
Supervised Pretraining Can Learn In-Context Reinforcement Learning

Jonathan N. Lee * 1 Annie Xie * 1 Aldo Pacchiano 2 Yash Chandak 1

Chelsea Finn 1 Ofir Nachum 3 Emma Brunskill 1

Abstract

Large transformer models trained on diverse
datasets have shown a remarkable ability to learn
in-context, achieving high few-shot performance
on tasks they were not explicitly trained to solve.
In this paper, we study the in-context learning
capabilities of transformers in decision-making
problems, i.e., reinforcement learning (RL) for
bandits and Markov decision processes. To do
so, we introduce and study Decision-Pretrained
Transformer (DPT), a supervised pretraining
method where the transformer predicts an opti-
mal action given a query state and an in-context
dataset of interactions, across a diverse set of
tasks. This procedure, while simple, produces
a model with several surprising capabilities. We
find that the pretrained transformer can be used to
solve a range of RL problems in-context, exhibit-
ing both exploration online and conservatism of-
fline, despite not being explicitly trained to do so.
The model also generalizes beyond the pretraining
distribution to new tasks and automatically adapts
its decision-making strategies to unknown struc-
ture. Theoretically, we show DPT can be viewed
as an efficient implementation of Bayesian pos-
terior sampling, a provably sample-efficient RL
algorithm. We further leverage this connection to
provide guarantees on the regret of the in-context
algorithm yielded by DPT, and prove that it can
learn faster than algorithms used to generate the
pretraining data. These results suggest a promis-
ing yet simple path towards instilling strong in-
context decision-making abilities in transformers.
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1. Introduction
For supervised learning, transformer-based models trained
at scale have shown impressive abilities to perform tasks
given an input context, often referred to as few-shot prompt-
ing or in-context learning (Brown et al., 2020). In this
setting, a pretrained model is presented with a small num-
ber of supervised input-output examples in its context, and
is then asked to predict the most likely completion (i.e.
output) of an unpaired input, without parameter updates.
Over the last few years in-context learning has been ap-
plied to solve a range of tasks (Min et al., 2022) and a
growing number works are beginning to understand and
analyze in-context learning for supervised learning (Chan
et al., 2022; Garg et al., 2022; Razeghi et al., 2022; Akyürek
et al., 2022). In this work, our focus is to study and un-
derstand in-context learning applied to sequential decision-
making, specifically in the context of reinforcement learning
(RL) settings. Decision-making (e.g. RL) is considerably
more dynamic and complex than supervised learning. Un-
derstanding and leveraging in-context learning here could
potentially unlock significant improvements in an agent’s
ability to adapt and make few-shot decisions in response to
observations from the world. Such capabilities are instru-
mental for practical applications ranging from robotics to
recommendation systems.

For in-context decision-making (Laskin et al., 2022; Xu
et al., 2022; 2023), rather than input-output tuples, the con-
text takes the form of state-action-reward tuples represent-
ing a dataset of interactions with an unknown environments.
The agent must leverage these interactions to understand the
dynamics of the world and what actions lead to good out-
comes. A hallmark of good decision-making in online RL
algorithms is a judicious balance of selecting exploratory
actions to gather information and selecting increasingly
optimal actions by exploiting that information (Sutton &
Barto, 2018). In contrast, an RL agent with access to only
a suboptimal offline dataset should produce a policy that
conservatively selects actions (Levine et al., 2020). An ideal
in-context decision-maker should exhibit similar behaviors.

To study in-context decision-making formally, we propose
a new simple supervised pretraining objective, namely, to
train (via supervised learning) a transformer to predict an
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optimal action label1 given a query state and an in-context
dataset of interactions, across a diverse set of tasks. We
refer to the pretrained model as a Decision-Pretrained Trans-
former (DPT). Once trained, DPT can be deployed as either
an online or offline RL algorithm in a new task by passing
it an in-context dataset of interactions and querying it for
predictions of the optimal action in different states. For
example, online, the in-context dataset is initially empty
and DPT’s predictions are uncertain because the new task
is unknown, but it fills the dataset with its interactions as it
learns and becomes more confident about the optimal action.
We show empirically and theoretically that DPT yields a
surprisingly effective in-context decision-maker with regret
guarantees. As it turns out, DPT effectively performs poste-
rior sampling — a provably sample-efficient Bayesian RL
algorithm that has historically been limited by its compu-
tational burden (Osband et al., 2013). We summarize our
main findings below.
• Predicting optimal actions alone gives rise to near-

optimal decision-making algorithms. The DPT objec-
tive is solely based on predicting optimal actions from
in-context interactions. At the outset, it is not immedi-
ately apparent that these predictions at test-time would
yield good decision-making when the task is unknown
and behaviors such as online exploration are necessary
to solve it. Intriguingly, DPT as an algorithm is capable
of dealing with this uncertainty in-context. For example,
despite not being explicitly trained to explore, DPT ex-
hibits an exploration strategy on par with hand-designed
algorithms, as a means to discover the optimal actions.

