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Abstract

Self-supervised learning (SSL) models have recently demonstrated remarkable
performance across various tasks, including image segmentation. This study delves
into the emergent characteristics of the Self-Distillation with No Labels (DINO)
algorithm and its application to Synthetic Aperture Radar (SAR) imagery. We
pre-train a vision transformer (ViT)-based DINO model using unlabeled SAR
data, and later fine-tune the model to predict high-resolution land cover maps. We
rigorously evaluate the utility of attention maps generated by the ViT backbone
and compare them with the model’s token embedding space. We observe a small
improvement in model performance with pre-training compared to training from
scratch and discuss the limitations and opportunities of SSL for remote sensing
and land cover segmentation. Beyond small performance increases, we show that
ViT attention maps hold great intrinsic value for remote sensing, and could provide
useful inputs to other algorithms. With this, our work lays the groundwork for
bigger and better SSL models for Earth Observation.

1 Introduction

Self-supervised learning (SSL) models have gained attention in recent years for their ability to
learn from unlabeled data and their knowledge transferability to unseen domains. State-of-the-art
SSL models, such as Self-Distillation with No Labels (DINO) [1], Contrastive Language-Image
Pretraining (CLIP) [2], and Masked Autoencoders (MAE) [3], have shown remarkable performance
and generalizability in several domains. For example, DINO algorithms using vision transformer
(ViT) [4] backbones have shown great performance on segmentation tasks without requiring labels [1].
This knowledge transferability could improve the characterization results of earth observation (EO)
and remote sensing of our changing planet. In addition to optical imagery, Synthetic Aperture Radar
(SAR) data, collected via active satellites, has proven immensely valuable, due to its all-weather,
day-and-night monitoring capabilities. SAR imagery can be used for a variety of tasks, such as land
cover segmentation, vegetation estimation, and flood detection. Leveraging the information contained
in the wealth of SAR data greatly benefits from computational techniques like machine learning
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(ML). However, using supervised ML algorithms is challenging, due to the large amounts of labeled
data required [5]. Here, SSL has shown great promise (e.g. [6]).

In this work, we perform SSL on SAR imagery using ViT-based DINO models. After pre-training,
we fine-tuned the model backbones to create high-resolution land cover maps. We showcase the
models’ ability to detect emergent features and discuss DINO’s strengths and limitations when
applied in this context. More specifically, we compare the performance of using ViT attention maps
or token embeddings for model fine-tuning. In addition, we extensively discuss how pre-training
and fine-tuning on small datasets compares to training the same architectures, or simpler supervised
models, from scratch. Beyond comparing model performances, we showcase the intrinsic value and
emerging segmentation of ViT attention maps when applied to large amounts of unlabelled SAR
data. With this, our work highlights the opportunities and limitations of SSL for EO and lays the
groundwork for future efforts aiming to create planetary-scale foundation models for remote sensing
applications.

2 Previous Work

Foundational models, in which a pretext task is performed, have shown enormous advantages in
problems with small or sparsely labeled data sets [7]. The attention mechanism used by most
foundational models has shown remarkable properties not only in large language models but in
computer vision [3, 2, 1]. The potential usefulness of these foundational models could be carried over
to remote sensing, where early attempts have shown promising results [8, 9, 10]. However, most of
the work on remote sensing was trained and tested with optical data, unlike the present work, where
we pre-trained the models with Synthetic Aperture Radar (SAR) imagery.

3 Model Architecture

In this section, we explain the pre-training task model and the top-down task model for the founda-
tional DINO model. The pretraining task model is pre-trained using only unlabeled datasets and is
subsequently fit using a top-down dataset where the dataset is assumed to be smaller compared to the
pretraining dataset.

3.1 Pre-training Task Model

Figure 1 shows a diagram of the ML pipeline employed in this work. The DINO model used for pre-
training is structured as a teacher-student network, where the weights of the teacher are updated using
an exponential moving average (ema) of the student. To preserve SAR specifics, we only perform
horizontal flipping and cropping as transformations during pre-training. While many architectures
can be used for the student and teacher networks, we use ViTs for their attention mechanism. This
attention mechanism yields a token embedding space, and attention maps as a by-product. The
attention maps, produced by each head of the ViT, capture distinct features and patterns in the
unlabelled SAR data. The output of the final block of the attention mechanism is referred to as the
class token. In our experiments, we omit the class token and utilize all other tokens to generate an
embedding space. Both the attention maps and token embeddings can be used as input to other ML
architectures.

