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Abstract

Multi-step reasoning through Chain-of-001
Thought (CoT) prompting has been extensively002
explored, observing the abilities of Large003
Language Models (LLMs) to generate answers004
from a given question. However, the focus005
is on forward reasoning abilities manifested006
in a series of general premises leading007
to a final solution. This leaves backward008
reasoning, the inference that leads to the causal009
hypothesis, unexplored. In this paper, we010
take the reverse perspective by analyzing the011
backward reasoning abilities of LLMs by012
exploring their ability to seek a hypothesis013
that best fits or explains a set of observations.014
In particular, we contextualize the hypothesis015
and observations in Question-answering (QA)016
tasks. Therefore, by proposing the Hiding017
and the Blanking approaches that strategically018
revise the input-problem instances, we analyze019
whether the LLMs are able to reason about the020
conclusions and deliver the original question021
that leads to the final answers. Using three022
Multiple Choice Questions and six Math023
Word Problems QA tasks: (i) we observe024
a performance gap between standard and025
proposed approaches; hence (ii) we propose026
several methods to elicit the LLMs to generate027
the answer by considering the backward028
direction.029

1 Introduction030

Several techniques for in-context learning through031

prompting approaches (Brown et al., 2020; Min032

et al., 2022) enable pre-trained Large Language033

Models (LLMs) (Chowdhery et al., 2022; Touvron034

et al., 2023; OpenAI, 2023) to generalize well on035

out-domain tasks, demonstrating versatility in var-036

ious tasks such as sentence completion, text com-037

prehension responding with multiple choices and038

mathematical reasoning by providing multi-step039

forward responses. Earlier works have extensively040

studied these problems, adopting previous (Cobbe041

et al., 2021; Roy and Roth, 2015; Patel et al., 2022) 042

and new (Gao et al., 2023; Zheng et al., 2023b) 043

datasets to observe the performance of powerful 044

LLMs comparatively. 045

Recently, Wei et al. (2022) have proposed the 046

Chain-of-Thought (CoT) prompt for LLMs, which 047

generates necessary explicit intermediate steps to 048

reach the final answer. Specifically, each exam- 049

ple in-context is complemented by several steps 050

described in natural language. In inference, the 051

verification question is added to the prompt and 052

fed to an LLM, mimicking the in-context examples 053

and delivering reasoning steps before the final re- 054

sult. Many works have recently been proposed to 055

improve its effectiveness (Yu et al., 2023; Wang 056

et al., 2023) and efficiency (Wu et al., 2023). Later, 057

Qiao et al. (2023); Zhou et al. (2023) proposed an 058

advancement through Self-Verification techniques. 059

Different outputs delivered to CoT are sampled 060

using temperature sampling (Ficler and Goldberg, 061

2017). Behind this passage, the one that receives 062

the most votes is selected as the final response. 063

Although these techniques show the reasoning abil- 064

ities of LLMs, these are based on observations of 065

generating forward, leaving unexplored the ability 066

to infer a rule given the consequences. 067

This leads to the target research questions, which 068

are the focus of this paper: 069

(RQ1) Is it possible to use the well-known 070

Question-answering benchmarks employed to ob- 071

serve the reasoning abilities of LLMs in order to 072

study the effect in the backward direction? 073

(RQ2) Are the different complexities of forward 074

and backward reasoning present in human minds 075

also reflected in LLMs? 076

(RQ3) Could LLMs’ reasoning abilities be em- 077

powered by using the structure of the prompt and 078

the generated answers? 079

In this paper, we investigate whether LLMs 080

are able to deliver answers by performing back- 081

ward reasoning steps, which consist of develop- 082
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Figure 1: Overview of our proposed approaches.

ing hypotheses for a set of facts and deducing the083

most probable cause or the most plausible explana-084

tion. We propose to use Question-answering (QA)085

tasks, in particular, six Math Word Problem (MPW)086

and three Multiple Choice Question (MCQ), tra-087

ditionally used to study forward generative abili-088

ties. Hence, we propose two different approaches089

(i.e., Blanking and Hiding) that revisit the stan-090

dard prompts in order to elicit the LLMs to con-091

sider the initial question. In particular, in our ap-092

proaches, we propose opposite versions of tasks by093

prompting the final answers as facts and eliciting094

the LLMs to reason about reconstructing the origi-095

nal question. We analyze whether different families096

of LLMs (GPT (OpenAI, 2023), Llama-2 (Touvron097

et al., 2023), Mistral (Jiang et al., 2023), and Orca2098

(Mitra et al., 2023)) are able to deduce the orig-099

inal questions by proposing different prompting100

approaches.101

Downstream of extensive analysis, we show a102

discrepancy regarding the performances obtained103

from forward and backward input-prompting.104

Therefore, we propose a series of approaches to105

stimulate LLMs to rephrase the problem consid-106

ering different shapes by achieving noticeable im-107

provements.108

Our contributions can be summarized as follows:109

• Formalization of backward reasoning prob-110

lem by proposing two different kinds of in-111

tervention in nine different benchmarks com-112

monly used to test forward generative abilities113

of LLMs (Yuan et al., 2023; Ling et al., 2023).114

• In-depth study of the divergences between for-115

ward reasoning delivered following standard 116

prompting and backward reasoning delivered 117

via our Hiding and Blanking on different 118

LLM families. 119

• Performance improvement via prompt-based 120

approaches that elicit LLMs to reason about 121

the input structures fo the input problems. 122

2 Problem Formulation 123

A reasoning-based question-answering (QA) task 124

is defined as a tuple Tf = (Q,O,A), where Q is 125

the question, that could contain context C, such 126

as the necessary background for answering a ques- 127

tion; O = (o1, o2, .., cn) are answer choices if Q 128

is a multiple choices (n) problem (C and O could 129

be optional depending from the task); and A is the 130

target answer. Given Q as input-prompt, Large Lan- 131

guage Models (LLMs) generate the answer (output) 132

that is a sequence of tokens Tout = (t1, t2, ..., tn). 133

The generated answer is correct if and only if the 134

(ti, .., tm) ⊆ T matches the ground truth A. Re- 135

cent works like Chain-of-Thought (CoT) (Wei et al., 136

2023) leverage prompt engineering in the context 137

C to elicit LLMs to generate the intermediate rea- 138

soning process in Tout, which benefits their perfor- 139

mance across diverse reasoning tasks. In this case, 140

Tout consists of a set of m intermediate reasoning 141

steps, which we denote as S = (s1, s2, ..., sm) . 142

Each step si can be represented by a subsequence 143

of the generated tokens si = (t1, t2, ...tn) ⊆ Tout. 144

The generated solution is correct if the predicted fi- 145

nal answer in si matches the ground truth A. Given 146
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Prompt: Multiple Choices Question Tf
Question: <Question>
Choices:
a) <Option1>
b)...
Answer:
+ Let’s think step by step (CoT Prompt)
generated answer A or ACoT

Prompt: Math Word Problem Tf
Question: <Question>
Answer:
+ Let’s think step by step (CoT Prompt)
generated answer A or ACoT

Table 1: Example of prompt for MCQs (left) and MWPs (right) question-answering tasks.

Prompt: Hiding Approach TbH
Fill in the blank value given the
following problem.
Context: t1, t2, . . . , x, . . . , tn−1, tn
Question: <final question>
Answer: A

+ Let’s think step by step (CoT Prompt)

Prompt: Blanking Approach TbB
Fill in the blank given the following
answer find the question that generates
it.
Context: t1, t2, . . . , tn−1, tn
Question: x
Answer: A or ACoT

+ Let’s think step by step (CoT Prompt)

Table 2: Example of sprompt for Hiding Approach TbH and Blanking Approach TbH .