• DPT generalizes to new decision-making problems,
offline and online. We show DPT can handle reward
distributions unseen in its pretraining data on bandit prob-
lems as well as unseen goals, dynamics, and datasets in
simple MDPs. This suggests that the in-context strategies
learned during pretraining are robust and generalizable
without any parameter updates at test time.

• DPT improves over the data used to pretrain it by
exploiting latent structure. As an example, in para-
metric bandit problems, specialized algorithms can lever-
age structure (such as linear rewards) and offer provably
better regret, but a representation must be known in ad-
vance. Perhaps surprisingly, we find that pretraining on
linear bandit problems, even with unknown representa-
tions, leads DPT to select actions and explore in a way
that matches an efficient linear bandit algorithm. This
holds even when the source pretraining data comes from
a suboptimal algorithm (i.e., one that does not exploit any
structure), demonstrating the ability to learn improved
in-context strategies beyond what it was trained on.

• Posterior sampling can be implemented via in-context
1If not explicitly known, the optimal action can be determined

by running any (potentially inefficient) minimax-optimal regret
algorithm for each pretraining task.

learning. Posterior sampling (PS), a generalization of
Thompson Sampling, can provably sample-efficiently
solve online RL problems (Osband et al., 2013), but a
common criticism is the lack of computationally efficient
ways to update and sample from a posterior distribution.
DPT can be viewed as learning a posterior distribution
over optimal actions, shortcutting the PS procedure. Un-
der some conditions, we show theoretically that DPT
in-context is equivalent to PS. Furthermore, DPT’s prior
and posterior updates are grounded in data rather than
needing to be specified a priori. This suggests that in-
context learning could help unlock practical and efficient
RL via posterior sampling.

2. Related Work
Meta-learning. Algorithmically, in-context learning falls
under the meta-learning framework (Schaul & Schmidhuber,
2010; Bengio et al., 1990). At a high-level, these methods
attempt to learn some underlying shared structure of the
training distribution of tasks to accelerate learning of new
tasks. For decision-making and RL, there is a often choice
in what shared ‘structure’ is specifically learned such as the
dynamics of the task (Fu et al., 2016; Nagabandi et al., 2018;
Landolfi et al., 2019), a task context identifier (Rakelly et al.,
2019; Humplik et al., 2019; Zintgraf et al., 2019; Liu et al.,
2021), temporally extended skills and options (Perkins et al.,
1999; Gupta et al., 2018; Jiang et al., 2022), or initialization
of a neural network policy (Finn et al., 2017; Rothfuss et al.,
2018)). In-context learning can be viewed as taking a more
agnostic approach by learning the learning algorithm itself,
more similar to (Duan et al., 2016; Wang et al., 2016; Mishra
et al., 2017). Algorithm Distillation (AD) (Laskin et al.,
2022; Lu et al., 2023) also falls under this category, applying
autoregressive supervised learning to distill (sub-sampled)
traces of a single-task RL algorithm into a task-agnostic
model. While DPT also leverages autoregressive SL, it does
not distill an existing RL algorithm in order to imitate how
to learn. Instead, we pretrain DPT to predict optimal actions,
yielding potentially emergent online and offline strategies
at test time that automatically leverage the task structure to
behave similarly to posterior sampling.

Autoregressive transformers for decision-making. In
decision-making fields such as RL and imitation learning,
transformer models trained using autoregressive supervised
action prediction have proliferated (Yang et al., 2023), in-
spired by the successes of these techniques for large lan-
guage models (Vaswani et al., 2017; Raffel et al., 2020;
Brown et al., 2020). For example, Decision Transformer
(DT) (Chen et al., 2021; Janner et al., 2021) uses a trans-
former to autoregressively model sequences of actions from
offline experience data, conditioned on the achieved return.
During inference, one can then query the model conditioned
on a desired return value. This approach has been shown to
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scale favorably to large models and multi-task settings (Lee
et al., 2022), at times exceeding the performance of large-
scale multi-task imitation learning with transformers (Reed
et al., 2022; Brohan et al., 2022; Shafiullah et al., 2022).
However, DT is known to be provably (and unboundedly)
sub-optimal in common scenarios (Brandfonbrener et al.,
2022; Yang et al., 2022). A common criticism of DT, and
supervised learned transformers in general, is their inability
to improve upon the dataset. For example, there is little rea-
son for DT to output meaningful behavior if conditioned on
return higher than any observed in training, without strong
extrapolation assumptions (Brandfonbrener et al., 2022). In
contrast, a major contribution of our work is theoretical and
empirical evidence for the ability of DPT to improve over
behaviors seen in the dataset in terms of regret.

