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ABSTRACT

Deep learning techniques have been actively researched for solving complex and
diverse problems, demonstrating high performance across various AI domains.
However, the complexity and opaqueness of deep learning-based models often
make them “black boxes,” leading to concerns about transparency and trustwor-
thiness, which in turn hampers their real-world applicability. To address this issue,
numerous studies have been carried out to interpret deep learning models and pro-
vide explanations for their predictions or propose interpretable new structures. In
this paper, we introduce the Class-wise Layer-wise Attribute M¡model (CLAM),
which aims to provide more accurate and detailed explanations for model predic-
tions in image classification. Specifically, CLAM is designed to work in conjunc-
tion with a pre-trained image classification model and an existing interpretable
algorithm to learn class-wise layer-wise attributes from the model features. Ad-
ditionally, when generating a relevance map for new input images, CLAM lever-
ages the learned attribute information to enhance the areas related to the target
class thereby improving accuracy. Furthermore, we identify and present the in-
fluence of specific samples from the training dataset on the calculated relevance
map, offering a higher level of explanation compared to existing methods. To val-
idate the effectiveness of our proposed model, we present quantitative and qualita-
tive experimental results using CUB-200-2011 and ImageNet datasets, along with
pre-trained VGG-16 and ResNet-50 image classification models and well-known
explainable models.

1 INTRODUCTION

Deep learning has demonstrated remarkable success in various AI tasks, including image classifi-
cation, machine translation, speech recognition, and various generative models, through the devel-
opment and training of specialized neural networks. Despite their efficiency, these models often
function as ‘black boxes’ due to their intricate internal workings, which are often incomprehensible
to humans, thus hindering user trust and real-world adoption due to their lack of transparency. Early
approaches to mitigate this transparency issue focused on visualizing internal activations and gra-
dients. The field has evolved chiefly in two directions: One approach generates contribution maps
(or relevance maps), which use visualized internal model values to shed light on predictions. This
method, however, is more about reverse-analyzing the model’s decision-making rather than under-
standing the model itself, providing a ‘visualization’ rather than an ‘explanation’ for predictions.
An alternative strategy designs inherently transparent deep learning models. While this approach
enhances interpretability, it demands additional training. These models often incorporate explana-
tory modules or additional layers, improving performance but not necessarily providing precise
‘explanations’ for predictions. Both strategies have their merits and limitations, primarily offering
explanations through the analysis and visualization of intermediate processes.

In this paper, we propose CLAM (Class-wise Layer-wise Attribute Model), a model designed to
enhance the explainability of image classifiers by learning attributes at each class and layer level.
CLAM achieves this through three primary objectives. First, it learns class-wise and layer-wise
attributes by leveraging features from image classifiers and relevance maps from explainers. At-
tributes fundamentally extract sub-feature areas related to specific classes using features and are
defined independently across various layers in the image classifier. Second, CLAM enhances the
performance and noise reduction of the relevance map by reflecting information about the current
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target class using the learned attributes. Lastly, CLAM identifies and presents related images from
the training dataset using the attributes reflected in the relevance map. By doing so, CLAM not only
offers relevance maps but also improves explainability by indicating which areas of the relevance
map are influenced by specific portions of the training data.

2 RELATED WORKS

Approaches to Post-hoc Explanation: Post-hoc explanation methods, as previously described,
generate relevance maps for model predictions without additional training, utilizing the internal val-
ues of the model. This approach began with the visualization of initial model activations or gradient
values such as DeconvNet (Noh et al., 2015). Subsequent efforts have been made to construct rele-
vance maps utilizing the gradient values of the models (Simonyan et al., 2013; Springenberg et al.,
2014; Sundararajan et al., 2017; Kapishnikov et al., 2019; Jeon et al., 2022). Notably, as gradient
values are not only essential by-products generated during the training of deep learning models but
also encapsulate the variations between inputs and predictions, they continue to be extensively em-
ployed. Additionally, there are algorithms in the Layer-wise Relevance Propagation (LRP) family
that slightly diverge from this approach (Bach et al., 2015; Gu et al., 2019; Iwana et al., 2019; Eberle
et al., 2020; Nam et al., 2021; Naseer et al., 2021; Chefer et al., 2021). These algorithms leverage
the activation and weight values of the model, performing backpropagation on a layer-wise basis to
calculate contributions to predictions. This method, which essentially inverts the forward prediction
process of the model regarding the input to determine pixel-level contributions, continues to be the
focus of extensive research to date.

Approaches to Transparent Design: Unlike post-hoc explanation methods, there are approaches
designed to inherently enhance model transparency by modifying the model structure itself. For
instance, there have been research efforts aimed at integrating traditional machine learning method-
ologies with deep learning models (Angelov & Gu, 2018; Yang et al., 2018; Zhang et al., 2019;
Csiszár et al., 2020). Recently, there has been a surge in research focusing on methods that in-
corporate specific layers like ’Attention’, training the entire model, and subsequently extracting
information that contributed to the model’s classification. Notably, there are studies, such as Pro-
toPNet (Chen et al., 2019), which has significantly inspired our work. ProtoPNet not only generate
relevance maps with decent model classification performance but also provide related example im-
ages by incorporating additional layers capable of internally learning prototypes. This allows for not
only decent model prediction performance but also the provision of explanations (relevance maps)
for predictions. Further advanced research efforts in this direction continue to emerge and evolve,
as evidenced by recent studies (Nauta et al., 2021; Donnelly et al., 2022).

3 PROPOSED METHOD: CLAM

3.1 CLAM ARCHITECTURE

The primary goal of CLAM is to learn class-wise and layer-wise attributes from a given image
classifier and explainer, and to utilize these attributes in generating relevance maps. Attributes, as
previously described, correspond to sub-feature areas in a specific layer’s feature that significantly
influence the target class. Hence, if the attributes per class and layer are effectively learned, it’s
feasible to identify and reflect the areas contributing to the target class in the relevance map using
the attribute information.

The left side of Figure 1 depicts the architecture of the proposed CLAM applied to a pre-trained
model with multiple convolutional layers, while its right panel presents CLAM’s final result. CLAM
primarily consists of several CLA-Layers (Class-wise Layer-wise Attribute Layers), which can be
allocated to either every or specific designated layers of the image classifier, taking as input both
the connected layer’s feature and the explainer’s relevance map. Each CLA-layer possesses a prede-
termined number of attribute variables, learning sub-feature regions significant to a particular class
from the classifier’s features, enhancing the adjustment of the relevance map. The right panel of
Figure 1 shows a relevance map for the given input image. CLAM helps to improve performance
by adjusting regions in relevance map through CLA-layers. Moreover, by utilizing the learned at-
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Figure 1: Overview of the CLAM Architecture and Outputs. The left side illustrates the architecture
of CLAM, highlighting multiple CLA-layers that operate in conjunction with an image classifier
and explainer. This synergy facilitates the generation of noise-reduced relevance maps through the
utilization of learned attributes. On the right, the final output is displayed, showcasing a refined
relevance map alongside images that are associated with the attributes reflected in the map.

tributes in CLA-layers, it provides examples related to key areas within each relevance map, thereby
increasing its explainability. and precision of relevance maps for target classes

3.2 CLA-LAYER

The CLA-layer, fundamentally inspired by the prototype layer of ProtoPNet, adapts its prototype
concept, using it as an attribute within the CLA-layer. Unlike the prototype layer—which functions
as a middle layer for classification following the model’s final convolutional layer—the CLA-layer
is mapped one-to-one with a layer in the image classifier. The number of CLA-layers depends
on the model’s architecture or user configurations. An explainer linked to CLAM employs LRP
family algorithms to generate a relevance map per layer, with the CLA-layer’s propagation direction
mirroring that of LRP, extending from the classifier’s output to input layer.