the forward generative nature, the premise of C and147

Q, and the conclusion generated in the sequence T ,148

it is possible to describe this as a deductive process149

(Huang and Chang, 2023; Ling et al., 2023).150

In our work, we introduce Tb that is the opposite151

of Tf . Starting from a QA task, given the answer152

A as evidence, we want to infer the rule (or, in our153

case, the question Q) that generated A. In partic-154

ular, as described in Section 3, we propose two155

different versions of Tb: in TbH = (QH , O,AH),156

the relaxed version, we contextualize the gener-157

ation of Q using QH , that is Q with a strategic158

hide part with a placeholder x and in a strict ver-159

sion TbB = (QB, O,AB) we do not use Q or its160

derivates. Hence, in the first version, the final goal161

is to find out the x omitted from the prompt, and162

in the second one, the goal is to generate QB , as in163

the abductive reasoning process (Huang and Chang,164

2023; Qiao et al., 2023).165

In this scenario, we prompt the LLMs, as shown166

in Figure 1, in order to elicit them to reconstruct167

or generate the rule using the final evidence that168

is exemplified respectively by the question Q and169

answer A.170

3 Method171

In order to observe the backward abilities of LLMs,172

we propose a prompting intervention based on us-173

ing the target answer A and the context provided174

by task C in order to deduce the original Q.175

Hence, behind defined problem Tb in Section 2, 176

we describe the construction of TbB (Section 3.2) 177

and TbH (Section 3.1). 178

3.1 Hiding Approach 179

In order to elicit LLMs to retrieve the original Q by 180

reasoning in a backward way, we propose TbH = 181

(QH , O,AH). In particular, we contextualize the 182

generation of Q using QH , i.e., Q with an hide 183

strategic part with a placeholder x. Consequently, 184

we replace the target answer AH with x. However, 185

the hiding approach differs according to the nature 186

of the question-answering task. 187

Math Word Problem The MWP tasks are char- 188

acterized by a tuple (Q,A) where numerical values 189

represent the strategic information. Following the 190

approaches from the previous work (Deb et al., 191

2023), we mask the numerical value in the prompt 192

with x (placeholder value). Hence, we produce the 193

input-prompts using QH and A. Where QH is very 194

close to Q, with the numerical value replaced by 195

an x (detailed in Appendix B.1). Then, we evalu- 196

ate the accuracy by performing a string matching 197

between the generated answer and x (x used as a 198

placeholder in the prompt). 199

Multiple Choices Question In the MCQ setting, 200

it is more challenging to determine which is the 201

strategic part to blank. The datasets introduced in 202

Section 4.1, are characterized by tuples (Q,O,A). 203
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Figure 2: Accuracies (%) on Math Word Problem and Multiple Choices Questions proposed in Section 4.1 using
Standard prompting approach (as shown in Table 8) and Hiding approach (Section 3.1).

In each Q, a strategic concept S is presented that is204

generally provided in the dataset but is not used for205

the evaluation. We replace S ∈ Q with x deriving206

Qx (detailed in Appendix B.1). We evaluate the207

accuracy by performing a string matching between208

the generated answer and x.209

3.2 Blanking Approach210

Furthermore, we propose a stricter version of211

the tasks. Starting from Tb we propose TbH =212

(QB, O,AB). We do not alter Q using the hiding213

approach, but blank entire Q, i.e., QB , reply with x.214

Consequently, the final target A, in our formulation215

AB , is the original Q blanked with x. Then, we216

construct the input prompt, as shown in Figure 1217

and in Table 2.218

However, it is not possible to apply the Blank-219

ing approach directly to all tasks, for example, on220

MWPs that have only a numerical A target, and it221

is impossible to generate Q (or AB) without having222

context. In order to solve this problem, we intro-223

duce A described in Section 3.3 for the Math Word224

Problem and the Multiple Choices Question tasks.225

Finally, we estimate the correctness of generated226

answers using BERTScore (Zhang et al., 2020) be-227

tween the blanked question Q and the generated228

answer Tout.229

3.3 Backward Answer 230

Behind proposing the TbH approach for construct- 231

ing altered prompts to evaluate the abilities of 232

LLMs, we introduce a Blanking approach, TbB . 233

However, LLMs need more context that targets A 234

alone cannot supply. Therefore, we introduce A 235

by constructing it by prompting the LLMs with 236

input-prompts (as in Figure 1, Table 1, and Table 237

2). Moreover, we use the multi-step reasoning abil- 238

ities by also proposing ACoT that is based on the 239

Chain-of-Thought prompt technique (Wei et al., 240

2023). Then, we use the generated answers, A and 241

ACoT , as a component to produce TbB as Figure 1 242

(all passages are detailed in Appendix B.2). 243

4 Experiments 244

In order to analyze the abductive reasoning abilities 245

of Large Language Models (LLMs), we propose 246

two backward reasoning approaches in Math Word 247

Problem (MWP) and Multiple Choices Question 248

(MCQ) tasks introduced in Section 4.1. Then, we 249

systematically prompt different LLMs as described 250

in Section 4.2 by evaluating the answers generated 251

using Section 4.3’s evaluation methods. 252
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Strategy Model GSM8KH SVAMPH MultiArithH AQua-RATH AddSubH GAIAH

Hiding (0-shot) GPT-3.5 33.8±.4 36.3±.2 18.4±.1 69.4±.3 20.3±.1 16.5±.2

Hiding (5-shot) GPT-3.5 35.4±.3 38.4±.4 20.5±.3 70.6±.4 22.1±.3 18.6±.3

CoT (5-shot) GPT-3.5 34.5±.4 35.3±.4 19.5±.1 70.2±.3 19.4±.5 15.9±.1

Complex-CoT (0-shot) GPT-3.5 40.5±.1 39.9±.1 21.7±.2 73.7±.3 24.5±.6 21.2±.4

Complex-CoT (5-shot) GPT-3.5 43.5±.2 41.3±.2 26.4±.2 76.6±.3 24.8±.2 26.3±.4

Paraphrasing (2-shot)
GPT-3.5 50.2±.3 45.8±.4 36.8±.3 79.2±.4 26.7±.2 29.8±.2

Llama-2-70 29.3±.2 37.2±.3 25.6±.2 76.3±.1 29.2±.2 29.2±.1

Mixtral 28.9±.2 31.5±.1 30.1±.2 69.9±.1 29.0±.0 30.0±.1

Paraphrasing (5-shot)
GPT-3.5 56.7±.1 50.3±.1 41.9±.4 83.8±.2 32.1±.1 33.9±.4

Llama-2-70 34.1±.1 44.1±.2 31.7±.3 80.1±.1 33.1±.3 35.0±.3

Mixtral 33.9±.1 38.9±.2 33.3±.1 73.8±.4 33.7±.1 36.2±.5

Self-Refine (2-shot)
GPT-3.5 53.8±.2 49.1±.3 40.1±.4 80.1±.3 30.4±.2 30.1±.4

Llama-2-70 34.1±.4 40.1±.1 31.7±.3 78.2±.3 30.1±.3 33.2±.3

Mixtral 32.1±.2 36.1±.1 30.1±.5 72.5±.2 33.1±.6 32.1±.3

GPT-3.5 66.2±.3 58.8±.1 45.9±.3 82.6±.4 39.3±.1 32.9±.2

Paraphrasing Llama-2-70 33.9±.1 42.3±.1 35.9±.3 78.7±.1 36.5±.5 36.1±.1

+Self-Refine (2-shot) Mixtral 39.1±.5 44.3±.1 31.6±.4 75.1±.2 35.1±.5 31.3±.2

Table 3: Improvements in accuracy with various prompting strategies in the Hiding approach. In Table 9 the results
of other models.

4.1 Data253

We propose our experimental setup by adapting the254

method proposed in Section 3 to two typologies of255

Question-answering (QA) tasks:256

QA Math Word Problem MPW tasks are char-257

acterized by a question (a mathematical problem) in258

natural language and a target answer, which in most259

cases is a number. We select five different datasets260

with this type of structure: GSM8K (Cobbe et al.,261

2021), SVAMP (Patel et al., 2021), MultiArith (Roy262

and Roth, 2015), AddSub (Hosseini et al., 2014)263

AQuA (Ling et al., 2017), GAIA (Mialon et al.,264

2023).265

QA Multiple Choices Question MCQ tasks, un-266

like MWPs, have different structure. This type of267

task consists of a question, a context that is op-268

tional, and multiple choices. In our work, we select269

four resources: CommonSenseQA (Talmor et al.,270

2019) (CSQA) and OpenBookQA (Mihaylov et al.,271

2018) (OBQA) regarding commonsense reason-272

ing, Physical Interaction Question Answering (Seo273

et al., 2018) (PIQA) regarding physical reasoning.274

Finally, we systematically construct TbH and TbB275

(see Table 2) as described in Section 3 and detailed276

in Appendix B.277

4.2 Models278

In order to test the LLMs’ abilities, we select differ-279

ent models by attempting to get at least two models280

from the same families but differing in the num-281

ber of parameters. In particular, we select: two282

GPT models (OpenAI, 2023) (GPT-4 and GPT-3.5-283

turbo), two Llama-2 models (Touvron et al., 2023)284

(Llama-2-70 and Llama-2-13), two Mistral mod- 285

els (Jiang et al., 2023) (Mixtral and Mistral-7b) 286

and finally two Orca2 models (Mitra et al., 2023) 287

(Orca2-7b and Orca2-13b). For more details on the 288

parameters, see Appendix A. 289

4.3 Evaluation 290

We evaluate the performance of the LLMs intro- 291

duced in Section 4.1 on the tasks defined in Section 292

4.2. The evaluation is conducted using the accu- 293

racy for the Hiding approach TbH and (F1-score) of 294

BERTScore (Zhang et al., 2020) for the Blanking 295

approach TbB . We use BERTScore because the gen- 296

eration of the entire question could be correct, even 297

if delivered with different terminology. In addition, 298

in Appendix X, we discuss an additional analysis 299

performed with an LLM (GPT-4) as a judge. 300

5 Results & Discussion 301

Large Language Models (LLMs) are able to seek 302

hypotheses that best approximate the explanation 303

of a set of observations. In fact, LLMs generate 304

answers when they are elicited to consider the fact 305

that caused the final evidence. This statement can 306

be demonstrated by the results shown in Figure 3. 307

The proposed LLMs (Section 4.2) have inferred the 308

initial question that generated the final answers in 309

both Multiple Choices Questions and Math Word 310

Problem tasks in the Blanking approach (proposed 311

in Section 3.2). 312

However, although most LLMs perform well in 313

the Blanking approach, we observe a different phe- 314

nomenon in the Hiding approach. Figure 2 shows 315

the accuracies obtained following standard zero- 316
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Figure 3: Performances (BERTScore F1) on Math Word Problem and Multiple Choices Questions proposed in
Section 4.1 using Standard prompting approach (as shown in Table 1) and Blanking approach proposed in Section
3.2

