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Abstract

Causal discovery, the task of discovering the
causal graph over a set of observed variables
X1, . . . , Xm, is a challenging problem. One of
the cornerstone assumptions is that of causal suf-
ficiency: that all common causes of all mea-
sured variables have been observed. When it
does not hold, causal discovery algorithms mak-
ing this assumption return networks with many
spurious edges. In this paper, we propose a
nonlinear causal model involving hidden con-
founders. We show that it is identifiable from
only the observed data and propose an efficient
method for recovering this causal model. At the
heart of our approach is a variational autoencoder
which parametrizes both the causal interactions
between observed variables as well as the influ-
ence of the unobserved confounders. Empirically
we show that it outperforms other state-of-the-art
methods for causal discovery under latent con-
founding on synthetic and real-world data.

1. Introduction
Causal models are at the heart of science (Pearl, 2009).
They are robust as they explain away spurious associa-
tions, interpretable as we can see what causes what, and
actionable as they allow us to estimate effects. Further-
more, they generalize across different, often novel, envi-
ronments, making them suitable for many machine learn-
ing tasks (Pearl, 2009). However, deriving causal mod-
els is challenging. Not only is structure learning NP-
hard (Chickering et al., 2004), it is in fact impossible to
learn a causal model from data without making further as-
sumptions on the generating process (Pearl, 2009). One of
the cornerstone assumptions in causal discovery is that of
causal sufficiency, the assumption that we have measured

1CISPA Helmholtz Center for Information Secu-
rity, Germany. Correspondence to: David Kaltenpoth
<david.kaltenpoth@cispa.de>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

all common causes of all variables in our data. When-
ever this assumption holds, all correlations between the ob-
served variables can be explained. When causal sufficiency
does not hold, however, methods that rely on it will not
be able to adequately explain the observed correlations and
hence return a causal network with many spurious edges.

Because it is impossible to measure all relevant variables
in most applications, detecting and adjusting causal ef-
fects for such latent confounders has become an impor-
tant research theme (Ogarrio et al., 2016; Wang & Blei,
2019; Janzing & Schölkopf, 2018; Kaltenpoth & Vreeken,
2019; Ranganath & Perotte, 2018). Existing work, how-
ever, can only do so in restricted settings, e.g., for two
high-dimensional variables (Janzing & Schölkopf, 2018) or
when additional information is available, such as data from
multiple environments, labels, time, or proxies of the latent
confounders (Khemakhem et al., 2020).

In contrast, in this paper, we propose a new method for
learning a causal directed acyclic graph (DAG) from obser-
vational data in the presence of latent confounders. Given
data over variables X1, . . . , Xm, our goal is to determine
which Xi share a common cause Z, and return a causal net-
work over both observed variables and hidden confounders.

To do so, we define a nonlinear structural causal model
(SCM) with hidden confounders based on the post-
nonlinear (PNL) model (Zhang & Hyvärinen, 2010; Zhang
& Hyvarinen, 2012). We formally show that our model is
identifiable in both the linear and in the strictly nonlinear
case when the causal graph over X is sparse.

For discovery, we leverage recent advances in automatic
differentiation (Abadi et al., 2016; Baydin et al., 2018) and
present a novel method for causal discovery with hidden
confounding based on variational autoencoders (Kingma
& Welling, 2019). Specifically, the decoder is given by
our structural causal model. To ensure that we obtain an
acyclic causal network, we use a differentiable penalty
based on counting the number of weighted cycles in the
graph (Zheng et al., 2018; Yu et al., 2019).

With our approach for Nonlinear Causal Discovery un-
der Latent Confounding, NOCADILAC for short, we ef-
ficiently obtain a fully directed network over both the ob-
served variables X and their latent confounders Z. We
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show that our method is theoretically sound by proving that
it is consistent in a special case. We show through exten-
sive experimental evaluation that our proposed method is
not only theoretically sound but also does well in practice.
On synthetic data, we significantly outperform a number of
other state of the art methods for causal discovery with and
without assumptions on causal sufficiency – GFCI (Oga-
rrio et al., 2016), NOTEARS (Zheng et al., 2018), DAG-
GNN (Yu et al., 2019), 3OFF2 (Affeldt et al., 2016) and
DCD (Bhattacharya et al., 2021). We further illustrate the
importance of explicitly modeling latent confounders by
comparing NOCADILAC with DAG-GNN and DCD on
highly nonlinear real-world protein signaling data.

We include full proofs of all results in Appendix B, but
sketch the main ideas here. All code and results can be
found on the authors’ website.1

2. Preliminaries
This section introduces notation, defines the problem at
hand, and introduces our causal model.

2.1. Notation

We denote observed variables by X = (X1, . . . , Xm)⊤

and unobserved variables by Z = (Z1, . . . , Zl)
⊤, which

are governed by a joint distribution P (X,Z). Noise vari-
ables are denoted by ϵ, and we write ϵx and ϵz for noise
variables affecting X , respectively Z. We assume that our
noise follows a normal distribution ϵ ∼ N(µ,diag(σ2)I)
where σ2 contains the variances of the exogenous variables.

We write directed acyclic graphs (DAGs) as G = (V,E)
where the nodes V are comprised of the observed variables
X and (a subset of) the unobserved Z. The set of all parents
of Y in G is given by PaG(Y ). We assume that the distri-
bution P (X,Z) corresponds to a graph G satisfying faith-
fulness, sufficiency, and causal Markov conditions (Koller
& Friedman, 2009). We also refer to the parents of Y as
the causes of Y , and write Y1 → Y2 when Y1 causes Y2.

We denote nonlinear functions by τ, ν and assume that they
work elementwise, τ(y) = (τ1(y1), . . . , τm(ym)), and that
all nonlinearities τi, νi are three times differentiable, invert-
ible and consequently strictly monotonic. We write id for
the identity function, id(y) = y. We denote matrices by
capital letters A,B,C, their transposes by A⊤, B⊤, C⊤,
and use I to refer to the identity matrix. The entries of the
matrix A are aij . We further call an adjacency matrix A
acyclic if the DAG G induced by it is acyclic.

