
Generalization Beyond Benchmarks:
Evaluating Learnable Protein-Ligand Scoring

Functions on Unseen Targets

Jakub Kopko1∗ David Graber2,3 Saltuk Mustafa Eyrilmez4,5
Stanislav Mazurenko4,5 David Bednar4,5 Jiri Sedlar1 Josef Sivic1

1CIIRC, Faculty of Electrical Engineering, Czech Technical University in Prague
2Seminar for Applied Mathematics, Department of Mathematics, ETH Zurich

3Institute for Computational Life Sciences, Zurich University of Applied Sciences
4Loschmidt Laboratories, Faculty of Science, Masaryk University, Brno

5ICRC, St. Anne’s University Hospital, Brno

{jakub.kopko, josef.sivic}@cvut.cz
david.graber@sam.math.ethz.ch

Abstract

As machine learning becomes increasingly central to molecular design, it is vital to
ensure the reliability of learnable protein–ligand scoring functions on novel protein
targets. While many scoring functions perform well on standard benchmarks, their
ability to generalize beyond training data remains a significant challenge. In this
work, we evaluate the generalization capability of state-of-the-art scoring functions
on dataset splits that simulate evaluation on targets with a limited number of known
structures and experimental affinity measurements. Our analysis reveals that the
commonly used benchmarks do not reflect the true challenge of generalizing to
novel targets. We also investigate whether large-scale self-supervised pretraining
can bridge this generalization gap and we provide preliminary evidence of its
potential. Furthermore, we probe the efficacy of simple methods that leverage
limited test-target data to improve scoring function performance. Our findings
underscore the need for more rigorous evaluation protocols and offer practical
guidance for designing scoring functions with predictive power extending to novel
protein targets.

1 Introduction
Structure-based drug discovery seeks to identify molecules that bind with high affinity and selectivity
to a target protein based on structural information of the protein and ligand. In this setting, machine
learning (ML) has been applied in two major directions. First, ML models are increasingly used
to generate or predict energetically favorable protein-ligand conformations (binding poses) [1–4],
complementing or replacing traditional docking algorithms. Second, ML supports the evaluation
of these poses through learnable scoring functions, which estimate binding affinities and guide the
ranking of candidate compounds [5–8]. Scoring functions play a central role in molecular docking,
by evaluating predicted binding poses, and in virtual screening, by prioritizing compounds from
large chemical libraries [9]. Beyond structure-based approaches, ML is also applied in structure-free
settings to screen compounds without requiring explicit protein–ligand complexes [10]. In recent
years, ML models have achieved impressive performance on standard benchmarks [11, 12], driving
growing interest in their integration into real-world drug discovery pipelines.
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However, the ability of ML-based scoring functions to generalize to novel protein targets remains an
important and increasingly relevant challenge, as many therapeutically significant proteins are poorly
represented in current datasets. PLINDER [13], a database that clusters protein–ligand complexes
according to their structural similarity, provides a useful view of this problem. In the PDBbind
database [14, 15], for example, some medically important targets, including the APOE4 variant [16]
and the KEAP1 Kelch domain [17], have only a few available complexes. APOE4, a major genetic
risk factor for Alzheimer’s disease [16], appears as a small cluster of only two complexes with
nearly identical ligands. KEAP1, an important target in cancer research [18], is represented by just
18 highly similar pockets in PDBbind. Beyond naturally occurring proteins, advances in protein
design, increasingly accelerated by machine learning [19], are beginning to produce proteins with
novel binding sites [20]. Designing such sites de novo offers advantages over repurposing natural
proteins: it can enable functions not found in nature and allows integration of engineering principles
such as tunability, controllability, and modularity directly into the scaffold. In synthetic biology,
for example, de novo proteins are being developed to create new metabolic or signaling pathways,
where small-molecule modulators could provide external control over these functions [21]. Scoring
models must therefore be able to evaluate potential small-molecule interactions in scenarios that lie
far outside their training data distribution. As the prevalence of such cases grows, understanding
model performance on structurally novel, low-data targets becomes essential.

Despite encouraging benchmark results, the ability of current models to generalize to unseen targets or
unfamiliar chemical scaffolds remains uncertain [22, 23]. Several studies have revealed data leakage
and inflated performance estimates [7, 24–26], primarily driven by biases in training datasets where
protein families such as kinases and proteases are overrepresented and many complexes share high
structural and ligand similarity. Widely used benchmarks, including CASF-2016 [27], DUD-E [28],
and DEKOIS2.0 [29], often contain target–ligand combinations resembling those in the training data
(see Figure 1), which leads to overly optimistic performance estimates and obscures the true difficulty
of generalizing to novel proteins. Many of those failures stem from dataset and evaluation biases
rather than inherent model limitations. Overcoming these biases is essential for reliable deployment
of ML-based scoring functions in drug discovery.