Value and policy-based offline RL. Offline RL algorithms
offer the opportunity to learn from existing datasets. To ad-
dress distributional shift, many prior algorithms incorporate
the principle of value pessimism (Kumar et al., 2020; Yu
et al., 2021; Liu et al., 2020; Ghasemipour et al., 2022), or
policy regularization (Fujimoto et al., 2019; Kumar et al.,
2019; Wu et al., 2019; Siegel et al., 2020; Liu et al., 2019).
To reduce the amount of offline data required in a new
task, methods for offline meta-RL can reuse interactions
collected in a set of related tasks (Li et al., 2020; Mitchell
et al., 2021; Dorfman et al., 2021). However, they still
must address distribution shift, requiring solutions such as
policy regularization (Li et al., 2020) or additional online
interactions (Pong et al., 2022). DPT follows the success
of autoregressive models like DT and AD, avoiding these
issues. With our pretraining objective, DPT also leverages
offline datasets for new tasks more effectively than AD.

3. In-Context Learning Model
Basic decision models. The basic decision model of our
study is the finite-horizon Markov decision process (MDP).
An MDP is specified by the tuple τ = ⟨S,A, T,R,H, ρ⟩
to be solved, where S is the state space, A is the action
space, T : S × A → ∆(S) is the transition function,
R : S × A → ∆(R) is the reward function, H ∈ N is
the horizon, and ρ ∈ ∆(S) is the initial state distribution.
A learner interacts with the environment through the fol-
lowing protocol: (1) an initial state s1 is sampled from ρ;
(2) at time step h, the learner chooses an action ah and
transitions to state sh+1 ∼ T (·|sh, ah), and receives a re-
ward rh ∼ R(·|sh, ah). The episode ends after H steps.
A policy π maps states to distributions over actions and
can be used to interact with the MDP. We denote the op-
timal policy as π⋆, which maximizes the value function
V (π⋆) = maxπ V (π) := maxπ Eπ

∑
h rh. When neces-

sary, we use the subscript τ to distinguish Vτ and π⋆
τ for the

specific MDP τ . We assume the state space is partitioned by

h ∈ [H] so that π⋆ is notationally independent of h. Note
this framework encompasses multi-armed bandit settings
where the state space is a single point, e.g. S = {1}, H = 1,
and the optimal policy is a⋆ ∈ argmaxa∈A E [r1|a1 = a].

Algorithm 1 Decision-Pretrained Transformer (DPT): Train-
ing and Deployment

1: // Collecting pretraining dataset
2: Initialize empty pretraining dataset B
3: for i in [N ] do
4: Sample task τ ∼ Tpre, in-context dataset D ∼

Dpre(·; τ), query state squery ∼ Dquery
5: Sample label a⋆ ∼ π⋆

τ (·|squery) and add
(squery, D, a⋆) to B

6: end for
7: // Pretraining model on dataset
8: Initialize model Mθ with parameters θ
9: while not converged do

10: Sample (squery, D, a⋆) from B and predict p̂j(·) =
Mθ(·|squery, Dj) for all j ∈ [n]

11: Compute loss in (1) with respect to a⋆ and backprop-
agate to update θ.

12: end while
13: // Offline test-time deployment
14: Sample unknown task τ ∼ Ttest, sample dataset D ∼

Dtest(·; τ)
15: Deploy Mθ in τ by choosing ah ∈

argmaxa∈A Mθ(a|sh, D) at step h
16: // Online test-time deployment
17: Sample unknown task τ ∼ Ttest and initialize empty

D = {}
18: for ep in max eps do
19: Deploy Mθ by sampling ah ∼ Mθ(·|sh, D) at step h
20: Add (s1, a1, r1, . . .) to D
21: end for