3.2 Downstream Task Decoders

After pre-training, we use the student backbone to fine-tune the model for land cover segmentation.
We either generate ViT attention maps as input to a simple U-Net [11], or decode the token embedding
space of the ViT backbone using a convolutional decoder. The pixel-level classification of the model
is compared to the ground truth land cover maps using a cross-entropy loss. We used two different
approaches to decode the embeddings created by DINO. Firstly, we use the ViT attention maps as
input to a simple U-Net. Our U-Net consists of a series of down-conversions (containing 3 double
convolution blocks (Conv2d, Batch Norm, Relu, Conv2d, Batch Norm, Relu) with max pooling),
and a series of up-conversions (containing 4 blocks of bilinear upsampling and double convolutions),
followed by a final 2D convolution to predict the 11 distinct classes of the ESAWC maps. The same
U-Net is used for our baseline experiments. Secondly, we use the ViT token embedding space as
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encoding for predicting high-resolution land cover maps. In this case, the decoder is a series of
convolutional upsampling blocks (Conv2d, Batch Norm, Relu, bilinear upsampling), to get from the
token embeddings to the 448x448 pixels ESAWC predictions.

4 Experimental Evaluation

Three experiments were performed and are shown in this section. All experiments were tested on
the ESA World Cover segmentation dataset. The first experiment uses a small pre-trained ViT-based
DINO model and tests it on the ESA’s dataset. The second experiment uses a larger pre-trained
ViT-based DINO model and tests it on a larger portion of the ESA’s dataset. The third experiment is a
comparison of a pre-trained U-Net ViT-based DINO model with a supervised U-Net model.

4.1 Dataset

We prepared ML-ready datasets of SAR imagery and high-resolution land cover maps for three areas
of interest (AOIs): Europe, China, and the Continental United States (CONUS). SSL pre-training
was either performed just in Europe or all three AOIs. All models were fine-tuned in Europe, using
small labeled datasets. The data was partitioned into tiles (448×448 pixels), using geetiles1 and
sartiles2, and all tiles were divided into training (60%), validation (20%), and test (20%) sets
based on geographic bands (see Figure 2 in the SI). To keep the data volume manageable, we only
used data from 2020. We processed SAR amplitude from the Sentinel-1 Level 1 Ground Range
Detected (S1GRD) dataset. SAR amplitude measures the intensity of vertically (V) or horizontally
(H) polarized pulses and back-scatter. As input to our model, we calculated and stacked seasonal
averages of VV, VH, and the logarithmic difference (VV-VH), totaling 12 channels. To prepare our
labeled dataset for model fine-tuning, we used the ESA’s World Cover (ESAWC) dataset. ESAWC
provides global land cover maps at 10 m resolution and contains 11 distinct land cover classes.

4.2 Experiment 1: Benefits & Limitations of Small Pre-trained ViT-based DINO model

To investigate the impact of SSL for downstream land cover segmentation, we pre-trained two models
using the DINO architecture; a model with ViT Tiny backbones (3 attention heads, 6.1 million
parameters) was trained on Europe alone, while a model with ViT Base backbones (12 attention

1https://github.com/rramosp/geetiles
2https://github.com/rramosp/sartiles

Figure 1: Schematic diagram of the ML pipeline employed in this work. We use Synthetic Aperture
Radar (SAR) amplitude as input to DINO. The images undergo transformations involving multiple
scaling and cropping operations before being passed to the student-teacher network. The goal of the
student-teacher network is to learn the same embedding space. Centering of the teacher network is
imperative to prevent model collapse. Following pre-training, the student ViT is used as the backbone
for fine-tuning. Here, we compare two different approaches: we either use (1) the ViT attention maps
as an input to a U-Net, or (2) the ViT token embedding space and a convolutional decoder to create
high-resolution land cover maps.
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Figure 2: Data splits for CONUS, China, and Europe. There are 167K image tiles for CONUS, 285K
tiles for China, and 200K tiles for Europe. We divided the data into training (60%), validation (20%),
and test (20%) sets based on geographic bands to minimize data leakage across contiguous tiles.

Figure 3: Example ESA World Cover maps. Each map contains pixel-level classification across 11
distinct classes. The maps are derived from Sentinel 1 and Sentinel 2 imagery. Each tile measures
448x448 pixels, with a spatial resolution of 10 meters.

heads, 88 million parameters) was trained on data from Europe, CONUS, and China. All ViTs
encoded information in patches of size 16x16 pixels, leading to attention maps of 28x28 pixels.

