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Abstract

We present regret minimization algorithms for the contextual multi-armed bandit
(CMAB) problem over K actions in the presence of delayed feedback, a sce-
nario where loss observations arrive with delays chosen by an adversary. As a
preliminary result, assuming direct access to a finite policy class Π we establish
an optimal expected regret bound of O(

√
KT log |Π| +

√
D log |Π|) where D

is the sum of delays. For our main contribution, we study the general function
approximation setting over a (possibly infinite) contextual loss function class F
with access to an online least-square regression oracle O over F . In this setting,
we achieve an expected regret bound of O(

√
KTRT (O) +

√
dmaxDβ) assum-

ing FIFO order, where dmax is the maximal delay, RT (O) is an upper bound
on the oracle’s regret and β is a stability parameter associated with the oracle.
We complement this general result by presenting a novel stability analysis of a
Hedge-based version of Vovk’s aggregating forecaster as an oracle implementa-
tion for least-square regression over a finite function class F and show that its
stability parameter β is bounded by log |F|, resulting in an expected regret bound
of O(

√
KT log |F|+

√
dmaxD log |F|) which is a

√
dmax factor away from the

lower bound of Ω(
√
KT log |F|+

√
D log |F|) that we also present.

1 Introduction

Contextual Multi-Armed Bandit (CMAB) is a natural extension of the well-studied Multi-Armed
Bandit (MAB) model that has gained considerable attention over the past decade. (See, e.g., [24, 34]).
CMAB describes a sequential decision-making problem with exterior factors that affect the decision
taken by the learner. We refer to this side information as the context. In this setting, the context x is
revealed to the learner at the start of each round. Then, the learner chooses an action a out of a finite
set A containing K actions and suffers a loss for that choice, where the context determines the loss.
The learner’s goal is to minimize the cumulative loss incurred throughout an interaction of T rounds.
In this model, action selection strategies are context-dependent and referred to as policies, and the
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learner ultimately aims to minimize regret, that is, the learner’s cumulative loss in comparison to that
of the best contextual action selection rule, i.e., the optimal policy.

CMAB can describe various real-life online scenarios where there are external factors that affect the
loss incurred by any choice of action. One such application is online advertising, where the reaction
of a user to a presented advertisement (i.e., clicking or ignoring) is heavily dependent on the user’s
needs (e.g., if they would like to buy a new car), hobbies, and personal preferences. All of the above
can be encoded in the user’s browsing history and cookies. Thus, the user’s cookies can refer to the
external factors that affect the user’s implied loss. CMAB has been studied under various assumptions
and frameworks, which we review in the sequel. In this paper, we consider the adversarial CMAB
model (see, e.g., [6, 13]), where the context in each round is chosen by a possibly adaptive adversary
from a (possibly infinite) context space X .

Returning to the online advertising example, in such an application, delayed feedback is practically
unavoidable. Consider the scenario where a sequence of users enters the application one after
another. The algorithm then needs to present them with advertisements, even though the feedback
of previous users has not arrived yet. As the application takes time to process each user’s feedback,
observations will arrive with an inherent delay. In other real-life scenarios such as communication on
a physical network, it is also natural to assume that observations arrive at the order in which they
are distributed into the network; that is, they arrive in a First-In-First-Out (FIFO) order. In the main
theoretical framework of general function approximation that we consider in this work, this additional
assumption enables us to obtain highly nontrivial regret guarantees. Such real-life applications
motivate the setting of MAB with delayed feedback, which has also vastly studied in recent years,
either when the environment is adversarial [8, 10, 35] or stochastic [17, 21, 37]. This leads us to the
following fundamental question: What are the achievable regret guarantees in adversarial CMAB
under adversarial delayed feedback? In this work, we address this question by considering the two
main settings studied in adversarial CMAB literature, and derive delay-robust algorithms for them.

We start with the simpler setting of policy class learning, considered in [5, 12] where the context
is stochastic, and in [6] for adversarial contexts. In this setting, the learner has direct access to a
finite class Π ⊆ AX of deterministic mappings from contexts to actions (i.e., policy class), and
its performance is compared against the best policy in Π. We note that using policy class-based
approaches, a running-time complexity of O(|Π|) is unavoidable in general. It is thus natural to also
consider the more challenging setting of general function approximation [4, 13, 16, 33], with the goal
of obtaining an algorithm that is both computationally efficient and enjoys rate-optimal regret.

In the function approximation framework, the learner has indirect access to a class of loss functions
F ⊆ [0, 1]X×A where each function defines a mapping from context and action to a loss value
in [0, 1]. They also assume realizability, meaning the true loss function f⋆ is within the class, i.e.,
f⋆ ∈ F . The learner accesses the function class via an online regression oracle, and measures its
performance with respect to that of the best contextual policy π⋆ : X → A of the true CMAB. In
this setting, in addition to the standard least-squares regret assumption required from the oracle, our
approach will require a stability assumption that will be discussed later. Furthermore, we present
novel stability analysis of a Hedge-based version of Vovk’s aggregating forecaster [39] and derive an
expected regret bound for this setting, assuming finite and realizable loss function classes.

Summary of our main contributions. We present delay-adapted algorithms for CMAB with general
function approximation and analyze the regret of the proposed methods. In more detail, our main
results are summarized as follows:

(1) For the policy class learning setup, we establish a regret bound of O(
√

KT log |Π|+
√
D log |Π|)

where D is the sum of delays. This bound is optimal, as stated in our lower bound in Corollary C.3.

(2) Given access to a finite contextual loss function class F via an online least-square regression
oracleOF

sq overF , we present a delay-adapted version of function approximation methods for CMAB,
as specified in Algorithm 1. This algorithm can be seen as a delay-adapted version of SquareCB [13],
formalized using techniques presented in [15, 26]. For this algorithm we prove in Theorem 4.6 an
expected regret bound of O(

√
KTRT (OF

sq) +
√
dmaxDβ) assuming observations arrive in FIFO

order, where dmax is the maximal delay, RT (O) is an upper bound on the oracle’s regret and β is
a parameter given by an additional assumption that the oracle in use is sufficiently stable. We also
prove (in Appendix C.1) a lower bound showing that without an additional assumption on the oracle,
no algorithm can guarantee sublinear regret in the presence of delays in the function approximation
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setting. To our knowledge, our work is the first to consider delayed feedback in adversarial CMAB in
the fully general function approximation framework.

(3) To complement and strengthen this result, we analyze a hedge-based version of Vovk’s aggregating
forecaster [39] as an online least-squares regression oracle for finite loss function classes. We show
that it enjoys a constant expected regret while also exhibiting nontrivial cumulative stability guarantees
for realizable finite classes F (Theorem 4.11), which implies a constant bound on its stability
parameter β ≤ log |F| and in turn an expected regret bound of O(

√
KT log |F|+

√
dmaxD log |F|)

for Algorithm 1 when used with this oracle. We emphasize that the proof of this oracle’s stability
properties constitutes a significant part of the technical novelties of our work.

1.1 Additional related work

Contextual MAB. CMAB has been vastly studied over the years, under diverse assumptions,
regarding the contexts, the function class or the oracles in use, if any. Previous works divide into
two main lines. The first is policy class learning, starting from the fundamental EXP4 algorithm
for adversarially chosen contexts [6], to Agarwal et al. [5], Dudik et al. [12] that consider stochastic
contexts and present computationally efficient algorithms for this problem. They obtain an optimal
regret of Õ(

√
KT log|Π|). Dudik et al. [12] also considered constant delayed feedback d and

obtained regret bound of Õ(
√
K log|Π|(d+

√
T )).

The second line is the realizable function approximation setting, which has also been studied for
stochastic CMAB, starting from Langford and Zhang [23] to Agarwal et al. [3], Simchi-Levi and
Xu [33], Xu and Zeevi [40] in which an optimal regret of Õ(

√
TK log|F|) has been shown, where

F ⊆ [0, 1]X×A is a finite contextual reward or loss function class, accessed via an offline regression
oracle. Adversarial CMAB has also gained much attention recently, in the following significant line
of works [13, 14, 16, 42], where an online regression is being used to access the function class F ,
with an optimal regret bound of Õ(

√
KTRT (O)), whereRT (O) is the oracle’s regret.

Regret guarantees for linear CMAB first studied by Abe and Long [2] and the SOTA algorithms
are those of Abbasi-Yadkori et al. [1], Chu et al. [11]. Contextual MDPs (which are an extension
of MAB, that has multiple states and dynamics) have been studied under function approximation
assumptions for both stochastic context [25, 27, 32] and adversarial contexts with Levy et al. [26]
being the most relevant to our setting as it studies adversarial CMDP, and inspired our algorithm and
analysis. Generalized Linear CMDPs and smooth CMDPs have also been studied, see, e.g., [31, 30].