Pretraining. We give pseudocode in Algorithm 1 and a vi-
sualization in Figure 1. Let Tpre be a distribution over tasks
at the time of pretraining. A task τ ∼ Tpre can be viewed
as a specification of an MDP, τ = ⟨S,A, T,R,H, ρ⟩. The
distribution Tpre can span different reward and transition
functions and even different state and action spaces. We
then sample a context (or a prompt) which consists of a
dataset D ∼ Dpre(·; τ) of interactions between the learner
and the MDP specified by τ . D = {sj , aj , s′j , rj}j∈[n] is
a collection of transition tuples taken in τ . We refer to D
as the in-context dataset because it provides the contextual
information about τ . D could be generated through vari-
ety of means, such as: (1) random interactions within τ ,
(2) demonstrations from an expert, and (3) rollouts of an
algorithm. Additionally, we independently sample a query
state squery from the distribution Dquery over states S and a
label a⋆ is sampled from the optimal policy π⋆

τ (·|squery) for
task τ (see Section 5.3 for how to implement this in com-
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Figure 1. A transformer model Mθ is pretrained to predict an optimal action a⋆
query from a state squery in a task, given a dataset of

interactions from that task. The resulting Decision-Pretrained Transformer (DPT) learns a distribution over the optimal action conditioned
on an in-context dataset. Mθ can be deployed in new tasks online by collecting data on the fly, or offline by immediately conditioning on a
static dataset.

mon practical scenarios). We denote the joint pretraining
distribution over tasks, in-context datasets, query states, and
action labels as Ppre:

Ppre(τ,D, squery, a
⋆)

= Tpre(τ)Dpre(D; τ)Dquery(squery)π
⋆
τ (a

⋆|squery)

Given the in-context dataset D and a query state squery,
we can train a model to predict the optimal action
a⋆ in response simply via supervised learning. Let
Dj = {(s1, a1, s′1, r1), . . . , (sj , aj , s′j , rj)} denote the par-
tial dataset up to j samples. Formally, we aim to train a
causal GPT-2 transformer model M parameterized by θ,
which outputs a distribution over actions A, to minimize the
expected loss over samples from the pretraining distribution:

minθ EPpre

∑
j∈[n] ℓ (Mθ(· | squery, Dj), a

⋆) (1)

Generally, we set the loss to be the negative log-likelihood
with ℓ(Mθ(· |squery, Dj), a

⋆) := − logMθ(a
⋆ | squery, Dj).

This framework can work for both discrete and continuous
A. For our experiments with discrete A, we use a softmax
parameterization for the distribution of Mθ, essentially treat-
ing this as a classification problem. The resulting output
model Mθ can be viewed as an algorithm that takes in a
dataset of interactions D and can be queried with a forward
pass for predictions of the optimal action via inputting a
query state squery. We refer to the trained model Mθ as a
Decision-Pretrained Transformer (DPT).

Testing. After pretraining, a new task (MDP) τ is sampled
from a test-task distribution Ttest. If the DPT is to be tested
offline, then a dataset (prompt) is a sampled D ∼ Dtest( · ; τ)
and the policy that the model in-context learns is given con-
ditionally as Mθ(· | ·, D). Namely, we evaluate the policy
by selecting action ah ∈ argmaxa Mθ(a|sh, D) when the
learner visits state sh. If the model is to be tested online
through multiple episodes of interaction, then the dataset is
initialized as empty D = {}. At each episode, Mθ(· | ·, D)
is deployed where the model samples ah ∼ Mθ(·|sh, D)
upon observing state sh. Throughout a full episode, it col-
lects interactions {s1, a1, r1, . . . , sH , aH , rH} which are

subsequently appended to D. The model then repeats the
process with another episode, and so on until a specified
number of episodes has been reached. A key distinction
of the testing phase is that there are no updates to the pa-
rameters of Mθ. This is in contrast to hand-designed RL
algorithms that would perform parameter updates or main-
tain statistics using D to learn from scratch. Instead, the
model Mθ performs a computation through its forward pass
to generate a distribution over actions conditioned on the
in-context D and query state sh.

4. Learning in Bandits
We begin with an empirical investigation of DPT in a multi-
armed bandit, a well-studied special case of the MDP where
the state space S is a singleton and the horizon H = 1 is a
single step. We will examine the performance of DPT both
when aiming to select a good action from offline historical
data and for online learning where the goal is to maximize
cumulative reward from scratch. Offline, it is critical to ac-
count for uncertainty due to noise as certain actions may not
be sampled well enough. Online, it is critical to judiciously
balance exploration and exploitation to minimize overall
regret. For detailed descriptions of the experiment setups,
see Appendix A.