Figure 2 illustrates the propagation step within a single CLA-layer. For the lth CLA-layer, it takes
in feature F (W(l) × H(l) × D(l)) from the corresponding classifier layer. A sub-feature S (P(l) ×
P(l) × D(l)) is then extracted based on a predetermined patch size, normalized, and passed through
the ‘Add-on-Layer (AoL)’ block (comprising two 1×1 convolutional layers), yielding the output S′.
The normalization of S is crucial due to the layer-wise training algorithm of CLAM, explained in
detail in subsequent sections. In CLAM’s architecture, each CLA-layer is trained sequentially rather
than simultaneously to prevent the ‘feature collapse’ issue, which occurs when a pre-trained layer’s
outcomes hinder the subsequent layer from developing new feature representations. To mitigate
this, the output feature vector from one CLA-layer is normalized before being input into the next,
maintaining only relative magnitude during learning by considering vector length information. The
AoL block plays a preprocessing, mapping sub-features S into class-specific spaces within each
layer throughout the learning phase.

Subsequently, within the CLA-layer, the L2 distance between attribute A and S′ is computed to
derive the distance map D. The attribute A is characterized by its dimensions (N(l) ×A(l) ×A(l) ×
D(l)), where N(l) denotes the number of attributes in lth CLA-layer, A(l) signifies the dimension of
each attribute. The size of A(l) is determined based on the predefined patch size within each CLA-
layer, satisfying the condition P(l) > A(l). The values in D represent the distance between sub-
features and respective attributes. The distance value decreases as the similarity between attributes
and sub-features increases. During the training phase of the CLA-layer, the loss is computed with
an objective to minimize the values in D (details will be discussed in Section 3.3). After training,
the regions in the sub-feature space exhibiting the smallest D values are identified and integrated
into the explainer’s relevance map to refine it.

Within the CLA-layer, the L2 distance between attribute A and S′ is calculated to produce distance
map D. Attribute A possesses dimensions (N(l)×A(l)×A(l)×D(l)), with N(l) and A(l) represent-
ing the number and dimension of attributes in the lth CLA-layer, respectively. The size of A(l) is
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Figure 2: The figure’s left panel displays a CLA-layer connected to an image classifier layer, with
the right panel detailing the CLA-layer’s structure and process.

predetermined by the patch size within each CLA-layer, adhering to the condition P(l) > A(l). The
values in D denote distances between sub-features and attributes, decreasing as their similarity in-
creases. During the CLA-layer’s training phase, the loss, aiming to minimize D values, is computed
(discussed in detail in Section 3.3). Post-training, regions in the sub-feature space with minimal D
values are identified and incorporated into the refined explainer’s relevance map.

3.3 TRAINING PROCEDURE

When using CLAM to adjust relevance maps, inaccuracies in extracted sub-feature regions from
input features may occur prior to attribute training, potentially leading to progressively inaccurate
relevance maps during propagation through CLA-layers. To mitigate this, CLAM incorporates the
Forward-Forward (FF) algorithm (Hinton, 2022), which employs two forward passes instead of the
traditional forward and backward passes in backpropagation. This process involves forwarding pos-
itive data with actual labels and negative data with random labels, effectively transforming the task
into binary classification. This approach adjusts weights to modify the ‘goodness’ of the results
propagated through the hidden layer, with training proceeding layer-by-layer. For effective FF al-
gorithm implementation in CLAM, two considerations are crucial: generating positive and negative
data samples from the original image dataset and defining ’goodness’ as a loss function for weight
adjustment within the CLA-layer. The generation of positive and negative data necessitates the cre-
ation of Intrinsic Class Pattern (ICP) introduced in SymBa (Lee & Song, 2023), offering a unique
two-dimensional matrix pattern for each class.

After generating the ICP, we can generate the positive and negative sub-features S, presumed rele-
vant to the target class. Since there isn’t a clear ground-truth label available for training S, we utilize
the relevance map generated by the explainer. Equation 1 outlines the extraction of sub-feature S
by identifying coordinates with high relevance values from relevance map R and retrieving the
corresponding sub-features from F in lth layer.

(xi, yi) = max(AvgPool(R
(l)
2d )), i = {1, . . . , N}

S
(l)
(p,i) = F (l)

xi:xi+p,yj :yi+p,: +Cy, S
(l)
(n,i) = F (l)

xi:xi+p,yj :yi+p,: +Cr ̸=y

(1)

In Equation 1, R(l)2d is a 2D map obtained by selecting the maximum value per pixel across all
channels from R(l), the relevance map of the lth layer. This 2D map is then processed through an
AvgPooling layer with a kernel size corresponding to the CLA-layer patch size. The N coordinates
((xi, yi)), representing points significantly contributing to the target class in the current layer, are
extracted from R(l)2d by applying top-k function (k=N ). Using these coordinates, sub-features
of patch size are extracted from F (l). For training based on FF algorithm, ICPs Cy and Cr ̸=y

for target class y and random class r are appended to S’s final channel for positive and negative
sub-features S(l)(p, i) and S(l)(n, i) for the ith attribute. After generating S(l)(p, i) and S(l)(n, i),
each undergoes forward propagation within the CLA-layer, with normalization and the AoL block
applied as outlined in Section 3.2, yielding S′(l)(p, i) and S′(l)(n, i) as detailed in Equation 2.

S
′(l)
(p,i) = AoL(||S(l)

(p,i)||), S
′(l)
(n,i) = AoL(||S(l)

(n,i)||) (2)
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As outlined in Equation 3, each attribute in the CLA-layer calculates the L2 distance relative to its
corresponding S′(l)(p, i) and S′(l)(n, i).

D
(l)
(p,i),= L2 − Distance(S′(l)

(p,i),A
(l)
i ), D

(l)
(n,i) = L2 − Distance(S′(l)

(n,i),A
(l)
i ) (3)

A(l)i represents each attribute in the lth layer, with D(l)(p, i) and D
(l)
(n,i) denoting the distance

matrices between the sub-feature and its respective attribute. In adherence to the FF algorithm, the
training goal for attributes is twofold: minimizing D(l)(p, i) from the positive pass while maximiz-
ing D(l)(n, i) from the negative pass. This is facilitated using the Balanced Contrastive Loss (BCL)
introduced in SymBa, with Equation 4 delineating the adjusted BCL loss for CLA-layer training.

