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Abstract

As machine learning becomes increasingly central to molecular design, it is vital to1

ensure the reliability of learnable protein–ligand scoring functions on novel protein2

targets. While many scoring functions perform well on standard benchmarks, their3

ability to generalize beyond training data remains a significant challenge. In this4

work, we evaluate the generalization capability of state-of-the-art scoring functions5

on dataset splits that simulate evaluation on targets with a limited number of known6

structures and experimental affinity measurements. Our analysis reveals that the7

commonly used benchmarks do not reflect the true challenge of generalizing to8

novel targets. We also investigate whether large-scale self-supervised pretraining9

can bridge this generalization gap and we provide preliminary evidence of its10

potential. Furthermore, we probe the efficacy of simple methods that leverage11

limited test-target data to improve scoring function performance. Our findings12

underscore the need for more rigorous evaluation protocols and offer practical13

guidance for designing scoring functions with predictive power extending to novel14

protein targets.15

1 Introduction16

Structure-based drug discovery seeks to identify molecules that bind with high affinity and selectivity17

to a target protein based on structural information of the protein and ligand. In this setting, machine18

learning (ML) has been applied in two major directions. First, ML models are increasingly used19

to generate or predict energetically favorable protein-ligand conformations (binding poses) [1–4],20

complementing or replacing traditional docking algorithms. Second, ML supports the evaluation21

of these poses through learnable scoring functions, which estimate binding affinities and guide the22

ranking of candidate compounds [5–8]. Scoring functions play a central role in molecular docking,23

by evaluating predicted binding poses, and in virtual screening, by prioritizing compounds from24

large chemical libraries [9]. Beyond structure-based approaches, ML is also applied in structure-free25

settings to screen compounds without requiring explicit protein–ligand complexes [10]. In recent26

years, ML models have achieved impressive performance on standard benchmarks [11, 12], driving27

growing interest in their integration into real-world drug discovery pipelines.28

However, the ability of ML-based scoring functions to generalize to novel protein targets remains an29

important and increasingly relevant challenge, as many therapeutically significant proteins are poorly30

represented in current datasets. PLINDER [13], a database that clusters protein–ligand complexes31

according to their structural similarity, provides a useful view of this problem. In the PDBbind32

database [14, 15], for example, some medically important targets, including the APOE4 variant [16]33

and the KEAP1 Kelch domain [17], have only a few available complexes. APOE4, a major genetic34

risk factor for Alzheimer’s disease [16], appears as a small cluster of only two complexes with35
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nearly identical ligands. KEAP1, an important target in cancer research [18], is represented by just36

18 highly similar pockets in PDBbind. Beyond naturally occurring proteins, advances in protein37

design, increasingly accelerated by machine learning [19], are beginning to produce proteins with38

novel binding sites [20]. Designing such sites de novo offers advantages over repurposing natural39

proteins: it can enable functions not found in nature and allows integration of engineering principles40

such as tunability, controllability, and modularity directly into the scaffold. In synthetic biology,41

for example, de novo proteins are being developed to create new metabolic or signaling pathways,42

where small-molecule modulators could provide external control over these functions [21]. Scoring43

models must therefore be able to evaluate potential small-molecule interactions in scenarios that lie44

far outside their training data distribution. As the prevalence of such cases grows, understanding45

model performance on structurally novel, low-data targets becomes essential.46

Despite encouraging benchmark results, the ability of current models to generalize to unseen targets or47

unfamiliar chemical scaffolds remains uncertain [22, 23]. Several studies have revealed data leakage48

and inflated performance estimates [7, 24–26], primarily driven by biases in training datasets where49

protein families such as kinases and proteases are overrepresented and many complexes share high50

structural and ligand similarity. Widely used benchmarks, including CASF-2016 [27], DUD-E [28],51

and DEKOIS2.0 [29], often contain target–ligand combinations resembling those in the training data52