Pretraining distribution. For the pretraining task dis-
tribution Tpre, we sample 5-armed bandits (|A| = 5).
The reward function for arm a is a normal distribution
R(·|s, a) = N (µa, σ

2) where µa ∼ Unif[0, 1] indepen-
dently and σ = 0.3. To generate in-context datasets Dpre,
we randomly generate action frequencies by sampling prob-
abilities from a Dirichlet distribution and mixing them with
a point-mass distribution on one random arm (see details
in Appendix A.3). Then we sample the actions accord-
ingly from this distribution. This encourages diversity of
the in-context datasets. The optimal policy π⋆

τ for bandit τ
is argmaxa µa, which we can easily compute during pre-
training. We pretrain the model Mθ to predict a⋆ from D as
described in Section 3 for datasets up to size n = 500.
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Figure 2. (a) Offline performance on in-distribution bandits, given random in-context datasets. (b) Online cumulative regret on bandits. (c)
Final (after 500 steps) cumulative regret on out-of-distribution bandits with different Gaussian noise standard deviations. The mean and
standard error are computed over 200 test tasks.

Comparisons. We compare to several well-known algo-
rithms for bandits2. All of the algorithms are designed to
reason in a particular way about uncertainty based on their
observations.

• Empirical mean algorithm (Emp) selects the action with
the highest empirical mean reward naively.

• Upper Confidence Bound (UCB) selects the action with
the highest upper confidence bound.

• Lower Confidence Bound (LCB) selects the action with
the highest lower confidence bound.

• Thompson Sampling (TS) selects the action with the high-
est sampled mean from a posterior distribution over re-
ward models. The prior and likelihood functions are
Gaussian.

Emp and TS (Russo et al., 2018; Thompson, 1933) can both
be used for offline or online learning; UCB (Auer et al.,
2002) is known to be provably optimal online by ensuring
exploration through optimism under uncertainty; and LCB
(Xiao et al., 2021; Jin et al., 2021) is used to minimize
suboptimality given an offline dataset by selecting actions
pessimistically. It is the opposite of UCB. We evaluate
algorithms with standard bandit metrics. Offline, we use
the suboptimality µa⋆ − µâ where â is the chosen action.
Online, we use cumulative regret:

∑
k µa⋆ − µâk

where âk
is the kth action chosen.

DPT learns to reason through uncertainty. As shown
in Figure 2a, in the offline setting, DPT significantly ex-
ceeds the performance of Emp and LCB while matching
the performance of TS, when the in-context datasets are
sampled from the same distribution as during pretraining.
The results suggest that the transformer is capable of rea-
soning through uncertainty caused by the noisy rewards in
the dataset. Unlike Emp which can be fooled by noisy, un-
dersampled actions, the transformer has learned to hedge to
a degree. However, it also suggests that this hedging is fun-
damentally different from what LCB does, at least on this

2See Appendix A.2 for additional details such as hyperparame-
ters.

specific distribution3. Interestingly, the same transformer
produces an extremely effective online bandit algorithm
when sampling actions instead of taking an argmax. As
shown in Figure 2b, DPT matches the performance of classi-
cal optimal algorithms, UCB and TS, which are specifically
designed for exploration. This is notable because DPT was
not explicitly trained to explore, but its emergent strategy
is on par with some of the best. In Figure 2c, we show this
property is robust to noise in the rewards not seen during pre-
training by varying the standard deviation. In Appendix B,
we show this generalization happens offline too and even
with unseen Bernoulli rewards.

Leveraging structure from suboptimal data. We now
investigate whether DPT can learn to leverage the inherent
structure of a problem class, even without prior knowledge
of this structure and even when learning from in-context
datasets that do not explicitly utilize it. More precisely, we
consider Tpre to be a distribution over linear bandits, where
the reward function is given by E [r | a, τ ] = ⟨θτ , ϕ(a)⟩ and
θτ ∈ Rd is a task-specific parameter vector and ϕ : A → Rd

is fixed feature vector that is the same for all tasks. Given
the feature representation ϕ, LinUCB (Abbasi-Yadkori et al.,
2011), a UCB-style algorithm that leverages ϕ, should
achieve regret Õ(d

√
K) over K steps, a substantial gain

over UCB and TS when d ≪ |A|. Here, we pretrain a DPT
model with in-context datasets gathered by TS, which does
not leverage the linear structure. Figures 3a and 3b show that
DPT can exploit the unknown linear structure, essentially
learning a surrogate for ϕ, allowing it to do more informed
exploration online and decision-making offline. It is nearly
on par with LinUCB (which is given ϕ) and significantly
outperforms the source, TS, which does not know or use the
structure. These results suggest that (1) DPT can automati-
cally leverage structure, and (2) supervised learning-based
approaches to RL can learn novel explorations that tran-