Contributions. The contributions of this work are threefold. First, we present a systematic evalua-
tion of two top-performing machine learning–based scoring functions: GEMS [7] and GenScore [8].
To rigorously assess their ability to generalize, we construct a strict series of dataset splits that limit
pocket similarity between training and test sets, providing a framework for out-of-distribution (OOD)
evaluation of scoring functions. In contrast to previous leakage analyses, which have mainly focused
on docking and pose-generation tasks [13, 30, 31], our work targets the scoring problem directly
and evaluates two models that have not been tested under such stringent conditions. Second, to
explore potential solutions, we further investigate whether large-scale self-supervised pre-training
with ATOMICA [32] embeddings can improve generalization by capturing atomic-scale interaction
features across molecular modalities. These representations show preliminary promise in bridging
the performance gap on novel targets. Finally, we investigate the scenario where a small number of
experimental affinity measurements for the target ligand is available. We explore how to incorporate
such measurements in validation or fine-tuning setups. Overall, our analysis highlights critical
limitations in current evaluation practices and introduces new directions for developing more robust
and generalizable scoring functions for real-world drug discovery applications.

2 Related work

Computational methods for protein-ligand scoring. Structure-based drug discovery (SBDD)
uses three-dimensional structural information of biomolecules—typically proteins—to identify or
develop new drugs. A central task in SBDD is identifying ligands that bind to a target protein
with high affinity and specificity. A critical component of this process is scoring, which refers to
estimating the strength of a protein–ligand interaction given a binding pose. Scoring enables two
key applications: docking, where the goal is to identify the most likely binding pose of a ligand, and
virtual screening, where compounds are ranked by predicted binding affinity to prioritize the most
promising candidates.

Traditional physics-based scoring functions vary significantly in their computational cost and accuracy.
Molecular mechanics (MM) methods (e.g., [33–35]) are relatively efficient and capture basic physical
interactions but they offer limited accuracy for binding affinity prediction. More sophisticated
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approaches exist, among which quantum mechanical (QM) methods (e.g., [36, 37]) improve estimates
by explicitly accounting for electronic effects. Free energy perturbation (FEP) [38], in contrast, is
not merely a scoring function but a simulation-based method that can provide rigorous estimates of
ligand binding free energies through extensive conformational sampling. However, both QM and
FEP approaches are far too computationally expensive to be applied in large-scale virtual screening.

Machine learning for protein–ligand scoring. Recent machine learning (ML) models aim to
offer a combination of speed and accuracy by learning scoring functions directly from structural
data. Modern architectures such as graph neural networks [39–42], graph transformers [8, 43], and
equivariant models that respect three-dimensional geometric symmetries [42, 44] can model complex
interaction patterns directly from raw atomic coordinates. Some models also explore pose-free
scoring [10], i.e., predicting binding affinity directly from the protein sequence or structure and ligand
representation (e.g., SMILES) without requiring a bound pose; however, these approaches fall outside
the scope of this work.

Most ML-based models are trained on PDBbind crystal structures [14, 15], commonly using either
experimental binding affinity labels or predicting protein–ligand interatomic distance distributions
with a mixture density network (MDN) [8], whose output probabilities are used to compute the final
score. Another notable approach used denoising score matching for unsupervised binding energy
prediction [45]. While ML scoring models have achieved strong benchmark performance, their ability
to generalize to unseen targets remains an open question.

Figure 1: The full proteins (top) and their pockets (bottom) ... [rest of caption] ...

Information leakage in protein–ligand datasets. Many structure-based protein–ligand bench-
marks suffer from ligand leakage, where structurally similar or identical binders appear in both
training and test sets with similar affinity [46]. Another issue is that binders and non-binders are
drawn from different sources (e.g., ChEMBL vs. ZINC in DEKOIS [29, 47]), enabling models to
exploit dataset-specific biases [22, 48]. These artifacts affect benchmarks such as DUD-E [28] and
DEKOIS2.0 [29]. While more recent efforts like LIT-PCBA [49] and BayesBind [47] attempt to
mitigate such artifacts, they still face duplication and leakage issues [50].

Leakage on the protein level is an equally important concern: high sequence or structural similarity
between training and test proteins can produce overly optimistic performance estimates. Several
approaches have been proposed to address this issue, evolving over time toward stricter and more
targeted splits: PoseBusters [30] found that performance of many docking models degrades under
stricter sequence-level splits; DockGen [31] reduced redundancy using ECOD [51] domain splits;
and PLINDER [13] provided clustering based on different metrics (pocket, ligand, or interaction
similarity), allowing tailored splitting according to the task, and demonstrated that DiffDock [4]
underperformed in these de-leaked settings. PDBbind CleanSplit, introduced alongside the simple
GEMS model [7], was designed to remove the most stringent similarities between PDBbind and the
CASF benchmark. On this split, GEMS outperformed larger, more complex models, suggesting that
some of the apparent progress on CASF may have resulted from the greater capacity of the complex
models to memorize and overfit.

3



Our study concentrates on protein-side generalization to novel targets, emphasizing evaluation
scenarios where the receptor itself is absent from training.

Large-scale self-supervised pretraining. Self-supervised pretraining on large unlabeled protein
and molecular datasets has proven highly effective for downstream biochemical tasks. Protein
language models such as ESM2 [52] and ANKH [53] capture biophysical properties relevant for
protein function, while chemical language models such as ChemBERTA [54] learn representations of
small molecules. We adopt the GEMS scoring function [7], which enhances graph neural networks
with protein and chemical language model embeddings to improve binding affinity prediction.

Beyond sequence and chemical models, large-scale structural pretraining has also recently emerged;
ATOMICA [32] is a geometric deep learning model trained on over two million interaction complexes
using self-supervised denoising and masking. ATOMICA learns atomic-scale representations across
proteins, small molecules, ions, lipids, and nucleic acids, yielding a compositional latent space that
encodes shared physicochemical principles. In this work, we hypothesize and test whether the breadth
of ATOMICA’s training enables better generalization in protein–ligand scoring tasks.