(see Figure 1), which leads to overly optimistic performance estimates and obscures the true difficulty53

of generalizing to novel proteins. Many of those failures stem from dataset and evaluation biases54

rather than inherent model limitations. Overcoming these biases is essential for reliable deployment55

of ML-based scoring functions in drug discovery.56

Contributions. The contributions of this work are threefold. First, we present a systematic evalua-57

tion of two top-performing machine learning–based scoring functions: GEMS [7] and GenScore [8].58

To rigorously assess their ability to generalize, we construct a strict series of dataset splits that limit59

pocket similarity between training and test sets, providing a framework for out-of-distribution (OOD)60

evaluation of scoring functions. In contrast to previous leakage analyses, which have mainly focused61

on docking and pose-generation tasks [13, 30, 31], our work targets the scoring problem directly62

and evaluates two models that have not been tested under such stringent conditions. Second, to63

explore potential solutions, we further investigate whether large-scale self-supervised pre-training64

with ATOMICA [32] embeddings can improve generalization by capturing atomic-scale interaction65

features across molecular modalities. These representations show preliminary promise in bridging66

the performance gap on novel targets. Finally, we investigate the scenario where a small number of67

experimental affinity measurements for the target ligand is available. We explore how to incorporate68

such measurements in validation or fine-tuning setups. Overall, our analysis highlights critical69

limitations in current evaluation practices and introduces new directions for developing more robust70

and generalizable scoring functions for real-world drug discovery applications.71

2 Related work72

Computational methods for protein-ligand scoring. Structure-based drug discovery (SBDD)73

uses three-dimensional structural information of biomolecules—typically proteins—to identify or74

develop new drugs. A central task in SBDD is identifying ligands that bind to a target protein75

with high affinity and specificity. A critical component of this process is scoring, which refers to76

estimating the strength of a protein–ligand interaction given a binding pose. Scoring enables two77

key applications: docking, where the goal is to identify the most likely binding pose of a ligand, and78

virtual screening, where compounds are ranked by predicted binding affinity to prioritize the most79

promising candidates.80

Traditional physics-based scoring functions vary significantly in their computational cost and accuracy.81

Molecular mechanics (MM) methods (e.g., [33–35]) are relatively efficient and capture basic physical82

interactions but they offer limited accuracy for binding affinity prediction. More sophisticated83

approaches exist, among which quantum mechanical (QM) methods (e.g., [36, 37]) improve estimates84

by explicitly accounting for electronic effects. Free energy perturbation (FEP) [38], in contrast, is85

not merely a scoring function but a simulation-based method that can provide rigorous estimates of86

ligand binding free energies through extensive conformational sampling. However, both QM and87

FEP approaches are far too computationally expensive to be applied in large-scale virtual screening.88
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Machine learning for protein–ligand scoring. Recent machine learning (ML) models aim to89

offer a combination of speed and accuracy by learning scoring functions directly from structural90

data. Modern architectures such as graph neural networks [39–42], graph transformers [8, 43], and91

equivariant models that respect three-dimensional geometric symmetries [42, 44] can model complex92

interaction patterns directly from raw atomic coordinates. Some models also explore pose-free93

scoring [10], i.e., predicting binding affinity directly from the protein sequence or structure and ligand94

representation (e.g., SMILES) without requiring a bound pose; however, these approaches fall outside95

the scope of this work.96

Most ML-based models are trained on PDBbind crystal structures [14, 15], commonly using either97

experimental binding affinity labels or predicting protein–ligand interatomic distance distributions98

with a mixture density network (MDN) [8], whose output probabilities are used to compute the final99

score. Another notable approach used denoising score matching for unsupervised binding energy100

prediction [45]. While ML scoring models have achieved strong benchmark performance, their ability101

to generalize to unseen targets remains an open question.102

Figure 1: The full proteins (top) and their pockets (bottom) for the CASF test complex 3O9I (left)
and the PDBbind CleanSplit training complexes 1BDQ (middle) and 4YE3 (right) aligned to 3O9I.
Proteins are shown as cartoons, ligands as sticks, and remaining heteroatoms as spheres. While
CleanSplit removes the most stringent similarities, a certain degree of similarity remains in the
dataset. With our PLINDER-based data splitting we go one step further and move entire clusters into
a separate test set, aiming to evaluate performance on clusters that are entirely absent from training.