∆ = β max(
1

NWH

∑
i

∑
w,h
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(l)
(p,i),w,h,:)− (1− β) (

1

WHN2

∑
i

∑
w,h

D
(l)
(n,i),w,h,:) (4)

L = log(1 + eα∆); D(l)
p → 0, D(l)

n → ∞ ⇔ L → 0 (5)

In this formulation, N , W , and D denote the number of attributes and the attribute’s width and
height, respectively. ∆ calculates the per-channel average distance for D(l)(p, i) and D(l)(n, i),
normalizing the distance magnitude by dividing by the attribute count. For the positive distance
matrix D(l)(p, i), the maximum value is extracted (since the objective is minimization), while for the
negative matrix D(l)(n, i), an average value is computed across all attribute outcomes. β regulates
the balance between positive and negative outcomes, with the loss computed based on the derived ∆
value. The Softplus function is utilized as the loss function, with α modulating the magnitude of ∆.
This loss minimization process fine-tunes the CLA-layer weights, aiming to decrease D(l)(p, i) and
increase D(l)(n, i). Upon the completion of training for a single CLA-layer, the learned attribute for
a given feature locates the sub-feature region where the average value of D(l)

(p,i) is minimized. Then,
the values within the corresponding areas of the relevance map are increased, thereby amplifying
the contribution of regions associated with the current target class.

3.4 GENERATING EXPLANATION

Upon the completion of training across all CLA-layers, CLAM, in tandem with the explainer, yields
the refined relevance map and associated images, shedding light on the model’s predictions. Each
CLA-layer discerns attribute regions—sub-features pivotal to the target class. During the testing
phase, attributes evaluate all sub-features from the input feature with patch size, selecting those with
minimal average distance values. Consequently, a mask is generated and applied to the relevance
map to enhance values in selected regions, highlighting target class-relevant areas. Initialized with
user-defined strength values (within a 1.1 to 1.3 range in our experiments), this mask is utilized to
adjust the relevance map, which is then propagated to subsequent layers for recursive processing
until the input layer is reached. Furthermore, attributes within each CLA-layer create D(l)(p, i)

for both the test image and all training set images, calculating the similarity between D(l)(p, i) of
the test and training images. By identifying training images with the highest similarities, CLAM
efficiently offers images that are related to the relevance map regions at each layer as previously
illustrated in Figure 1.

4 EXPERIMENTAL EVALUATIONS

4.1 EXPERIMENTAL SETUP

In the conducted experiments, we use notable CNN-based image classifiers, namely VGG-16 and
ResNet-50, with datasets CUB-200-2011 (Wah et al., 2011) and ImageNet (Russakovsky et al.,
2015), which are prevalent in image classification research. We integrate CLAM with explain-
ers utilizing LRP-based algorithms, like CLRP and SGLRP, for comparison with various esteemed
explainers, including gradient-based methods and CAM. Our experimental evaluation consists of
qualitative and quantitative analyses. The former involves displaying and analyzing relevance maps
on sample images and related training image examples, elucidating the relevance map’s connection
to the target class. The latter includes a comparison and analysis of relevance maps produced by
different explainers and CLAM using multiple evaluation metrics.
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Figure 3: Comparison of generated relevance maps. Columns present relevance maps from different
explainers for the input image, with results for CUB images shown in Rows 1-4 and ImageNet
images displayed from Row 5 onward.

4.2 QUALITATIVE EVALUATION

CLAM aims to improve generated relevance performance and offer additional explanations by learn-
ing layer-wise attributes by serving a supplementary role by leveraging class-wise, layer-wise at-
tributions. To validate its effectiveness, we initially conduct a qualitative assessment comparing
relevance maps produced by traditional LRP-based algorithm such as LRP and CLRP, those inte-
grated with CLAM and other explainers such as CAM and Guided Backprop. We also conduct a
quantitative evaluation with benchmarks for various algorithms

4.2.1 COMPARATIVE ANALYSIS OF RELEVANCE MAPS GENERATED BY VARIOUS METHODS

Figure 3 displays relevance maps generated by various explainers for a given input. Specifically,
rows one through four utilize validation image samples from the CUB dataset as input. For these in-
puts, the first and second rows present relevance maps of the explainers for VGG-16, while the third
and fourth rows depict the results for relevance maps generated for ResNet-50. When comparing the
LRP-based algorithms with CLAM, it is evident that CLAM with LRP algorithm substantially re-
duces noise in areas outside of the object. For instance, surrounding elements like trees or structures
around a bird are eliminated, highlighting the bird more prominently. In the case of relevance maps
based on ResNet-50, the maps contain considerable noise since features from BatchNorm layers are
also utilized during their generation. CLAM effectively mitigates such noise also.

Figure 3 shows relevance maps generated by various explainers for given inputs. Rows 1-4 illus-
trate relevance maps for CUB dataset validation images, with rows one and two displaying maps
for VGG-16 and rows three and four for ResNet-50. CLAM paired with LRP algorithms noticeably
diminishes noise outside the object area compared to standalone LRP-based algorithms, effectively
isolating and highlighting the primary subject, like a bird, from its surroundings. In relevance maps
derived from ResNet-50, significant noise is observed due to the incorporation of features from
BatchNorm layers; however, CLAM effectively reduces this noise. Comparison with other explain-
ers reveals that Guided Backprop primarily yields edge-detection-like results without discerning
objects. Grad-CAM highlights principal regions but lacks pixel-level precision due to its reliance
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Figure 4: Examples of relevance maps alongside associated training images with bounding boxes
extracted by learned attributes in each CLA-layer. All outputs are generated through CLRP+CLAM
for VGG-16 pre-trained on the CUB dataset.

on resizing relevance maps from each model’s final layer features. Although Excitation Backprop
generates fairly accurate relevance maps, it introduces some noise. Similar observations are made
for ImageNet image samples’ relevance maps. Applying CLAM to LRP-based algorithms effec-
tively filters out areas irrelevant to the target, enhancing the precision in identifying pertinent re-
gions while omitting unrelated ones, as evidenced in examples labeled ‘megalith’ (6th image) and
‘drilling platform’ (7th image). In the ‘golf ball’ example in last, CLAM adeptly excludes irrelevant
objects beneath the ball, providing a map aligned with the assigned label.

4.2.2 ANALYSIS OF EXAMPLE-BASED EXPLANATIONS THROUGH ATTRIBUTES

Figure 4 demonstrates the generation of relevance maps via CLRP and CLAM for a VGG-16 model
trained on the CUB dataset, with each column titled by the VGG-16 layer associated with a CLA-
layer. The first row highlights areas on the input image that attributes, learned at respective CLA-
layers, deem relevant to the target class. The subsequent row presents relevance maps at each layer,
produced by enhancing values in attribute-selected areas via masking. Beneath each relevance map,
images from the training set, closely related to areas bounded and identified by attributes, are dis-
played. Results of attributes pointing to identical or similar image regions are treated as redundant
and are accordingly eliminated. These areas in both the input and training images are projected
through attributes into a shared space. The highly similar areas, determined by attribute-created dis-
tance maps, are then visualized, allowing interpretation of relevance map-marked areas as influenced
by corresponding areas in the related training images.