3Note our randomly generated environments are equally likely
to have expert-biased datasets and adversarial datasets, so LCB is
not expected to outperform here (Xiao et al., 2021).
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Figure 3. (a) Offline performance of DPT trained on linear bandits from TS source data. LinReg does linear regression and outputs the
greedy action. (b) Online cumulative regret of the same model. The mean and standard error are computed over 200 test tasks. (c) Offline
performance on expert-biased datasets. DPT pretrained on a different prior continues to match TS, but DPT-Exp trained from a more
representative prior excels.

scend the quality of their pretraining data.

Adapting to expert-biased datasets. A common assump-
tion in offline RL is that datasets tend to be a mixture be-
tween optimal data (e.g. expert demonstrations) and subop-
timal data (e.g. random interactions) (Rashidinejad et al.,
2021). Hence, LCB is generally effective in practice and
the pretraining and testing distributions should be biased
towards this setting. Motivated by this, we pretrain a sec-
ond DPT model where Dpre is generated by mixing the
in-context datasets with varying fractions of expert data,
biasing Dpre towards datasets that contain more examples
of the optimal action. We denote this model by DPT-Exp.
In Figure 3c, we plot the test-time performance of both pre-
trained models when evaluated on new offline datasets with
varying percentages of expert data4. Our results suggest
that when the pretraining distribution is also biased towards
expert-suboptimal data, DPT-Exp behaves similarly to LCB,
while DPT continues to resemble TS. This is quite interest-
ing as for other methods, such as TS, it is less clear how to
automatically incorporate the right amount of expert bias to
get the same effect, but DPT can learn this from pretraining.

5. Learning in Markov Decision Processes
We next study how DPT can tackle Markov decision pro-
cesses by testing its ability to perform exploration and credit
assignment. In the following experiments, the DPT demon-
strates generalization to new tasks, scalability to image-
based observations, and capability to stitch in-context be-
haviors (Section 5.2). This section also examines whether
DPT can be pretrained with datasets and action labels gen-
erated by a different RL algorithm, rather than the exact
optimal policy (Section 5.3).

4That is, 0% is fully random while 100% has only optimal
actions in the in-context dataset.

5.1. Experimental Setup

Environments. We consider environments that require
targeted exploration to solve the task. The first is Dark
Room (Zintgraf et al., 2019; Laskin et al., 2022), a 2D dis-
crete environment where the agent must locate the unknown
goal location in a 10 × 10 room, and only receives a re-
ward of 1 when at the goal. We hold out a set of goals for
generalization evaluation. Our second environment is Mini-
world (Chevalier-Boisvert, 2018), a 3D visual navigation
problem to test the scalability of DPT to image observations.
The agent is in a room with four boxes of different colors,
and must find the target box, the color of which is unknown
to the agent initially. It receives a reward of 1 only when
near the correct box. Details on these environments and the
pre-training datasets are in App. A.4 and A.5.

Comparisons. Our experiments aim to understand the effec-
tiveness of DPT in comparison to that of other context-based
meta-RL algorithms. To that end, we compare to meta-RL
algorithms based on supervised and RL objectives.

• Proximal Policy Optimization (PPO) (Schulman et al.,
2017): We compare to this single-task RL algorithm,
which trains from scratch without any pretraining data, to
contextualize the performance of DPT and other meta-RL
algorithms.

• Algorithm Distillation (AD) (Laskin et al., 2022): AD
first generates a dataset of learning histories by running
an RL algorithm in each training task. Then, given a
sampled subsequence hj = (sj , aj , rj , . . . , sj+c) from
a learning history, a tranformer is trained to predict the
next action aj+c from the learning history.

• RL2 (Duan et al., 2016): This online meta-RL compari-
son uses a recurrent neural network to adapt the agent’s
policy from the given context. Unlike AD and DPT,
which are trained with a supervised objective, the RL2

agent is trained to maximize the expected return with
PPO.

PPO and RL2 are online algorithms, while AD is capable of
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Figure 4. (a) Offline performance on held-out Dark Room goals, given random and expert datasets. (b) Online performance on held-out
Dark Room goals. (c) Offline performance on Miniworld (images), given random and expert datasets. (d) Online performance on
Miniworld (images) after 40 episodes. We report the average and standard error of the mean over 100 different offline datasets in (a) and
(c) and 20 online trials in (b) and (d).

learning both offline and online. Details on the implementa-
tion of these algorithms can be found in Appendix A.2.