We can now informally state our problem as follows.

Problem Statement (Informal). Given data only over the

1https://eda.rg.cispa.io/prj/fanta/

observed variables X , recover the causal model over both
X and its unobserved confounders Z.

To formalize this problem, we next describe the structural
causal models we are considering.

2.2. Structural Causal Models

To describe our data-generating process, we begin by in-
troducing structural causal models (SCMs, Pearl (2009))
for the observed variables X when no latent confounders
Z are involved. If all causal relationships are linear, we can
write the model as a standard linear SCM,

X = A⊤X + ϵ , (1)

where each ϵi is independent of the parents PaG(Xi) of
Xi. Since the non-zero entries of the matrix A encode a
DAG, there are no paths of length m + 1 in G, so that the
matrix satisfies Am+1 = 0. In particular, the matrix C⊤ :=
(I −A⊤)−1 =

∑m
k=0 A

k exists. By rearranging terms, we
can therefore equivalently write

X = C⊤ϵ .

To generalize this, we now include element-wise post-
nonlinearities τ in the causal model (Taleb & Jutten, 1999),

X = τ(C⊤ϵ) . (2)

As we assume the τ to be invertible, it is straightforward
to show this model is equivalent to the well-studied post-
nonlinear (PNL) causal model (Zhang & Hyvärinen, 2010),
and refer the reader to Appendix A. The PNL model is
suitable when sensors or measurements introduce nonlinear
distortions in the observed variables. Moreover, this class
of nonlinear causal models is known to permit identifiabil-
ity of the causal DAG under general conditions (Zhang &
Hyvarinen, 2012; Peters et al., 2014). These models are
therefore appropriate for our setting both due to their ease
of computability (Yu et al., 2019) as well as to facilitate
theoretical tractability in the following.

Our next step in formalizing the problem is introducing la-
tent factors in the structural causal model.

2.3. Confounders in SCMs

To describe the effects of latent confounders, we replace X
by (X,Z)⊤ in the model of Eq. (1),(

X
Z

)
=

(
A⊤

XX A⊤
XZ

0 0

)(
X
Z

)
+

(
ϵx
ϵz

)
,

where we assume the matrices AZX , AZZ = 0 so that
all Pa(Zj) = ∅. Note that for Gaussian variables Z, this
assumption is a natural one. If Z1 → Z2 and Z2 af-
fects precisely two variables X1, X2, then replacing the
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Z1 Zl· · ·

H1 Hm· · ·

ϵ1 ϵm

X1 Xm· · ·

Figure 1: Graphical representation of the generating model
in Eq. (4). The variables Z and ϵ generate the correlated
noise H = B⊤Z+ϵ, which then generates X = τ(C⊤H).
Shaded nodes are unobserved ϵ,H are unobserved, while
unshaded nodes X are observed.

edge Z1 → Z2 with direct edges Z1 → X1, X2 and the
correct parameters results in an indistinguishable distribu-
tion P (X). We will elaborate further on the need for this
asumption in Section 3.1. We can therefore focus on the
generating mechanism of X , which we write as

X = A⊤X +B⊤Z + ϵ , (3)

where A = AXX , B = AXZ and ϵ = ϵx. Equivalently, for
C⊤ = (I −A⊤)−1 as above we have

X = C⊤(B⊤Z + ϵ) .

Adding latent confounders thus replaces the uncorrelated
noise ϵ with correlated noise terms B⊤Z + ϵ. It is in this
spirit that we generalize our nonlinear model of Eq. (2) as

X = τ(C⊤(B⊤Z + ϵ)) , (4)

or equivalently X = ν(X) + B⊤Z + ϵ where ν = id −(
τ ◦ C⊤)−1

. We graphically depict the data-generating
model in Figure 1. Here, H = B⊤Z + ϵ represents the
correlated noise obtained as a mixture of Z and ϵ. Having
introduced our causal model with latent confounders, we
can state our problem formally.
Problem Statement (Formal). Given data from

X = τ(C⊤(B⊤Z + ϵx))

Z ∼ N(0,diag(σ2
z)I)

ϵ ∼ N(0,diag(σ2
x)I) ,

recover matrices A,B capturing the dependencies between
the observed variables (up to trivial indeterminacies).

Here, by trivial indeterminacy we mean the following. We
can write our problem as an overcomplete independent
component analysis (OICA) problem (Comon, 1992),

X = τ

(
(C⊤B⊤ C⊤)

(
Z
ϵ

))

and by writing Q = (C⊤B⊤ C⊤) we know that Q can
only be identified up to permution and scalar multiplica-
tion of its columns. That is, any matrix Q′ = QΠΛ can
induce the same distribution P (X) under rescaling of the
noise variables ϵ, where Π is a permutation and Λ a diag-
onal matrix (Eriksson & Koivunen, 2004). Consequently,
when we talk about uniqueness or identifiability of any of
the parameters below, we will be talking about uniqueness
modulo such trivial indeterminacies.

Since our exogenous noise variables ϵ are all Gaussian, ad-
ditional non-trivial indeterminacies are possible (Eriksson
& Koivunen, 2004; Hyvarinen et al., 2019). We therefore
study conditions under which our causal model becomes
identifiable in the next section.

3. Theory and Methodology
In this section, we first give identifiability guarantees for
our causal model. We then describe our method for re-
covering the causal model over the observed X and unob-
served Z and show that it is consistent in the linear setting.

3.1. Identifiability

In general, without further assumptions, our causal model
is not identifiable. To see this, consider the model from
Eq. (3) with X = (X1, . . . , X4)

⊤ and one-dimensional Z

X = A⊤X +B⊤Z + ϵ .

Without further assumptions on A or B, the model has
many equivalent parametrizations.

To give the simplest example in which we can prove
uniqueness of the parameters, consider the model Xi =
biZ + ϵi. Then no Xi has a causal influence on any other
Xj , but all pairs Xi, Xj are correlated with covariances

σij := cov(Xi, Xj) = bibj .