Online Learning with Delayed Bandit Feedback. Delayed feedback has been an area of consider-
able interest in various online MAB problems in the past few years, with the first work on adversarial
MAB with a constant delay d by Cesa-Bianchi et al. [10]. Subsequent results for adversarial MAB
with arbitrary delays have been established by [8, 35], with Thune et al. [35] being the first work to
introduce the skipping technique which adapts to delay sequences that may contain a relatively small
number of very large delays. Zimmert and Seldin [43] proposed the first algorithm for adversarial
MAB with arbitrary delays that does not require any prior knowledge of the delays.

The study of delayed feedback in MAB has also been extended in several works to more general
learning settings. Such settings include linear bandits [19, 37], generalized linear bandits [18], combi-
natorial semi-bandits [36] and bandit convex optimization [28]. Another prevalent generalization of
MAB, in which delayed feedback has been studied, is Reinforcement Learning, specifically tabular
MDPs [20, 22, 36], with Jin et al. [20] who first suggested the use of biased delay-adapted loss
estimators which inspired our loss estimators used in Algorithm 3.

In CMAB, delayed feedback is far less explored. In the framework of function approximation, Vernade
et al. [38] consider the linear case with stochastic delays, and Zhou et al. [41] study generalized
linear CMAB with stochastic delays and contexts; both of which are special cases of the general
function approximation setting studied in this paper. For stochastic contexts, we believe that obtaining
delay-adapted regret bounds in the general function approximation setting can be done by extending
the approach of Simchi-Levi and Xu [33], which operates in phases of exponentially increasing
lengths. It seems that the presence of delays in this setting will only affect the regret for rounds
in which the delay is larger than current batch size, which quickly becomes much larger than the
maximal delay. We thus focus on the adversarial setting where it is much less clear how to handle
delayed feedback.
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2 Problem Setup

We consider adversarial contextual MAB (CMAB) with adversarial delayed bandit feedback.

Contextual MAB. Formally, CMAB is defined by a tuple (X ,A, ℓ) where X is the context space,
which is assumed to be large or even infinite, and A = {1, 2, . . . ,K} is a finite action space.
ℓ : X × A → [0, 1] forms an expected loss function, that is, for (x, a) ∈ X × A, ℓ(x, a) =
E[L(x, a) | x, a] where L(x, a) ∈ [0, 1] is sampled independently from an unknown distribution,
related to the context x and the action a. In adversarial CMAB, the learner faces a sequential decision-
making game that is played for T rounds according to the following protocol, for t = 1, 2, . . . , T :
(1) Adversary reveals a context xt ∈ X to the learner; (2) Learner chooses action at ∈ A and suffers
loss L(xt, at).
A policy π defines a mapping from context to a distribution over actions, i.e., π : X → ∆(A). The
learner’s cumulative performance is compared to that of the best (deterministic) policy π⋆ : X → A.

Delayed feedback. The learner observes delayed bandit feedback, where the sequence of delays can
be adversarial. Formally, delays are determined by a sequence of numbers d1, . . . , dT ∈ {0, 1, . . . , T}.
In each round t, after choosing an action at, the learner observes the pairs (s, L(xs, as)) for all rounds
s ≤ t with s+ ds = t; crucially, only the loss values are delayed, whereas the contexts xt are each
observed at the start of round t. We consider a setting where the sequence of delays (dt)Tt=1 as well as
the contexts (xt)

T
t=1 are generated by an adversary.0 We denote the sum of delays by D =

∑d
t=1 dt

and the maximal delay by dmax = maxt∈[T ] dt.

Learning objective. We aim to minimize regret, which is the difference between the cumulative loss
of the learner and that of the best-fixed policy π⋆, i.e.,RT :=

∑T
t=1 ℓ(xt, at)− ℓ(xt, π⋆(xt)).

We consider two different learning settings for CMAB with delayed feedback. The first is Policy Class
Learning, in which the CMAB algorithm has direct access to a finite policy class Π ⊆ AX . In this set-
ting, the benchmark π⋆ is the best policy among the class, i.e., π⋆ ∈ argminπ∈Π

∑T
t=1 ℓ(xt, π(xt)).

Next, we consider the setting of Online Function Approximation, where the CMAB algorithm has
access to a realizable contextual loss class F ⊆ X ×A → [0, 1], where realizability means that there
exists a function f⋆ ∈ F such that for all (x, a) ∈ X ×A it holds that f⋆(x, a) = ℓ(x, a). Then, the
learner’s goal is to compete against π⋆(x) ∈ argmina∈A f⋆(x, a), for all x ∈ X .

3 Warmup: Policy Class Learning

We begin with a simple formulation of the CMAB problem which considers a finite but structureless
policy class Π ⊆ AX , indexed by Π = {π1, . . . , πN}. We remark that in this formulation, the loss
vectors (L(xt, ·))Tt=1 may also be generated by an adversary.

3.1 Algorithm: EXP4 with Delay-Adapted Loss Estimators

For this setting, we present a variant of the well-studied EXP4 algorithm [6] (fully presented in
Appendix A), that incorporates delay-robust loss estimators specialized to the CMAB setting. At a
high-level, using direct access to Π, the algorithm performs multiplicative weight updates over the
N -dimensional simplex ∆N , while using all of the feedback that arrives in each round t to construct
loss estimators, denoted by ĉt ∈ RN

+ and defined in Equation (2). These estimators are inspired
by Jin et al. [20], and are reminiscent of the standard importance-weighted loss estimators, with an
additional term in the denominator which induces an under-estimation bias and allows for a simplified
analysis. Interestingly, these estimators exhibit a coupling between the context xt, which arrives at a
given round t, and the sampling distribution pt+dt

from a future round, and can be thought of as a
mechanism that incentivizes actions whose sampling probability has increased between rounds t and
t+ dt, with respect to the context xt. The main result for Algorithm 3 is given bellow.

Theorem 3.1. Algorithm 3 attains expected regret bound of

E[RT ] ≤
logN

η
+ ηKT + 2ηD,

0In the function approximation setting we assume the delay sequence satisfies a FIFO property, see Section 4
for details.
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where the expectation is over the algorithm’s randomness.

For η =
√

logN
KT+D we obtain an optimal bound of

E[RT ] ≤ O
(√

KT logN +
√
D logN

)
.

Intuitively, in the policy class setting we can directly optimize over Π by using Hedge updates which
exhibit stability properties that are crucial in the presence delayed feedback. Such stability properties
are much harder to obtain in the function approximation setting where the contextual bandit algorithm
does not have direct access to the policy class, and in particular is required to be computationally
efficient; see Section 4 for details. We also remark that Algorithm 3 requires an upper bound on the
sum of delays D, however, it can be made adaptive by utilizing a “doubling” mechanism as suggested
in, e.g., [22]. The description of Algorithm 3 and the proof of Theorem 3.1 appear in Appendix A.

Matching lower bound. In Appendix C.2, we prove a matching lower bound showing that the upper
bound obtained in Theorem 3.1 is optimal up to constant factors. To our knowledge, this is the first
tight lower bound that applies to policy class learning with delayed feedback, as previous lower
bounds (e.g., [10]) exhibit a delay dependence of

√
D rather than

√
D logN .

4 Online Function Approximation

In this section, we provide regret guarantees for CMAB with delayed feedback under the framework
of online function approximation [13, 16]. In this setting, the learner has access to a class of loss
functions F ⊆ X × A → [0, 1], where each function f ∈ F maps a context x ∈ X and an action
a ∈ A to a loss ℓ ∈ [0, 1]. We useF to approximate the context-dependent expected loss of any action
a ∈ A for any context x ∈ X . The CMAB algorithm can access F using an online least-squares
regression (OLSR) oracle that will operate under the following standard realizability assumption.

Assumption 4.1. There exists a function f⋆ ∈ F such that for all (x, a) ∈ X ×A, f⋆(x, a) = ℓ(x, a).

We assume access to a classical, non-delayed, online regression oracle with respect to the square loss
function hsq(ŷ, y) = (ŷ − y)

2. The oracle, which we denote by OF
sq , is given as input at each round t

the past observations (xs, as, Ls(xs, as))
t−1
s=1 and outputs a function f̂t : X ×A → [0, 1]. A general

formulation of the online oracle model is discussed in Foster and Rakhlin [13]. We make use of the
following standard online least-squares expected regret assumption of the oracle:

Assumption 4.2 (Least-Squares Oracle Regret). The oracle OF
sq guarantees that for every sequence

{(xt, at, Lt)}Tt=1 where at ∼ pt and Lt ∈ [0, 1] has E[Lt|xt, at] = ℓ(xt, at), the expected least-
squares regret is bounded as

∑T
t=1 E[(f̂t(xt, at)− ℓ(xt, at))

2] ≤ RT (OF
sq).

Note that a stronger high-probability version of Assumption 4.2 is made in Foster and Rakhlin [13]
in order to prove high probability regret bounds for CMAB, but for our use the weaker version
suffices. Assumption 4.1 and Assumption 4.2 (or variants of it for other loss functions) are necessary
to derive regret bounds for adversarial CMAB and are extensively used literature (see e.g., [13, 14]).
However, a general implementation of online least-square regression oracle for a function class
might be unstable. To justify the importance of stability, we show in the following result (proven in
Appendix C.1) that Assumption 4.1 and Assumption 4.2 alone do not suffice for sublinear regret with
function approximation in the presence of delays.