Taking the ‘Conv-8’ layer as an example, attributes emphasize the bird’s wing area, which sub-
sequently enhances the wing’s visibility in the ‘Conv-3’ relevance map. A consistent observation
across layers is that attributes primarily focus on the bird’s body. The linked images from the training
set also highlight the bird’s body and face. This suggests that the relevance map identifies influential
regions for predictions, shedding light on major areas in the relevance map impacted by specific
images or regions from the training set. Further examples of attribute visualization are available in
the Appendix A.4.

4.3 QUANTITATIVE EVALUATION

For quantitative analysis, we utilized three established evaluation techniques: Pointing Game, Per-
turbating LeRF, and average IoU for segmentation masks, comparing CLAM against various ex-
plainers. CLAM was benchmarked against three prominent LRP algorithms (LRP, CLRP, SGLRP),
each employing LRP−αβ with α1β0. Furthermore, the comparative analysis involved other saliency
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Table 1: Pointing accuracy results of explainers based on VGG-16 and ResNet-50 re-trained on
CUB-200-2011 and ImageNet2012. Underline results denote improvement by CLAM over the re-
spective LRP algorithm, while boldface highlights the top performance for each dataset and classifi-
cation model combination. ‘L.A.’, ‘Deconv.’, ‘G-BP.’, and ‘Ex-BP.’ abbreviate local approximation
method, DeconvNet, Guided Backprop, and Excitation Backprop respectively, while ‘+C’ denotes
instances where CLAM is incorporated.

LRP LRP+C CLRP CLRP+C SGLRP SGLRP+C

CUB VGG-16 .5550 .5651 .5590 .5721 .4835 .4877
ResNet-50 .4972 .4893 .5350 .5425 .5582 .5443

ImageNet VGG-16 .5774 .5850 .5814 .5920 .5355 .5373
ResNet-50 .5893 .5734 .5892 .5767 .6233 .6212

LA. Deconv. Gradient G-BP. Grad-CAM Ex-BP.

CUB VGG-16 .3881 .4151 .4915 .5385 .5048 .5539
ResNet-50 .3619 .4525 .4125 .5158 .5740 .5782

ImageNet VGG-16 .4508 .4750 .5125 .5449 .5471 .5608
ResNet-50 .4467 .5081 .5023 .5417 .5962 .5943

map generation methods, including DeconvNet, Gradient, Linear approximation, Guided Backprop,
Grad-CAM, and Excitation Backprop.

4.3.1 EVALUATION USING THE POINTING GAME

The Pointing Game method assesses explainers’ localization skills by checking the alignment be-
tween high relevance values in generated maps and object bounding boxes in datasets. Relevance
values above a set threshold are extracted, with those in the primary object region labeled as ‘hits’
and the rest as ‘misses’. The pointing accuracy is then calculated as the ratio of ‘hits’ to the total
count of ‘hits’ and ‘misses’. An extended version of the Pointing Game is used in this experiment,
as described in (Iwana et al., 2019), where values from relevance maps are filtered based on vari-
ous thresholds to calculate accuracy. Thresholds correspond to different energy percentages, with
higher thresholds excluding lower relevance values. In our experiment, performance is evaluated at
thresholds from 0.05 to 1.0, in increments of 0.05.

Table 1 shows the Pointing Game performance comparison among various LRP algorithms, CLAM,
and other explainers, with each value reflecting the average pointing accuracy across thresholds. The
comparison between LRP algorithms and their CLAM-enhanced counterparts reveals performance
enhancement across all datasets when CLAM is applied to LRP algorithms based on VGG-16. As
evidenced in Figure 3, this improvement is likely due to CLAM’s ability to mitigate noise surround-
ing objects in the generation of relevance maps. Performance of CLAM-enhanced LRPs based on
ResNet-50 generally shows similar or slightly decreased performance compared to originals. This
decrease is attributed to ResNet-50’s complex structure, necessitating numerous CLA-layers, which
might over-adjust relevance maps and emphasize smaller, potentially less significant object areas.
Issues associated with the small final feature size of ResNet-50 and the need for a 4 × 4 patch
size for the initial CLA-layer further complicate attribute learning, especially considering the large
number of ImageNet classes. This acknowledged limitation of CLAM is further discussed in the
Appendix A.2 and Appendix A.6, along with potential remedies. Despite these challenges, SGLRP
demonstrates commendable performance on ImageNet when paired with ResNet-50, owing to its
effective noise reduction capabilities, as illustrated in Figure 3. While CLPR+CLAM performs best
with VGG-16-based relevance maps, algorithms like Excitation Backprop and SGLRP show supe-
rior results with ResNet for the reasons outlined above.

4.3.2 EVALUATION THROUGH PERTURBING LERF

In this experiment, image classification performance is re-evaluated using perturbed images created
by removing pixels associated with low relevance values from the original images, as indicated by
each explainer’s generated relevance map. Classification performance of the perturbed images is

8



Under review as a conference paper at ICLR 2024

Table 2: Results on last and mean accuracies of image classifiers for perturbed inputs. Underline
indicate improved performance due to CLAM, while boldface denotes the best performance for
each dataset and model; values closer to 1.0 are preferable.

CUB-200-2011 ImageNet 2012
VGG-16 ResNet-50 VGG-16 ResNet-50

last mean last mean last mean last mean
LRP .7856 .8530 .6499 .7270 .6681 .8126 .7304 .8542

LRP+CLAM .8004 .8654 .7135 .7786 .6831 .8219 .7647 .8747
CLRP .7858 .8530 .6799 .7690 .6675 .8126 .7314 .8539

CLRP+CLAM .8015 .8656 .7658 .8351 .6840 .8226 .7693 .8751
SGLRP .6816 .7712 .7627 .8116 .6443 .7835 .8547 .8996

SGLRP+CLAM .6793 .7534 .7772 .8206 .6492 .7817 .8542 .9034
Linear Appr. .0563 .1171 .0445 .1712 .0613 .2210 .2675 .0775
DeconvNet .1985 .4040 .2506 .5004 .1572 .4012 .2913 .4988

Gradient .5385 .6927 .2937 .5140 .3215 .5591 .3310 .5192
Guided-BP. .6471 .7415 .6171 .7180 .5022 .6723 .5366 .6232
Grad-CAM .7421 .8303 .8358 .8878 .6738 .8367 .7158 .7385

Excitation-BP. .7664 .8536 .8030 .8640 .6629 .8212 .6887 .7222

then assessed; a significant decline in performance suggests the relevance map has incorrectly as-
signed low relevance to crucial object areas, while stable or minimally declined performance implies
that low-relevance areas are accurately assigned, demonstrating an effective relevance map and ex-
plainer. This process is repeated for 100 perturbations, with 200 pixels removed in each instance, to
analyze performance variation. Table 2 presents classification performance for each explainer with
perturbed inputs, using images from each dataset’s test set that were initially correctly classified.
Performance close to 1.0 denotes stable performance with perturbations, signifying superior rele-
vance map generation by the explainer. The ‘last’ and ‘mean’ columns represent the performance
after deleting the last 20,000 pixels and the average performance across all iterations, respectively.