If we try to fit a causal graph over only the variables
X , we will find all variables to be connected. That is,
the causal network over X would form a complete net-
work (Elidan et al., 2000). However, the pairwise correla-
tions satisfy the following constraint for all distinct quadru-
ples i, j, u, v (Silva et al., 2006),

σijσuv = σiuσjv ,

so that the six pairwise correlations lie on a four-
dimensional manifold. The inferred causal mechanisms are
therefore correlated with each other, violating the principle
of independent mechanisms (Janzing & Schölkopf, 2010).
To achieve identifiability of our causal model in a more
general setting, we make the following assumptions.
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Figure 2: Example graphs illustrating our structural assumptions. (a) All observed variables are confounded by the same
factor Z1, and 6 edges exist between its children S1. (b) Two different confounders affecting five nodes each, and one
additional edge incoming to each of the sets. (c) As in (b), but this time Z2 affects one of the nodes in S1. (d) This graph
violates the assumptions because S1 has too many additional edges incoming.

Assumption 1. There exists a partition of the variables X
into l disjoint sets S1, . . . , Sl of sizes |Sj | ≥ 4 such that
for each variable Xi ∈ Sj the the direct causal effect bij of
Zj → Xi is non-zero, bij ̸= 0.

As in the example, this assumption guarantees that each Zj

has an influence on a subset Sj of the variables X that is
sufficiently large to recover its parameters bij . Of course,
this would not avail us much if the overlaps between sets
are too large, e.g., when two variables Zj ̸= Zk have ex-
actly the same sets Sj = Sk of downstream effects. To
prevent such cases, we introduce our next assumption.

Assumption 2. There are at most |Sj | − 4 edges incoming
to vertices in Sj , aside from the edges Zj → Sj .

This assumption ensures that the different Zj , Zk cannot
have too much overlap in their Sj , either through direct
connections of Zj → Sk, or through indirect paths Zj →
Sj → Sk. That is, the sets Sj are only weakly connected to
each other to ensure distinguishability between the effects
of different Zj . Note in particular that since models with
Zj → Zk are indistinguishable from models where each
node in Xi ∈ Sk also has an edge Zj → Xi, this assump-
tion requires Z to be jointly independent. Likewise, as we
saw in the first example, there also cannot be too many con-
nections between variables within Sj , as this makes it im-
possible to tell which correlations are due to Zj , and which
due to causal effects of variables within Sj .

Assumption 3. For all distinct Xi, Xj , Xu, Xv that are
not conditionally independent given Z, and their covari-
ances σrs, we have σijσuv ̸= σiuσjv.

This assumption guarantees that the weights in A are not
picked adversarially so as to make it seem as if the variables
are purely confounded when they are not. It ensures that
when we observe low-dimensional correlation structres that
can be more readily explained by a latent confounder as
in the example above, these correlations are in fact due to

such a latent confounder. When the non-zero weights of A
are sampled from a continuous probability distribution, this
assumption holds with probability 1.

Assumption 4. Either τ = id and ϵx ∼ N(0, σ2
xI), or τi

is strictly nonlinear for all i, d2

dy2 τi(y) ̸= 0 for all y.

While not necessary to determine the effects of the latent
confounders Z, this assumption is necessary for the iden-
tification of the matrix A determining causal relationships
between the observed variables X . The first case corre-
sponds to the well-known identifiability of causal models
for linear Gaussian models with equal noise variances (Pe-
ters & Bühlmann, 2012). The second case corresponds to
the identifiablity of PNL models (Peters et al., 2014).

With these assumptions, we can now state our main result.

Theorem 1 (Identifiability). Let the distribution P (X,Z)
be generated by the model (4) and let assumptions 1– 4
hold. Then the matrices B,C (and therefore A) are identi-
fiable up to trivial indeterminacies.

Proof Sketch. Since all nonlinearities τi, τj are invertible,
the mutual information terms I(Xi, Xj) can be correlated
similar to the covariances in the example. Further, due to
sparsity, for each Zj , each of its children Xi is part of a
quadruple Xi, Xu, Xv, Xw permitting bij to be inferred.
Once the effect of Z on X is known, criteria for PNL mod-
els or equal variance Gaussian models can be used, depend-
ing on τ , to infer the remaining network over the observed
X (Peters et al., 2014; Peters & Bühlmann, 2012).

Note that we do not need to know the sets Sj to determine
B. Instead, the tetrad constraints fully determine the sets
Sj up to permutations of its indices. If we assume that Z
and τ are normalized and we have some domain knowl-
edge, we can further get rid of the rescaling indeterminacy.

Corollary 2. Let the assumptions of Theorem 1 hold. Fur-
ther let all τi be increasing and satisfy τi(1) = 1, let
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Zj ∼ N(0, 1) and for each j let the sign of bij be known
for at least one Xi ∈ Sj . Then B is identifiable up to per-
mutations of its columns.

Next, we show that the model is identifiable with probabil-
ity tending to one for large numbers of observed variables,
even when the causal network is much less sparse than re-
quired by assumption (A3).

Theorem 3 (Identifiability for Large Dense Graphs). Let
assumptions 3 and 4 hold and let the true causal graph G
over X,Z be sampled from a directed Erdős-Rényi model
ER(m + l, p) satisfying assumption 1, with m observed
and l unobserved nodes and edge probability p < 1. Then

lim
m→∞

P (A,B identifiable) = 1 ,

where the limit is over graphs with fixed topological order.

Proof Sketch. When p < 1, for any Zj with child Xi, for
sufficiently large m we are guaranteed to find a suitable
quadruple Xi, Xu, Xv, Xw to estimate bij . Given all bij ,
the entries of A corresponding to incoming edges into Xi,
are identifiable for the same reason as in Theorem 1.