Figure 2: t-SNE projections of ATOMICA embeddings of ligand–pocket interactions from PDBbind,
colored by experimental affinity (left) and molecular weight (right). The large, crescent-shaped
cluster shows clear gradients of affinity and molecular weight, while the smaller, well-separated
cluster contains most of the largest ligands, indicating that ATOMICA space captures both properties.

3 Experimental setup
This section outlines the datasets, splitting strategies, training procedures, and evaluation metrics
used in our study. We also describe methods for leveraging limited test-distribution data and for
visualizing ATOMICA embeddings in two dimensions, providing intuition into the structure of the
learned representation space.

Datasets. We use PDBbind (v.2020) [14, 15] as the primary dataset for training, given its wide
adoption and availability of experimental binding affinity labels (approximately 19,000 complexes).
For benchmarking, we employ the well-established CASF-2016 dataset [27], comprising 285 high-
quality complexes. Additionally, we use PLINDER [13] for clustering and splitting PDBbind
complexes. Finally, we make use of ATOMICA [32] embeddings (ATOMICA_pretrained), obtained
via self-supervised pretraining with masking and denoising tasks on the Cambridge Structural
Database (CSD) [55], which comprises roughly 1.75 million structures, and on Q-BioLiP [56, 57],
with approximately 300,000 entries. While Q-BioLiP contains complexes overlapping with PDBbind,
ATOMICA relies only on self-supervised tasks of coordinate denoising and masked block identity
prediction, using information available at inference. We therefore do not consider this a source of
data leakage.

Train–test splitting. We first evaluate models using the original PDBbind CleanSplit benchmark,
testing on CASF targets as a baseline (Table 1). This establishes a reference point for performance
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when near-duplicate complexes are removed from the training dataset based on a joint assessment of
ligand, pose, and pocket similarity.

To construct stricter OOD evaluations, we further prepare our own train–test splits based on PLIN-
DER’s pocket-level clustering using lDDT [13] (cluster type pocket_lddt__50__community).
Seven CASF targets were selected to represent diverse protein families (PDB IDs: 1NVQ, 1SQA,
2P15, 2VW5, 3DD0, 3F3E, 3O9I). For each target, all complexes from its cluster are assigned
to a separate test set, while the remaining data is used for training and validation. This approach
ensures that the test sets contain pockets that are structurally distinct from those seen during training,
providing a more stringent evaluation of OOD generalization (see Figure 1). We also apply CleanSplit
filtering to the training and validation sets of our OOD splits, enabling evaluation on CASF without
obvious leakage and enabling direct comparison between CASF and OOD performance (see Figure 3).
Throughout this work, we refer to clusters by the PDB ID of one of the complexes used to retrieve
them (e.g., the “1NVQ cluster”). Visual inspection suggests that clusters usually contain highly
similar pockets, often preserving the protein fold. Nonetheless, the clustering procedure can, in
principle, detect similar pockets arising in different folds.

Training. To create the training datasets, the preprocessed graph representations of PDBbind
published alongside GEMS and GenScore were filtered based on the complex IDs. Models were
then trained in a 5-fold cross-validation (CV) setting with label-based stratification. To enable direct
comparisons, the original GEMS and GenScore implementations were trained on the same 5-fold
CV splits, using their respective published training scripts and setups. To generate predictions on the
test datasets, the five models obtained from cross-validation were combined into an ensemble via
prediction averaging.

Evaluation metrics. We focused on evaluating scoring power, quantified by the Pearson correlation
between predicted and true affinities. The affinity labels are based on experimental measurements of
Ki, Kd, or IC50 and are included as pK values (pK = –log(Ki/Kd/IC50)). To further demonstrate
that the observed performance drop is not merely a consequence of reduced training set size, we
include figures illustrating performance evolution on both the CASF benchmark and our test sets
(Figure 3 and Supplementary Figure S2). These figures clearly show that CASF performance, while
slightly affected, remains very high and consistently above the performance on novel test targets.

Recognizing that a robust evaluation of scoring functions extends beyond scoring power, we assessed
out-of-distribution docking and screening performance of GenScore on CASF-2016 targets from the
1NVQ cluster, using a model trained without 1NVQ cluster proteins. This cluster offers a relatively
large sample of targets (n = 50 for docking, n = 10 for screening), whereas other clusters did not
provide enough samples to yield stable, statistically significant results. As it represents only a single
target, we report these results in Supplementary Figure S3.

ATOMICA embeddings generation and projection. To examine whether pretrained molecular
representations capture properties of protein–ligand interactions that support better generalization of
scoring models, we generated ATOMICA [32] graph-level embeddings for ligand–pocket complexes
in PDBbind. Each embedding is a 32-dimensional vector, and we successfully obtained represen-
tations for 19,189 complexes (98.7% of the dataset, see below). For visualization, we employed
t-distributed Stochastic Neighbor Embedding (t-SNE), a non-linear dimensionality reduction method
that projects high-dimensional vectors into a low-dimensional space while preserving local similarity
structure. We used two components and a perplexity of 30. This projection provides an intuitive view
of how ligand–pocket complexes are arranged in the learned representation space, offering qualita-
tive insight into the organization of ATOMICA embeddings through Figure 2 and Supplementary
Figure S1.