Comparing LRP and CLAM results, the inclusion of CLAM often enhances performance. The im-
provement observed with CLAM applied to ResNet-50, differing from the Pointing Game results,
can be attributed to the evaluation method differences. While the Pointing Game boosts hit rates with
more pixels within a set bounding box, using CLAM with SGLRP might unintentionally eliminate
essential object areas, leading to performance declines. However, in perturbed image evaluations, re-
moving some object areas does not directly lead to performance drops but can improve performance
by reducing noise. When comparing CLRP+CLAM to other explainer algorithms, it generally ex-
hibits superior performance for VGG-16. For ResNet-50, as seen in prior Pointing Game results,
other algorithms slightly outperform both LRP and CLAM. Notably, SGLRP maintains commend-
able performance on ResNet-50 trained with ImageNet, aligning with previous observations.

5 CONCLUSION

In this paper, we proposed the CLAM model, which not only enhances the performance of existing
layer-wise relevance map generation algorithms but also provides additional explanations for signifi-
cant areas within the relevance map. Specifically, attributes learned within the CLA-layers of CLAM
are capable of extracting areas relevant to given features on a per-class and per-layer basis, thereby
improving the explanatory power of classification models. Analysis results from various experi-
ments shared in the experimental section validate the efficacy of the proposed model. Furthermore,
given that CLAM is in its nascent stage, there are several identified limitations. These constraints,
along with future developmental plans for addressing them, are comprehensively discussed in the
Appendix A.6.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

In this section, we provide implementation details including parameter settings used for experiments,
preprocessing steps, the structure of the image classifier, and so on. Additionally, we present further
experimental results and analyses, along with limitations and future directions. To obtain image
features, two image classification models, VGG-16 (Simonyan & Zisserman, 2014) and ResNet-
50 (He et al., 2016), were utilized with pre-trained weights on ImageNet dataset. In the context of
the CUB-200-2011 dataset, fine-tuning was performed only on the fully connected layer of each
image classifier with the number of classes of the dataset. The fine-tuned VGG-16 and ResNet-50
models achieved performance levels of approximately 68% and 66% on CUB-200-2011 dataset,
respectively. We experimented with these two models across all explainers and CLAM.

In CLAM, there are several tunable parameters at the implementation level. One such parameter is
‘nb attrs’, which is provided as a list. Each element of this list specifies the number of attributes de-
fined in each CLA-layer and the number of attributes is determined by considering both the feature
size of the connected image classification layer and the attribute size in each respective CLA-layer.
The length of this list corresponds to the number of classifier layers connected to the CLA-layers.
In our experiments, this parameter was set in two distinct types for each image classifier. For the
VGG-16, two configurations were considered: one where CLA-layers were connected to all the
convolutional layers, and another where they were linked only to the convolutional layers immedi-
ately preceding each MaxPooling layer. For the ResNet-50, configurations were distinguished based
on whether or not CLA-layers were connected to the intermediate convolutional layers within each
bottleneck block.

For each CLA-layer, there are parameters for the patch size, ‘sz patches,’ used to extract sub-features
from the features received from the connected image classification layer, as well as the size of each
attribute, denoted as ‘sz attrs’. It should be noted that the size of each attribute must always be
smaller than the patch size. As previously described, a mask is generated within each CLA-layer
to reflect the key regions extracted by attributes onto the relevance map. The mask has the same
dimensions as the patch size of the CLA-layer and is applied to the coordinates where the l2-distance
between attributes and sub-features in the relevance map is minimized. In practice, the application of
the mask involves multiplying it with the relevance values within the extracted. The center value of
the mask is initialized by ‘strength’ parameter and neighboring values are set to have higher values
for CLA-layers closer to the prediction layer (ranging from 1.2 to 1.4) and decreases for those farther
away (ranging from 1.1 to 1.15).

The parameters used for training and loss function in each CLA-layer are ‘alpha’ and ‘beta’ de-
scribed in the main text. alpha values are set within the range of 0.01 to 0.1 depending on CLA-layer,
while beta values are set between 0.5 and 0.6. The learning rate is initially set at 0.01× ( sz attrsi

2 )
and is scheduled to decrease by 95% with each epoch during the training of individual CLA-layers.
The maximum number of epochs for each layer is set to 100, and early stopping is applied; training
ceases if the average minimum distance value for the positive data does not improve beyond a certain
number of epochs. For software and experimental platform, all experiments were conducted on two
Linux machines with the following configurations: (1) NVIDIA GTX 3090TI, Intel Core i9-9900K
CPU, 64GB Memory, and (2) NVIDIA A100, Intel Xeon Gold 6230R CPU, 125GB Memory. All
implemented code and techniques used in the experiments were tested on the Python-based PyTorch
deep learning framework (v1.12.1).

A.2 REVISITING THE POINTING GAME AND CONDUCTING A DETAILED ANALYSIS OF
RESULTS

In Section 4.3.1, we have previously compared the average pointing accuracy between CLAM and
other explainers through the extended Pointing Game. Upon this comparison, CLAM exhibited im-
proved performance over the traditional LRP algorithms for VGG-16. For a more in-depth analysis
of these findings, Figure 5 presents graphs of pointing accuracy for each threshold value. Each graph
corresponds to VGG-16 and ResNet-50, which were pre-trained on CUB-200-2011 and ImageNet,
respectively. The dotted lines in the graphs represent the original LRP algorithms (green: LRP,
blue: CLRP, red: SGLRP), while the solid lines depict the performance when each LRP algorithm is
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Figure 5: Comparison of LRP Algorithm and Combined Performance of LRP+CLAM Across
Datasets and Image Classifiers. Each graph represents pointing accuracy corresponding to resid-
ual energy levels, where dotted lines illustrate original LRP algorithms such as LRP, CLRP, and
SGLRP, and solid lines denote combinations of each LRP algorithm with CLAM.

combined with CLAM. The x-axis of the graphs indicates the residual energy levels, and the y-axis
represents the pointing accuracy corresponding to those energy levels. -Energy(E) is related to the
threshold as below.

E =
#(R

(l)
t >= τ)

#(R
(l)
t > 0)

(6)

In the aforementioned formula, τ represents the threshold value. Consequently, as the threshold
value increases, relevance values in the given relevance map that fall below the threshold are not
utilized, leading to a reduction in residual energy levels. If E is 100%, the threshold becomes zero,
implying that all relevance values are incorporated in the computation of pointing accuracy.