Note that we are not interested in the identifiability of the
nonlinearities τi (Zhang & Hyvärinen, 2010; Zhang & Hy-
varinen, 2012). Instead we are interested in discovering the
underlying generating DAG G as well as the effects of the
latent confounder Z, this is not an issue for our purposes.
As long as we can find any element-wise nonlinearity ν
such that ν(X) ∼ N(0,Σ) for some Σ, we have achieved
our goal. Next, we develop a method that achieves this task.

3.2. Learning with Autoencoders

In order to learn a nonlinear function ν such that ν(X) is
normally distributed, we make use of variational autoen-
coders (VAEs) (Kingma & Welling, 2019). The goal of
a VAE is to optimize the evidence lower bound (ELBO,
Kingma & Welling (2019)) defined as

LELBO := Eq(H|X) (log p(X | H))

−D (q(H | X) | p(H))

≤ log p(X)

where D is the Kullback-Leibler divergence and q(H | X)
is a distribution to be optimized over. That is, we maximize
a lower bound on the evidence log p(X)

max
q(H|X), p(X|H)

LELBO ≤ log p(X)

over some class of distributions q(H | X), called encoders,
and p(X | H), called decoders. Given a set of variables H ,
we can use Eq. (4) as decoder and write X = τ(C⊤H)

where H takes on the role of B⊤Z + ϵ. We can write the
corresponding encoder as

H ∼ N((I −A⊤)τ−1(X), σ2
z(X)B⊤B + σ2

ϵ (X)I) .

Equivalently, we can split H into the effect of the latent Z
and the independent noise ϵ as

H = B⊤Z + ϵ where

Z ∼ N(µz(X), σ2
z(X)I)

ϵ ∼ N(µϵ(X), σ2
ϵ (X)I)

s.t. B⊤µz + µϵ =
(
I −A⊤) τ−1(X) .

We show the full model in graphical form in Fig. 3.

In practice, to allow the nonlinearity τ to be learned jointly
with its inverse τ−1, it needs to have a closed-form solution
for its inverse and allow for ease of gradient computation in
the shared parameters θ. Due to its piece-wise linearity, a
stack of multiple PReLU functions applied to each variable
is therefore a good candidate. We define

τi(xi; θi) = ϕ(λi2ϕ(λi1x+ βi1;αi1) + βi2;αi2)

and τ(x; θ) = (τ1(x1; θ1), . . . , τm(xm; θm))

where ϕ(y; γ) = [y]+−γ[y]− and θ is the vector containing
all parameters {λij , αij , βij}ij (He et al., 2015).

To ensure that our learned model has a causal interpreta-
tion, we require the discovered adjacency matrix A to be
acyclic. To this end, we use a differentiable penalty h(A)
proposed by (Zheng et al., 2018; Yu et al., 2019)

h(A) := tr ((I +A⊙A/m)m)−m

= trace(I) +
m∑
i=1

(
m

i

)
trace((A⊙A/m)

i
)−m

which counts the weighted number of loops of each length
i in the graph G with adjacency matrix A. Here A ⊙ A
denotes the Hadamard product, (A ⊙ A)ij = A2

ij . There-
fore h(A) = 0 if and only if the graph described by the
adjacency matrix A is acyclic.

In general, however, we not only care that A is acyclic, we
are particularly interested in finding sparse matrices A and
B encoding simple and interpretable causal networks. Un-
der such a sparsity constraint, our approach is consistent.
Theorem 4 (Consistency under Sparsity). Let xn be a sam-
ple generated from the model in Eq. (4) with τ = id and let
assumptions 1– 4 hold. Let L be the score

L(xn;A,B) := −LELBO + λA ∥A∥0 + λB ∥B∥0 ,

and let Â, B̂ be its maximizers subject to acyclicity,

Â, B̂ = argmax
A,B

L(xn;A,B)

s.t. h(A) = 0 .
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µϵ
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ϵ
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B

(I −A⊤)−1 τ X̂

Figure 3: Proposed model architecture. The encoder outputs both noise ϵ and confounder Z. Learnable parameters include
the adjacency matrix A of the causal model over the observed variables as well as the matrix B containing the influence of
Z on the observed nodes.

Then for small enough σϵ(X), σz(X) the score L is con-
sistent for recovering the matrices A,B when λA = λB =
log(n)/2:

lim
n→∞

P (Â = A, B̂ = B) = 1 .

Proof Sketch. When τ = id and σz, σϵ = 0, LELBO can be
written as 1

2

∥∥(I −A⊤)X
∥∥2
F

for where X is the data ma-
trix for xn. As before, B can be discovered by finding ap-
propriate quadruples, and the network can be approximated
by using consistency results for linear Gaussian models
with equal variance (Van de Geer & Bühlmann, 2013).

This result applies only to the linear case, for which
the identifiability of overcomplete ICA has been estab-
lished (Eriksson & Koivunen, 2004). In contrast, for non-
linear ICA, even the non-overcomplete case is riddled with
difficulties, requiring additional assumptions of specific
kinds of sparsity, independence of mechanisms, or auxil-
iary information (Zheng et al., 2022; Gresele et al., 2021;
Khemakhem et al., 2020). To the best of our knowledge,
these approaches do not (easily) extend to overcomplete
nonlinear ICA, preventing us from providing any better
consistency results at this point in time.

In practice, the regularizers ∥·∥0 are not differentiable, so
we use the common practice of replacing them with L1

norms ∥·∥1. The overall learning problem including the
nonlinearities τ(·; θ) defined above is therefore

min
A,B,θ

f(xn;A,B, θ) := −LELBO + λA ∥A∥1 + λB ∥B∥1

s.t. h(A) = 0 .

To obtain a fully differentiable optimization target, we use
the augmented Lagrangian approach (Bertsekas, 1997)

L(A,B, θ, λ) = f(A,B, θ) + λh(A) +
ρ

2
|h(A)|2 .

which can be solved using dual ascent (Bertsekas, 1997).
We include further details on the computation of the terms
as well as the optimization in Appendix C.