Theorem 4.3. For any CMAB algorithm ALG in the function approximation setting there exists a
contextual bandit instance with fixed delay d = 1 over a realizable loss class F with |F| = T + 1
and an online oracle OF

sq satisfyingRT

(
OF

sq

)
= 0, on which ALG attains regretRT = Ω(T ).

Hence, we impose the following stability assumption on the oracle.

Assumption 4.4 (β-stability). Let f̂1, f̂2, . . . , f̂T denote the function sequence outputted by the
non-delayed oracle OF

sq on the observation sequence {(xt, at, Lt)}Tt=1. We assume that for some
β > 0, it holds that E[

∑T
t=1 ∥f̂t − f̂t+1∥2∞] ≤ β, where in ∥·∥∞ we take supremum over x ∈ X and

a ∈ A and the expectation is over the loss realizations {Lt}Tt=1.
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We denote a β-stable OLSR oracle for the function class F byOF,β
sq . As a specific example of such an

oracle, we present a Hedge-based version of Vovk’s aggregating forecaster (Algorithm 2) and prove
that it guarantees least-squares regret of O(log |F|) while simultaneously satisfying Assumption 4.4
with β = O(log |F|), which we use to derive an expected regret bound for this setting.

Our use of a non-delayed OLSR oracle to handle delayed CMAB setup with function approximation
requires us to make an assumption on the delay sequence, namely, that observations arrive in FIFO
order.1 This is formalized in the following assumption and further explained in the following.
Assumption 4.5 (FIFO). We assume the delay sequence (d1, . . . , dT ) satisfies s + ds ≤ t + dt
whenever 1 ≤ s ≤ t ≤ T . In particular, if the observation from time t does not arrive (that is,
t+ dt > T ) then neither do all observations from rounds t′ > t.

4.1 Algorithm: Delay-Adapted Function Approximation for CMAB

We present Algorithm DA-FA (Algorithm 1) for regret minimization in CMAB with delayed feedback
for the function approximation framework. Algorithm 1 essentially uses the most up-to-date approxi-
mation of the loss until delayed observations arrive. When they arrive, the algorithm feeds them to the
oracle one by one, ignores the midway approximations, and uses only the newest loss approximation.
In each round t = 1, 2, . . . , T the algorithm operates as follows. Let α(t) < t denote the number
of observations that arrived at round t. Denote these observations by {(sti, L(xsti

, asti))}
α(t)
i=1 , where

st1 ≤ . . . ≤ stα(t) denote the time steps of the non-delayed related context and action associated
with these delayed loss observations. It then holds that sti + dsti = t for all i ∈ [α(t)]. Note that we
assume that the delayed observations arrive in FIFO order, meaning that the delayed observation
from round τ always arrives before (or in parallel to) that of round τ + 1 for all τ ∈ [T ]. Then, for
i = 1, . . . , α(t), we feed the oracle with the example (xsti

, asti , L(xsti
, asti)) by order and observe the

predicted function f̂t−dst
i

. Let τ t = t− dst
α(t)

= stα(t) denote the index of the last observed delayed
loss. After processing all the data that arrived, the current context xt is revealed and the algorithm
uses the last predicted function f̂τt to solve the regularized convex optimization problem specified
in Equation (1), and plays an action sampled from the resulted distribution.

Algorithm 1 Delay-Adapted Function Approximation for CMAB (DA-FA)

1: inputs: Function class F for loss approximation, learning rate γ, β-stable OLSR oracle OF,β
sq .

2: for round t = 1, . . . , T do
3: observe α(t) < t losses {(sti, L(xsti

, asti))}
α(t)
i=1 where ∀i ∈ [α(t)], sti + dsti = t and

st1 ≤ . . . ≤ stα(t).
4: for i = 1, 2, . . . , α(t) do
5: update OF,β

sq with the example ((xsti
, asti), L(xsti

, asti)).
6: observe the oracle’s output f̂t−dst

i

← OF,β
sq .

7: let τ t := t− dst
α(t)

= stα(t) denote index of the last observed loss.

8: use f̂τt as the current loss approximation.
9: observe context xt ∈ X .

10: solve

pt ∈ argmin
p∈∆A

∑
a∈A

p(a)f̂τt(xt, a)−
1

γ

∑
a∈A

log(p(a)). (1)

11: play the action at sampled from pt

The regret bound for Algorithm 1 is given in the following.

Theorem 4.6. Let γ =

√
KT/RTOF,β

sq . Then Algorithm 1 has an expected regret bound of

E[RT ] ≤ O

(√
KTRT (OF,β

sq ) +
√
dmaxDβ

)
.

1In particular, this includes the case of fixed delay d.
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In particular, this implies the expected regret is bounded as

E[RT ] ≤ O

(√
KTRT (OF,β

sq ) +D3/4
√
β

)
.

We remark that Theorem 4.6 actually holds with high probability whenever Assumption 4.2 and
Assumption 4.4 hold in high probability rather than in expectation.

Why FIFO order is needed. In the following analysis, we make use of the assumption that the
observations arrive in FIFO order to argue that the realized functions that the oracle outputs throughout
the process correspond to functions that are outputs of the oracle on the non-delayed observation
sequence. Otherwise, the delay can cause a permutation in the order of observations, inducing a
sequence of realized outputs that might be different than those of the non-delayed oracle, in which
case we cannot relate the realized regret to the regret of the oracle on the non-delayed sequence.

Computational efficiency. The optimization problem in Equation (1) is convex and can be solved
efficiently to arbitrary precision. Thus Algorithm 1 is clearly efficient, assuming an efficient oracle.

4.2 Analysis

In this subsection, we analyze Algorithm 1, proving Theorem 4.6. Our main technical challenge
is reflected in the regret decomposition. As in all previous literature regarding delayed feed-
back, the main challenge is to derive a bound where the sum of delays D is separated from the
number of actions K. Usually, this separation is obtained by an appropriate choice of loss es-
timators. In our case, however, the loss is estimated by the oracle, and hence not transparent
to the algorithm. Our way to create the desired separation is via the regret decomposition de-
scribed in the following. Let {f̂1, f̂2, . . . , f̂T } denote the functions predicted by the OLSR oracle
on the non-delayed observation sequence {(x1, a1, L(x1, a1)), . . . , (xT , aT , L(xT , aT ))}. That is,
f̂i+1 = OF,η

sq (·; (x1, a1, L(x1, a1)), . . . , (xi, ai, L(xi, ai))), ∀i ∈ [T − 1]. For convenience, we
denote the optimal (randomized) policy by p⋆(·|x) for all x ∈ X . Then, the regret is given by
RT =

∑T
t=1(pt − p⋆(· | xt)) · ℓ(xt, ·) and can be decomposed and bounded as follows.

RT ≤ dmax︸︷︷︸
(a)

+

T∑
t=dmax+1

(pt − p⋆(· | xt)) · f̂τt(xt, ·)︸ ︷︷ ︸
(b)

+

T∑
t=dmax+1

pt ·
(
ℓ(xt, ·)− f̂t(xt, ·)

)
︸ ︷︷ ︸

(c)

+

T∑
t=dmax+1

p⋆(· | xt) ·
(
f̂t(xt, ·)− ℓ(xt, ·)

)
︸ ︷︷ ︸

(d)

+

T∑
t=dmax+1

(pt − p⋆(· | xt)) ·
(
f̂t(xt, ·)− f̂τt(xt, ·)

)
︸ ︷︷ ︸

(e)

In the above decomposition, term (a) is the regret on the first dmax steps and hence bounded trivially
by dmax. Term (b) is the regret with respect to the approximated delayed loss. Term (c) is the
approximation error with respect to the policy induced by pt when considering the non-delayed
approximated loss, and will be bounded by the oracle’s regret. Term (d) is the approximation error
with respect to the optimal p⋆(·|·) when considering the non-delayed approximated loss. We remark
that the Assumption 4.5 is used when bounding terms (c) and (d). Lastly, term (e) is the regret
caused by the delay drift in approximation. This term will be shown to be bounded by

√
dmaxDβ,

with no direct dependence on the number of actions K. We bound each term individually in the
following lemmas, and then combine the results to conclude Theorem 4.6. We begin with term (b),
whose bound follows from first-order optimality conditions for convex optimization.

Lemma 4.7 (Term (b) bound). It holds true that

T∑
t=dmax+1

(pt(·)− p⋆(·|xt)) · f̂τt(xt, ·) ≤
KT

γ
−

T∑
t=dmax+1

∑
a∈A

p⋆(a|xt)

γpt(a)
.

Term (c) is bounded using the AM-GM inequality, and applying Assumption 4.2.
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Lemma 4.8 (Term (c) bound). It holds that

E

[
T∑

t=dmax+1

pt · (ℓ(xt, ·)− f̂t(xt, ·))

]
≤ KT

γ
+ γRT (OF,β

sq ).