Information leakage in protein–ligand datasets. Many structure-based protein–ligand bench-103

marks suffer from ligand leakage, where structurally similar or identical binders appear in both104

training and test sets with similar affinity [46]. Another issue is that binders and non-binders are105

drawn from different sources (e.g., ChEMBL vs. ZINC in DEKOIS [29, 47]), enabling models to106

exploit dataset-specific biases [48, 49]. These artifacts affect benchmarks such as DUD-E [28] and107

DEKOIS2.0 [29]. While more recent efforts like LIT-PCBA [50] and BayesBind [47] attempt to108

mitigate such artifacts, they still face duplication and leakage issues [51].109

Leakage on the protein level is an equally important concern: high sequence or structural similarity110

between training and test proteins can produce overly optimistic performance estimates. Several111

approaches have been proposed to address this issue, evolving over time toward stricter and more112

targeted splits: PoseBusters [30] found that performance of many docking models degrades under113

stricter sequence-level splits; DockGen [31] reduced redundancy using ECOD [52] domain splits;114

and PLINDER [13] provided clustering based on different metrics (pocket, ligand, or interaction115

similarity), allowing tailored splitting according to the task, and demonstrated that DiffDock [4]116

underperformed in these de-leaked settings. PDBbind CleanSplit, introduced alongside the simple117

GEMS model [7], was designed to remove the most stringent similarities between PDBbind and the118

CASF benchmark. On this split, GEMS outperformed larger, more complex models, suggesting that119

some of the apparent progress on CASF may have resulted from the greater capacity of the complex120

models to memorize and overfit.121
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Our study concentrates on protein-side generalization to novel targets, emphasizing evaluation122

scenarios where the receptor itself is absent from training.123

Large-scale self-supervised pretraining. Self-supervised pretraining on large unlabeled protein124

and molecular datasets has proven highly effective for downstream biochemical tasks. Protein125

language models such as ESM2 [53] and ANKH [54] capture biophysical properties relevant for126

protein function, while chemical language models such as ChemBERTA [55] learn representations of127

small molecules. We adopt the GEMS scoring function [7], which enhances graph neural networks128

with protein and chemical language model embeddings to improve binding affinity prediction.129

Beyond sequence and chemical models, large-scale structural pretraining has also recently emerged;130

ATOMICA [32] is a geometric deep learning model trained on over two million interaction complexes131

using self-supervised denoising and masking. ATOMICA learns atomic-scale representations across132

proteins, small molecules, ions, lipids, and nucleic acids, yielding a compositional latent space that133

encodes shared physicochemical principles. In this work, we hypothesize and test whether the breadth134

of ATOMICA’s training enables better generalization in protein–ligand scoring tasks.135

Figure 2: t-SNE projections of ATOMICA embeddings of ligand–pocket interactions from PDBbind,
colored by experimental affinity (left) and molecular weight (right). The large crescent-shaped
cluster shows clear gradients of affinity and molecular weight, while the smaller, well-separated
cluster contains most of the largest ligands, indicating that ATOMICA space captures both properties.

3 Experimental setup136

This section outlines the datasets, splitting strategies, training procedures, and evaluation metrics137

used in our study. We also describe methods for leveraging limited test-distribution data and for138

visualizing ATOMICA embeddings in two dimensions, providing intuition into the structure of the139

learned representation space.140

Datasets. We use PDBbind (v.2020) [14, 15] as the primary dataset for training, given its wide141

adoption and availability of experimental binding affinity labels (approximately 19,000 complexes).142