4. Related Work
Causal inference is arguably one of the most critical re-
search areas in statistical inference and has recently gained
much attention among researchers (Pearl, 2009). The ex-
istence of hidden confounders and selection bias makes it
impossible, however, to infer causality from purely obser-
vational data without additional assumptions (Pearl, 2009).
When causal sufficiency is assumed, both constraint-
based (Spirtes et al., 2000; Zhang, 2008) and score-
based (Chickering, 2002; Scanagatta et al., 2015; Ramsey
et al., 2017) methods can discover causal networks up to
Markov equivalence. These methods are, however, based
on discrete optimization and do not benefit from recent
advances in automatic differentiation (Abadi et al., 2016;
Baydin et al., 2018).

To make use of these advances, Zheng et al. (2018) re-
formulate network inference as a continuous optimization
problem by introducing a differentiable constraint measur-
ing how many cycles a matrix contains. While initially
designed for purely linear relationships, it has been gen-
eralized to permit nonlinear relationships (Zheng et al.,
2020; Yu et al., 2019). However, none of the aforemen-
tioned methods can distinguish between networks inside
the Markov equivalence class (MEC).

When additional assumptions are made, it becomes pos-
sible to distinguish between Markov equivalent networks.
Based on the asymmetry between factorizations of the joint
distribution in the causal and the anti-causal directions, it
is possible to determine causal directions in both the bi-
variate (Zhang & Hyvarinen, 2012; Daniusis et al., 2012;
Janzing et al., 2012) as well as multivariate cases (Peters &
Bühlmann, 2012; Bühlmann et al., 2014; Mian et al., 2021).

In the presence of latent confounders, several methods,
such as GFCI (Ogarrio et al., 2016; Colombo et al., 2012)
or 3OFF2 (Affeldt et al., 2016) and convex optimization-
based approaches (Chandrasekaran et al., 2010), can find
causal networks in which undirected edges indicate la-
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tent confounding. Specifically, Nested Markov Models
(NMMs) (Shpitser et al., 2014; 2018; Richardson et al.,
2017; Evans & Richardson, 2019) can sometimes provide
identifiability of causal models with latent factors by us-
ing Verna constraints. The recent approach DCD by Bhat-
tacharya et al. (2021) combines NMMs with the differen-
tiable constraint by Zheng et al. (2018) to discover a par-
tially directed causal network indicating which nodes are
likely confounded. However, all of these methods return
MECs. In particular, they cannot tell which nodes share a
confounder, making their results difficult to interpret.

To relieve this issue, several approaches determine whether
sets of variables share a confounder. Janzing & Schölkopf
(2018) use geometric properties of high-dimensional re-
gression problems to assess whether variables are con-
founded, while Kaltenpoth & Vreeken (2019) use the min-
imum description length principle (Grünwald, 2007) to
test whether the confounder improves the compression of
the observed data. In contrast, Wang & Blei (2019) and
Ranganath & Perotte (2018) explicitly model latent con-
founders using factor models to adjust causal estimates for
their presence. However, none of these approaches infer
causal networks in the presence of confounders.

5. Experiments
In this section, we evaluate our method NOCADILAC em-
pirically. We are interested in how well it 1) recovers the set
of nodes affected by Z and 2) recovers the entire causal net-
work. We compare with other state-of-the-art methods for
network discovery, including those that permit latent con-
founding, using GFCI (Ogarrio et al., 2016), 3OFF2 (Af-
feldt et al., 2016), and DCD (Bhattacharya et al., 2021),
and those assuming causal sufficiency, NOTEARS (Zheng
et al., 2018) and DAG-GNN (Yu et al., 2019).

We implemented NOCADILAC using Tensor-
flow (Abadi et al., 2016) and perform optimization
using Adam (Kingma & Ba, 2014). For our competitors,
we use the implementations provided by the authors. We
make all code and results available in the supplement.

5.1. Synthetic Data

We first describe our data-generating process, followed by
the metrics we use to evaluate our method. We then show
the results of each competitor in multiple settings.

DATA GENERATION

We begin by giving an overview of our data generation
process. First, we use the Erdős-Rényi model to generate
a random DAG with p = 0.3. We then generate a cor-
responding adjacency matrix with Aij ∼ U [−1, 1] when
(i, j) ∈ G. Our data generating model is given by x′ =
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Figure 4: Evaluation on synthetic networks of size 25. We
show F1 scores for (a) network discovery and (b) con-
founded set recovery (higher is better), as well as (c) struc-
tural Hamming distance and (d) structural intervention dis-
tance (lower is better). Each figure shows the average score
over increasing fractions of all datasets, sorted for each
method from most confident to least. We see that NO-
CADILAC outperforms its competitors at all levels. In par-
ticular, in confounded set recovery (b), NOCADILAC per-
forms better at its worst than its competitors at their best.

A⊤g(x′)+ ϵ where g(x′) = µ+α⊙ f(x′) where f is uni-
formly sampled from linear, quadratic, cubic, exponential,
logistic or sinusoidal functions and (µ, α) ∼ U [−1, 1]2m
are i.i.d. The noise is ϵ ∼ N(0, 1).

To generate the observed data x, we remove sample x′

from the above model and remove l source nodes z =
(x′

k1
, . . . , x′

kl
). In the interest of space, we here consider

confounders z of dimension l = 1 but include analysis for
varying l to Appendix E. We use sample size n = 2500
and repeat each experiment 500 times.

EVALUATION METRICS

To evaluate NOCADILAC, we consider the following met-
rics chosen to capture different aspects of causal network
discovery with confounders. To measure how well we re-
cover the overall network, we use the Structural Hamming
Distance (SHD) as well as the F1 score for network dis-
covery, which we denote F net

1 . As we are particularly con-
cerned with discovering which nodes are confounded, we
further consider the F1 score for confounded node recov-
ery, denoted F conf

1 , which measures how well we recover
children of z. Since all of the above metrics measure only
the structural similarity between the true and recovered net-
works, we also use the Structural Intervention Distance
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Figure 5: Evaluation on synthetic networks of different
sizes. We show F1 scores for (a) network discovery and
(b) confounded set recovery (higher is better), as well as (c)
structural Hamming distance and (d) structural intervention
distance (lower is better).