5.2. Main Results

Generalizing to new offline datasets and tasks. To study
the generalization capabilities of DPT, we evaluate the
model in Dark Room on a set of 20 held-out goals not in
the pretraining dataset. When given an expert dataset, DPT
achieves near-optimal performance. Even when given a ran-
dom dataset, which has an average total reward of 1.1, DPT
obtains a much higher average return of 61.5 (see Fig. 4a).
Qualitatively, we observe that when the in-context dataset
contains a transition to the goal, DPT immediately exploits
this and takes a direct path to the goal. In contrast, while
AD demonstrates strong offline performance with expert
data, it performs worse in-context learning with random
data compared to DPT. The difference arises because AD is
trained to infer a better policy than the in-context data, but
not necessarily the optimal one.

We next evaluate DPT, AD, RL2, and PPO online with-
out any prior data from the 20 test-time Dark Room tasks,
shown in Fig. 4b. After 40 episodes, PPO does not make
significant progress towards the goal, highlighting the dif-
ficulty of learning from such few interactions alone. RL2

is trained to perform adaptation within four episodes each
of length 100, and we report the performance after the four
adaptation episodes. Notably, DPT on average solves each
task faster than AD and reaches a higher final return than
RL2, demonstrating its capability to explore effectively on-
line even in MDPs. In Appendix B, we also present results
on generalization to new dynamics.

Learning from image-based observations. In Miniworld,
the agent receives RGB image observations of 25×25 pixels.
As shown in Fig. 4d, DPT can solve this high-dimensional
task offline from both random and expert datasets. Com-
pared to AD and RL2, DPT also learns online more effi-
ciently.

Stitching novel trajectories from in-context subse-

quences. A desirable ability of some offline RL algorithms
stitching suboptimal subsequences from the offline dataset
into new trajectories with higher return. To test whether
DPT exhibits stitching, we design the Dark Room (Three
Tasks) environment in which there are three possible tasks.
The pretraining data consists only of expert demonstrations
of two of them. At test-time DPT is evaluated on third
unseen task, but its offline dataset is only expert demonstra-
tions of the original two. Despite this, it leverages the data
to infer a path solving the third task (see Fig. 5a).

5.3. Learning from Algorithm-Generated Policies and
Rollouts

So far, we have only considered action labels provided by an
optimal policy. However, in some tasks, an optimal policy is
not readily available even in pretraining. In this experiment,
we use actions labeled by a policy learned via PPO and in-
context datasets sampled from PPO replay buffers. We train
PPO agents in each of the 80 train tasks for 1K episodes to
generate 80K total rollouts, from which we sample the in-
context datasets. This variant, DPT (PPO, PPO), performs
on par with DPT and still better than AD, as shown in Fig-
ures 5b and 5c. DPT (PPO, PPO) can be viewed as a direct
comparison between our pretraining objective and that of
AD, given the same pretraining data but just used differently.
We also evaluated a variant, DPT (Rand, PPO), which pre-
trains on random in-context datasets (like DPT), but still
using PPO action labels. The performance is worse than the
other DPT variants in some settings, but only marginally so.
In Appendix B, we analyze the sensitivity of DPT to other
hyperparameters.

6. Theory
We now shed light on the observations of the previous empir-
ical results through a theoretical analysis. Our main result
shows that DPT (under a slight modification to pretrain-
ing) essentially performs in-context posterior sampling (PS).
PS is a generalization of Thompson Sampling for RL in
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Figure 5. (a) In Dark Room (Three Tasks), DPT stitches a new, optimal trajectory to the goal (blue) given two in-context demonstrations
of other tasks (pink and orange). (b) Offline Dark Room performance of DPT trained on PPO data. (c) Online Dark Room performance of
DPT trained on PPO data.

MDPs. It maintains and samples from a posterior over tasks
τ given historical data D and executes optimal policies π⋆

τ

(see Appendix C for a formal outline). It is provably sample-
efficient with online Bayesian regret guarantees (Osband
et al., 2013), but maintaining posteriors is generally com-
putationally intractable. The ability for DPT to perform
PS in-context suggests a path towards computation- and
provably sample-efficient RL with priors learned from the
data.