Evaluated models. We evaluate the following four models. (1) GEMS [7] is a graph neural network
that integrates ligand embeddings from ChemBERTa [54] and protein embeddings from ESM2 [52]
and ANKH [53]. (2) GenScore [8] employs a graph transformer trained with a mixture density
network (MDN) objective to model interatomic distance distributions, building upon the approach of
RTMScore [43]. Next two methods use ATOMICA embeddings. In (3) ATOMICA-MLP, we train
a simple multilayer perceptron using ATOMICA embeddings. In (4) GEMSATOMICA, we create a
variant of the GEMS scoring function in which ChemBERTa ligand embeddings were concatenated
with ATOMICA embeddings. Embedding extraction failed for 1.3% of complexes, primarily due
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to ligand fragmentation issues. As a result, the training and validation sets for GEMSATOMICA and
ATOMICA-MLP were marginally smaller, reflecting the complexes for which embeddings could not
be computed. The test sets reported in Tables 1, 2, and 3 are identical to ensure a fair comparison
across all evaluated models.

Leveraging limited data. Laboratories often specialize in specific types of proteins and may
obtain only a limited set of crystal structures with ligands and corresponding experimental affinity
measurements for a protein of interest. Effectively leveraging such target-specific data is important
to improve predictive models under realistic conditions. To study this, we hold out 25 complexes
from each target-specific test set. These complexes are then used in two separate scenarios, with
full consistency maintained between training, validation, and test splits, accounting for ATOMICA
preprocessing errors: (i) Validation scenario, where the 25 complexes serve solely as a fixed
validation set, while the original training data remains unchanged. Models trained in this scenario
are denoted as GEMSVAL and GEMSVAL

ATOMICA. (ii) Finetuning scenario, where, starting from
the model trained with the original stratified k-fold (SKF) procedure, the best model is further
finetuned on the 25 held-out complexes using a small learning rate for 25 epochs. The original
training and validation sets are kept unchanged to ensure comparability. These models are denoted as
GEMSFT−25 and GEMSFT−25

ATOMICA for the ATOMICA variant.

4 Results
In this section, we present a comprehensive analysis of our results. We begin by visualizing ATOMICA
embeddings with t-SNE, using experimental and structural labels to provide qualitative intuition
about the organization of the representation space. We then evaluate model performance on the
PDBbind CleanSplit benchmark, followed by assessment on our stricter out-of-distribution (OOD)
splits. Finally, we investigate strategies for leveraging limited data from the test target distribution
and compare their effectiveness.

PDBbind embeddings are well organized in ATOMICA space. We first inspect the projection of
ATOMICA embeddings described in Section 3. In Figure 2, we observe an affinity gradient along the
larger, crescent-shaped cluster, which coincides with a gradient in molecular weight. Interestingly,
the very heavy molecules appear to concentrate predominantly in the smaller, well-separated cluster.
Supplementary Figure S1 shows that the three clusters used for our OOD evaluation are also localized
in distinct regions of the embedding space. Notably, the 3F3E cluster, which proved particularly
challenging for GenScore (see Table 2), is concentrated mostly in the smaller cluster corresponding
to heavier molecules. Overall, our findings provide empirical and visual evidence confirming that the
ATOMICA embedding space is well structured with respect to fundamental properties such as pocket
shapes, ligand sizes, and binding affinity.

Performance on PDBbind CleanSplit. In Table 1, we evaluate the effect of enriching the GEMS
scoring function with ATOMICA graph-level embeddings and compare it with the original GEMS
and GenScore on the CASF benchmark after training on the full PDBbind CleanSplit. In this setup,
we do not observe any advantage from incorporating the additional embeddings, with GEMSATOMICA
achieving marginally worse performance than the original GEMS (Table 1). Interestingly, while the
simplistic ATOMICA-MLP is not competitive overall, it attains a reasonable performance on the
independent subset of CASF (Table 1), highlighting that even simple models can capture some useful
information from the embeddings.

Table 1: Scoring performance of different methods trained on PDBbind CleanSplit evaluated on
CASF-2016 and the independent subset of CASF-2016 [7].

Pearson correlation ↑ RMSE ↓
Method CASF-2016 CASF-2016 Indep. CASF-2016 CASF-2016 Indep.

GenScore 0.807 0.737 1.280 1.580
GEMS 0.815 0.828 1.274 1.347
ATOMICA-MLP 0.583 0.704 1.965 1.960
GEMSATOMICA 0.808 0.822 1.292 1.361
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Performance on strictly novel targets. We next evaluate model performance on the novel-target
splits introduced in Section 3. Scoring previously unseen proteins proves substantially more chal-
lenging than established benchmarks such as CASF. For example, the best Pearson correlation on a
novel target is 0.736 (Table 2, GEMSATOMICA, target 1SQA), whereas the average across all clusters
is only 0.470 for GEMS and 0.498 for GEMSATOMICA (Table 2). By comparison, both models achieve
Pearson correlations of 0.815 and 0.808 on CASF, respectively (Table 1). Performance also varies
widely across targets: while the 1SQA cluster yields relatively strong results, clusters such as 3DD0,
2P15, 3F3E, and 3O9I all result in correlations below 0.5 for every method, underscoring the difficulty
imposed by strict generalization conditions.