(SID) (Peters & Bühlmann, 2013), which measures how
many interventional distributions differ between the true
and the recovered network.

To ensure that our evaluation also has practical signifi-
cance, we do not only look at the average performance of
each method over all generated datasets. Instead, we want
a metric that is easy to compute solely from the observed
and that we can use to predict the quality of our discov-
ered causal model. To do so, we consider the relationship
between the confidence, defined as the improvement of the
discovered model over the null model, and the performance
measured by the above metrics. Formally, we define the
confidence of a method as the relative gain in its score L
over the null model

C =
L(X; 0)− L(X; θ∗)

L(X; 0)
, (5)

where L(X; θ∗) is the score optimized by the method and
L(X; 0) corresponds to an empty model. We are therefore
interested in the relationship between C and the metrics
above: a good method should obtain better scores where it
is confident than where it is not.

CONFIDENCE AND PERFORMANCE

To evaluate the relationship between the confidence C and
each used metric, for each competitor we order the gener-
ated datasets and recovered networks in descending order
by their obtained confidence C. For NOCADILAC, DAG-
GNN, NOTEARS, and DCD, we can use the definition of
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Figure 6: Evaluation on REGED. F1 scores for (a) net-
work discovery and (b) confounded set recovery (higher is
better), as well as (c) structural Hamming distance and (d)
structural intervention distance (lower is better).

Eq. (5). However, since GFCI and 3OFF2 do not optimize
a score, we order their decisions in the way most favorable
to them. We include more details in Appendix D.

To show the relationship between confidences and each re-
spective metric, we create decision rate plots. They show
the average performance over the top k% datasets, sorted
from most to least confident. We show these decision rate
plots in Fig. 4. For NOCADILAC, all metrics correlate
strongly with C, suggesting that it can be used to deter-
mine which network discoveries are more reliable than oth-
ers. For NOTEARS and DAG-GNN, confidence correlates
with F net

1 , SID and SHD, but since these methods are not
able to find confounders, their F conf

1 score is zero through-
out. Overall NOCADILAC outperforms its competitors by
a large margin for all metrics.

PERFORMANCE FOR DIFFERENT NETWORK SIZES

To see how well NOCADILAC performs for larger net-
works, we next test all methods for networks of sizes
m ∈ {10, 25, 50, 100}. We show the results in Fig. 5.
For all metrics, NOCADILAC outperforms its competitors
by a large margin. While all methods show decreasing per-
formance for increasing network size m, NOCADILAC is
most robust against increasing network sizes. As the net-
work size increases, the gap becomes smaller for the F1

scores. This is due primarily to the latent confounder af-
fecting only a smaller fraction of variables as we increase
the network size. Meanwhile, especially for SID, the gap
becomes more prominent as every incorrect edge between
nodes simultaneously affects many other pairs of nodes.
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Figure 7: Results on the Sachs dataset. NOCADILAC discovers a confounder Z capturing the influence of PKC (green
edges). In contrast, DAG-GNN finds many edges between nodes influenced by PKC (red) and DCD contains indications
of confounding for many pairs of nodes, but neither method can determine that nodes share a confounder. All methods
make roughly the same number of errors regarding reversed edges (dashed), including some edges only as indirect paths
(dotted), and missing edges (gray).

5.2. REGED Benchmark Data

To evaluate NOCADILAC on data that violates our as-
sumptions, we evaluate it on the REGED dataset (Guyon
et al., 2008). This dataset contains “re-simulated” created
by matching the distribution of real microarray gene ex-
pression data. It contains m = 999 features and n =
20 500 non-i.i.d. samples. To introduce confounders, we
cannot use the whole network to evaluate NOCADILAC.
Instead, we generate subgraphs of different sizes contain-
ing nodes with common parents, whose data we hide from
our methods. We include the full details in Appendix F.

We show decision rate plots for all metrics in Fig. 6. While
all methods perform worse than on synthetic data, NO-
CADILAC nevertheless performs best by a large margin.

5.3. Case Study: Protein Signaling Network

Last, to see how well NOCADILAC works on real-world
data, we evaluate it on the widely used Sachs dataset (Sachs
et al., 2005) for protein signaling. It contains n = 7466
continuous measurements of a total of m = 11 phosphory-
lated proteins and phospholipids in human immune system
cells. The consensus network contains 20 edges, which we
show in Fig. 7a. Since the graph contains cycles, some
mistakes are inevitable. To make the data appropriate for
our setting, we remove the node PKC with out-degree four
from the network. Note that the edge from PIP2 to PKC
violates our assumption that latent confounders have no in-
coming edges. We show the benefit of explicitly modeling
confounders by comparing against DAG-GNN and DCD.

We show the results of this experiment in Fig. 7. In Fig. 7b,
we see that NOCADILAC automatically discovers a substi-
tute latent factor Z connected to the correct variables (green
edges) and thereby takes the place of PKC. For the overall
network, only three edges are missing entirely (gray), while

two are reversed (dashed), and another three are instead
contained as paths of length 2 (dotted). This performance
is similar to the result of other state-of-the-art methods on
fully observed data (Yu et al., 2019). In Fig. 7c, we see the
result of DAG-GNN. The absence of PKC from the ob-
served data leads to DAG-GNN inferring a large number
of edges (red) between nodes initially connected to PKC
while making more mistakes over the remaining variables.
We see a similar pattern in the results of DCD in Fig. 7d.
Many pairs of children of PKC are considered to be po-
tentially confounded (red), but so are many other pairs of
variables that do not have PKC as parent. It is also unclear
which pairs share the same latent parent. Furthermore,
DCD misses many more edges than either NOCADILAC
or DAG-GNN. Overall, NOCADILAC produces more ac-
curate and interpretable results than its competitors.