For benchmarking, we employ the well-established CASF-2016 dataset [27], comprising 285 high-143

quality complexes. Additionally, we use PLINDER [13] for clustering and splitting PDBbind144

complexes. Finally, we make use of ATOMICA [32] embeddings (ATOMICA_pretrained), obtained145

via self-supervised pretraining with masking and denoising tasks on the Cambridge Structural146

Database (CSD) [56], which comprises roughly 1.75 million structures, and on Q-BioLiP [57, 58],147

with approximately 300,000 entries. While Q-BioLiP contains complexes overlapping with PDBbind,148

ATOMICA relies only on self-supervised tasks of coordinate denoising and masked block identity149

prediction, using information available at inference. We therefore do not consider this a source of150

data leakage.151

Train–test splitting. We first evaluate models using the original PDBbind CleanSplit benchmark,152

testing on CASF targets as a baseline (Table 1). This establishes a reference point for performance153
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when near-duplicate complexes are removed from the training dataset based on a joint assessment of154

ligand, pose, and pocket similarity.155

To construct stricter OOD evaluations, we further prepare our own train–test splits based on PLIN-156

DER’s pocket-level clustering using lDDT [13] (cluster type pocket_lddt__50__community).157

Seven CASF targets were selected to represent diverse protein families (PDB IDs: 1NVQ, 1SQA,158

2P15, 2VW5, 3DD0, 3F3E, 3O9I). For each target, all complexes from its cluster are assigned159

to a separate test set, while the remaining data is used for training and validation. This approach160

ensures that the test sets contain pockets that are structurally distinct from those seen during training,161

providing a more stringent evaluation of OOD generalization (see Figure 1). We also apply CleanSplit162

filtering to the training and validation sets of our OOD splits, enabling evaluation on CASF without163

obvious leakage and enabling direct comparison between CASF and OOD performance (see Figure 3).164

Throughout this work, we refer to clusters by the PDB ID of one of the complexes used to retrieve165

them (e.g., the “1NVQ cluster”). Visual inspection suggests that clusters usually contain highly166

similar pockets, often preserving the protein fold. Nonetheless, the clustering procedure can, in167

principle, detect similar pockets arising in different folds.168

Training. To create the training datasets, the preprocessed graph representations of PDBbind169

published alongside GEMS and GenScore were filtered based on the complex IDs. Models were170

then trained in a 5-fold cross-validation (CV) setting with label-based stratification. To enable direct171

comparisons, the original GEMS and GenScore implementations were trained on the same 5-fold172

CV splits, using their respective published training scripts and setups. To generate predictions on the173

test datasets, the five models obtained from cross-validation were combined into an ensemble via174

prediction averaging.175

Evaluation metrics. We focused on evaluating scoring power, quantified by the Pearson correlation176

between predicted and true affinities. The affinity labels are based on experimental measurements of177

Ki, Kd, or IC50 and are included as pK values (pK = –log(Ki/Kd/IC50)). To further demonstrate178

that the observed performance drop is not merely a consequence of reduced training set size, we179

include figures illustrating performance evolution on both the CASF benchmark and our test sets180

(Figure 3 and Supplementary Figure S2). These figures clearly show that CASF performance, while181

slightly affected, remains very high and consistently above the performance on novel test targets.182

Recognizing that a robust evaluation of scoring functions extends beyond scoring power, we assessed183

out-of-distribution docking and screening performance of GenScore on CASF-2016 targets from the184

1NVQ cluster, using a model trained without 1NVQ cluster proteins. This cluster offers a relatively185

large sample of targets (n = 50 for docking, n = 10 for screening), whereas other clusters did not186

provide enough samples to yield stable, statistically significant results. As it represents only a single187

target, we report these results in Supplementary Figure S3.188

ATOMICA embeddings generation and projection. To examine whether pretrained molecular189

representations capture properties of protein–ligand interactions that support better generalization of190

scoring models, we generated ATOMICA [32] graph-level embeddings for ligand–pocket complexes191

in PDBbind. Each embedding is a 32-dimensional vector, and we successfully obtained represen-192

tations for 19,189 complexes (98.7% of the dataset, see below). For visualization, we employed193

t-distributed Stochastic Neighbor Embedding (t-SNE), a non-linear dimensionality reduction method194

that projects high-dimensional vectors into a low-dimensional space while preserving local similarity195

structure. We used two components and a perplexity of 30. This projection provides an intuitive view196

of how ligand–pocket complexes are arranged in the learned representation space, offering qualita-197

tive insight into the organization of ATOMICA embeddings through Figure 2 and Supplementary198