GEMSATOMICA consistently outperforms the standard GEMS across all clusters except 1NVQ (Ta-
ble 2). It also achieves both the highest average and the highest minimum performance, indicating that
incorporating ATOMICA embeddings improves the robustness of scoring protein–ligand interactions
on unseen proteins. This demonstrates that more challenging benchmarks can reveal advantages of
certain approaches that remain hidden on easier benchmarks like CASF.

There is no universal winner, however. GenScore achieves the best results on the 3DD0 and 3O9I
clusters but fails completely on 3F3E, with a near-random correlation of 0.047 (Table 2). Interestingly,
even the simple ATOMICA-MLP model manages to reach top performance on the 2P15 cluster
(Table 2), showing that useful signal can be extracted from ATOMICA embeddings even with smaller
modeling capacity.

Table 2: Performance on strictly novel targets. Scoring power (Pearson correlation r ↑) across
different unseen protein clusters from the CASF benchmark. “Avg.” column reports the average
across all protein clusters and “Min.” the minimum.

Method / Target 1NVQ 1SQA 2P15 2VW5 3DD0 3F3E 3O9I Avg. Min.

#Complexes 2714 736 462 207 475 391 469 — —

GenScore 0.451 0.696 0.415 0.384 0.481 0.047 0.480 0.422 0.047
ATOMICA-MLP 0.540 0.631 0.479 0.524 0.346 0.149 0.400 0.438 0.149
GEMS 0.609 0.717 0.364 0.551 0.236 0.404 0.410 0.470 0.236
GEMSATOMICA 0.602 0.736 0.379 0.596 0.311 0.434 0.431 0.498 0.311

Figure 3: Evolution of the scoring power of the three scoring methods GenScore, GEMS and
GEMSATOMICA during model training with the original stratified k-fold splitting of the train–validation
data, evaluated on CASF-2016 and the out-of-distribution (OOD) clusters 2P15 (left) and 2VW5
(right). The x-axis shows training progress as a percentage of total training epochs, while the y-
axis displays the Pearson correlation coefficient ↑ between predicted and true affinity. Each line
represents the mean performance across five cross-validation folds, with shaded uncertainty regions
(±1 standard deviation) indicating the variability in performance across the five training runs. Note
that the uncertainty regions disappear towards higher epoch numbers due to early stopping, which
results in different models completing training at different epochs. Consequently, the later portions
of the curves are based on fewer than five models. The final results imply that the original stratified
k-fold splitting leads to overfitted models, and that using limited test-target validation data allows for
better early stopping and the selection of better models.
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Exploring strategies for utilizing limited data. We next examine strategies for leveraging a small
number of additional target complexes, either by using them for validation or by fine-tuning on them
(Table 3). The results are mixed: both validation and fine-tuning improve performance on some
clusters but degrade it on others. For instance, validation with ATOMICA embeddings improves
performance on 2P15 and 3DD0, but decreases it on 3F3E. Similarly, fine-tuning boosts results on
3DD0 and 3O9I, yet reduces them on 1NVQ and 2VW5.

A motivating example for the validation strategy is shown in Figure 3. On the left, the 2P15 cluster
illustrates that peak performance is reached early in training, visible as the hill-shaped curve of
performance evolution. Without proper early stopping, all methods exhibit overfitting, and their
performance declines to a similar level. Training dynamics varies across targets, as shown on the
right side of the figure and in Supplementary Figure S2.

Despite these fluctuations, both strategies yield overall gains compared to training without access to
the additional complexes (see GEMS and GEMSATOMICA in Table 2). In particular, they improve not
only the average but also the worst-case (minimum) performance across clusters. Among them, the
fine-tuned models achieve the strongest results, with GEMSFT−25

ATOMICA delivering the highest average
correlation (0.550) and GEMSFT−25 attaining the highest minimum (0.386).

Table 3: Performance on strictly novel targets with additional target-specific annotated data.
Scoring power (Pearson correlation r ↑) across different test protein clusters of models utilizing the
additional 25 target protein complexes for validation and fine-tuning.

Method / Target 1NVQ 1SQA 2P15 2VW5 3DD0 3F3E 3O9I Avg. Min.

#Complexes 2689 711 437 182 450 366 444 — —

GEMSVAL 0.621 0.726 0.432 0.558 0.497 0.376 0.280 0.499 0.280
GEMSVAL

ATOMICA 0.626 0.742 0.514 0.602 0.419 0.375 0.354 0.519 0.375

GEMSFT−25 0.563 0.670 0.556 0.537 0.620 0.386 0.424 0.537 0.386
GEMSFT−25

ATOMICA 0.561 0.717 0.610 0.531 0.572 0.385 0.476 0.550 0.385

5 Conclusions
We studied the challenge of training scoring functions that generalize reliably to unseen proteins.
Our results reveal a substantial gap between performance on standard benchmarks such as CASF
and on stricter, novel-target splits. While CASF remains a useful reference, its optimistic estimates
mask the difficulty of true generalization. Achieving robustness to entirely new proteins will likely
require the models to capture the underlying physical principles of protein–ligand binding. These
findings highlight the need for stricter, carefully designed benchmarks to become standard practice,
particularly in scenarios where realistic performance estimates are essential.