6. Conclusion
In this paper, we proposed a method for discovering a non-
linear causal model in the presence of latent confounders
from observational data. We proved the identifiability of
our causal model and proposed an effective approach to
learn the parameters based on VAEs. We showed the theo-
retical soundness of our method by proving that the LELBO
with sparsity and acyclicity constraints forms a consistent
scoring criterion when the generating model is linear.

Empirical evaluation showed that NOCADILAC works
well not only on linearly but also on nonlinearly generated
data. On real-world data, we saw that compared to its com-
petitors, it produces both quantitatively better results on all
metrics as well as qualitatively more interpretable models.

For future work, an interesting avenue will be the combina-
tion of recent theoretical insights into nonlinear ICA with
our present results to obtain better theoretical guarantees.
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A. Why our Model is a PNL Causal Model
In this section we quickly explain why our proposed model in Eq. 2 can be considered a post-nonlinear (PNL) causal
model. Note first that the model as stated is a PNL ICA model (Taleb & Jutten, 1999). We now show that this can in fact
be rewritten as PNL causal model (Zhang & Hyvarinen, 2012).

To do so, assume that the topological order is X1, . . . , Xm. Next we show for all k = 1, . . . ,m that we can write

Xk = τk

k−1∑
j=1

αjkτ
−1
j (Xj) + ϵk

 .

For k = 1 this is trivially true as the sum is empty. For the case k > 1, we have

Xk = τk

k−1∑
j=1

cjk

(
τ−1
j (Xj)−

j−1∑
l=1

αjlτ
−1
l (Xl)

)
+ ϵk


= τk

∑
j<k

cjkτ
−1
j (Xj)−

∑
l<k

 ∑
j:l<j<k

cjkαlj

 τ−1
l (Xl) + ϵk

 ,

where in the last line, we changed the order in which the dual sum is computed. To simplify this further, we need two
things. First, the matrix C = (I − A)−1 =

∑m−1
i=0 Ai has as entries cjk precisely the sum of all path weights for paths

p : j ⇝ k of any length. Second, the inside sum of the second term above,
∑

j:l<j<k cjkαlj , contains precisely the sum of
all paths p : l⇝ k of length at least two. By swapping the indices j, l in the dual sum, we therefore obtain

Xk = τk

∑
j<k

cjk −
∑

l:j<l<k

clkαjl

 τ−1
j (Xj) + ϵk

 ,

and the difference between the two weights in the inside parentheses is precisely the weight of the (at most one) path of
length one, Xj → Xk, which is precisely αjk. In particular, when all τj are strictly nonlinear then the result of Corollary
31(ii) of Peters et al. (2014) guarantees that the causal model (without confounders) is identifiable. We explain how to deal
with the inclusion of confounders in the proofs below.

B. Proofs
Proof of Theorem 1. Note first of all that for any variables Xi, Xj we have that the mutual information I(Xi;Xj) =
I(τ−1

i (Xi); τ
−1
j (Xj)). Hence, since X = τ(C⊤(B⊤Z + ϵ)), it suffices to study the fully linear Gaussian case. Note that

for two Gaussian variables, we have

I(Xi;Xj) = −
1

2
log(1− ρ2ij)

where ρij is the pair’s correlation coefficient.

It therefore suffices to show that the parameters ρij determine the matrices C and B (up to trivial indeterminacies) when
assumptions 1-4 hold. To this end, note that the variances of each variable are observable and therefore ρij and σij =
cov(Xi, Xj) contain equal amounts of information.

Now, let Zj be given. Then by assumption 2, each child Xi of Zj has a quadruple (Xi, Xu, Xv, Xw) of variables
Xu, Xv, Xw ∈ Sj that is independent given Zj . Hence, from the example in the text we know that

σiuσvw = σivσuw

so that by assumption 4 and the example in the text, we know that

b2ij = λjσiuσiv/σuv,
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i.e., that bij is identifiable up to the scalar multiple λj (as well as permutations of Zj).

Given B, by assumption 4 the matrix C (and therefore A) is also identifiable. When τi is strictly nonlinear, this follows
from Corollary 31(ii) of (Peters et al., 2014). When τi = id and all ϵx have equal variances, this follows from results on
identifiability of linear Gaussian models with equal noise variances (Peters & Bühlmann, 2012).

Proof of Corollary 2. Under the additional assumptions on normalization of τi and the variances of Zj , the scalar multiple
λj in the previous proof is limited to be λj ∈ {−1, 1}. Furthermore, if for each Zj the sign of at least one bij is known,
the direction of b·j is fixed and B thus identifiable up to permutations.

Proof of Theorem 2. To prove this result, we need to show that for any p < 1, for every variable Xi, we can find triples
(Xu, Xv, Xw) such that (Xi, Xu, Xv, Xw) are conditionally independent given Zj as in the previous proof by which to
identify the value of bij .

We do this through a simple counting argument. Let Y = Xi be fixed, and U = Xu ∈ X be another variable. What is the
probability that U is not admissible in a quadruple as above? There are two possibilities:

1. Either, U is ruled out by there existing an edge X – U or an edge X ← R→ U .

2. Or, U is ruled out by being mutually connected to too many other nodes V , which are not ruled out by step 1.

We begin with the first case. The probability of this occurring is r := p+ p2 − p3 = p+ (1− p)p2 where the last term is
subtracted because otherwise, we would be counting the intersection twice. Note that for p < 1, we have r < 1. Next note
that for any r < 1 and any s < 1 we have

r + (1− r)s < 1

Hence we need to show that the probability s of the second case above is < 1. This is, however, trivial since U can only
be ruled out in this way if there is at least one edge to another variable V , i.e., it cannot have zero edges, such that the
probability s < 1 for any p < 1.

Therefore, the probability of a node U being ruled out is strictly less than 1 so that in the limit m→∞, we are guaranteed
to find at least one valid quadruple.

Proof of Theorem 3. Let us write X̂ for our reconstruction of X . With σ2
ϵ , σ

2
z = 0, a typical sample loss of our LELBO

score is then given by (Yu et al., 2019)

−LELBO =
1

2

∑(
Xij − X̂ij

)2
+

1

2

∑
H2

ij .