Figure S1.199

Evaluated models. We evaluate the following four models. (1) GEMS [7] is a graph neural network200

that integrates ligand embeddings from ChemBERTa [55] and protein embeddings from ESM2 [53]201

and ANKH [54]. (2) GenScore [8] employs a graph transformer trained with a mixture density202

network (MDN) objective to model interatomic distance distributions, building upon the approach of203

RTMScore [43]. Next two methods use ATOMICA embeddings. In (3) ATOMICA-MLP, we train204

a simple multilayer perceptron using ATOMICA embeddings. In (4) GEMSATOMICA, we create a205

variant of the GEMS scoring function in which ChemBERTa ligand embeddings were concatenated206

with ATOMICA embeddings. Embedding extraction failed for 1.3% of complexes, primarily due207
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to ligand fragmentation issues. As a result, the training and validation sets for GEMSATOMICA and208

ATOMICA-MLP were marginally smaller, reflecting the complexes for which embeddings could not209

be computed. The test sets reported in Tables 1, 2, and 3 are identical to ensure a fair comparison210

across all evaluated models.211

Leveraging limited data. Laboratories often specialize in specific types of proteins and may212

obtain only a limited set of crystal structures with ligands and corresponding experimental affinity213

measurements for a protein of interest. Effectively leveraging such target-specific data is important214

to improve predictive models under realistic conditions. To study this, we hold out 25 complexes215

from each target-specific test set. These complexes are then used in two separate scenarios, with216

full consistency maintained between training, validation, and test splits, accounting for ATOMICA217

preprocessing errors: (i) Validation scenario, where the 25 complexes serve solely as a fixed218

validation set, while the original training data remains unchanged. Models trained in this scenario219

are denoted as GEMSVAL and GEMSVAL
ATOMICA. (ii) Finetuning scenario, where, starting from220

the model trained with the original stratified k-fold (SKF) procedure, the best model is further221

finetuned on the 25 held-out complexes using a small learning rate for 25 epochs. The original222

training and validation sets are kept unchanged to ensure comparability. These models are denoted as223

GEMSFT−25 and GEMSFT−25
ATOMICA for the ATOMICA variant.224

4 Results225

In this section, we present a comprehensive analysis of our results. We begin by visualizing ATOMICA226

embeddings with t-SNE, using experimental and structural labels to provide qualitative intuition227

about the organization of the representation space. We then evaluate model performance on the228

PDBbind CleanSplit benchmark, followed by assessment on our stricter out-of-distribution (OOD)229

splits. Finally, we investigate strategies for leveraging limited data from the test target distribution230

and compare their effectiveness.231

PDBbind embeddings are well organized in ATOMICA space. We first inspect the projection of232

ATOMICA embeddings described in Section 3. In Figure 2, we observe an affinity gradient along the233

larger, crescent-shaped cluster, which coincides with a gradient in molecular weight. Interestingly,234

the very heavy molecules appear to concentrate predominantly in the smaller, well-separated cluster.235

Supplementary Figure S1 shows that the three clusters used for our OOD evaluation are also localized236

in distinct regions of the embedding space. Notably, the 3F3E cluster, which proved particularly237

challenging for GenScore (see Table 2), is concentrated mostly in the smaller cluster corresponding238

to heavier molecules. Overall, our findings provide empirical and visual evidence confirming that the239