shot prompts and our Hiding Approach presented317

in Section 3.1. Although the task is quite different,318

there is a substantial gap between the performances.319

The nature of the differences between the final re-320

sults in the Blanking approach (Section 5.1) and321

Hiding approach (Section 5.2) can be traced back322

to the structure of the prompt. Therefore, in Sec-323

tion 5.3, we propose techniques that improve the324

performance of the Hiding approach.325

Finally, if the prompt techniques proposed in326

Section 5.3 allow for improving the LLMs’ abil-327

ities in the Hiding approach, in Section 5.4, we328

reconsider the Blanking approach by proposing329

the Cross-Blanking Test that stresses the LLMs’330

abilities by breaking the data contamination phe-331

nomenon.332

5.1 Blanking Results333

LLMs are able to reason about the evidence deliv-334

ered in a multi-step way by reconstructing initial335

assumptions. As shown in Figure 3, the correctness336

of the Blanking approach (described in Section337

3.2) is, on average, high when the input-prompts338

are formed with ACoT , i.e., answers generated via339

CoT prompts (Wei et al., 2023). In order to have340

a term of comparison, we have reported the same341

evaluations, F1 BERTScore (Zhang et al., 2020),342

as well as the forward prompting approaches (de-343

scribed in Figure 1 and Table 2). Weak note for the344

Blanking approach that the A as evidence. Indeed, 345

A alone is too context-poor to allow LLMs to rea- 346

son about the prior blanked questions. Although 347

the scores are, on average, high, motivation could 348

lie in the presence of critical parts of the question 349

in the evidence we provide in the input prompts. 350

Consequently, this could be mistaken as a data con- 351

tamination problem. In order to observe whether 352

LLMs are able to reason in the opposite direction, 353

we propose Cross-Blanking experiment in Section 354

5.4. Specifically, in this experiment, we provide as 355

ACoT the responses generated by other LLMs to 356

perform the Cross-Blank evaluation (see Table 6). 357

5.2 Hiding Approach Results 358

LLMs fail to retrieve the hided information in 359

prompts. Table 8 shows the accuracies of different 360

LLMs presented in Section 4.2. A clear differ- 361

ence can be seen between the standard prompts, 362

where the models are prompted with a problem 363

they should generate an answer, and the Hiding ap- 364

proach, where the models are asked to reconstruct 365

the hidden part of the question. However, a sig- 366

nificant difference can be observed because there 367

is a smaller average gap in the MCQ tasks than in 368

MWP (see Table 8 in the Appendix H). This phe- 369

nomenon leads us to study the input composition 370

as we hypothesize that these average differences 371

can be traced back to the present content. In fact, 372

6



in the MCQ tasks, there is more context (e.g., the373

various choices) than in MWP, where the answer is374

entirely coincident.375

5.3 Prompting Approaches376

Manipulating the structure of the prompt leads377

LLMs to better reasoning in a backward direction.378

Table 3 shows the performance of the different tech-379

niques, in zero-shot and few-shot (In-context Learn-380

ing (ICL) (Brown et al., 2020; Shin et al., 2022)),381

that made final improvements over those discussed382

in Section 5.2. Hence, we discuss the different ap-383

proaches tested using GPT-3.5 and Llama-2-70 as384

base models.385

CoT vs Complex-CoT CoT approaches in both386

zero-shot and few-shot scenarios do not contribute387

to substantially increasing baseline performances388

by highlighting the limitation of the input structure389

(Table 3 and Table 9). Moreover, we observe the390

same tendency for Complex-CoT (Fu et al., 2023).391

We hypothesize that these are the consequences of392

the LLMs’ difficulty processing the input-prompt393

proposed in the Hiding approach (Section 3.1).394

Paraphrasing Rephrasing the prompt helps395

LLMs understand the problem to be addressed. We396

detected a noticeable increase in downstream per-397

formances of the Paraphrasing technique (perfor-398

mances in Table 3). The method is described in399

Appendix C.400

Self-Refine Although paraphrasing input401

prompts support LLMs in understanding the402

problem better, iteratively reconsidering the feed-403

back until a predetermined condition is reached404

(Self-Refine) has overpowered all approaches.405

We notice conspicuous improvements in our406

experiments adapting the original Self-Refine407

to our Hiding approach (detailed description in408

Appendix E) (see Table 3 and Table 9).409

5.4 Cross-Blanking Test410

LLMs are able to reconstruct the initial problem411

and perform the reasoning in a backward direction412

by understanding the answers delivered by other413

LLMs. This is shown in Table 4. In particular, we414

have revisited the Blanking Approach from a Cross-415

perspective. In particular, we construct the input-416

prompts as described in Section 3.2, but instead of417

providing ACoT generated by the evaluating LLM,418

we cross-reference the demonstrations (see Table419

6 in Appendix G). We reproduce the experiments420

using one mathematical and one multiple-choice 421

question task. From the results in Table 4, it is 422

possible to observe an in-family phenomenon. The 423

models of the same family seem to achieve simi- 424

lar performances, which is not observable in the 425

out-family models. However, the models obtain 426

sustainable performances. 427

5.5 Metrics Error Analysis & Limitations 428

The results discussed in Sections 5.1 and Y demon- 429

strate LLMs’ ability to provide answers while con- 430

sidering backward-facing problems. Following the 431

various techniques used to elicit generation in dif- 432

ferent scenarios, we qualitatively analyze the re- 433

sults obtained and the metrics behind them, high- 434

lighting limitations and strengths. 435

BERTScore vs LLMs-judge In the Blanking 436

Task (Section 3.2), the evaluation metric used was 437

BERTScore. However, this metric may have limita- 438

tions as there could be multiple valid questions for 439

a given context and response, and it is not clear if 440

BERTScore can distinguish between two semanti- 441

cally different questions with the same answer. For 442

this reason, in Table 11, we discussed using GPT-4 443

as an evaluator judge, revealing that the results do 444

not differ dramatically. 445

The Numerical Limitation On the side of the 446

Hiding approach, we further considered the re- 447

sponses generated by different LLMs in the MWP 448

tasks. Here, a potential limitation is associated with 449

evaluating the generated placeholders. The place- 450

holders generated could be numerical values but 451

not in numeric format, rather nominal. To avoid 452

this phenomenon, we (i) included the keyword 453

[num] in the input prompts and (ii) implemented a 454

secondary check using a conversion function dis- 455

cussed in the Appendix. 456

Error Analysis Paraphrasing the prompt has its 457

benefits. As shown in Appendix C, the approach 458

proposed in Section 3.1 appears to work in the case 459

of a few-shot scenario reinforced with a self-refined 460

approach, while it seems to lead to misleading and 461

incorrect responses when the approaches are em- 462

ployed alone (see Table 3). 463

6 Related Work 464

Question Answering Problem Question- 465

answering tasks are generally characterized by a 466

natural language description that can be a question 467

in the case of Multiple Choice Questions (MCQ) 468
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tasks or a mathematical problem in the case of469