Furthermore in the case τ = id the reconstruction is perfect, X̂ = X and H = (I−A⊤)X so that the LELBO can be written
as

−LELBO =
1

2

∥∥(I −A⊤)X
∥∥2
F
.

Using assumptions 1-4, as in the proof of Theorem 1, for each Xij , there exists a distinct quadruple which is independent
given Zj , which permits us to explain the correlations between them by way of the parameters b·j and since the variables
cannot be rendered independent without reference to Zj , any explanation of the same correlations involving only variables
Xj would need six parameters ajk instead of the four parameters from b·j , so that due to the use of ∥·∥0 penalties the
explanation using Z is preferred. We therefore have b̂ib̂j − σij → 0 so that B̂ converges to B.

Furthermore, given the influence B of Z on X , we can learn the matrix A from the consistency result of (Van de Geer &
Bühlmann, 2013).
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C. Scoring and Optimization
We can estimate the expectation term of the ELBO by Monte Carlo Approximation

Eq(Z,ϵ|X) [log p(Z, ϵ | X)]

≈ 1

K

K∑
k=1

m∑
j=1

(
Xj − µx(Z(k), ϵ(k))j

)2
2σx(Z(k), ϵ(k))

2
j

− 2 log
(
σx(Z(k), ϵ(k))j

)
− c

where Z(k), ϵ(k) is the k-th sample for the encoding of X . We can compute the KL-divergence as

D (q(Z, ϵ | X) ∥ p(Z, ϵ))

=
1

2

∑
j

(
σZ,ϵ(X)2j + µZ,ϵ(X)2j − 2 log

(
σZ,ϵ(X)2j

) )
where µZ,ϵ = (µZ , µϵ) and similarly for σZ,ϵ.

Next, as noted above, the learning problem

min
A,B,θ

f(A,B, θ) := −LELBO + λA ∥A∥1 + λB ∥B∥1

s.t. h(A) := trace((I + (A⊙A)/m)m)−m = 0

can be reformulated as
L(A,B, θ;λ, ρ) = f(A,B, θ) + λh(A) +

ρ

2
|h(A)|2 .

and solved by using a dual ascent approach (Bertsekas, 1997). More specifically, one of the most common updating
schemes for the values A,B, θ and parameters λ, ρ is

Ak, Bk, θk = argminA,B,θL(A,B, θ;λk, ρk)

λk+1 = λk + ρh(Ak)

ρk+1 =

{
αρk ifh(Ak) > γh(Ak−1)

ρk otherwise

where α > 1, γ < 1 determine how quickly ρ increases.

The first of these equations can be solved using any black box stochastic optimization algorithm readily available in
machine learning toolboxes. For the other two equations, we use the commonly used hyperparameters α = 10, γ =
0.25 (Yu et al., 2019).

D. Evaluating GFCI and 3OFF2
As mentioned in the text, evaluating GFCI and 3OFF2 with our metrics is not straightforward. This is due to both of them
using only local scores to discern local structures, and these scores cannot be aggregated straightforwardly. We, therefore,
sort the obtained scores of both GFCI and 3OFF2 in the best possible way for their evaluation. Even so, we see that
NOCADILAC outperforms both of these methods for all metrics.

Further, GFCI does not return a unique directed graph but an equivalence class of graphical models. In particular, latent
confounding is possible for many edges in the discovered networks, but for only very few of them, they are confident that
they are confounded.

To evaluate the returned equivalence classes, we, therefore, evaluate F net
1 , F conf

1 and SID over all networks in these equiv-
alence classes where feasible – which is infrequently the case – and over a random sample of 10000 networks from these
equivalence classes where it is not. We then take the average of these scores to evaluate GFCI as this is the most rea-
sonable evaluation of their results. However, even taking the upper quartile of these scores does not change the fact that
NOCADILAC consistently outperforms GFCI.
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E. Higher-dimensional Z
We next consider the effect of including multiple confounding factors Zi in our generating data, each influencing non-
overlapping sets of 5 variables in a network of 50 variables total. We show the overall F conf

1 scores for one to five con-
founders in Table 1.

We see that for one to three confounders, NOCADILAC performs at a consistent level. However, at four and five con-
founders, its performance decreases due to the increasing difficulty of fitting a learning a good model of such complexity.
In contrast, all of DCD, 3OFF2, and GFCI perform less well from the start, and their performance drops immediately
upon adding a second latent confounder. The reason for this is instructive: since none of them infer a latent confounder
but only indicate whether pairs of variables may be confounded, they have no way of distinguishing between sets of nodes
confounded by different factors. We, therefore, ran a spectral clustering algorithm on the subgraphs containing only edges
due to pairwise confounding to return the correct number of confounded sets. Nevertheless, the returned subgraphs were
of low quality, as reflected by the very low F conf

1 scores for each of the competitors.

Number of confounders
Method 1 2 3 4 5

NOCADILAC 0.42 0.38 0.35 0.23 0.15
DCD 0.23 0.14 0.11 0.07 0.03

3OFF2 0.22 0.12 0.08 0.05 0.03
GFCI 0.21 0.07 0.03 0.02 0.01

Table 1: Comparison of NOCADILAC, DCD, 3OFF2 and GFCI for graphs with varying numbers of latent confounders.
While all methods perform well, only NOCADILAC maintains its performance as the number of latent factors increases.

F. Details on REGED Setting
As mentioned in the text, we can only use part of the network provided by REGED at once if our goal is to introduce
confounders. Instead, we generate a number of subgraphs as follows. For every node with an outdegree of at least 3, we
start by taking its children C. We then take the union of the (minimal) Markov blankets of nodes in C as our vertex set
V ′ =

⋃
c∈C MB(c) and use its induced graph G′ = G[V ′]. Note that even though we start with only C as the set of

confounded nodes, it is possible that the addition of the Markov blankets adds nodes with common parents that are not
themselves in V ′. Our confounded set is, therefore, some larger C ′ ⊇ C, which is nevertheless known beforehand.
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