ATOMICA embedding space is well structured with respect to fundamental properties such as pocket240

shapes, ligand sizes, and binding affinity.241

Performance on PDBbind CleanSplit. In Table 1, we evaluate the effect of enriching the GEMS242

scoring function with ATOMICA graph-level embeddings and compare it with the original GEMS243

and GenScore on the CASF benchmark after training on the full PDBbind CleanSplit. In this setup,244

we do not observe any advantage from incorporating the additional embeddings, with GEMSATOMICA245

achieving marginally worse performance than the original GEMS (Table 1). Interestingly, while the246

simplistic ATOMICA-MLP is not competitive overall, it attains a reasonable performance on the247

independent subset of CASF (Table 1), highlighting that even simple models can capture some useful248

information from the embeddings.249

Table 1: Scoring performance of different methods trained on PDBbind CleanSplit evaluated on
CASF-2016 and the independent subset of CASF-2016 [7].

Pearson correlation ↑ RMSE ↓
Method CASF-2016 CASF-2016 Indep. CASF-2016 CASF-2016 Indep.

GenScore 0.807 0.737 1.280 1.580
GEMS 0.815 0.828 1.274 1.347
ATOMICA-MLP 0.583 0.704 1.965 1.960
GEMSATOMICA 0.808 0.822 1.292 1.361
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Performance on strictly novel targets. We next evaluate model performance on the novel-target250

splits introduced in Section 3. Scoring previously unseen proteins proves substantially more chal-251

lenging than established benchmarks such as CASF. For example, the best Pearson correlation on a252

novel target is 0.736 (Table 2, GEMSATOMICA, target 1SQA), whereas the average across all clusters253

is only 0.470 for GEMS and 0.498 for GEMSATOMICA (Table 2). By comparison, both models achieve254

Pearson correlations of 0.815 and 0.808 on CASF, respectively (Table 1). Performance also varies255

widely across targets: while the 1SQA cluster yields relatively strong results, clusters such as 3DD0,256

2P15, 3F3E, and 3O9I all result in correlations below 0.5 for every method, underscoring the difficulty257

imposed by strict generalization conditions.258

GEMSATOMICA consistently outperforms the standard GEMS across all clusters except 1NVQ (Ta-259

ble 2). It also achieves both the highest average and the highest minimum performance, indicating that260

incorporating ATOMICA embeddings improves the robustness of scoring protein–ligand interactions261

on unseen proteins. This demonstrates that more challenging benchmarks can reveal advantages of262

certain approaches that remain hidden on easier benchmarks like CASF.263

There is no universal winner, however. GenScore achieves the best results on the 3DD0 and 3O9I264

clusters but fails completely on 3F3E, with a near-random correlation of 0.047 (Table 2). Interestingly,265

even the simple ATOMICA-MLP model manages to reach top performance on the 2P15 cluster266

(Table 2), showing that useful signal can be extracted from ATOMICA embeddings even with smaller267

modeling capacity.268

Table 2: Performance on strictly novel targets. Scoring power (Pearson correlation r ↑) across
different unseen protein clusters from the CASF benchmark. “Avg.” column reports the average
across all protein clusters and “Min.” the minimum.

Method / Target 1NVQ 1SQA 2P15 2VW5 3DD0 3F3E 3O9I Avg. Min.

#Complexes 2714 736 462 207 475 391 469 — —

GenScore 0.451 0.696 0.415 0.384 0.481 0.047 0.480 0.422 0.047
ATOMICA-MLP 0.540 0.631 0.479 0.524 0.346 0.149 0.400 0.438 0.149
GEMS 0.609 0.717 0.364 0.551 0.236 0.404 0.410 0.470 0.236
GEMSATOMICA 0.602 0.736 0.379 0.596 0.311 0.434 0.431 0.498 0.311
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Figure 3: Evolution of the scoring power of the three scoring methods GenScore, GEMS and
GEMSATOMICA during model training with the original stratified k-fold splitting of the train–validation
data, evaluated on CASF-2016 and the out-of-distribution (OOD) clusters 2P15 (left) and 2VW5
(right). The x-axis shows training progress as a percentage of total training epochs, while the y-
axis displays the Pearson correlation coefficient ↑ between predicted and true affinity. Each line
represents the mean performance across five cross-validation folds, with shaded uncertainty regions
(±1 standard deviation) indicating the variability in performance across the five training runs. Note
that the uncertainty regions disappear towards higher epoch numbers due to early stopping, which
results in different models completing training at different epochs. Consequently, the later portions
of the curves are based on fewer than five models. The final results imply that the original stratified
k-fold splitting leads to overfitted models, and that using limited test-target validation data allows for
better early stopping and the selection of better models.
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Exploring strategies for utilizing limited data. We next examine strategies for leveraging a small269