Math Word Problems (MWP) tasks (Lu et al.,470

2023). The description expresses the relations471

between various entities or quantities followed by472

a query for an unknown quantity in the case of473

MWP and a known quantity in the case of MCQ.474

One must represent the relationship between475

entities and quantities to respond to the query.476

The resolution of MWP, but especially that of477

MCQ, requires a semantic understanding of the478

natural language description. The initial works479

(Koncel-Kedziorski et al., 2015; Roy and Roth,480

2018) for solving these tasks propose to parse the481

description using statistical learning techniques to482

identify suitable models for generating answers.483

Behind the advent of sequence-to-sequence484

(Seq2Seq) models (Sutskever et al., 2014) for485

automatic translation, the approaches for solving486

MCQ and MWP tasks diverge. For MWP (Wang487

et al., 2017; Shen et al., 2021; Jie et al., 2022), they488

propose encoder-decoder frameworks to translate489

the natural language description of MWPs into490

equations directly. In MCQ (Multiple Choice491

Questions), many studies have proposed methods492

for retrieving answers from Knowledge bases493

(Banerjee et al., 2019) or generating the answer494

using prior knowledge (Abujabal et al., 2018).495

Large Language Models Recently, Large Lan-496

guage Models (LLMs) such as GPTs (Brown et al.,497

2020; OpenAI, 2023), Llamas (Touvron et al.,498

2023), PaLM (Chowdhery et al., 2022) have been499

achieving outstanding performance in both MWPs500

and MCQs tasks without the use of external knowl-501

edge bases or further analysis methods. These mod-502

els use the ability of context-based instances via a503

few-shot iteration and use prompting methods such504

as CoT (Wei et al., 2023), all without demanding505

any parameter modifications. Several approaches506

(Welleck et al., 2022; Madaan et al., 2023) that507

use LLMs involve verifying the response provided508

by the Language Model, either using the model509

itself or external verifiers like compilers or proof510

checkers. If the response is incorrect, the model511

is re-prompted, potentially with suggestions to im-512

prove its output. This querying process continues513

until the model generates the correct output. Differ-514

ent techniques, such as Progressive Hint Prompting515

(Zheng et al., 2023a), iteratively pass the model’s516

previous responses to itself as hints. Iterative query-517

ing techniques like those in (Weng et al., 2023) do518

not use a verifier; instead, they sample multiple519

hypotheses from the model and select the answer 520

via majority voting. 521

Reasoning Direction As described in the intro- 522

duction to our paper, we focus on a precise case 523

of abductive reasoning with a single answer. Ab- 524

ductive reasoning (Qin et al., 2020; Thayaparan 525

et al., 2021; Zhao et al., 2023) consists of inferring 526

which of several explanations is the most plausible. 527

Previous work on abductive reasoning has mainly 528

focused on textual reasoning under constraints. In 529

arithmetic reasoning tasks, Weng et al. (2023) used 530

abductive reasoning to improve the accuracy of 531

forward reasoning. Our work, on the other hand, 532

addresses backward reasoning as an independent 533

problem. We are inspired by what Deb et al. (2023) 534

proposed and take it further by extending us to 535

more tasks and scaling the tests to different models 536

with softer and stricter formalization. Our primary 537

interest lies in analyzing the inherent complexities 538

of reasoning and creating more effective solutions 539

to deal with it. 540

7 Conclusion 541

This paper explores the abilities of Large Language 542

Models (LLMs) in forward and backward gener- 543

ative ways. We introduce two novel approaches, 544

namely Hiding and Blanking, to challenge LLMs 545

to infer the original question from given answers. 546

Our experiments reveal interesting insights into the 547

LLMs’ abilities. While LLMs show proficiency 548

in forward reasoning, their performances in back- 549

ward reasoning vary significantly. The Hiding ap- 550

proach, which partially obscures the original ques- 551

tion, demonstrates that LLMs could, to some extent, 552

reconstruct missing elements. Moreover, the Blank- 553

ing approach, which presents a more challenging 554

scenario by completely removing the original ques- 555

tion, highlights the effective abilities. Our research 556

also delves into various prompting techniques to 557

empower the LLMs’ performance in these tasks to 558

elicit the LLM to understand and approach the prob- 559

lems better. Our study opens new avenues for un- 560

derstanding and improving the reasoning abilities 561

of LLMs. It also raises important questions about 562

the future directions of LLM development, particu- 563

larly in areas requiring complex, multi-directional 564

reasoning abilities. 565
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Limitations566

In our work, we analyzed the abilities of Large Lan-567

guage Models (LLMs) in solving reverse question-568

answering and math word problems. Specifically,569

starting from the original settings where a question570

is provided and the LLM is required to generate571

an answer, we examined the reverse task. This572

analysis reveals the strengths and weaknesses of573

LLMs in generating reverse reasoning. Potentially,574

reverse reasoning could be useful when faced with575

evidence, and one wishes to trace back to the phe-576

nomenon that caused them by reasoning backward.577

In this work, we used the BERTScore and the578

judgement-based assessment of GPT-4 as judge-579

ment metrics. In future work, we will study the580

effect of additional metrics in order to improve the581

evaluative aspect.582

Ethics Statemets583

In our work, ethical topics were not addressed.584

The data comes from open-source benchmarks,585

and statistics on language differences in commonly586

used pre-training data were obtained from official587

sources without touching on gender, sex, or race588

differences.589

References590

Abdalghani Abujabal, Rishiraj Saha Roy, Mohamed591
Yahya, and Gerhard Weikum. 2018. Never-ending592
learning for open-domain question answering over593
knowledge bases. Proceedings of the 2018 World594
Wide Web Conference.595

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik596
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-597
jishirzi. 2019. MathQA: Towards interpretable math598
word problem solving with operation-based for-599
malisms. In Proceedings of the 2019 Conference600
of the North American Chapter of the Association601
for Computational Linguistics: Human Language602
Technologies, Volume 1 (Long and Short Papers),603
pages 2357–2367, Minneapolis, Minnesota. Asso-604
ciation for Computational Linguistics.605

Pratyay Banerjee, Kuntal Kumar Pal, Arindam Mi-606
tra, and Chitta Baral. 2019. Careful selection of607
knowledge to solve open book question answering.608
In Proceedings of the 57th Annual Meeting of the609
Association for Computational Linguistics, pages610
6120–6129, Florence, Italy. Association for Com-611
putational Linguistics.612

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie613
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind614
Neelakantan, Pranav Shyam, Girish Sastry, Amanda615
Askell, Sandhini Agarwal, Ariel Herbert-Voss,616

Gretchen Krueger, Tom Henighan, Rewon Child, 617
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 618
Clemens Winter, Christopher Hesse, Mark Chen, Eric 619
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, 620
Jack Clark, Christopher Berner, Sam McCandlish, 621
Alec Radford, Ilya Sutskever, and Dario Amodei. 622
2020. Language models are few-shot learners. 623

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 624
Maarten Bosma, Gaurav Mishra, Adam Roberts, 625
Paul Barham, Hyung Won Chung, Charles Sutton, 626
Sebastian Gehrmann, Parker Schuh, Kensen Shi, 627
Sasha Tsvyashchenko, Joshua Maynez, Abhishek 628
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin- 629
odkumar Prabhakaran, Emily Reif, Nan Du, Ben 630
Hutchinson, Reiner Pope, James Bradbury, Jacob 631
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, 632
Toju Duke, Anselm Levskaya, Sanjay Ghemawat, 633
Sunipa Dev, Henryk Michalewski, Xavier Garcia, 634
Vedant Misra, Kevin Robinson, Liam Fedus, Denny 635
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, 636
Barret Zoph, Alexander Spiridonov, Ryan Sepassi, 637
David Dohan, Shivani Agrawal, Mark Omernick, An- 638
drew M. Dai, Thanumalayan Sankaranarayana Pil- 639
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, 640
Rewon Child, Oleksandr Polozov, Katherine Lee, 641
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark 642
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy 643
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, 644
and Noah Fiedel. 2022. Palm: Scaling language mod- 645
eling with pathways. 646

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 647
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 648
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 649
Nakano, Christopher Hesse, and John Schulman. 650
2021. Training verifiers to solve math word prob- 651
lems. 652

Aniruddha Deb, Neeva Oza, Sarthak Singla, Dinesh 653
Khandelwal, Dinesh Garg, and Parag Singla. 2023. 654
Fill in the blank: Exploring and enhancing llm capa- 655
bilities for backward reasoning in math word prob- 656
lems. 657

Jessica Ficler and Yoav Goldberg. 2017. Controlling lin- 658
guistic style aspects in neural language generation. In 659
Proceedings of the Workshop on Stylistic Variation, 660
pages 94–104, Copenhagen, Denmark. Association 661
for Computational Linguistics. 662

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and 663
Tushar Khot. 2023. Complexity-based prompting for 664
multi-step reasoning. 665

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, 666
Sid Black, Anthony DiPofi, Charles Foster, Laurence 667
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, 668
Kyle McDonell, Niklas Muennighoff, Chris Ociepa, 669
Jason Phang, Laria Reynolds, Hailey Schoelkopf, 670
Aviya Skowron, Lintang Sutawika, Eric Tang, An- 671
ish Thite, Ben Wang, Kevin Wang, and Andy Zou. 672
2023. A framework for few-shot language model 673
evaluation. 674

9

https://api.semanticscholar.org/CorpusID:4896021
https://api.semanticscholar.org/CorpusID:4896021
https://api.semanticscholar.org/CorpusID:4896021
https://api.semanticscholar.org/CorpusID:4896021
https://api.semanticscholar.org/CorpusID:4896021
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/P19-1615
https://doi.org/10.18653/v1/P19-1615
https://doi.org/10.18653/v1/P19-1615
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2310.01991
http://arxiv.org/abs/2310.01991
http://arxiv.org/abs/2310.01991
http://arxiv.org/abs/2310.01991
http://arxiv.org/abs/2310.01991
https://doi.org/10.18653/v1/W17-4912
https://doi.org/10.18653/v1/W17-4912
https://doi.org/10.18653/v1/W17-4912
http://arxiv.org/abs/2210.00720
http://arxiv.org/abs/2210.00720
http://arxiv.org/abs/2210.00720
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836


Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren675
Etzioni, and Nate Kushman. 2014. Learning to solve676
arithmetic word problems with verb categorization.677
In Proceedings of the 2014 Conference on Empirical678
Methods in Natural Language Processing (EMNLP),679
pages 523–533, Doha, Qatar. Association for Com-680
putational Linguistics.681

Jie Huang and Kevin Chen-Chuan Chang. 2023. To-682
wards reasoning in large language models: A survey.683
In Findings of the Association for Computational684
Linguistics: ACL 2023, pages 1049–1065, Toronto,685
Canada. Association for Computational Linguistics.686