Term (d) is bounded using the AM-GM inequality to change the measure from p⋆(·|xt) to pt, to then
apply the non-delayed oracle’s regret bound.
Lemma 4.9 (Term (d) bound). The following holds true

E

[
T∑

t=dmax+1

p⋆(·|xt) · (f̂t(xt, ·)− ℓ(xt, ·))

]
≤

T∑
t=dmax+1

∑
a∈A

p⋆(a|xt)

γpt(a)
+ γRT (OF,β

sq ).

The proofs of Lemmas Lemmas 4.7 to 4.9 are inspired by those of Levy et al. [26], and included for
completeness in Appendix B.1.

Lastly, we bound the delay-dependent term (e). This is where we need to make use of the oracle’s
stability given in Assumption 4.4 in order to obtain the bound given in the following lemma, whose
full proof can also be found in Appendix B.1.
Lemma 4.10 (Term (e) bound). Under Assumption 4.4, the following holds true.

E

[
T∑

t=dmax+1

(pt − p⋆(· | xt)) · (f̂t(xt, ·)− f̂τt(xt, ·))

]
≤ 2
√
dmaxDβ.

Proof sketch. Using Hölder’s inequality, it holds that

T∑
t=dmax+1

(pt − p⋆(· | xt)) · (f̂t(xt, ·)− f̂τt(xt, ·)) ≤ 2

T∑
t=dmax+1

dτt∑
i=1

∥f̂t−i − f̂t−(i−1)∥∞

≤ 2

T∑
t=dmax+1

σt∥f̂t − f̂t+1∥∞,

where σt is the number of pending observations (that is, which have not yet arrived) as of
round t. Taking expectation while using Jensen’s inequality, the Cauchy-Schwarz inequality and
Assumption 4.4, the above can be further bounded by

≤ 2

√√√√( T∑
t=dmax+1

σ2
t

)
·

(
T∑

t=dmax+1

E
[
∥f̂t − f̂t+1∥2∞

])
≤ 2
√
dmaxDβ,

where we used that σt ≤ dmax and
∑

t σt = D.

We now have what we need to prove Theorem 4.6.

Proof of Theorem 4.6. Putting Lemmas 4.7 to 4.10 together, the expected regret of Algorithm 1
bounded by E[RT ] ≤ dmax + 2KT

γ + 2γRT (OF,β
sq ) + 2

√
dmaxDβ. Choosing γ =

√
KT

RT (OF,β
sq )

yields the bound.

To prove the second statement of the theorem, we note that whenever an observation from given
round t arrives with the maximal delay dmax, Assumption 4.5 implies that all observations from
rounds t′ ∈ {t+ 1, . . . , t+ dmax − 1} arrive after round t+ dmax. Therefore, we can lower bound
the sum of delays as a function of dmax as

D ≥
t+dmax∑
t′=t

dt′ ≥
t+dmax∑
t′=t

(dmax − (t′ − t)) = Ω
(
d2max

)
.

Therefore, dmax = O(
√
D) and the bound follows.
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4.3 Stability analysis of Hedge-based Vovk’s aggregating forecaster

In this section, we present a concrete online least squares regression oracle implementation that enjoys
an expected square-loss regret bound of O(log |F|) while simultaneously satisfying Assumption 4.4
with β ≲ log |F| (see Corollary 4.13 and Lemma 4.12). We then use this result to derive an expected
regret bound of O(

√
KT log|F|+

√
dmaxD log|F|) for Algorithm 1 using this oracle. The oracle

is a Hedge-based version of Vovk’s aggregating forecaster [39] applied for the square loss (see
Algorithm 2 for details). Interestingly, even though Algorithm 2 uses a constant (that is, large) step
size, its square-loss regret is independent of T , and perhaps more surprisingly, the expected sum
of KL-deviations between consecutive iterates qt and qt+1 is also independent of T . This crucial
property allows us to use this general purpose oracle in order to obtain a non-trivial regret bound in
the general function approximation setting.

Hedge-based version of Vovk’s aggregating forecaster. Algorithm 2 performes Hedge updates over

Algorithm 2 Hedge-based Vovk’s aggregating forecaster
1: parameters: (finite) function class F ⊆ X ×A → [0, 1], step size η > 0
2: Initialize q1 ∈ ∆F as the uniform distribution over F .
3: for round t = 1, 2, . . . , T : do
4: Return f̂t =

∑
f∈F qt(f)f to contextual bandit algorithm.

5: Observe feedback zt = (xt, at) and realized loss yt ∈ [0, 1].
6: Update qt as follows: qt+1(f) ∝ qt(f)e

−η(f(zt)−yt)
2

, ∀f ∈ F .

the finite function class F using the squared loss. That is, it maintains a distribution over functions
qt ∈ ∆(F) and in each round t returns an aggregation of the functions in F by the weights qt.

In the next theorem, we prove an expected regret bound and use it to establish stability guarantees
for Algorithm 2. We emphasize that while regret analyses of Vovk’s aggregating forecaster exist in
the literature (e.g. [9]), the resulting stability property is novel, and in particular only holds under
realizability. The full proof appears in Appendix B.2.

Theorem 4.11 (Regret and stability guarantee for finite function classes). For t ∈ [T ] denote by
qt ∈ ∆(F) the probability measure over functions in F computed by Algorithm 2 at time step t.

Then, the following holds for any η ≤ 1/18:
(1) Expected regret: ∑

t

E[(f̂t(zt)− f⋆(zt))
2] ≤ 2 log|F|

η
.

(2) Stability: ∑
t

E[KL(qt∥qt+1)] ≤ log|F|,

where the expectation is taken over the loss realizations y1, . . . , yT .

Regret bound. We use the latter result to derive an oracle-specific regret bound for finite and
realizable function classes. Our regret bound, stated in Corollary 4.13, follows from Theorem 4.11
using Lemma 4.12, which proves that Algorithm 2 with constant step size satisfies Assumption 4.4
for β = O(log |F|) (see the next lemma). Applying this result to Theorem 4.6 yields the bound.

Lemma 4.12 (Stability of Algorithm 2). Under Assumption 4.1, for a finite function class F ,
Algorithm 2 with step size η = 1/18 satisfies Assumption 4.4 with β = 2 log |F|.

Proof. Using the form of f̂1, . . . , f̂T , the outputs of Algorithm 2, for all t ∈ [T ] it holds that

∥f̂t − f̂t+1∥∞ = ∥
∑
f∈F

(qt(f)− qt+1(f))f∥∞ ≤
∑
f∈F

|qt(f)− qt+1(f)|∥f∥∞

≤ ∥qt − qt+1∥1 ≤
√
2 ·
√

KL(qt||qt+1),
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where we used the fact that ∥f∥∞ ≤ 1 for all f ∈ F and Pinsker’s inequality. Taking a square,
summing over t and taking expectations we get,

T∑
t=1

E[∥f̂t − f̂t+1∥2∞] ≤ 2

T∑
t=1

E[KL(qt||qt+1)] ≤ 2 log |F|

where we have used the second result of Corollary 4.13.

We can now immediately obtain the following expected regret bound for Algorithm 1 when used with
Algorithm 2 as a square-loss oracle.
Corollary 4.13. Let F denote a realizable loss function class, where |F| < ∞. Suppose we use
Algorithm 2 as an oracle implementation for online least-square regression with η = 1/18 and

choose γ =
√

KT
36 log|F| for Algorithm 1. Then,

E[RT ] ≤ O
(√

KT log|F|+
√
dmaxD log|F|

)
.

Lower bound. In Corollary C.5 of Appendix C.2 we state and prove the first lower bound of

Ω(
√
KT log|F|+

√
D log|F|)

for CMAB under delayed feedback assuming realizable function approximation. The lower bound
implies that our result in Corollary 4.13 is far by a

√
dmax factor from the optimal regret bound.

5 Conclusions and Discussion

In this paper we presented regret minimization algorithms for adversarial CMAB with delayed
feedback, where both the contexts and delays are chosen by a possibly adaptive adversary. We
considered the problem under the two mainstream frameworks for adversarial CMAB learning:
online function approximation and policy class learning.
For the policy class learning setup, we presented Algorithm 3 and proved that it obtains an expected
regret bound that is optimal up to logarithmic factors.
For online function approximation, we presented Algorithm 1 and analyzed its regret under a stability
assumption related to the online regression oracle in use, which affects the delay-dependent term
of our bound. Additionally, we analyzed the expected regret of a version of Vovk’s aggregating
forecaster and shown it satisfies the required stability guarantees, allowing us to obtain a nontrivial
expected regret bound of O(

√
KT log(|F|) +

√
dmaxD log|F|), which is optimal up to

√
dmax.