number of additional target complexes, either by using them for validation or by fine-tuning on them270

(Table 3). The results are mixed: both validation and fine-tuning improve performance on some271

clusters but degrade it on others. For instance, validation with ATOMICA embeddings improves272

performance on 2P15 and 3DD0, but decreases it on 3F3E. Similarly, fine-tuning boosts results on273

3DD0 and 3O9I, yet reduces them on 1NVQ and 2VW5.274

A motivating example for the validation strategy is shown in Figure 3. On the left, the 2P15 cluster275

illustrates that peak performance is reached early in training, visible as the hill-shaped curve of276

performance evolution. Without proper early stopping, all methods exhibit overfitting, and their277

performance declines to a similar level. Training dynamics varies across targets, as shown on the278

right side of the figure and in Supplementary Figure S2.279

Despite these fluctuations, both strategies yield overall gains compared to training without access to280

the additional complexes (see GEMS and GEMSATOMICA in Table 2). In particular, they improve not281

only the average but also the worst-case (minimum) performance across clusters. Among them, the282

fine-tuned models achieve the strongest results, with GEMSFT−25
ATOMICA delivering the highest average283

correlation (0.550) and GEMSFT−25 attaining the highest minimum (0.386).284

Table 3: Performance on strictly novel targets with additional target-specific annotated data.
Scoring power (Pearson correlation r ↑) across different test protein clusters of models utilizing the
additional 25 target protein complexes for validation and fine-tuning.

Method / Target 1NVQ 1SQA 2P15 2VW5 3DD0 3F3E 3O9I Avg. Min.

#Complexes 2689 711 437 182 450 366 444 — —

GEMSVAL 0.621 0.726 0.432 0.558 0.497 0.376 0.280 0.499 0.280
GEMSVAL

ATOMICA 0.626 0.742 0.514 0.602 0.419 0.375 0.354 0.519 0.375

GEMSFT−25 0.563 0.670 0.556 0.537 0.620 0.386 0.424 0.537 0.386
GEMSFT−25

ATOMICA 0.561 0.717 0.610 0.531 0.572 0.385 0.476 0.550 0.385

5 Conclusions285

We studied the challenge of training scoring functions that generalize reliably to unseen proteins.286

Our results reveal a substantial gap between performance on standard benchmarks such as CASF287

and on stricter, novel-target splits. While CASF remains a useful reference, its optimistic estimates288

mask the difficulty of true generalization. Achieving robustness to entirely new proteins will likely289

require the models to capture the underlying physical principles of protein–ligand binding. These290

findings highlight the need for stricter, carefully designed benchmarks to become standard practice,291

particularly in scenarios where realistic performance estimates are essential.292

Consistent with prior reports on GEMS [7], our study suggests that recent gains in scoring may partly293

reflect improved data memorization rather than genuine generalization. Nevertheless, augmenting294

GEMS with ATOMICA embeddings consistently improved performance, showing that richer rep-295

resentations can enhance generalization. We also found that even limited target-specific data can296

narrow the generalization gap, boosting both average and worst-case performance.297