Throughout our fine-tuning experiments, we optimized the binary cross-entropy between the model
outputs and ground truth ESAWC maps and reported the mean intersection over the union (MIOU) as
the performance metric. Table 1 (top) presents the results of land cover segmentation when using
attention maps or token embeddings as the encoding. The model was either trained from scratch or
using the ViT backbone pre-trained in Europe. In order to investigate model performances when
labeled datasets are limited, we fine-tuned all models on 0.1%, 1%, or 10% of available data in
Europe.

Results and discussions Using attention maps, we observe a 4% (3.5%) improvement in MIOU
with the pre-trained ViT compared to training from scratch on 0.1% (1%) of data. However, with 10%
of available data, we no longer see a performance improvement with pre-training. In contrast, when
using the token embedding space as encoding, we observe a more substantial improvement of 9%
(9.5%) in MIOU with pre-training compared to training from scratch on 0.1% (1%) of data. Similar
to the attention map approach, this difference disappears when using 10% of the fine-tuning data.

Notably, models with a frozen backbone, where the ViT component is not updated during fine-tuning,
consistently yield inferior results. Unsurprisingly, performances increase when more data is used
for fine-tuning. The token embeddings generally lead to better performances than when attention
maps are used as encoding. However, the maximum 9.5% improvement in MIOU remains relatively
modest, begging the question whether the added computational cost of pre-training is worth this small
improvement.
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4.3 Experiment 2: Large foundational pre-trained ViT-based DINO model

We next explore whether larger ViTs pre-trained on data from diverse geographic regions improve
the separability between pre-training and training from scratch. Table 1 (bottom) presents the results
obtained when pre-training a larger ViT-based DINO model on S1GRD images from Europe, CONUS,
and China.

Results and discussions Notably, with just 0.1% of fine-tuning data, training from scratch yields
better results than using the pre-trained backbone for both encoding approaches. The pre-trained ViT
with attention map encoding demonstrates a 4% (2%) improvement over training from scratch when
fine-tuning on 0.1% (10%) of data. In contrast, the pre-trained model with token embeddings exhibits
a more substantial 14% (10%) improvement over training from scratch with 1% (10%) of data.

We hypothesize that using a larger ViT may require a larger fine-tuning dataset to fully leverage the
information learned during pre-training. In line with the results presented for pre-training on Europe,
freezing the pre-trained backbone of the multi-region model consistently leads to inferior results.

4.4 Experiment 3: Pretrain Foundational model against Supervised model

In order to fully evaluate the performance of our models, we compare our approach to a supervised
U-Net baseline, where instead of using the attention maps or token embeddings as input, we directly
translate the 12-channel S1GRD SAR imagery to ESAWC maps.

Results and discussions Table 4.4 shows that adding attention maps as an additional input further
improves the MIOU, leading to the overall best results presented here. Interestingly, for small
dataset sizes (<10%) a simple U-Net baseline leads to much better results. With 10% of fine-tuning
data, equally good results are achieved for the U-Net baseline and our larger ViT using token
embeddings. We therefore hypothesize that the benefits of pre-training become more apparent when
larger pre-training and fine-tuning datasets are used.

Table 1: Comparison of using attention maps or token embeddings for predicting ESAWC maps,
when pre-training on only Europe (top table; ViT Tiny) or Europe, CONUS, and China (bottom table;
ViT base). The mean intersection over the union (MIOU) was calculated across the entire test set. All
models were fine-tuned on 0.1%, 1%, or 10% of training data, for 100 - 200 epochs.

Europe Attention Maps Tokens
0.1% 1% 10% 0.1% 1% 10%

From scratch 0.278 0.348 0.398 0.248 0.377 0.430
With pre-training (backbone frozen) 0.160 0.209 0.249 0.245 0.317 0.403

With pre-training (backbone not frozen) 0.290 0.360 0.396 0.275 0.395 0.431

Europe, CONUS, China Attention Maps Tokens
0.1% 1% 10% 0.1% 1% 10%

From scratch 0.310 0.387 0.449 0.293 0.354 0.476
With pre-training (backbone frozen) 0.205 0.324 0.369 0.254 0.338 0.436

With pre-training (backbone not frozen) 0.267 0.403 0.460 0.286 0.403 0.477

Table 2: Comparison of a supervised U-Net baseline, to a U-Net with attention maps as an additional
input. The reported metric is the intersection of the union (MIOU). The U-net baseline was trained
from scratch on 12 channels of S1GRD (VV, VH, VV/VH for each season) to predict ESAWC maps.
This is compared to a U-Net trained on 15 channels, i.e, 12 channels of S1GRD, plus 3 attention maps
from a vision transformer. The vision transformer was trained on 100% of training data in Europe.