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-687
sch, Chris Bamford, Devendra Singh Chaplot, Diego688
de las Casas, Florian Bressand, Gianna Lengyel, Guil-689
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,690
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,691
Thibaut Lavril, Thomas Wang, Timothée Lacroix,692
and William El Sayed. 2023. Mistral 7b.693

Zhanming Jie, Jierui Li, and Wei Lu. 2022. Learn-694
ing to reason deductively: Math word problem solv-695
ing as complex relation extraction. In Proceedings696
of the 60th Annual Meeting of the Association697
for Computational Linguistics (Volume 1: Long698
Papers), pages 5944–5955, Dublin, Ireland. Asso-699
ciation for Computational Linguistics.700

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish701
Sabharwal, Oren Etzioni, and Siena Dumas Ang.702
2015. Parsing algebraic word problems into703
equations. Transactions of the Association for704
Computational Linguistics, 3:585–597.705

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-706
som. 2017. Program induction by rationale gen-707
eration: Learning to solve and explain algebraic708
word problems. In Proceedings of the 55th Annual709
Meeting of the Association for Computational710
Linguistics (Volume 1: Long Papers), pages 158–711
167, Vancouver, Canada. Association for Compu-712
tational Linguistics.713

Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang,714
Mingu Lee, Roland Memisevic, and Hao Su. 2023.715
Deductive verification of chain-of-thought reasoning.716

Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and717
Kai-Wei Chang. 2023. A survey of deep learn-718
ing for mathematical reasoning. In Proceedings719
of the 61st Annual Meeting of the Association720
for Computational Linguistics (Volume 1: Long721
Papers), pages 14605–14631, Toronto, Canada. As-722
sociation for Computational Linguistics.723

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler724
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,725
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,726
Shashank Gupta, Bodhisattwa Prasad Majumder,727
Katherine Hermann, Sean Welleck, Amir Yazdan-728
bakhsh, and Peter Clark. 2023. Self-refine: Iterative729
refinement with self-feedback.730

Grégoire Mialon, Clémentine Fourrier, Craig Swift, 731
Thomas Wolf, Yann LeCun, and Thomas Scialom. 732
2023. Gaia: a benchmark for general ai assistants. 733

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish 734
Sabharwal. 2018. Can a suit of armor conduct elec- 735
tricity? a new dataset for open book question answer- 736
ing. 737

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Han- 738
naneh Hajishirzi. 2022. MetaICL: Learning to learn 739
in context. In Proceedings of the 2022 Conference 740
of the North American Chapter of the Association 741
for Computational Linguistics: Human Language 742
Technologies, pages 2791–2809, Seattle, United 743
States. Association for Computational Linguistics. 744

MistralAI. Mistral-7b-instruct-v0.2. 745
https://huggingface.co/mistralai/ 746
Mistral-7B-Instruct-v0.2. 747

Arindam Mitra, Luciano Del Corro, Shweti Mahajan, 748
Andres Codas, Clarisse Simoes, Sahaj Agrawal, Xuxi 749
Chen, Anastasia Razdaibiedina, Erik Jones, Kriti Ag- 750
garwal, Hamid Palangi, Guoqing Zheng, Corby Ros- 751
set, Hamed Khanpour, and Ahmed Awadallah. 2023. 752
Orca 2: Teaching small language models how to rea- 753
son. 754

OpenAI. 2023. Gpt-4 technical report. 755

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. 756
2021. Are NLP models really able to solve simple 757
math word problems? In Proceedings of the 2021 758
Conference of the North American Chapter of the 759
Association for Computational Linguistics: Human 760
Language Technologies, pages 2080–2094, Online. 761
Association for Computational Linguistics. 762

Pruthvi Patel, Swaroop Mishra, Mihir Parmar, and 763
Chitta Baral. 2022. Is a question decomposi- 764
tion unit all we need? In Proceedings of the 765
2022 Conference on Empirical Methods in Natural 766
Language Processing, pages 4553–4569, Abu Dhabi, 767
United Arab Emirates. Association for Computa- 768
tional Linguistics. 769

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen, 770
Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei Huang, 771
and Huajun Chen. 2023. Reasoning with lan- 772
guage model prompting: A survey. In Proceedings 773
of the 61st Annual Meeting of the Association 774
for Computational Linguistics (Volume 1: Long 775
Papers), pages 5368–5393, Toronto, Canada. Associ- 776
ation for Computational Linguistics. 777

Lianhui Qin, Vered Shwartz, Peter West, Chandra Bha- 778
gavatula, Jena D. Hwang, Ronan Le Bras, Antoine 779
Bosselut, and Yejin Choi. 2020. Back to the future: 780
Unsupervised backprop-based decoding for counter- 781
factual and abductive commonsense reasoning. In 782
Proceedings of the 2020 Conference on Empirical 783
Methods in Natural Language Processing (EMNLP), 784
pages 794–805, Online. Association for Computa- 785
tional Linguistics. 786

10

https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.18653/v1/2023.findings-acl.67
https://doi.org/10.18653/v1/2023.findings-acl.67
https://doi.org/10.18653/v1/2023.findings-acl.67
http://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2022.acl-long.410
https://doi.org/10.18653/v1/2022.acl-long.410
https://doi.org/10.18653/v1/2022.acl-long.410
https://doi.org/10.18653/v1/2022.acl-long.410
https://doi.org/10.18653/v1/2022.acl-long.410
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
http://arxiv.org/abs/2306.03872
https://doi.org/10.18653/v1/2023.acl-long.817
https://doi.org/10.18653/v1/2023.acl-long.817
https://doi.org/10.18653/v1/2023.acl-long.817
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2311.12983
http://arxiv.org/abs/1809.02789
http://arxiv.org/abs/1809.02789
http://arxiv.org/abs/1809.02789
http://arxiv.org/abs/1809.02789
http://arxiv.org/abs/1809.02789
https://doi.org/10.18653/v1/2022.naacl-main.201
https://doi.org/10.18653/v1/2022.naacl-main.201
https://doi.org/10.18653/v1/2022.naacl-main.201
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
http://arxiv.org/abs/2311.11045
http://arxiv.org/abs/2311.11045
http://arxiv.org/abs/2311.11045
http://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2022.emnlp-main.302
https://doi.org/10.18653/v1/2022.emnlp-main.302
https://doi.org/10.18653/v1/2022.emnlp-main.302
https://doi.org/10.18653/v1/2023.acl-long.294
https://doi.org/10.18653/v1/2023.acl-long.294
https://doi.org/10.18653/v1/2023.acl-long.294
https://doi.org/10.18653/v1/2020.emnlp-main.58
https://doi.org/10.18653/v1/2020.emnlp-main.58
https://doi.org/10.18653/v1/2020.emnlp-main.58
https://doi.org/10.18653/v1/2020.emnlp-main.58
https://doi.org/10.18653/v1/2020.emnlp-main.58


Subhro Roy and Dan Roth. 2015. Solving general787
arithmetic word problems. In Proceedings of the788
2015 Conference on Empirical Methods in Natural789
Language Processing, pages 1743–1752, Lisbon,790
Portugal. Association for Computational Linguistics.791

Subhro Roy and Dan Roth. 2018. Mapping to792
declarative knowledge for word problem solving.793
Transactions of the Association for Computational794
Linguistics, 6:159–172.795

Minjoon Seo, Tom Kwiatkowski, Ankur P. Parikh, Ali796
Farhadi, and Hannaneh Hajishirzi. 2018. Phrase-797
indexed question answering: A new challenge for798
scalable document comprehension.799

Jianhao Shen, Yichun Yin, Lin Li, Lifeng Shang, Xin800
Jiang, Ming Zhang, and Qun Liu. 2021. Gen-801
erate & rank: A multi-task framework for math802
word problems. In Findings of the Association for803
Computational Linguistics: EMNLP 2021, pages804
2269–2279, Punta Cana, Dominican Republic. Asso-805
ciation for Computational Linguistics.806

Seongjin Shin, Sang-Woo Lee, Hwijeen Ahn, Sungdong807
Kim, HyoungSeok Kim, Boseop Kim, Kyunghyun808
Cho, Gichang Lee, Woomyoung Park, Jung-Woo809
Ha, and Nako Sung. 2022. On the effect of pre-810
training corpora on in-context learning by a large-811
scale language model. In Proceedings of the 2022812
Conference of the North American Chapter of the813
Association for Computational Linguistics: Human814
Language Technologies, pages 5168–5186, Seattle,815
United States. Association for Computational Lin-816
guistics.817

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.818
Sequence to sequence learning with neural networks.819
In Proceedings of the 27th International Conference820
on Neural Information Processing Systems - Volume821
2, NIPS’14, page 3104–3112, Cambridge, MA, USA.822
MIT Press.823

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and824
Jonathan Berant. 2019. CommonsenseQA: A ques-825
tion answering challenge targeting commonsense826
knowledge. In Proceedings of the 2019 Conference827
of the North American Chapter of the Association828
for Computational Linguistics: Human Language829
Technologies, Volume 1 (Long and Short Papers),830
pages 4149–4158, Minneapolis, Minnesota. Asso-831
ciation for Computational Linguistics.832