Consistent with prior reports on GEMS [7], our study suggests that recent gains in scoring may partly
reflect improved data memorization rather than genuine generalization. Nevertheless, augmenting
GEMS with ATOMICA embeddings consistently improved performance, showing that richer rep-
resentations can enhance generalization. We also found that even limited target-specific data can
narrow the generalization gap, boosting both average and worst-case performance.

Future directions. Future work should emphasize more restrictive data splits and systematic
reevaluation of existing methods to identify the drivers of true generalization, extending this analysis
also to docking and screening scenarios, motivated by our preliminary results showing a performance
drop on the 1NVQ cluster (see Supplementary Figure S3). řExpanding our exploration of strategies
for leveraging sparse target data, such as quantifying how performance gains scale with available
data and testing more advanced fine-tuning techniques, represents another promising avenue. Finally,
extending beyond graph-level ATOMICA embeddings to block-level (i.e., residue, nucleotide or
chemical motif level) or atom-level representations may further strengthen protein–ligand modeling.

8



Acknowledgements
This work was supported by the EU’s Horizon Europe Programme under the Grant agreement
No. 101136607 (CLARA Project), and was co-funded by the EU from the Operational Programme
Jan Amos Komenský (OP JAK) (project Center for Artificial Intelligence and Quantum Computing in
System Brain Research, reg. no. CZ.02.01.01/00/23_029/0008437). This work was further supported
by the European Union (ERC FRONTIER No. 101097822, ELIAS No. 101120237) and by the
Technology Agency of the Czech Republic under the NCC Programme (RETEMED TN02000122)
and the NRP from the EU RRF (TEREP TN02000122/001N). The article reflects the author’s view,
and the Agency is not responsible for any use that may be made of the information it contains.
Additional support was provided by the Czech Ministry of Education, Youth and Sports [ESFRI
RECETOX RI LM2023069] and the Student Grant Competition of the Czech Technical University
in Prague (SGS25/092/OHK3/2T/13). Computational resources were provided by e-INFRA CZ
and ELIXIR-CZ [ID 90254, 90255, LM2023055]. We acknowledge VSB – Technical University
of Ostrava, IT4Innovations National Supercomputing Center, Czech Republic, for awarding this
project access to the LUMI supercomputer, owned by the EuroHPC Joint Undertaking, hosted by
CSC (Finland) and the LUMI consortium through the Ministry of Education, Youth and Sports of
the Czech Republic through the e-INFRA CZ (grant ID: 90254), through the 32nd Open Access
Competition (project OPEN-32-3).

9



References
[1] J. Abramson et al., “Accurate structure prediction of biomolecular interactions with AlphaFold

3,” Nature, vol. 630, no. 8016, pp. 493–500, 2024. DOI: 10.1038/s41586-024-07487-w.
[2] R. Krishna et al., “Generalized biomolecular modeling and design with RoseTTAFold all-atom,”

Science, vol. 384, no. 6693, eadl2528, 2024. DOI: 10.1126/science.adl2528.
[3] J. Wohlwend et al., “Boltz-1 democratizing biomolecular interaction modeling,” bioRxiv,

p. 2024.11.19.624167, 2025. DOI: 10.1101/2024.11.19.624167.
[4] G. Corso et al., “DiffDock: Diffusion steps, twists, and turns for molecular docking,” arXiv,

2022. DOI: 10.48550/arxiv.2210.01776. eprint: 2210.01776.
[5] M. M. Stepniewska-Dziubinska, P. Zielenkiewicz, and P. Siedlecki, “Development and evalua-

tion of a deep learning model for protein–ligand binding affinity prediction,” Bioinformatics,
vol. 34, no. 21, pp. 3666–3674, 2018, PDBbind 2016. DOI: 10.1093/bioinformatics/
bty374.

[6] Y. Li et al., “DeepAtom: A framework for protein-ligand binding affinity prediction,” arXiv,
2019. DOI: 10.48550/arxiv.1912.00318. eprint: 1912.00318.

[7] D. Graber et al., “Resolving data bias improves generalization in binding affinity prediction,”
en, Nature Machine Intelligence, vol. 7, no. 10, pp. 1713–1725, Oct. 2025, Publisher: Nature
Publishing Group. DOI: 10.1038/s42256-025-01124-5.

[8] C. Shen et al., “A generalized protein–ligand scoring framework with balanced scoring,
docking, ranking and screening powers,” Chemical Science, vol. 14, no. 30, pp. 8129–8146,
2023, GenScore. DOI: 10.1039/d3sc02044d.

[9] W. Walters, M. T. Stahl, and M. A. Murcko, “Virtual screening—an overview,” Drug Discovery
Today, vol. 3, no. 4, pp. 160–178, 1998. DOI: https://doi.org/10.1016/S1359-
6446(97)01163-X.

[10] H. Y. I. Lam et al., “Protein language models are performant in structure-free virtual screening,”
Briefings in Bioinformatics, vol. 25, no. 6, bbae480, 2024. DOI: 10.1093/bib/bbae480.

[11] T. Harren et al., “Modern machine-learning for binding affinity estimation of protein–ligand
complexes: Progress, opportunities, and challenges,” Wiley Interdisciplinary Reviews: Compu-
tational Molecular Science, vol. 14, no. 3, 2024. DOI: 10.1002/wcms.1716.

[12] Í. Valsson et al., “Narrowing the gap between machine learning scoring functions and free
energy perturbation using augmented data,” Communications Chemistry, vol. 8, no. 1, p. 41,
2025. DOI: 10.1038/s42004-025-01428-y.