Observing the graphs in the figure, it is evident that LRP and CLRP exhibit similar patterns across
all residual energy levels, with CLRP marginally outperforming LRP overall, and the application
of CLAM results in slight performance improvement. This aligns with our previous analysis of av-
erage pointing accuracy. For SGLRP, it displays lower performance than both LRP and CLRP at
higher residual energy levels; however, its performance improves as the residual energy increases
beyond a certain point. This improvement suggests that SGLRP benefits from utilizing more rele-
vance maps and is more adept at handling noise than its counterparts. Consequently, we infer that
SGLRP inherently possesses the capability to effectively eliminate noise during the generation of
relevance maps. In this context, applying CLAM to SGLRP does not necessarily result in perfor-
mance improvement compared to when it is applied to LRP or CLRP. CLAM inherently reduces
noise in regions unrelated to the target class by identifying areas related to attributes learned at each
CLA-layer and reflecting these in the relevance map. Therefore, applying CLAM to SGLRP, which
already excels in noise reduction, might not substantially boost its effectiveness or might even inad-
vertently eliminate areas of the object, leading to counterproductive outcomes, as can be observed
in Figure 7.

Figure 6 presents the pointing accuracy per residual energy level for various explainers including
LRP, CLAM, and others, across different datasets and image classifiers. Each column corresponds
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Figure 6: Comparison of pointing accuracy performance between the LRP algorithm and other
explainers across various datasets and image classifiers.

to LRP & LRP+CLAM, CLRP & CLRP+CLAM, and SGLRP & SGLRP+CLAM, with dotted lines
representing the original explainers including LRP, and solid lines indicating the performance of the
respective LRP+CLAM combination. For the VGG-16 model, LRP/CLRP+CLAM generally out-
performs other algorithms across most residual energy levels, particularly when all relevance values
are utilized, suggesting a lower level of noise in the original relevance map and highlighting the
noise reduction efficacy of CLAM. For ResNet-50, the performance varies, with either CLAM or
other algorithms taking the lead depending on the situation. The observed performance variations
for LRP and CLAM on ResNet-50 are related to its architecture, which will be further discussed
in Appendix A.6 to solve this issue.. Performance improvement is noted when solely comparing
LRP and CLAM on ResNet-50. Observing rows 1 and 2 of column 4 in Figure 6, performance is
better without CLAM at high residual energy levels, but as this level increases, the performance with
CLAM improves. This implies that while filtering the relevance map by threshold with CLAM may
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Table 3: Results on lower and higher pointing accuracies of explainers based on VGG-16 and
Resnet-50 pre-trained on CUB-200-2011 and ImageNet2012 datasets. Underline indicate improved
performance due to CLAM, while boldface denotes the best performance for each dataset and
model; values closer to 1.0 are preferable.

CUB-200-2011 ImageNet 2012
VGG-16 ResNet-50 VGG-16 ResNet-50

Lower Higher Lower Higher Lower Higher Lower Higher
LRP .6962 .4138 .6116 .3827 .6501 .5048 .6707 .5080

LRP+CLAM .7137 .4165 .5946 .3839 .6636 .5065 .6616 .5052
CLRP .6992 .4188 .6522 .4177 .6531 .5098 .6709 .5079

CLRP+CLAM .7197 .4245 .6625 .4225 .6696 .5145 .6779 .5055
SGLRP .5296 .4373 .6089 .5075 .5691 .5019 .6603 .5863

SGLRP+CLAM .5483 .4271 .6159 .4726 .5748 .4998 .6607 .5817
Linear Appr. .4371 .3391 .3844 .3394 .4750 .4266 .4664 .4270
DeconvNet .4575 .3729 .5119 .3931 .5004 .4496 .5472 .4691

Gradient .5958 .3872 .4583 .3666 .5645 .4605 .5464 .4582
Guided-BP. .6784 .3985 .6404 .3911 .6173 .4726 .6140 .4695
Grad-CAM .6431 .3666 .5809 .4670 .6367 .4575 .6941 .4984

Excitation-BP. .7102 .3977 .7419 .4144 .6429 .4787 .6928 .4958

reduce performance due to excessive noise removal, using all relevance values can enhance perfor-
mance through noise reduction by CLAM. For SGLRP, its performance pattern differs from other
LRP algorithms, demonstrating higher performance as residual energy levels increase, consistent
with the observations from Figure 5. This phenomenon is especially pronounced with ResNet-50.

Table 4 displays the average pointing accuracy of various explainers for both Lower and Higher
cases. The Lower and Higher cases represent the average pointing accuracies below and above a
threshold of 0.5, respectively. Examining the performance of LRP and CLAM, the beneficial ef-
fect of CLAM, as noted in previous results, is evident in many instances. Observing the Lower
case, specifically for VGG-16, CLRP+CLAM outperforms other algorithms, suggesting that filter-
ing relevance values by threshold followed by the application of CLAM allows for additional noise
reduction. For ResNet-50, Excitation-Backprop and Grad-CAM respectively exhibited commend-
able performance on the CUB-200-2011 and ImageNet datasets. Furthermore, in the Higher case,
SGLRP frequently showed superior performance, implying that the algorithm inherently minimizes
noise effectively.

A.3 ADDITIONAL RELEVANCE MAP EXAMPLES AND ANALYSIS

Figures 7 and 8 display the results of relevance maps generated by various explainers for the VGG-
16 model trained on the CUB-200-2011 dataset. Figure 7 highlights cases where the relevance
maps produced by CLAM demonstrate high performance. For instances where CLAM is applied to
LRP and CLRP, it is evident that regions irrelevant to the surrounding objects are eliminated. As
observed in previous experiments, SGLRP inherently possesses the capability to remove surround-
ing areas, resulting in negligible changes when CLAM is applied. Examining the outcomes from
explainers other than LRP, the gradient’s result is noticeably noisy, resembling a simple visualiza-
tion of activation. Guided Backprop shows some noise reduction compared to the gradient method,
although most of its results bear resemblance to edge detection. Grad-CAM effectively identifies
areas pertaining to the main object; however, it requires resizing the relevance map generated from
the last convolutional layer of the image classifier to the input size, which prevents obtaining precise
pixel-level relevance maps and often includes surrounding noise. Excitation Backprop successfully
locates pixels related to the object but fails to eliminate peripheral noise.

Figure 8 shows instances where CLAM yields low performance. Upon observing CLAM’s results
in the figure, in many instances, areas pertinent to the main object are often eliminated. CLAM,
designed to locate and emphasize regions related to the target class while relatively weakening oth-
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Figure 7: Results on generated relevance maps from various explainers for VGG-16 pre-trained on
the CUB-200-2011 Dataset (High CLAM Performance).
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Figure 8: Results on generated relevance maps from various explainers for VGG-16 pre-trained on
the CUB-200-2011 Dataset (Low CLAM Performance).

ers, may inadvertently yield detrimental effects, especially if the given image is overly simplistic.
For instance, in the sixth row of Figure 8, the target object (bird) is centrally located with a simple
background, resulting in well-generated relevance maps by LRP. When CLAM is applied to these
results, it identifies the ‘head’ of the bird as the area most relevant to the current class, inadvertently
weakening the relevance of the body in the final map. Since there are no definitive correct answers
for these predictive relevance maps, neither case is inherently wrong. However, if we assume equal
importance should be assigned across the entire object area, the result from CLAM cannot be consid-
ered superior to the original LRP. Similar observations, where the body of the object is eliminated,
can be made in other cases, aligning with the lower average IoU results for LRP and CLAM as
discussed in Appendix A.5.