Our work leaves some open questions that we believe are very interesting for future research. One
possible direction is to remove the

√
dmax factor from the delay-dependent term in our bound, which

is presumably sub-optimal. Furthermore, as our lower bound in Theorem 4.3 shows, without any
assumption on the oracle in use other than Assumption 4.2, linear regret is unavoidable. We therefore
find it interesting to investigate different or weaker assumptions on the oracle that enable non-trivial
regret guarantees.
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A Proofs for Section 3

In this section, we analyze the regret of Algorithm 3 in the policy class setting and prove Theorem 3.1.

Algorithm 3 EXP4 with Delay-Adapted Loss Estimators (EXP4-DALE)
1: inputs:

• Finite policy class Π ⊆ X → A with |Π| = N ,
• Upper bound on the sum of delays, D.
• Step size η > 0.

2: Initialize p1 ∈ ∆N as the uniform distribution over Π.
3: for round t = 1, . . . , T do
4: Receive context xt ∈ X .
5: Sample π ∼ pt and play at = π(xt).
6: Observe feedback (s, L(xs, as)) for all s ≤ t with s+ ds = t and construct loss estimators

ĉs,i =
L(xs, as)I[πi(xs) = as]

max
{
Qs,as , Q̃

t
s,as

} ∀i ∈ [N ], (2)

where we define Qs,a =
∑N

i=1 ps,iI[πi(xs) = a] and Q̃t
s,a =

∑N
i=1 pt,iI[πi(xs) = a].

7: Update

pt+1,i ∝ pt,i exp

(
−η

∑
s:s+ds=t

ĉs,i

)
. (3)

Throughout this section, we use the notation Et[·] to denote an expectation conditioned on the entire
history up to round t. We define the standard (unbiased) importance-weighted loss estimators by

c̃t,i =
L(xt, at)I[πi(xt) = at]

Qt,at

∀i ∈ [N ], (4)

Theorem A.1. Algorithm 3 attains the following expected regret bound:

E[RT ] ≤
logN

η
+

η

2
E

[
T∑

t=1

N∑
i=1

pt+dt,iĉ
2
t,i

]
+ 2E

[
T∑

t=1

∥pt+dt
− pt∥1

]
.

Proof. The regret may be decomposed as follows:

RT =

T∑
t=1

ct · (pt − p⋆)

=

T∑
t=1

pt · (ct − ĉt)︸ ︷︷ ︸
Bias1

+

T∑
t=1

p⋆ · (ĉt − ct)︸ ︷︷ ︸
Bias2

+

T∑
t=1

(pt − pt+dt
) · ĉt︸ ︷︷ ︸

Drift

+

T∑
t=1

(pt+dt
− p⋆) · ĉt︸ ︷︷ ︸

OMD

, (5)

where ct,i = L(xt, πi(xt)) for i ∈ [N ]. The OMD term can be bounded by referring to Lemma 9 of
[35] which asserts that

T∑
t=1

(pt+dt − p⋆) · ĉt ≤
logN

η
+

η

2

T∑
t=1

|Π|∑
i=1

pt+dt,iĉ
2
t,i. (6)

while noting that this lemma does not require a specific form of loss estimators, only that they
are nonnegative, as is the case for our delay-adapted estimators defined in Equation (2). We also
note that the Bias2 term is non-positive in expectation, since the delay-adapted estimators satisfy
Et[ĉt,i] ≤ ct,i for i ∈ [N ]. Thus, to conclude the proof we are left with bounding the Drift and
Bias1 terms, whose bounds are given in Lemma A.2 and Lemma A.3 that follow.
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Proof of Theorem 3.1. First, we show that

E

[∑
t

∑
i

pt+dt,iĉ
2
t,i

]
≤ KT.

Indeed, using the definition of the delay-adapted loss estimators ĉt, it holds that

E

[∑
t

∑
i

pt+dt,iĉ
2
t,i

]
= E

∑
t

∑
i

pt+dt,i

L(xt, at)I[πi(xt) = at]

max
{
Qt,at , Q̃

t+dt
t,at

}
2


≤ E

[∑
t

1

Q̃t+dt
t,at

∑
i

pt+dt,iI[πi(xt) = at]

Qt,at

]

= E

[∑
t

1

Qt,at

]
= E

[∑
t

∑
a

Qt,a

Qt,a

]
= KT.

Thus, using Theorem A.1 together with Lemma A.4 gives the bound claimed in Theorem 3.1.

Lemma A.2 (Bounding the Drift term). The Drift term given in Equation (5) is bounded in
expectation as follows:

E

[
T∑

t=1

(pt − pt+dt
) · ĉt

]
≤ E

[
T∑

t=1

∥pt − pt+dt
∥1

]
.

Proof. First, we note that the delay-adapted loss estimators ĉt are upper-bounded by the standard,
conditionally unbiased importance-weighted estimators c̃t defined in Equation (4). Therefore, we can
bound the Drift term as follows:

E

[
T∑

t=1

(pt − pt+dt
) · ĉt

]
≤ E

[
T∑

t=1

N∑
i=1

|pt,i − pt+dt,i|ĉt,i

]

≤ E

[
T∑

t=1

N∑
i=1

|pt,i − pt+dt,i|c̃t,i

]

= E

[
T∑

t=1

N∑
i=1

|pt,i − pt+dt,i| · ct,i

]

≤ E

[
T∑

t=1

∥pt − pt+dt
∥1

]
,

where the last step follows from Hölder’s inequality and the fact that ∥ct∥∞ ≤ 1.

Lemma A.3. The Bias1 term given in Equation (5) is bounded in expectation as follows:

E

[∑
t

pt · (ct − ĉt)

]
≤ E

[
T∑

t=1

∥pt − pt+dt∥1

]
.

Proof. We note losses and loss estimators can be indexed by actions rather than policies and use the
the notation ct,a = L(xt, a) and ĉt,a =

ct,aI[at=a]
Mt,a

where Mt,a = max
{
Qt,a, Q̃

t+dt
t,a

}
. Therefore,

using the fact that Et[ĉt,a] = ct,a
Qt,a

Mt,a
, the Bias1 term can be bounded as follows:
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E

[
T∑

t=1

pt · (ct − ĉt)

]
= E

[
T∑

t=1

K∑
a=1

Qt,a(L(xt, a)− ĉt,a)

]

= E

[
T∑

t=1

K∑
a=1

Qt,aL(xt, a)

(
1− Qt,a

Mt,a

)]

≤ E

[
T∑

t=1

K∑
a=1

Qt,a

Mt,a
(Mt,a −Qt,a)

]

≤ E

[
T∑

t=1

K∑
k=1

(
max

{
Qt,a, Q̃

t+dt
t,a

}
−Qt,a

)]

≤ E

[
T∑

t=1

K∑
a=1

∣∣∣Q̃t+dt
t,a −Qt,a

∣∣∣].
Now, by the definition of Qt,a, Q̃

t+dt
t,a and the triangle inequality, we have

E

[
T∑

t=1

K∑
a=1

∣∣∣Q̃t+dt
t,a −Qt,a

∣∣∣] ≤ E

 T∑
t=1

K∑
a=1

∑
i:πi(xt)=a

|pt+dt,i − pt,i|

 = E

[
T∑

t=1

∥pt − pt+dt∥1

]
,

concluding the proof.

Lemma A.4 (Distribution drift). The following holds for the iterates {pt}Tt=1 of Algorithm 3:

E

[
T∑

t=1

∥pt+dt
− pt∥1

]
≤ η(D + T ).

Proof. Define

Ft(p) = p ·
∑

s:s+ds<t

ĉs +
1

η
R(p),

where R(p) =
∑N

i=1 pi log pi, so that pt = argminp∈∆Π
Ft(p). Note that R(·) is 1-strongly convex

with respect to ∥·∥1, and therefore Ft(·) are 1/η-strongly convex. Thus, using first-order optimality
conditions for pt and pt+1, we have:

Ft(pt+1) ≥ Ft(pt) +∇Ft(pt) · (pt+1 − pt) +
1

2η
∥pt+1 − pt∥21 ≥ Ft(pt) +

1

2η
∥pt+1 − pt∥21,

Ft+1(pt) ≥ Ft+1(pt+1) +∇Ft+1(pt+1) · (pt − pt+1) +
1

2η
∥pt+1 − pt∥21 ≥ Ft+1(pt+1) +

1

2η
∥pt+1 − pt∥21.

