Cases
	Case Study and Computational Cost

	Conclusion
	Detailed Prompts
	Prompts of Llm4Effi.
	Prompts of Effi-Learner.
	Prompts of ECCO.
	Prompts of Instruct.

	Case Study
	The Execution Details of Each Stage of Llm4Effi.
	Comparison of Methods.

	Computational Cost