Figures 9 and 10 illustrate the relevance map generation results of various explainers for the ResNet-
50 model trained on the CUB-200-2011 dataset. Examining Figure 9 first, it is noticeable that ap-
plying LRP introduces considerable noise outside of the object area, owing to the incorporation of
features from BatchNorm layers during the relevance map creation process in our experiment. Upon
the application of CLAM, much of this noise is mitigated, leaving predominantly the regions re-
lated to the class-specific objects. Results from other explainers are consistent with those previously
observed with the CUB dataset. Figure 10 provides examples with lower performance of CLAM
similar to Figure 8. While employing CLAM effectively reduces surrounding noise, attempts to
eliminate excessive noise occasionally lead to the removal of essential object areas, as evidenced
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Figure 9: Results on generated relevance maps from various explainers for ResNet-50 pre-trained
on the CUB-200-2011 Dataset (High CLAM Performance).
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Figure 10: Results on generated relevance maps from various explainers for ResNet-50 pre-trained
on the CUB-200-2011 Dataset (Low CLAM Performance).

in several instances. This phenomenon is especially prominent in scenarios with simplistic back-
grounds, like in the last row of Figure 10; areas within the object identified by the attributes become
emphasized, consequently weakening the relevance values in other parts of the object.

Figures 11 and 12 depict the relevance map generation results by various explainers for VGG-16 and
ResNet-50, respectively, both trained on the ImageNet dataset. Observing Figure 11, when compar-
ing original LRP algorithms with those where CLAM is applied, the effects seem modest, slightly
emphasizing certain regions within objects or mildly eliminating background noise, rather than sig-
nificantly reducing noise as seen with the CUB-200-2011 dataset. Upon analysis, this difference
is attributed to the configuration of the CLA-layers. For the CUB-200-2011 dataset, CLA-layers
were connected to all convolutional layers of every image classifier. However, due to the substantial
number of classes and corresponding large dataset size in ImageNet, establishing CLA-layers for all
convolutional layers would require significant training time. Consequently, we selected five primary
convolutional layers for which CLA-layers were configured and trained. While this approach con-
siderably reduced the overall training time, the limited number of CLA-layers also diminished the
efficacy of relevance map adjustments by CLAM. This experience indicates the necessity for strate-
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Figure 11: Results on generated relevance maps from various explainers for VGG-16 pre-trained on
the ImageNet2012 Dataset.

gic configuration of CLAM’s CLA-layers depending on the architecture of the target image classifier
and the size of the dataset. Further discussion on this matter can be found in Appendix A.6.

As evidenced by various quantitative evaluations previously discussed, implementing CLAM on
ResNet-50 is more challenging than on VGG-16 due to its deeper and more complex structure.
Therefore, we devised two versions of CLAM for application on ResNet-50. Case 1 involves train-
ing with the final features of all Bottleneck blocks and the features from the 3 × 3 convolutional
layers within the Bottleneck, while Case 2 utilizes only the last features of the Bottleneck blocks. In
Case 1, CLAM contains an excessive number of CLA-layers, leading to frequent over-adjustments
of the relevance map during backpropagation following the LRP algorithm, often eliminating cor-
rect regions. Figure 13 demonstrates this outcome, with many instances where the application of
CLAM inadvertently removes the entire object area. Although Case 2 fares better than Case 1, it
omits much of ResNet-50’s residual feature information, providing only marginal noise reduction
without substantial improvement over the original LRP algorithm, as seen in Figure 12. Through
these results, we acknowledge the limitations of CLAM and aim to explore effective applications of
CLAM on complex structures in future work.
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Figure 12: Results on generated relevance maps from various explainers for ResNet-50 pre-trained
on the ImageNet2012 Dataset.
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Figure 13: Results on generated relevance maps from various explainers for ResNet-50 pre-trained
on the ImageNet2012 Dataset (Low CLAM Performance).
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A.4 ADDITIONAL EXAMPLE-BASED EXPLANATIONS AND ANALYSIS

As indicated in Section 4.2.2, CLAM was capable of providing example images from the training
dataset related to the attribute regions reflected in the map when generating a relevance map from an
input image via learned attributes. These example images offer additional insights into which images
from the actual training dataset influenced the regions reflected in the relevance map. Figures 14,
15, and 16 illustrate examples of images from the training dataset and their corresponding bounding

Figure 14: Example 1. Images related to attributes regions reflected in relevance map for each
CLA-layer
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Figure 15: Example 2. Images related to attributes regions reflected in relevance map for each
CLA-layer.
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Figure 16: Example 3. Images related to attributes regions reflected in relevance map for each
CLA-layer.
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boxes that are related to the attribute regions reflected in the relevance map, with each layer being
displayed separately. The first column lists the names of convolutional layers where the CLA-
layer is applied. The second column shows the important regions at each layer for the input image
and the target class determined by the attribute. The third column presents the relevance map at
each layer, where the values of the regions selected by the attribute are enhanced through masking.
Subsequent columns provide the training dataset image (and its region) that is most similar to each
region selected by the attribute. It notes that the CLA-layers closer to the input layer have minor
influence from the attributes and are, therefore, omitted.

Upon examining each figure, it can be observed that areas primarily associated with the target class
tend to be mapped together. For instance, in Figure 14, from ‘Conv-28’ to ‘Conv-17’, the regions
selected by the attributes of each layer predominantly pinpoint the ‘head’ of the bird as the most
crucial area for the class. Correspondingly, images from the training dataset also predominantly
indicate the bird’s head. Moreover, the relevance values in the relevance map for the head area are
also enhanced. Considering ‘Conv-14’, one of the attributes selects the bird’s tail portion (indicated
by a cyan box) from the input image. Images from the training dataset related to this attribute also
pinpoint the tail portion of a bird consistently. However, even when the area of this attribute is
reflected in the relevance map, it is not emphasized in the actual relevance map since its values are
significantly lower than those of the head area previously enhanced. From the model’s perspective,
when information is aggregated layer-wise for the target class, the head region can be identified as
significantly influential to the class overall. Such results are beneficial in the context of highlighting
areas that contribute substantially to model predictions, as illustrated by the example. Nonetheless,
this might not be advantageous when it comes to evaluations involving Intersection over Union (IoU)
for segmentation or when there’s a need to locate the entire object area. A straightforward solution
to this issue is to adjust the ‘strength’ with which attribute regions are reflected in the relevance map
through parameterization mentioned in Appendix A.1. In future developments and enhancements of
CLAM, various considerations and factors need to be taken into account.