Mokanarangan Thayaparan, Marco Valentino, and833
André Freitas. 2021. Explainable inference over834
grounding-abstract chains for science questions.835
In Findings of the Association for Computational836
Linguistics: ACL-IJCNLP 2021, pages 1–12, Online.837
Association for Computational Linguistics.838

TheBloke. a. Llama-2-70b-chat-gptq.839
https://huggingface.co/TheBloke/840
Llama-2-13B-Chat-GPTQ.841

TheBloke. b. Llama-2-70b-chat-gptq.842
https://huggingface.co/TheBloke/843
Llama-2-70B-Chat-GPTQ.844

TheBloke. c. Mixtral-8x7b-moe-rp-story-gguf. 845
https://huggingface.co/TheBloke/Mixtral-8x7B- 846
v0.1-GPTQ. 847

TheBloke. d. Orca-2-13b-gguf. https: 848
//huggingface.co/TheBloke/Orca-2-13B-GGUF. 849
Accessed: [your access date]. 850

TheBloke. e. Orca-2-7b-gguf. https://huggingface. 851
co/TheBloke/Orca-2-7B-GGUF. 852

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 853
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 854
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 855
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton 856
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 857
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 858
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 859
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 860
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 861
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 862
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 863
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 864
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 865
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 866
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 867
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 868
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 869
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 870
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 871
Melanie Kambadur, Sharan Narang, Aurelien Ro- 872
driguez, Robert Stojnic, Sergey Edunov, and Thomas 873
Scialom. 2023. Llama 2: Open foundation and fine- 874
tuned chat models. 875

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen, 876
You Wu, Luke Zettlemoyer, and Huan Sun. 2023. 877
Towards understanding chain-of-thought prompting: 878
An empirical study of what matters. In Proceedings 879
of the 61st Annual Meeting of the Association 880
for Computational Linguistics (Volume 1: Long 881
Papers), pages 2717–2739, Toronto, Canada. Associ- 882
ation for Computational Linguistics. 883

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017. 884
Deep neural solver for math word problems. In 885
Proceedings of the 2017 Conference on Empirical 886
Methods in Natural Language Processing, pages 887
845–854, Copenhagen, Denmark. Association for 888
Computational Linguistics. 889

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, 890
Barret Zoph, Sebastian Borgeaud, Dani Yogatama, 891
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. 892
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy 893
Liang, Jeff Dean, and William Fedus. 2022. Emer- 894
gent abilities of large language models. 895

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 896
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and 897
Denny Zhou. 2023. Chain-of-thought prompting elic- 898
its reasoning in large language models. 899

Sean Welleck, Ximing Lu, Peter West, Faeze Brah- 900
man, Tianxiao Shen, Daniel Khashabi, and Yejin 901

11

https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.1162/tacl_a_00012
https://doi.org/10.1162/tacl_a_00012
https://doi.org/10.1162/tacl_a_00012
http://arxiv.org/abs/1804.07726
http://arxiv.org/abs/1804.07726
http://arxiv.org/abs/1804.07726
http://arxiv.org/abs/1804.07726
http://arxiv.org/abs/1804.07726
https://doi.org/10.18653/v1/2021.findings-emnlp.195
https://doi.org/10.18653/v1/2021.findings-emnlp.195
https://doi.org/10.18653/v1/2021.findings-emnlp.195
https://doi.org/10.18653/v1/2021.findings-emnlp.195
https://doi.org/10.18653/v1/2021.findings-emnlp.195
https://doi.org/10.18653/v1/2022.naacl-main.380
https://doi.org/10.18653/v1/2022.naacl-main.380
https://doi.org/10.18653/v1/2022.naacl-main.380
https://doi.org/10.18653/v1/2022.naacl-main.380
https://doi.org/10.18653/v1/2022.naacl-main.380
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/2021.findings-acl.1
https://doi.org/10.18653/v1/2021.findings-acl.1
https://doi.org/10.18653/v1/2021.findings-acl.1
https://huggingface.co/TheBloke/Llama-2-13B-Chat-GPTQ
https://huggingface.co/TheBloke/Llama-2-13B-Chat-GPTQ
https://huggingface.co/TheBloke/Llama-2-13B-Chat-GPTQ
https://huggingface.co/TheBloke/Llama-2-70B-Chat-GPTQ
https://huggingface.co/TheBloke/Llama-2-70B-Chat-GPTQ
https://huggingface.co/TheBloke/Llama-2-70B-Chat-GPTQ
https://huggingface.co/TheBloke/Orca-2-13B-GGUF
https://huggingface.co/TheBloke/Orca-2-13B-GGUF
https://huggingface.co/TheBloke/Orca-2-13B-GGUF
https://huggingface.co/TheBloke/Orca-2-7B-GGUF
https://huggingface.co/TheBloke/Orca-2-7B-GGUF
https://huggingface.co/TheBloke/Orca-2-7B-GGUF
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2023.acl-long.153
https://doi.org/10.18653/v1/2023.acl-long.153
https://doi.org/10.18653/v1/2023.acl-long.153
https://doi.org/10.18653/v1/D17-1088
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903


Choi. 2022. Generating sequences by learning to902
self-correct.903

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He,904
Shengping Liu, Bin Sun, Kang Liu, and Jun Zhao.905
2023. Large language models are better reasoners906
with self-verification.907

Dingjun Wu, Jing Zhang, and Xinmei Huang. 2023.908
Chain of thought prompting elicits knowledge aug-909
mentation. In Findings of the Association for910
Computational Linguistics: ACL 2023, pages 6519–911
6534, Toronto, Canada. Association for Computa-912
tional Linguistics.913

Fangyi Yu, Lee Quartey, and Frank Schilder. 2023. Ex-914
ploring the effectiveness of prompt engineering for915
legal reasoning tasks. In Findings of the Association916
for Computational Linguistics: ACL 2023, pages917
13582–13596, Toronto, Canada. Association for918
Computational Linguistics.919

Zhangdie Yuan, Songbo Hu, Ivan Vulić, Anna Korho-920
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A Model and Hyperparameters 943

As introduced in Section 4.2, we used: 944

• two models from the GPT family (OpenAI, 945

2023): GPT-4 and GPT-3.5-turbo (GPT-3.5) 946

used via API. 947

• two models from the Llama-2 family (Tou- 948

vron et al., 2023): Llama-2-70b and Llama- 949

2-13b using versions of the quantized to 4-bit 950

models using GPTQ (TheBloke, a,b). 951

• two models of the Orca2 family (Mitra et al., 952

2023): Orca2-7b (TheBloke, e) and Orca2- 953

13b (TheBloke, d). 954

• two models of the MistralAI family: Mistral- 955

7b and Mixtral using official version on huff- 956

ingface (MistralAI) versions of the quantized 957

to 4-bit models using GPTQ (TheBloke, c). 958

We use closed-source API or the 4-bit GPTQ 959

quantized version of the model on two 48GB 960

NVIDIA RTXA600 GPUs for all experiments per- 961

formed only in inference. All experiments use a 962

generation temperature of [0, 0.5] for (mostly) de- 963

terministic outputs, with a maximum token length 964

of 256. The other parameters are left unchanged 965

as recommended by the official resources. We will 966

release the code and the dataset upon acceptance 967

of the paper. 968

B Dataset Construction 969

We use six different Math Word Problem datasets: 970

GSM8K (Cobbe et al., 2021), SVAMP (Patel et al., 971

2021), MultiArith (Roy and Roth, 2015), AddSub 972

(Hosseini et al., 2014), AQuA (Ling et al., 2017), 973

MathQA (Amini et al., 2019). We describe the gen- 974

eration methodology of the final composition of 975

TbH in Section B.1 and TbB in Section B.2. Down- 976

stream of the generation methodologies, we filtered 977

the original datasets by removing the examples we 978

could not parse optimally (see Table 10). 979

B.1 Generation for Hiding Approach 980

Math Word Problems As introduced in Section 981

3.1, in TbH = (QH , AH) (in MWP there are not 982

O), we construct QH from Q. For each question 983

of Dataset: 984

{(Qi, Ai)}ni=1|Qi ∈ Σ∗, Ai ∈ R} 985

We propose a method to create Dataset′k: 986

{(Q′
i, Ai, (H

0
i , . . . ,H

k
i ))}ni=1|Q′

i ∈ Σ∗, Hj
i ∈ R} 987
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Generator Task Evaluator

GPT-4 GPT-3.5 Llama-2-70 Llama-2-13b Mixtral Mistral-7b

GPT-4 GSM8K 94.3±.1 92.5±.3 84.4±.6 83.3±.3 78.2±.2 76.3±.2

CSQA 88.6±.5 87.4±.4 75.6±.1 74.5±.2 67.9±.3 66.3±.2

GPT-3.5 GSM8K 90.9±.2 85.4±.5 72.3±.2 69.4±.4 67.3±.3 65.2±.2

CSQA 81.9±.3 82.5±.3 71.9±.1 68.5±.3 64.7±.2 63.6±.3

Llama-2-70 GSM8K 76.1±.3 75.6±.5 78.6±.3 78.5±.2 62.9±.4 60.9±.1

CSQA 65.3±.3 65.8±.5 75.4±.3 74.3±.2 61.9±.2 59.4±.2

Llama-2-13 GSM8K 81.4±.3 80.6±.2 75.3±.4 73.4±.2 60.9±.1 59.2±.4

CSQA 82.2±.3 81.9±.3 70.9±.3 67.7±.1 59.1±.5 58.2±.2

Mixtral GSM8K 83.8±.3 81.6±.5 68.3±.2 65.8±.3 79.8±.1 77.9±.3

CSQA 74.8±.2 72.3±.3 65.3±.4 63.2±.3 82.2±.3 81.3±.2

Mistral-7b GSM8K 78.7±.3 77.9±.3 67.5±.3 66.6±.1 73.9±.4 72.1±.1

CSQA 69.4±.4 67.8±.1 62.3±.2 61.8±.4 76.4±.4 72.7±.3

Table 4: Performances Cross-Blanking test. In this test, we elicit the models to generate the Blanked question
(Section 3.2) using the A delivered from other LLMs. "Generator" refers to the model that generates the A.
"Evaluator" refers to the model that is prompted to generate the initial question (example shown in Appendix G).