Summing the two inequalities, we obtain

1

η
∥pt+1 − pt∥21 ≤ Ft+1(pt)− Ft(pt) + Ft(pt+1)− Ft+1(pt+1)

=

( ∑
s:s+ds=t

ĉs

)
· (pt − pt+1)

≤
∑
i

( ∑
s:s+ds=t

ĉs,i

)
|pt,i − pt+1,i|

≤
∑
i

( ∑
s:s+ds=t

c̃s,i

)
|pt,i − pt+1,i|,
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where c̃s,i are the standard (unbiased) importance-weighted loss estimators. Taking expectations
while using E[(·)2] ≥ (E[·])2 and Hölder’s inequality, we obtain

1

η
(E∥pt+1 − pt∥1)

2 ≤ 1

η
E
[
∥pt+1 − pt∥21

]
≤ E

[∑
i

( ∑
s:s+ds=t

cs,i

)
· |pt+1,i − pt,i|

]
≤ mtE∥pt+1 − pt∥1,

where mt = |{s : s+ ds = t}| is the number of observations that arrive on round t. Dividing through
by the right-hand side of the inequality above, we obtain

E∥pt+1 − pt∥1 ≤ ηmt,

and using the triangle inequality we have

E∥pt+dt
− pt∥1 ≤

dt∑
s=1

E∥pt+s − pt+s−1∥1 ≤ η

dt∑
s=1

mt+s−1 = ηMt,dt
,

where Mt,dt
is the number of observations that arrive between rounds t and t+ dt− 1. Using Lemma

C.7 in [20], we conclude the proof via

E

[
T∑

t=1

∥pt+dt
− pt∥1

]
≤ η

T∑
t=1

Mt,dt
≤ η(D + T ).
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B Proofs for Section 4

B.1 Proofs for Subsection 4.2

In this subsection, we provide the proofs of the lemmas required to derive regret guarantees for
algorithm DA-FA (Algorithm 1), proving Theorem 4.6.

Consider the following regret decomposition,

RT =

dmax∑
t=1

(pt − p⋆(· | xt)) · ℓ(xt, ·) +
T∑

t=dmax+1

(pt − p⋆(· | xt)) · f̂τt(xt, ·)

+

T∑
t=dmax+1

pt ·
(
ℓ(xt, ·)− f̂t(xt, ·)

)
+

T∑
t=dmax+1

p⋆(· | xt) ·
(
f̂t(xt, ·)− ℓ(xt, ·)

)

+

T∑
t=dmax+1

(pt − p⋆(· | xt)) ·
(
f̂t(xt, ·)− f̂τt(xt, ·)

)
.

We bound each term individually in the following lemmas and claims, and then we combine all the
bounds to derive Theorem 4.6.
Claim B.1. With probability 1, it holds that

dmax∑
t=1

(pt − p⋆(· | xt)) · ℓ(xt, ·) ≤ dmax.

Proof. This follows immediately by the fact that ℓ(·) is bounded in [0, 1].

Lemma B.2 (Restatement of Lemma 4.7). With probability 1, it holds that
T∑

t=dmax+1

(pt(·)− p⋆(·|xt)) · f̂τt(xt, ·) ≤
KT

γ
−

T∑
t=dmax+1

∑
a∈A

p⋆(a|xt)

γpt(a)
.

Proof. For t ∈ {dmax +1, dmax +2, . . . , T}, let Rt(p) denote the objective of the convex minimiza-
tion problem in Equation (1), i.e,

Rt(p) =
∑
a∈A

p(a) · f̂τt(xt, a)−
1

γ

∑
a∈A

log(p(a)).

Hence,

(∇Rt(p))a = f̂τt(xt, a)−
1

γp(a)
.

Since p⋆(·|xt) is a feasible solution and pt is the optimal solution, by first-order optimality conditions
we have ∑

a∈A
p⋆(a|xt)

(
f̂τt(xt, a)−

1

γpt(a)

)
−
∑
a∈A

pt(a)

(
f̂τt(xt, a)−

1

γpt(a)

)
≥ 0,

Thus, ∑
a∈A

(p⋆(a|xt)− pt(a))f̂τt(xt, a) ≥
∑
a∈A

p⋆(a|xt)

γpt(a)
− K

γ
.

Which implies that ∑
a∈A

(pt(a)− p⋆(a|xt))f̂τt(xt, a) ≤
K

γ
−
∑
a∈A

p⋆(a|xt)

γpt(a)
.

We conclude that
T∑

t=dmax+1

(pt − p⋆(·|xt)) · f̂τt(xt, ·) ≤
KT

γ
−

T∑
t=dmax+1

∑
a∈A

p⋆(a|xt)

γpt(a)
.

18



Lemma B.3 (Restatement of Lemma 4.8). It holds true that

E

[
T∑

t=dmax+1

pt ·
(
ℓ(xt, ·)− f̂t(xt, ·)

)]
≤ KT

γ
+ γRT (OF,η

sq ).

Proof. For this term, we apply the oracle expected regret bound for the non-delayed function
approximation. By Assumption 4.2 the following holds.

E

[
T∑

t=dmax+1

pt ·
(
ℓ(xt, ·)− f̂t(xt, ·)

)]

≤E

[
T∑

t=dmax+1

∑
a∈A

pt(a)
(
ℓ(xt, a)− f̂t(xt, a)

)]

=E

[
T∑

t=dmax+1

∑
a∈A

√
γ

γ
pt(a)

(
ℓ(xt, a)− f̂t(xt, a)

)]

≤E

[
T∑

t=dmax+1

∑
a∈A

pt(a)

γ

]
+ γE

[
T∑

t=dmax+1

∑
a∈A

pt(a)
(
ℓ(xt, a)− f̂t(xt, a)

)2]
(AM-GM)

=
(T − dmax)K

γ
+ γ

T∑
t=dmax+1

E
[(

f̂t(xt, at)− ℓ(xt, at)
)2]

≤ (T − dmax)K

γ
+ γ

T∑
t=1

E
[(

f̂t(xt, at)− ℓ(xt, at)
)2]

≤KT

γ
+ γRT (OF,η

sq ).,

where in the final transition we used Assumption 4.5 which implies that the observations are given to
the oracle in the same order that they arrive to the CMAB algorithm, which allows us to invoke the
regret guarantee of the non-delayed oracle.

Lemma B.4 (Restatement of Lemma 4.9). It holds true that

E

[
T∑

t=dmax+1

p⋆(·|xt) ·
(
f̂t(xt, ·)− ℓ(xt, ·)

)]
≤ E

[
T∑

t=dmax+1

∑
a∈A

p⋆(a|xt)

γpt(a)

]
+ γRT (OF,η

sq ).

Proof. For this term, we would like to use a change-of-measure technique using AM-GM to be able
to apply the oracle’s expected regret bound for the non-delayed function approximation. Again,
by Assumption 4.2 the following holds.

E

[
T∑

t=dmax+1

p⋆(·|xt) ·
(
f̂t(xt, ·)− ℓ(xt, ·)

)]

≤E

[
T∑

t=dmax+1

∑
a∈A

p⋆(a|xt) ·
(
f̂t(xt, a)− ℓ(xt, a)

)]

=E

[
T∑

t=dmax+1

∑
a∈A

p⋆(a|xt)

√
γpt(a)

γpt(a)
·
(
f̂t(xt, a)− ℓ(xt, a)

)]

≤E

[
T∑

t=dmax+1

∑
a∈A

p2⋆(a|xt)

γpt(a)

]
+ γE

[
T∑

t=dmax+1

∑
a∈A

pt(a)
(
f̂t(xt, a)− ℓ(xt, a)

)2]
(AM-GM)

≤E

[
T∑

t=dmax+1

∑
a∈A

p⋆(a|xt)

γpt(a)

]
+ γ

T∑
t=dmax+1

E
[(

f̂t(xt, at)− ℓ(xt, at)
)2]
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≤

[
T∑

t=dmax+1

∑
a∈A

p⋆(a|xt)

γpt(a)

]
+ γ

T∑
t=1

E
[(

f̂t(xt, at)− ℓ(xt, at)
)2]

≤E

[
T∑

t=dmax+1

∑
a∈A

p⋆(a|xt)

γpt(a)

]
+ γRT (OF,η

sq ),

where in the final transition we used Assumption 4.5 as in Lemma 4.8.

We now proceed to prove our final lemma.

Lemma B.5 (Restatement of Lemma 4.10). Under Assumption 4.4 it holds true that

E

[
T∑

t=dmax+1

(pt − p⋆(· | xt)) ·
(
f̂t(xt, ·)− f̂τt(xt, ·)

)]
≤ 2
√

dmaxDβ.

Proof. Using Hölder’s inequality and the triangle inequality, we have

T∑
t=dmax+1

(pt − p⋆(· | xt)) ·
(
f̂t(xt, ·)− f̂τt(xt, ·)

)

≤
T∑

t=dmax+1

∥pt − p⋆(· | xt)∥1 · ∥f̂t(xt, ·)− f̂τt(xt, ·)∥∞

≤2
T∑

t=dmax+1

dτt∑
i=1

∥f̂t−i(xt, ·)− f̂t−(i−1)(xt, ·)∥∞ (τ t = t− dτt )

≤2
T∑

t=dmax+1

dτt∑
i=1

∥f̂t−i − f̂t−(i−1)∥∞

≤2
T∑

t=dmax+1

σt∥f̂t − f̂t+1∥∞,

where σt is the number of pending observations (that is, which have not yet arrived) as of round t.
Now, using the Cauchy-Schwarz inequality, the fact that E[

√
·] ≤

√
E[·] and Assumption 4.4, we

finally obtain

E

[
T∑

t=dmax+1

(pt − p⋆(· | xt)) ·
(
f̂t(xt, ·)− f̂τt(xt, ·)

)]
≤2

√√√√( T∑
t=dmax+1

σ2
t

)
·

(
T∑

t=dmax+1

E
[
∥f̂t − f̂t+1∥2∞

])
≤2
√
dmaxDβ,

where we used the fact that σt ≤ dmax for all t (since at every round σt can increase at most by one
and an observation can remain pending for at most dmax rounds), and the fact that

∑
t σt = D, which

follows since when summing the delays, each delay dt contributes once to exactly dt rounds with
pending observations, and all pending observations are covered in this manner.