[13] J. Durairaj et al., “PLINDER: The protein-ligand interactions dataset and evaluation resource,”
bioRxiv, p. 2024.07.17.603955, 2024. DOI: 10.1101/2024.07.17.603955.

[14] R. Wang, X. Fang, Y. Lu, and S. Wang, “The PDBbind database: Collection of binding affinities
for protein-ligand complexes with known three-dimensional structures,” Journal of Medicinal
Chemistry, vol. 47, no. 12, pp. 2977–2980, 2004. DOI: 10.1021/jm030580l.

[15] Z. Liu et al., “PDB-wide collection of binding data: Current status of the PDBbind database,”
Bioinformatics, vol. 31, no. 3, pp. 405–412, 2015. DOI: 10.1093/bioinformatics/btu626.

[16] H. C. Hunsberger et al., “The role of apoe4 in alzheimer’s disease: Strategies for future
therapeutic interventions,” Neuronal Signal, vol. 3, no. 2, NS20180203, Jun. 2019, Epub 2019
Apr 18. DOI: 10.1042/NS20180203.

[17] X. Li, D. Zhang, M. Hannink, and L. J. Beamer, “Crystal structure of the kelch domain of
human keap1*,” Journal of Biological Chemistry, vol. 279, no. 52, pp. 54 750–54 758, 2004.
DOI: https://doi.org/10.1074/jbc.M410073200.

[18] S. Adinolfi et al., “The keap1-nrf2 pathway: Targets for therapy and role in cancer,” Redox
Biology, vol. 63, p. 102 726, Jul. 2023, Epub 2023 Apr 29. DOI: 10.1016/j.redox.2023.
102726.

[19] P. Notin et al., “Machine learning for functional protein design,” Nature Biotechnology, vol. 42,
no. 2, pp. 216–228, 2024. DOI: 10.1038/s41587-024-02127-0.

[20] J. L. Watson et al., “De novo design of protein structure and function with RFdiffusion,”
Nature, vol. 620, no. 7976, pp. 1089–1100, 2023. DOI: 10.1038/s41586-023-06415-8.

[21] D. M. Camacho et al., “Next-generation machine learning for biological networks,” Cell,
vol. 173, no. 7, pp. 1581–1592, 2018. DOI: 10.1016/j.cell.2018.05.015.

10

https://doi.org/10.1038/s41586-024-07487-w
https://doi.org/10.1126/science.adl2528
https://doi.org/10.1101/2024.11.19.624167
https://doi.org/10.48550/arxiv.2210.01776
2210.01776
https://doi.org/10.1093/bioinformatics/bty374
https://doi.org/10.1093/bioinformatics/bty374
https://doi.org/10.48550/arxiv.1912.00318
1912.00318
https://doi.org/10.1038/s42256-025-01124-5
https://doi.org/10.1039/d3sc02044d
https://doi.org/https://doi.org/10.1016/S1359-6446(97)01163-X
https://doi.org/https://doi.org/10.1016/S1359-6446(97)01163-X
https://doi.org/10.1093/bib/bbae480
https://doi.org/10.1002/wcms.1716
https://doi.org/10.1038/s42004-025-01428-y
https://doi.org/10.1101/2024.07.17.603955
https://doi.org/10.1021/jm030580l
https://doi.org/10.1093/bioinformatics/btu626
https://doi.org/10.1042/NS20180203
https://doi.org/https://doi.org/10.1074/jbc.M410073200
https://doi.org/10.1016/j.redox.2023.102726
https://doi.org/10.1016/j.redox.2023.102726
https://doi.org/10.1038/s41587-024-02127-0
https://doi.org/10.1038/s41586-023-06415-8
https://doi.org/10.1016/j.cell.2018.05.015


[22] J. Yang, C. Shen, and N. Huang, “Predicting or pretending: Artificial intelligence for protein-
ligand interactions lack of sufficiently large and unbiased datasets,” Frontiers in Pharmacology,
vol. 11, p. 69, 2020. DOI: 10.3389/fphar.2020.00069.

[23] M. Volkov et al., “On the frustration to predict binding affinities from protein–ligand structures
with deep neural networks,” Journal of Medicinal Chemistry, vol. 65, no. 11, pp. 7946–7958,
2022, PDBbind 2019. DOI: 10.1021/acs.jmedchem.2c00487.

[24] C. Kramer and P. Gedeck, “Leave-cluster-out cross-validation is appropriate for scoring
functions derived from diverse protein data sets,” Journal of Chemical Information and
Modeling, vol. 50, no. 11, pp. 1961–1969, 2010. DOI: 10.1021/ci100264e.

[25] Y. Li and J. Yang, “Structural and sequence similarity makes a significant impact on machine-
learning-based scoring functions for protein–ligand interactions,” Journal of Chemical Informa-
tion and Modeling, vol. 57, no. 4, pp. 1007–1012, 2017. DOI: 10.1021/acs.jcim.7b00049.

[26] M. S. Sellner, M. A. Lill, and M. Smieško, “Quality matters: Deep learning-based analysis of
protein-ligand interactions with focus on avoiding bias,” bioRxiv, p. 2023.11.13.566916, 2023.
DOI: 10.1101/2023.11.13.566916.