To convert Q in QH and extract the numerical988

subparts H0
i , . . . , B

k
i , we split QH into its con-989

stituent tokens. Hence, we consider all numeric990

tokens as tokens that encode a number. Numeric991

tokens may be alphanumeric, such as 150 or 2.23,992

or alphabetic, such as three, twice, or half. Us-993

ing this heuristic for numeric tokens, we ignore994

the first numeric token and extract the following995

k tokens sequentially. We skip that question-and-996

answer pair if we cannot extract k tokens. It is997

worth noting that for the datasets we use, k = 1,998

we only consider the problem of backwardly infer-999

ring one missing number in the question, given the1000

answer. To simplify the process and better adapt it1001

to the subsequent Blanking approach as well, when1002

possible, we differentiate the main question of the1003

problem (structurally defined by the "?" character1004

that ends the sentence or sub-sentence) by splitting1005

the Question and the Concept as shown in Figure1006

1.1007

Multiple Choice Question As introduced in Sec-1008

tion 3.1, MCQ tasks do not always have eas-1009

ily maskable symbols, such as numerical values.1010

Here, our contribution is different. Given TbH =1011

(QH , AH), we construct QH from Q. For each1012

question of Dataset:1013

{(Qi, Ai)}ni=1|Qi ∈ Σ∗, Ai ∈ C}1014

where C represents the set of choice options in1015

MCQs. We propose a method to create Dataset′k:1016

{(Q′
i, Ai, (P

0
i , . . . , P

k
i ))}ni=1|Q′

i ∈ Σ∗, P j
i ∈ Σ∗}1017

To convert Q in QH and extract the noun sub- 1018

parts P 0
i , . . . , P

k
i , we split QH into its constituent 1019

tokens and perform part-of-speech (POS) tagging. 1020

We specifically identify nouns, which may be sub- 1021

jects or objects, as our primary tokens of interest. 1022

These tokens are processed and tagged using a POS 1023

tagging algorithm. We sequentially extract the first 1024

k identified noun tokens for each question. We skip 1025

that question-and-answer pair if we cannot extract 1026

k noun tokens. Again, we use k = 1, meaning we 1027

focus on the challenge of inferring a single missing 1028

noun in the question, given the answer. 1029

B.2 Generation for Blanking Approach 1030

As introduced in the section 3.1, in TbB = 1031

(AB, O,QB), we replicate Q with x as shown in 1032

Table 2. However, to contextualize the generation, 1033

we substitute the A with A or ACoT for the target 1034

generated via the CoT prompt. We propose this 1035

approach for both task types. 1036

C Paraphrasing Prompting 1037

To test if prompting approaches could infer the final 1038

answer, our initial strategy concerns transforming 1039

the problem through paraphrasing, as also proposed 1040

by (Deb et al., 2023). This method simplifies the 1041

complex reasoning challenge into a more suitable 1042

forward reasoning task. As a result, we apply the 1043

LLM to this more manageable, rephrased forward 1044

reasoning problem rather than grappling with the 1045

more arduous backward reasoning task. 1046
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In the case of a TbH = (AH , O,QH), we prompt1047

the language model to generate a different prompt1048

P . This rephrased prompt integrates the forward1049

answer AH into the original question QH , altering1050

the goal from discovering the answer AH to deter-1051

mining the value of the blank. We then direct the1052

language model to address this rephrased problem1053

P , bypassing the initial problem.1054

The results, as illustrated in Table 3 and Table 9,1055

reveal that changing the problem and changing the1056

problem by posing the value of x and instructing1057

the LLM to ascertain the value of x, as illustrated in1058

Table 7, yields better results than classic prompting1059

strategies.1060

D Self-Refine1061

Moreover, we utilize the Self-Refine framework1062

proposed by Madaan et al. (2023). This approach1063

is also employed in Self-Verification prompting by1064

(Weng et al., 2023). This iterative prompting tech-1065

nique alternates between refinement and feedback1066

until a predefined condition is met. We have modi-1067

fied the technique to perform backward reasoning1068

on our tasks as done in (Deb et al., 2023).1069

E Paraphrased Self-Refine Prompting1070

To test whether prompting approaches can infer1071

the final answer, our initial strategy involves trans-1072

forming the problem through paraphrasing. This1073

method simplifies the complex challenge of abduc-1074

tive reasoning into a simpler deductive reasoning1075

task. Consequently, we apply the LLM to this more1076

manageable and reformulated reasoning problem1077

instead of tackling the more arduous abductive rea-1078

soning task.1079

Hence, we propose a further experiment by in-1080

cluding paraphrase and self-consistency to obtain1081

higher accuracy (Table 3 and Table 9).1082

F GPT-4 as a Judge1083

In Section X, we used BERTScore to evaluate the1084

performances achieved by different models in the1085

Blanking task introduced in Section Y. In this addi-1086

tional experiment, we replicate the Cross-Blanking1087

test using GPT-4 as the judge, which, given the1088

original question and the question generated by the1089

LLM under test, will produce a positive or negative1090

judgment that we will define as accuracy.1091

In Table X, where we have reported the accu-1092

racies obtained, we can observe no sensible dif-1093

ferences compared to Table Y. Therefore, even1094

though the two metrics are not directly comparable, 1095

BERTScore approximates the accuracy of a GPT-4 1096

evaluator well. 1097
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G Prompting Approaches

Prompt: MCQ Tf to M1

Question: <Question>
Choices:
a) <Option1>
b)...
Answer:
+ Let’s think step by step (CoT Prompt)
generated answer M1 (A′ or A′

CoT )

Prompt: MCQ Tf to M2

Question: <Question>
Choices:
a) <Option1>
b)...
Answer:
+ Let’s think step by step (CoT Prompt)
generated answer M2 (A′′ or A′′

CoT )

Table 5: Example of input-prompt for Cross-Blanking Task.

Prompt: Cross-Blanking Approach on M1

Fill in the blank given the following
answer find the question that generates
it.
Context: t1, t2, . . . , tn−1, tn
Question: x
Answer: A′′ or A′′

CoT

Prompt: Cross-Blanking Approach on M2

Fill in the blank given the following
answer find the question that generates
it.
Context: t1, t2, . . . , tn−1, tn
Question: x
Answer: A′ or A′

CoT

Table 6: Example of Cross-Blanking Task where we provide to M1 the A′′
CoT generated from M2 , and vice versa.

Paraphrase Prompting

Question: A grove has 15 trees. Today, grove workers will add x trees. What will be
the total number of trees after this addition? Answer: 21
Paraphrased: A grove has 15 trees. Grove workers added x trees today. The total
becomes 21 trees. Calculate the value of x.
Answer: Originally, there are 15 trees. After planting, the total is 21 trees.
Therefore, x = 21 - 15 = 6 trees. The solution is 6.
Question: he parking lot currently holds 3 cars. If x additional cars arrive, what
is the total number of cars in the parking lot? Answer: 5
Paraphrased: There are 3 cars in the parking lot initially, and x additional cars
arrive, making a total of 5 cars. Determine x.
Answer: Initially, there are 3 cars. After x cars arrive, 3 + x = 5, hence x = 5 - 3
= 2. The solution is 2.
Question: <Question>
Answer: <Answer>
Paraphrasis:

Table 7: Paraphrasis prompting.
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H Detailed Results
Dataset Approach GPT-4 GPT-3.5 Llama-2-70 Llama-2-13 Mixtral Minstral-7 Orca2-13 Orca2-7

Math Word Problem

GSM8k Standard 92.8 ±.2 62.4 ±.1 56.8 ±.3 39.5 ±.2 60.8 ±.4 54.2 ±.2 53.4 ±.4 50.2 ±.1