U-Net U-Net
(only S1GRD) (S1GRD + Attention Maps)

0.1% 1% 10% 0.1% 1% 10%
From scratch 0.376 0.412 0.475 0.380 0.426 0.480

With pre-training (backbone frozen) - - - 0.371 0.430 0.474
With pre-training (backbone not frozen) - - - 0.378 0.432 0.477
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Figure 4: Example SAR input (column 1), ViT attention maps (columns 2-4), land cover predictions
(columns 5-6), and ground truth ESAWC maps. The predictions were either generated using only
attention maps, or S1GRD + attention maps as input to a U-Net. Both models were pre-trained and
fine-tuned on 10% of data in Europe, without freezing the backbone. For all land cover maps, the
different colors correspond to different classes, as indicated in the SI.

5 Conclusions

In this manuscript, we have drawn several noteworthy conclusions on the use of SSL for remote
sensing and land cover segmentation. Firstly, we found that pre-training ViT-based DINO models
leads to small improvements in downstream task performance compared to training from scratch,
especially when using the ViT tokens embedding space as encoding. Using only ViT attention
maps as input for fine-tuning shows a limited ability to produce details in high-resolution land
cover maps. Here, the choice of ViT patch size emerges as a crucial factor, with smaller patch
sizes leading to higher-resolution attention maps and potentially better results for tasks that require
great spatial detail. Nonetheless, attention maps could provide great value as inputs for other ML
algorithms. Notably, while a supervised U-Net baseline generally outperformed our ViT-based
encoding-decoding architectures, the integration of attention maps as an additional input yields
promising results, indicating the potential for synergistic effects. While further experimentation into
SSL for EO is needed, particularly for planetary-scale foundational models, we see attention maps
as a useful tool for achieving fully explainable and generalizable models, especially when applying
learned knowledge to diverse downstream tasks with limited labeled data.
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7 Supplementary Information

Table 3: Overview of the training parameters used for DINO pre-training using ViT tiny or ViT base.

Parameter ViT Tiny ViT Base
Center Momentum 0.99 0.99

Embedding Dimension 192 768
Number of Heads 3 12

Learning Rate 0.000001 0.000001
Student Temperature 0.03 0.03
Teacher Temperature 0.001 0.001

Warm-up Teacher Temperature 0.01 0.01
Warm-up Teacher Epochs 5 5

Model Parameters 6.1 M 88.8 M

Intrinsic Value of Attention Maps.

To visually inspect the results, Figure 4 shows example SAR inputs, ViT attention maps, model
predictions, and ground truth ESAWC maps. Column 4 shows the predictions using just the attention
maps as input, while column 5 shows the results for a model trained with S1GRD + attention maps.

Firstly, we observe that the ViT attention maps clearly capture features and patterns in the SAR data.
Secondly, we see that predictions using S1GRD + attention maps show greater detail than if only
attention maps are used as input to the U-Net. All attention maps span 28x28 pixels, which is likely
too small to predict high-resolution land cover maps with great detail. While the ViT patch size could
in principle be reduced to obtain higher-resolution attention maps, this would greatly increase the
required memory during training.

However, even at low resolutions, the ViT attention maps clearly contain valuable information derived
from the SAR input data. Figure 5 shows how well features and patterns detected by the ViT match
satellite imagery (e.g. Sentinel 2) and derived data products for a variety of downstream tasks (e.g.
vegetation, biomass, or built area estimation). Consequently, we believe that attention maps are
useful inputs to other ML algorithms, and will prove valuable tools for model explanability and
generalizability in the context of SSL or EO.
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Figure 5: Comparison of ViT attention maps and various satellite imagery and derived data products.
The SAR input (row 1) was used to pre-train the ViT. Looking at 3 example attention maps (rows
2-4) we clearly see emergent segmentation. Each attention head focuses on different features and
patterns in the data. When comparing these features to other types of data, such as Sentinel 2 optical
imagery (row 5), ESA World Cover maps (row 6), ESA CCI Medium Resolution Land Cover maps
(row 7), estimations of vegetation percentage (row 8), biomass (row 9) or built surface (row 10), we
clearly see that many of the features detected by the ViT translate to prominent features in the various
downstream datasets.
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