Figures 17 and 18 present examples where the accuracy of attributes is suboptimal. Firstly, Fig-
ure 17 illustrates a problem arising from the difference in object sizes between the test image and
the connected images from the training dataset. Upon observing the input image in the figure, it’s
evident that the target object area is relatively small. Consequently, the regions selected by the at-
tribute usually encompass more than half of the object. However, some images from the training
dataset identified by the attribute contain substantially larger objects. For example, in ‘Conv-17’ of
Figure 17, the attributes identified an area from the input image that corresponds to the entire body
of the bird, but for related training set images providing images pointing to both parts of the bird’s
body and beak. While this isn’t incorrect at a glance, a more detailed examination reveals a mis-
match in the levels of the areas within the bounding boxes. This issue stems from the fact that the
patch sizes of each CLA-layer are fixed. Such findings could be pivotal in future developments and
improvements of CLAM. Figure 18 depicts instances where the mapping between the regions found
by the attributes is inaccurate. For instance, in ‘Conv-19’, while the blue box points to the bird’s
head in the input image, the image from the training dataset indicates the bird’s leg. This problem
occurs due to the imperfect performance of the trained attributes themselves, highlighting through
this example the need for evaluation of attributes themselves.
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Figure 17: Example 4. Images related to attributes regions reflected in relevance map for each
CLA-layer (Incorrect case)
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Figure 18: Example 5. Images related to attributes regions reflected in relevance map for each
CLA-layer (Incorrect case)
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A.5 EVALUATION THROUGH AVERAGE IOU FOR SEGMENTATION

In additional experiment, using the segmentation masks provided in the CUB-200-2011 datase, the
average IoU performance of the relevance maps generated by each explainer is measured and com-
pared. Unlike the IoU for bounding boxes, segmentation allows for area evaluation at the pixel level,
as it utilizes masks labeled at this granularity. For IoU calculations, we employ the localization
method executed in (Lee et al., 2021). To perform segmentation on the relevance maps generated
by the explainer, masks are created, consisting of values exceeding average + 1*standard deviation.
The IoU is then computed using these created masks and the ground truth masks provided in the
dataset.

Table 4 presents the average IoU values for relevance maps generated by explainers, each associ-
ated with image classifiers trained on respective datasets. Firstly, it is evident that both LRP and
CLRP exhibit improved performance when integrated with CLAM, as the latter helps reduce noise
from areas outside the object, as previously verified. Conversely, SGLRP shows a decrease in per-
formance. This decline is attributed to CLAM inadvertently eliminating areas within the object
while reducing noise on already denoised relevance maps produced by SGLRP. When comparing
the performance of CLAM with other explainers, it is observed that CLAM generally underperforms
relative to Grad-CAM and Excitation Backprop. This discrepancy is because, for higher IoU per-
formance, it is imperative not only to eliminate noise but also to preserve the object areas intact.
While creating masks for relevance maps, pixel values corresponding to noise get removed, thereby
diminishing the noise reduction effect of CLAM. Furthermore, since CLAM primarily focuses on
noise reduction, the inadvertent removal or alteration of some object areas significantly compro-
mises its IoU performance, resulting in a lower average performance. As can be seen in Figure 3,
while CLAM applications yield minimal noise, there are instances where parts of the object area
are slightly erased. Addressing this issue is a challenge that future iterations of CLAM must tackle,
especially from a segmentation perspective.

Table 4: Results on average IoU score with segmentation mask of CUB-200-2011.

LRP LRP+C CLRP CLRP+C SGLRP SGLRP+C
VGG-16 .2244 .3693 .2693 .3541 .3088 2256

ResNet-50 .2762 .3541 .2630 .3885 .3540 2008

LA. Deconv. Gradient Guided-GP. Grad-CAM Ex-BP.
VGG-16 .1343 .1358 .2820 .2766 .4240 .4751

ResNet-50 .0992 .1649 .1685 .2834 .4180 .4531

A.6 LIMITATIONS AND FUTURE PLANS

CLAM was developed with an aim to amalgamate the advantages of both traditional post-hoc expla-
nation methods and the transparent design approach, thereby enhancing the depth and performance
of the explanations provided. Particularly, while post-hoc explanation approaches boast the benefit
of applicability across various models through predetermined algorithms, they fall short in under-
standing and generating explanations for the target models themselves. In response to this limitation,
the inception of CLAM was characterized by designing a model capable of statistically analyzing
and modeling the abundant feature and relevance information derived from numerous data inputs
fed into an already trained model. To achieve this, CLA-layers were crafted, and through the itera-
tive learning of abundant features and relevance maps across multiple CLA-layers, it was possible
to acquire attribute information specific to each class and layer. This process not only enhanced
the performance of the generated relevance maps but also facilitated the provision of additional
explanations.

However, through various experiments, several limitations were identified. Firstly, there is difficulty
in generalizing for different models. When comparing VGG-16 and ResNet-50, which were utilized
in this study, substantial differences were observed even when both were trained with the same
dataset and exhibited similar performance. Notably, due to its multiple residual connections, block-
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like structures, and deep neural network architecture, ResNet-50 necessitates many CLA-layers,
leading experimentally to a decline in the performance of relevance maps. To address these issues,
a simple solution would be adjusting various hyperparameters. For example, the number of CLA-
layers can be set appropriately depending on factors such as the depth of the model, the number of
convolutional layers, the size of the model’s features, the size of the utilized dataset, and the number
of classes. Alternatively, after the training of CLA-layers, during the test phase, the ‘strength’
parameter can be separately configured to adjust the reflection of attributes in the relevance map.
Moreover, it’s unreasonable to assume that all features of the convolutional layer equally affect
predictions. For instance, in the case of Grad-CAM, utilizing only the last convolutional layer of
the model to create relevance maps still yields excellent performance. This suggests that as features
are closer to the output layer, their importance increases; therefore, when constructing CLA-layers,
it may be beneficial to allocate more significance to those closer to the output layer. In this study,
the CLA-layers near the input layer are indeed set with lower strength values when adjusting the
relevance maps.

Beyond immediate performance improvement, considerations regarding the structure of CLA-layers
and the loss function for training CLA-layers appear necessary for the broader application of CLAM
across various models. Particularly, as models based on Transformers (Vaswani et al., 2017; Dosovit-
skiy et al., 2020; Han et al., 2021; Chang et al., 2022), which possess more complex structures than
traditional CNN-based deep learning models, are being extensively utilized across diverse fields,
there is a pressing need for progressive advancements to apply CLAM effectively to these mod-
els. There are instances where LRP methods are applied to Transformer-based models (Abnar &
Zuidema, 2020; Chefer et al., 2021; Ali et al., 2022; Naseer et al., 2021; Chefer et al., 2021), ne-
cessitating further developments for the implementation of CLAM on such architectures. The final
goal of CLAM is to analyze the independent space that generates features, irrespective of the model
structure, and to collaborate with existing explainers capable of generating explanations, thereby en-
hancing explanatory power. Future research will be conducted aligned with this objective. Another
identified limitation is the absence of an evaluation method specifically for CLAM itself. Since
there are no predefined correct answers for the sub-feature areas extracted by the attributes learned
at each CLA-layer in CLAM, there is not a direct way to assess the accuracy level of the attributes.
In light of this, the experiments conducted in this study proceeded by reflecting the attributes in the
relevance map and evaluating the relevance map itself. However, to generalize CLAM further and
apply it to various tasks, there is a need to explore and develop evaluation methods specifically for
CLAM. Future research is planned to address this need and advance this aspect of the framework.
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