Future directions. Future work should emphasize more restrictive data splits and systematic298

reevaluation of existing methods to identify the drivers of true generalization, extending this analysis299

also to docking and screening scenarios, motivated by our preliminary results showing a performance300

drop on the 1NVQ cluster (see Supplementary Figure S3). Expanding our exploration of strategies301

for leveraging sparse target data, such as quantifying how performance gains scale with available302

data and testing more advanced fine-tuning techniques, represents another promising avenue. Finally,303

extending beyond graph-level ATOMICA embeddings to block-level (i.e., residue, nucleotide or304

chemical motif level) or atom-level representations may further strengthen protein–ligand modeling.305
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Supplementary material469

Supplementary Figure S1: Upper left: t-SNE projections of ATOMICA embeddings of ligand–pocket
interactions from PDBbind. The three colors show projected embeddings from three different test
target clusters. One sample from each cluster is indicated by a star. The complexes corresponding
to the three stars are shown in the remaining plots of this figure. These projections indicate that the
ATOMICA space is organized by pocket shape, with some pockets forming tight regions. Considered
together with Figure 2, they suggest that these regions align with specific ranges of ligand sizes and
affinities; in our experiments, scoring interactions representing such regions was particularly difficult
when no representatives were available during training. Upper right: 3HKU, example from the
3DD0 cluster. Lower right: 3QAA, example from the 3O9I cluster. Lower left: 5ITF, example from
the 3F3E cluster.
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Supplementary Figure S2: Evolution of the scoring power of the three scoring methods Gen-
Score, GEMS, and GEMSATOMICA during model training, evaluated on CASF-2016 and the out-
of-distribution (OOD) clusters 3DD0, 3F3E, 1NVQ, 3O9I and 1SQA. The x-axis shows training
progress as a percentage of total training epochs, while the y-axis displays the Pearson correlation
coefficient ↑ between predicted and true affinity. Each line represents the mean performance across
five cross-validation folds, with shaded uncertainty regions (±1 standard deviation) indicating the
variability in performance across the five training runs. Note that the uncertainty regions disappear
towards higher epoch numbers due to early stopping, which results in different models completing
training at different epochs. Consequently, the later portions of the curves are based on fewer than
five models.

13



0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000

0

5

10

15

20

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

0 200 400 600 800 1000

1

2

3

4

5

CASF2016  

CASF2016  

CASF2016  

CASF2016  

CASF2016  

CASF2016  

1NVQ OOD

1NVQ OOD

1NVQ OOD

1NVQ OOD

1NVQ OOD

1NVQ OOD

Remaining

Remaining

Remaining

Remaining

Remaining

Remaining

Training Epochs

S
uc

ce
ss

 R
at

e

Training Epochs

S
uc

ce
ss

 R
at

e

Training Epochs

S
uc

ce
ss

 R
at

e

Training Epochs

E
nr

ic
hm

en
t F

ac
to

r

Training Epochs

E
nr

ic
hm

en
t F

ac
to

r

Training Epochs

E
nr

ic
hm

en
t F

ac
to

r

Docking Power (Top 1 Success Rate)

Docking Power (Top 3 Success Rate)

Docking Power (Top 2 Success Rate)

Screening Power (Enrichment Factor Top 1)

Screening Power (Enrichment Factor Top 10)

Screening Power (Enrichment Factor Top 5)

Supplementary Figure S3: Evolution of docking power (left column) and screening power (right
column) of GenScore on the complete decoy datasets of the CASF-2016 benchmark (black), the
1NVQ cluster subset (red), and the remaining decoy datasets with the 1NVQ cluster excluded (blue).
The x-axis shows the absolute number of training epochs, while the y-axis displays the success rate
(for docking) and the enrichment factors (for screening). Each line represents the mean performance
across three cross-validation folds, with shaded regions indicating ±1 standard deviation around the
mean, providing a measure of variability in performance across the three independent model training
runs. Note that the shaded uncertainty regions disappear towards the right end of each line due to early
stopping, which results in different models completing training at different epochs. Consequently,
the later portions of the curves are based on fewer than three models, precluding the calculation of
meaningful standard deviations.
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