We can now prove Theorem 4.6.

Theorem B.6 (Restatement of Theorem 4.6). Let γ =
√

KT

RT (OF,η
sq )

. Then the following expected

regret bound holds for Algorithm 1.

E[RT ] ≤ O

(√
KT

(
RT (OF,η

sq )
)
+
√
dmaxDβ

)
.
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Proof of Theorem 4.6. Putting the results of Claim B.1 (taking expectation on both sides) and Lem-
mas 4.7 to 4.10 all together, the expected regret is bounded as follows.

E[RT ] ≤ dmax + 2
KT

γ
+ 2γRT (OF,η

sq ) + 2
√
dmaxDβ.

Choosing γ =
√

KT

RT (OF,η
sq )

yields the desired bound.

B.2 Regret and Stability analysis of Vovk’s aggregating forecaster for the square-loss

We consider a hedge-based version of Vovk’s aggregating forecaster [39], presented in Algorithm 2
for the square loss under the realizability assumption (Assumption 4.1) and a finite function class F .

We denote by zt = (xt, at) ∈ X × A the input of each function f ∈ F ⊆ X × A → [0, 1] at
time step t ∈ [T ], where x1, . . . , xT ∈ X is a sequence of contexts generated throughout, and
a1, . . . , aT ∈ A is the sequence of actions, where ai was chosen for the context xi, for all i ∈ [T ].
Also, let y1, . . . , yT ∈ [0, 1] are such that E[yt|zt] = f⋆(zt), and f(zt) ∈ [0, 1] for all f ∈ F . We
consider the square loss, and prove the following guarantee for the iterates of Algorithm 2.

Theorem B.7 (Restatement of Theorem 4.11). For t ∈ [T ] denote by qt ∈ ∆(F) the probability
measure over functions in F computed by Algorithm 2 at time step t, for the t− 1-length prefix of the
sequence {(zτ , yτ )}Tτ=1.

Then, the sequence of measures {qt}Tt=1 satisfies the followings for any η ≤ 1/18:

1. Expected regret:
T∑

t=1

E
[
(ft(zt)− f⋆(zt))

2
]
≤ 2 log|F|

η
.

2. Stability:
T∑

t=1

E[KL(qt∥qt+1)] ≤ 9η2 · 2 log|F|
η

= 18η log|F|.

Proof. WLOG, since Hedge is invariant under adding a constant loss in each round we can subtract
(f⋆(zt)− yt)

2 from the loss of all functions. In particular, after the subtraction, f⋆ has a cumulative
loss of 0. Therefore qt(f) ∝ wt(f), and wt+1(f) = wt(f)e

−η((f(zt)−yt)
2−(f⋆(zt)−yt)

2). Denote
Wt =

∑
f wt(f).

We have, as W1 = |F| and WT+1 ≥ 1 (since wt(f⋆) = w1(f⋆) = 1 for all t), that

log
WT+1

W1
≥ − log|F|.

On the other hand, for small enough η (smaller than a constant),

log
WT+1

W1
=

T∑
t=1

log
Wt+1

Wt

=

T∑
t=1

logEf∼qt

[
e−η((f(zt)−yt)

2−(f⋆(zt)−yt)
2)
]

≤
T∑

t=1

logEf∼qt

[
(1− η((f(zt)− yt)

2 − (f⋆(zt)− yt)
2) + η2((f(zt)− yt)

2 − (f⋆(zt)− yt)
2)2)

]
(ex ≤ 1 + x+ x2 for x < 1)

≤
T∑

t=1

−ηEf∼qt [(f(zt)− yt)
2 − (f⋆(zt)− yt)

2] + η2Ef∼qt [(f(zt)− yt)
2 − (f⋆(zt)− yt)

2)2]

(log(1 + x) ≤ x)
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=

T∑
t=1

−ηEf∼qt [(f(zt)− f⋆(zt))
2 + 2(f(zt)− f⋆(zt))(f⋆(zt)− yt)]

+ η2Ef∼qt [((f(zt)− f⋆(zt))
2 + 2(f(zt)− f⋆(zt))(f⋆(zt)− yt))

2]

≤
T∑

t=1

−ηEf∼qt [(f(zt)− f⋆(zt))
2 + 2(f(zt)− f⋆(zt))(f⋆(zt)− yt)]

+ 9η2Ef∼qt(f(zt)− f⋆(zt))
2.

Rearranging, we obtain that
T∑

t=1

Ef∼qt [(f(zt)− f⋆(zt))
2 + 2(f(zt)− f⋆(zt))(f⋆(zt)− yt)]

≤ log|F|
η

+ 9η

T∑
t=1

Ef∼qt

[
(f(zt)− f⋆(zt))

2
]
.

Taking expectation over y1, . . . , yT :

Ey1,...,yT

[
T∑

t=1

Ef∼qt

[
(f(zt)− f⋆(zt))

2
]]
≤ log|F|

η
+ 9ηEy1,...,yT

[
T∑

t=1

Ef∼qt

[
(f(zt)− f⋆(zt))

2
]]

.

If, suppose η ≤ 1/18 then we immediately obtain

Ey1,...,yT

[
T∑

t=1

Ef∼qt

[
(ft(zt)− f⋆(zt))

2
]]
≤ 2 log|F|

η
,

and the expected regret of Algorithm 2 can now be bounded by

T∑
t=1

E
[
(ft(zt)− f⋆(zt))

2
]
=

T∑
t=1

E


∑

f∈F

qt(f)(f(zt)− f⋆(zt))

2


≤
T∑

t=1

E

∑
f∈F

qt(f)(f(zt)− f⋆(zt))
2


= Ey1,...,yT

[
T∑

t=1

Ef∼qt

[
(ft(zt)− f⋆(zt))

2
]]

≤ 2 log|F|
η

,

where we have used Jensen’s inequality. This concludes the proof of part 1. of the theorem.

For the second part, we observe that

KL(qt∥qt+1) = Ef∼qt

[
log

qt(f)

qt+1(f)

]
= ηEf∼qt

[
(f(zt)− yt)

2
]
+ logEf∼qte

−η(f(zt)−yt)
2

= ηEf∼qt

[
f(zt)− yt)

2 − (f⋆(zt)− yt)
2
]
+ logEf∼qt

[
e−η((f(zt)−yt)

2−(f⋆(zt)−yt)
2)
]

≤ ηEf∼qt

[
(f(zt)− yt)

2 − (f⋆(zt)− yt)
2
]

+ logEf∼qt

[
1− η((f(zt)− yt)

2 − (f⋆(zt)− yt)
2) + η2((f(zt)− yt)

2 − (f⋆(zt)− yt)
2)2
]

(ex ≤ 1 + x+ x2 for x < 1)

≤ η2Ef∼qt

[
(f(zt)− yt)

2 − (f⋆(zt)− yt)
2)2
]

(log(1 + x) ≤ x)

= η2Ef∼qt

[
((f(zt)− f⋆(zt))

2 + 2(f(zt)− f⋆(zt))(f⋆(zt)− yt))
2
]
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≤ 9η2Ef∼qt

[
(f(zt)− f⋆(zt))

2
]
.

Therefore, taking expectation over y1, . . . , yT and using part 1. we obtain
T∑

t=1

E[KL(qt∥qt+1)] ≤ 9η2 · 2 log|F|
η

= 18η log|F|,

yields the second part of the theorem.

C Lower Bounds

C.1 Proof of Theorem 4.3

In this subsection, we present a lower bound indicating that an additional assumption on the oracle
is necessary in order to obtain sub-linear regret in the general function approximation setting. The
lower bound shows that with no additional assumption on the least squares oracle, any algorithm
incurs linear regret in the presence of delayed feedback, even for a constant delay of d = 1.
Theorem C.1 (Restatement of Theorem 4.3). For any CMAB algorithm ALG in the function approxi-
mation setting (that is, ALG can only access F via the oracle) there exists a CMAB instance with
constant delay d = 1 over a realizable loss function class F with |F| = T + 1 with an online oracle
OF

sq satisfyingRT

(
OF

sq

)
= 0, on which ALG attains regretRT = Ω(T ).

Proof. Consider a CMAB instance over X = {x1, x2, . . . , xT }, A = {a1, a2} and F =
{f1, f2, . . . , fT , f⋆}, where f⋆ is the true loss function. The functions in F are sampled randomly as
follows:

f⋆(xi, a1) = Ber

(
1

2

)
, f⋆(xi, a2) = 1− f⋆(xi, a1), i ∈ {T},

fi(x, a) =

{
f⋆(x, a), x = xi,

Ber
(
1
2

)
, otherwise,

i ∈ [T ].