[27] M. Su et al., “Comparative assessment of scoring functions: The CASF-2016 update,” Journal
of Chemical Information and Modeling, vol. 59, no. 2, pp. 895–913, 2019. DOI: 10.1021/
acs.jcim.8b00545.

[28] M. M. Mysinger, M. Carchia, J. J. Irwin, and B. K. Shoichet, “Directory of useful decoys,
enhanced (dud-e): Better ligands and decoys for better benchmarking,” Journal of Medicinal
Chemistry, vol. 55, no. 14, pp. 6582–6594, 2012. DOI: 10.1021/jm300687e.

[29] M. R. Bauer, T. M. Ibrahim, S. M. Vogel, and F. M. Boeckler, “Evaluation and optimization
of virtual screening workflows with dekois 2.0 – a public library of challenging docking
benchmark sets,” Journal of Chemical Information and Modeling, vol. 53, no. 6, pp. 1447–
1462, 2013. DOI: 10.1021/ci400115b.

[30] M. Buttenschoen and C. M Deane, “PoseBusters: AI-based docking methods fail to generate
physically valid poses or generalise to novel sequences,” Chemical Science, vol. 15, no. 9,
pp. 3130–3139, 2024. DOI: 10.1039/D3SC04185A.

[31] G. Corso et al., “Deep confident steps to new pockets: Strategies for docking generalization,”
in The Twelfth International Conference on Learning Representations, 2024.

[32] A. Fang, Z. Zhang, A. Zhou, and M. Zitnik, “ATOMICA: Learning universal representations
of intermolecular interactions,” bioRxiv, p. 2025.04.02.646906, 2025. DOI: 10.1101/2025.
04.02.646906.

[33] O. Trott and A. J. Olson, “AutoDock vina: Improving the speed and accuracy of docking with
a new scoring function, efficient optimization, and multithreading,” Journal of Computational
Chemistry, vol. 31, no. 2, pp. 455–461, 2010. DOI: 10.1002/jcc.21334.

[34] R. A. Friesner et al., “Glide: A new approach for rapid, accurate docking and scoring. 1.
method and assessment of docking accuracy,” Journal of Medicinal Chemistry, vol. 47, no. 7,
pp. 1739–1749, 2004. DOI: 10.1021/jm0306430.

[35] R. A. Friesner et al., “Extra precision glide: Docking and scoring incorporating a model of
hydrophobic enclosure for protein-ligand complexes,” Journal of Medicinal Chemistry, vol. 49,
no. 21, pp. 6177–6196, 2006. DOI: 10.1021/jm051256o.

[36] U. Ryde and P. Söderhjelm, “Ligand-binding affinity estimates supported by quantum-
mechanical methods,” Chemical Reviews, vol. 116, no. 9, pp. 5520–5566, 2016, PMID:
27077817. DOI: 10.1021/acs.chemrev.5b00630. eprint: https://doi.org/10.1021/
acs.chemrev.5b00630.

[37] A. Pecina, J. Fanfrlík, M. Lepšík, and J. Řezáč, “Sqm2.20: Semiempirical quantum-mechanical
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Supplementary material

Supplementary Figure S1: Upper left: t-SNE projections of ATOMICA embeddings of ligand–pocket
interactions from PDBbind. The three colors show projected embeddings from three different test
target clusters. One sample from each cluster is indicated by a star. The complexes corresponding
to the three stars are shown in the remaining plots of this figure. These projections indicate that the
ATOMICA space is organized by pocket shape, with some pockets forming tight regions. Considered
together with Figure 2, they suggest that these regions align with specific ranges of ligand sizes and
affinities; in our experiments, scoring interactions representing such regions was particularly difficult
when no representatives were available during training. Upper right: 3HKU, example from the
3DD0 cluster. Lower right: 3QAA, example from the 3O9I cluster. Lower left: 5ITF, example from
the 3F3E cluster.
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Supplementary Figure S2: Evolution of the scoring power of the three scoring methods Gen-
Score, GEMS, and GEMSATOMICA during model training, evaluated on CASF-2016 and the out-
of-distribution (OOD) clusters 3DD0, 3F3E, 1NVQ, 3O9I and 1SQA. The x-axis shows training
progress as a percentage of total training epochs, while the y-axis displays the Pearson correlation
coefficient ↑ between predicted and true affinity. Each line represents the mean performance across
five cross-validation folds, with shaded uncertainty regions (±1 standard deviation) indicating the
variability in performance across the five training runs. Note that the uncertainty regions disappear
towards higher epoch numbers due to early stopping, which results in different models completing
training at different epochs. Consequently, the later portions of the curves are based on fewer than
five models.
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Supplementary Figure S3: Evolution of docking power (left column) and screening power (right
column) of GenScore on the complete decoy datasets of the CASF-2016 benchmark (black), the
1NVQ cluster subset (red), and the remaining decoy datasets with the 1NVQ cluster excluded (blue).
The x-axis shows the absolute number of training epochs, while the y-axis displays the success rate
(for docking) and the enrichment factors (for screening). Each line represents the mean performance
across three cross-validation folds, with shaded regions indicating ±1 standard deviation around the
mean, providing a measure of variability in performance across the three independent model training
runs. Note that the shaded uncertainty regions disappear towards the right end of each line due to early
stopping, which results in different models completing training at different epochs. Consequently,
the later portions of the curves are based on fewer than three models, precluding the calculation of
meaningful standard deviations.
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