Hiding 51.6 ±.2 33.8±.4 16.8±.3 5.5±.3 21.4±.3 7.4±.3 6.3±.4 5.8±.1

SVAMP Standard 92.5±.4 79.1±.3 70.3±.2 67.2±.2 71.5±.2 68.7±.1 69.9±.2 64.7±.4

Hiding 44.2±.3 36.3±.2 23.7±.3 20.8±.2 24.2±.2 22.1±.1 20.4±.2 18.1±.3

MultiArith Standard 96.3±.4 93.0±.4 89.2±.2 87.3±.1 90.2±.2 88.2±.3 85.8±.2 83.1±.2

Hiding 55.6±.3 18.4±.1 17.3±.3 15.7±.4 19.3±.2 15.9±.1 12.8±.2 10.6±.3

AddSub Standard 92.8±.3 89.5±.2 82.5±.2 75.6±.4 83.6±.2 78.5±.1 77.3±.2 74.5±.3

Hiding 70.3±.3 69.4±.3 68.2±.2 59.2±.2 65.6±.2 62.1±.1 60.7±.2 59.8±.4

AQuA-RAT Standard 62.2±.3 56.5±.2 49.8±.4 47.1±.4 54.4±.2 47.7±.1 43.2±.2 41.6±.2

Hiding 26.7±.2 20.3±.1 19.5±.2 15.2±.3 20.3±.2 18.2±.4 12.4±.2 9.2±.3

GAIA Standard 23.4±.2 21.3±.2 18.8±.4 16.1±.2 19.3±.3 15.5±.2 14.6±.1 9.2±.1

Hiding 17.6±.4 16.5±.2 14.8±.3 11.3±.2 14.3±.4 12.2±.1 10.4±.2 8.2±.4

Multiple Choices Question

CSQA Standard 86.6±.1 80.2±.2 73.8±.4 65.5±.2 81.3±.3 69.2±.2 70.6±.3 69.4±.2

Hiding 61.6±.2 58.5±.1 56.4±.4 52.6±.4 59.6±.2 55.9±.3 45.6±.2 42.3±.2

OBQA Standard 86.4±.2 82.3±.2 65.6±.2 60.4±.1 83.5±.2 62.7±.4 65.8±.2 61.4±.3

Hiding 58.6±.3 54.9±.1 54.6±.4 51.3±.2 55.3±.2 53.2±.4 42.1±.2 40.5±.3

PIQA Standard 88.4±.2 84.3±.1 82.6±.2 66.4±.4 83.5±.3 67.3±.2 68.8±.3 61.6±.2

Hiding 57.3±.4 55.6±.4 53.9±.3 47.7±.2 54.3±.1 52.2±.1 50.1±.2 48.5±.4

Table 8: Accuracies (%) on dataset proposed in Section 4.1 using Standard and Hiding approaches.

Strategy Model GSM8KH SVAMPH MultiArithH AQua-RATH AddSubH GAIAH

Hiding (0-shot)
GPT-3.5 33.8±.4 36.3±.2 18.4±.1 69.4±.3 20.3±.1 16.5±.2

Llama-2-70 16.8±.3 23.7±.3 17.3±.2 68.2±.2 19.5±.3 14.8±.2

Mixtral 21.4±.3 24.2±.2 19.3±.3 65.6±.2 20.3±.1 14.3±.4

Hiding (5-shot)
GPT-3.5 35.4±.3 38.4±.4 20.5±.3 70.6±.4 22.1±.3 18.6±.3

Llama-2-70 20.3±.4 24.3±.3 18.9±.2 70.3±.3 20.6±.3 16.5±.2

Mixtral 22.5±.2 25.6±.2 20.5±.2 66.6±.4 23.0±.1 16.3±.3

CoT (5-shot)
GPT-3.5 34.5±.4 35.3±.4 19.5±.1 70.2±.3 19.4±.5 15.9±.1

Llama-2-70 15.9±.1 24.2±.3 14.6±.3 68.4±.2 18.2±.1 15.1±.3

Mixtral 20.8±.3 22.1±.3 20.2±.3 64.9±.1 21.4±.3 15.1±.3

Complex-CoT (0-shot)
GPT-3.5 40.5±.1 39.9±.1 21.7±.2 73.7±.3 24.5±.6 21.2±.4

Llama-2-70 20.9±.2 28.4±.1 16.9±.3 69.8±.4 22.3±.2 20.1±.4

Mixtral 21.2±.3 23.1±.3 20.6±.1 65.0±.2 24.1±.1 18.2±.1

Complex-CoT (5-shot)
GPT-3.5 43.5±.2 41.3±.2 26.4±.2 76.6±.3 24.8±.2 26.3±.4

Llama-2-70 22.4±.3 30.5±.1 17.2±.2 70.2±.1 22.3±.2 23.0±.2

Mixtral 22.3±.1 24.5±.4 22.6±.1 65.8±.3 24.6±.1 20.2±.2

Paraphrasing (2-shot)
GPT-3.5 50.2±.3 45.8±.4 36.8±.3 79.2±.4 26.7±.2 29.8±.2

Llama-2-70 29.3±.2 37.2±.3 25.6±.2 76.3±.1 29.2±.2 29.2±.1

Mixtral 28.9±.2 31.5±.1 30.1±.2 69.9±.1 29.0±.0 30.0±.1

Paraphrasing (5-shot)
GPT-3.5 56.7±.1 50.3±.1 41.9±.4 83.8±.2 32.1±.1 33.9±.4

Llama-2-70 34.1±.1 44.1±.2 31.7±.3 80.1±.1 33.1±.3 35.0±.3

Mixtral 33.9±.1 38.9±.2 33.3±.1 73.8±.4 33.7±.1 36.2±.5

Self-Refine (2-shot)
GPT-3.5 53.8±.2 49.1±.3 40.1±.4 80.1±.3 30.4±.2 30.1±.4

Llama-2-70 34.1±.4 40.1±.1 31.7±.3 78.2±.3 30.1±.3 33.2±.3

Mixtral 32.1±.2 36.1±.1 30.1±.5 72.5±.2 33.1±.6 32.1±.3

GPT-3.5 66.2±.3 58.8±.1 45.9±.3 82.6±.4 39.3±.1 32.9±.2

Paraphrasing Llama-2-70 33.9±.1 42.3±.1 35.9±.3 78.7±.1 36.5±.5 36.1±.1

+Self-Refine (2-shot) Mixtral 39.1±.5 44.3±.1 31.6±.4 75.1±.2 35.1±.5 31.3±.2

(Deb et al., 2023)
custom Prompt "CW" GPT-3.5 41.8 49.7 51.1 - - -
Ensemble GPT-3.5 65.3 66.7 92.6 - - -

Table 9: Improvements in accuracy with various prompting strategies in the Hiding approach.

16



Name URL total examples used examples
GSM8k https://huggingface.co/datasets/gsm8k 1320 1270
AddSub https://huggingface.co/datasets/allenai/lila/viewer/addsub 109 105
MultiArith https://huggingface.co/datasets/ChilleD/MultiArith 420 350
AQuA-RAT https://huggingface.co/datasets/aqua_rat 360 316
SVAMP https://huggingface.co/datasets/MU-NLPC/Calc-svamp 1000 1000
GAIA https://huggingface.co/datasets/gaia-benchmark/GAIA 466 195
CSQA https://huggingface.co/datasets/commonsense_qa 1100 1100
OBQA https://huggingface.co/datasets/openbookqa 500 500
PIQA https://huggingface.co/datasets/piqa 3000 2000

Table 10: We report the sources where we download the datasets used in our work. For each dataset containing
many instances, we randomly composed a subset.

Generator Task Evaluator

GPT-4 GPT-3.5 Llama-2-70 Llama-2-13b Mixtral Mistral-7b

GPT-4 GSM8K 95.3 94.3 87.2 84.5 81.6 79.8
CSQA 92.3 89.5 79.7 78.9 71.3 69.6

GPT-3.5 GSM8K 92.1 89.2 75.6 72.3 70.6 69.8
CSQA 82.3 84.1 73.3 70.2 69.7 69.3

Llama-2-70 GSM8K 77.6 78.7 81.3 80.5 66.7 62.1
CSQA 66.4 67.2 78.4 76.3 62.9 62.3

Llama-2-13 GSM8K 83.2 81.7 76.8 76.4 63.1 61.3
CSQA 83.4 82.6 72.3 69.1 61.3 60.4

Mixtral GSM8K 84.3 85.6 71.4 67.9 82.3 79.3
CSQA 76.3 74.5 66.2 66.9 83.4 85.3

Mistral-7b GSM8K 79.4 80.1 69.5 68.6 75.5 73.5
CSQA 71.3 69.6 66.4 64.3 77.9 76.8

Table 11: Performances Cross-Blanking test using GPT-4 as a judge. In this test, we elicit the models to generate
the Blanked question (Section 3.2) using the A delivered from other LLMs. "Generator" refers to the model that
generates the A. "Evaluator" refers to the model that is prompted to generate the initial question (example shown in
Appendix G). Unlike Table 4, we use GPT-4 as the judge (accuracy) instead of the previously used BERTScore in
this experiment.
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