The online sequence of contexts is defined by x1, x2, x3, . . . , xT in order. We consider an oracle
which at round t outputs the function f̂t = ft. It is easy to see that the least-squares regret of this
oracle is zero because ft(xt, ·) = f⋆(xt, ·). Now, at round t, due to the delay, ALG only has relevant
information on xt given by {f1(xt, ·), . . . , ft−1(xt, ·)}, all of which are random i.i.d. Ber

(
1
2

)
random variables, with the true loss f⋆(xt, ·) being either (1, 0) or (0, 1) with equal probability and
independently of the previous observations of ALG. Therefore, however ALG chooses the next action
a(t), with probability 1

2 it will incur a loss of 1 while simultaneously the other action will have a loss
of zero. This means that in expectation over the random construction of F , the algorithm will incur
Ω
(
T
2

)
regret. By the probabilistic method, we know that there exists a fixture of F depending on

ALG on which ALG suffers linear regret, as claimed.

C.2 Lower Bounds for Contextual MAB with Delayed Feedback

In this subsection, we establish lower bounds on the expected regret for CMAB with delayed feedback.
Our construction is based on the approach of [10] via a reduction from the full information variant
with non-delayed feedback using a blocking argument.

We begin with a lower bound for the policy class setting with a finite policy class Π, which relies on
a reduction from the problem of (agnostic) prediction with expert advice, for which known lower
bounds exist in the literature (see e.g. [9]).

We then present a lower bound for the realizable function approximation setting with a finite loss
function class F , and for that we construct an explicit hard instance for the full-information non-
delayed variant, with a regret lower bound of Ω

(√
T log |F|

)
.

We remark that while a regret lower bound of Ω
(√

KT +
√
D
)

can be immediately inferred from
the results of [9] who consider the special case of multi-armed bandits, our goal is to show that the
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dependence on log |F| where F appears jointly with the delay dependence. While the dependence of√
KT log |F| is known to be tight for CMAB with general function approximation, it is nontrivial that

the delay dependent term also contains a dependence on log |F|, which we prove in the construction
that follows.

In our construction we consider the full feedback setting, where for each round t and observed context
xt ∈ X , the learner observes the entire loss vector (ℓ(xt, a))a∈A after choosing an action at ∈ A.

Theorem C.2. There exists a finite policy class Π ⊆ AX mapping contexts to actions, a delay
sequence (d1, . . . , dT ) with maximal delay d and sum of delays D = Θ(dT ) such that for any CMAB
algorithm there is instance of the CMAB problem for which the algorithm incurs expected regret

E[RT ] ≥ Ω(
√
D log |Π|).

Proof. We observe that CMAB with a policy class can be viewed as a special case of the prediction
with expert advice framework [9], where each policy corresponds to an expert, provides a prediction
for each context. Hence, the classical lower bound of Ω(

√
T log |Π|) for the full-information expert

setting (see Cesa-Bianchi and Lugosi [9], chapter 2) applies in the absence of delays.

Returning to the delayed CMAB problem, construct a delay sequence (d1, . . . , dT ) in which d is the
maximal delay and D =

∑T
t=1 dt = Θ(dT ) as follows:

Divide the time horizon into T/(d+ 1) blocks, each containing d+ 1 consecutive rounds. For each
block b ∈ {0, 1, . . . , T/(d+1)−1} and each round τ ∈ {b(d+1), b(d+1)+1, . . . , (b+1)(d+1)−1},
define the delay as dτ = d− (τ − b(d+ 1)). That is, within each block, the delays decrease from d

to 0, in this corresponding order. This also implies that D = T
d+1

∑d
i=0 i =

T
d+1 ·

(d+1)(d+0)
2 = Td

2 .
This construction ensures that feedback from all rounds within a block is revealed simultaneously at
the end of the block.

The loss sequence is constructed as follows: Consider the loss sequence (ℓ1, . . . , ℓT/(d+1)) given by
a lower bound construction for prediction with expert advice over T/(d+ 1) rounds. The loss of the
first round of each block b is defined to be ℓb, and remains the same throughout the block. Now, note
that given this construction, the algorithm essentially faces a prediction with expert advice problem
over T/(d+ 1) rounds (the rounds on which information is obtained), with loss values in the range
[0, d+ 1]. We remark that we can assume without loss of generality that the algorithm fixes a policy
πb at the start of block b and uses it to play actions throughout the entire block, as it does not learn
new information within the block.

Thus, we can aggregate each block into a single “super-round” of a reduced expert problem. Specifi-
cally, for block b, define the aggregate loss of each expert π as ℓb(π) =

∑(b+1)(d+1)−1
τ=b(d+1) ℓ(xτ , π(xτ )).

Even if we allow the algorithm to observe full feedback, it essentially observes the full aggregated
loss vector over actions in each block, so this construction corresponds to a well-defined instance of
prediction with expert advice over the T/(d+ 1) rounds which are the initial rounds of the blocks.

The resulting reduced problem has T/(d+ 1) rounds with losses in [0, d+ 1]. Applying the lower
bound from Cesa-Bianchi and Lugosi [9] to this reduced problem yields:

E[RT ] ≥ Ω

(
(d+ 1) ·

√
T

d+ 1
log |Π|

)
= Ω

(√
(d+ 1)T log |Π|

)
= Ω

(√
D log |Π|

)
,

which completes the proof.

We now combine this result with the classical lower bound of Ω(
√

KT log |Π|) for CMAB with
bandit feedback and a finite policy class, which is based on reductions from prediction with expert
advice (see, e.g., [29, 6, 7, 9]). This yields the following lower bound for CMAB with delayed
feedback in the policy class setting:

Corollary C.3. For CMAB with delayed bandit feedback and a finite policy class Π, the expected
regret satisfies

E[RT ] ≥ Ω
(√

TK log |Π|+
√

D log |Π|
)
.
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To prove a corresponding regret lower bound for the realizable function approximation setting, we
similarly require a regret lower bound of Ω

(√
T log |F|

)
for the full-information non-delayed variant

of the problem. Such a lower bound, however, does not exist in the literature as far as we are aware,
so we exhibit an explicit construction in the following lemma.
Lemma C.4. LetA = {a1, a2} be action set, and let X = {x1, . . . , xn} be a set of n contexts where
n ≤ T . Then for any CMAB algorithm there exists a finite loss function class F ⊆ {X ×A → [0, 1]}
of size |F| = 2n and a CMAB instance which is realizable with respect to F , on which the expected
regret of the CMAB algorithm is lower bounded by

E[RT ] ≥ Ω
(√

nT
)
= Ω

(√
T log |F|

)
.

Proof. Across all of the instances which we construct, the context is chosen uniformly at random
from X . We define the function class F as the set of 2n functions f which, for each x ∈ X , are
defined via f(x, ai) =

1
2 − ε and f(x, aj) =

1
2 for the other action aj ̸= ai (that is, each function in

F has a distinct choice of optimal actions across all n contexts), and we choose ε =
√
n/100T .

Prior to the interaction, a function f⋆ ∈ F is selected uniformly at random and the losses are defined
to be Bernoulli random variables according to f⋆, ensuring realizability holds. More specifically,
ℓ(x, a) will be a Bernoulli random variable with parameter f⋆(x, a) for all x ∈ X , a ∈ A.

Now, by standard arguments of statistical estimation, since the true loss function f⋆ was sampled at
random, as long as a given context x ∈ X has not appeared more than Ω(1/ε2) times, the CMAB
algorithm must incur instantaneous regret of ε conditioned on this context. Since the contexts are
sampled uniformly at random and the loss values for one context reveal no information about the
loss for different contexts, the algorithm must incur expected regret of at least Ω(εt) on the first t
rounds as long as each context has been sampled o(1/ε2) times. With high probability, all contexts
are sampled sufficiently many times only after t = Ω

(
n/ε2

)
rounds, implying that the expected

regret of the algorithm over T rounds is lower bounded by

E[RT ] ≥ Ω
(
ε · n

ε2

)
= Ω

(n
ε

)
= Ω

(√
nT
)
,

which concludes the proof.

We remark that the construction in the above proof is similar to the lower bound given by [3] for the
bandit case, but here the proof is considerably simpler as the algorithm is not required to perform
exploration in order to obtain sufficient feedback.

Thus, by combining the lower bound for contextual bandits with function approximation under bandit
feedback [3] with the delayed feedback result above using the same reduction as we described in the
proof of Theorem C.2, we obtain:
Corollary C.5. For any CMAB algorithm in the realizable function approximation setting over finite
loss function classes, there exists a finite function class F and a distribution over losses which is
realizable by F , for which the expected regret satisfies

E[RT ] ≥ Ω
(√

TK log |F|+
√

D log |F|
)
.
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