6.1. History-Dependent Pretraining and Assumptions

We start with a modification to the pretraining of DPT.
Rather than conditioning only on squery and D to predict
a⋆ ∼ π⋆

τ (·|squery), we propose also conditioning on a se-
quence ξh = (s1:h, a

⋆
1:h) where s1:h ∼ Sh ∈ ∆(Sh) is

a distribution over sets of states, independent of τ , and
a⋆h′ ∼ π⋆

τ (·|sh′) for h′ ∈ [h]. Thus, we use π⋆
τ to label

both the query state (which is the prediction label) and the
sequence of states sampled from Sh. Note that this does
not require any environment interactions and hence no sam-
pling from either Tτ or Rτ . At test-time at step h, this will
allow us to condition on the history ξh−1 of states that Mθ

visits and the actions that it takes in those states. Formally,
the learned Mθ is deployed as follows, given D. (1) At
h = 0, initialize ξ0 = () to be empty. (2) At step h, visit
sh and find ah by sampling from Mθ(·|squery, D, ξh−1). (3)
Append (sh, ah) to ξh−1 to get ξh. Note for bandits and
contextual bandits (H = 1), there is no difference between
this and the original pretraining procedure of prior sections
because ξ0 is empty. For MDPs, the original DPT can be
viewed as a convenient approximation.

We now make several assumptions to simplify the analysis.
First, assume Dquery, Dpre, and S have sufficient support
such that all conditional probabilities of Ppre are well de-
fined. Similar to other studies of in-context learning (Xie
et al., 2021), we assume Mθ fits the pretraining distribution
exactly with enough coverage and data, so that the focus of

the analysis is just the in-context learning abilities.

Assumption 6.1. (Learned model is consistent). Let Mθ

denote the pretrained model. For all (squery, D, ξh), we have
Ppre(a|squery, D, ξh) = Mθ(a|squery, D, ξh) for all a ∈ A.

To provide some cursory justification, if Mθ is the
global minimizer of (1), then EPpre∥Ppre(·|squery, D, ξh)−
Mθ(·|squery, D, ξh)∥21 → 0 as the number of pretraining
samples N → ∞ with high probability for transformer
model classes of bounded complexity (see Proposition C.1).
Approximate versions of the above assumptions are easily
possible but obfuscate the key elements of the analysis. We
also assume that the in-context dataset D ∼ Dpre is com-
pliant (Jin et al., 2021), meaning that the actions from D
can depend only on the observed history and not additional
confounders. Note that this still allows Dpre to be very gen-
eral — it could be generated randomly or from adaptive
algorithms like PPO or TS.

Definition 6.2 (Compliance). The in-context dataset dis-
tribution Dpre(·; τ) is compliant if, for all i ∈ [n], the ith
action of the dataset, ai, is conditionally independent of τ
given the ith state si and partial dataset, Di−1, so far. In
other words, Dpre(ai|si, Di−1; τ) is invariant to τ .

Generally, Dpre can influence Mθ. In Proposition 6.6, we
show that all compliant Dpre form a sort of equivalence class
that generate the same Mθ. For the remainder, we assume
all Dpre are compliant.

6.2. Main Results

Equivalence of DPT and PS. We now state our main
result which shows that the trajectories generated by a pre-
trained Mθ will follow the same distribution as those from
a well-specified PS algorithm. In particular, let PS use the
well-specified prior Tpre. Let τc be an arbitrary task. Let
Pps(· | D, τc) and PMθ

(· | D, τc) denote the distributions
over trajectories ξH ∈ (S × A)H generated from running
PS and Mθ(·|·, D, ·), respectively, in task τc given historical
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data D.

Theorem 6.3 (DPT ⇐⇒ PS). Let the above assumptions
hold. Then, Pps(ξH | D, τc) = PMθ

(ξH | D, τc) for all
trajectories ξH .

Regret implications. To see this result in action, let us
specialize to the finite MDP setting (Osband et al., 2013).
Suppose we pretrain Mθ on a distribution Tpre over MDPs
with S := |S| and A := |A|. Let Dpre be constructed by uni-
form sampling (si, ai) and observing (ri, s

′
i) for i ∈ [KH].

Let E [rh|sh, ah] ∈ [0, 1]. And let Dquery and Sh be uniform
over S and Sh (for all h) respectively. Finally, let Ttest be the
distribution over test tasks with the same cardinalities. For
a task τ , define the online cumulative regret of DPT over K
episodes as Regτ (Mθ) :=

∑
k∈[K] Vτ (π

⋆
τ )−Vτ (π̂k) where

π̂k(·|sh) = Mθ(·|sh, D(k−1), ξh−1) and D(k) contains the
first k episodes collected from π̂1:k.

Corollary 6.4 (Finite MDPs). Suppose that
supτ Ttest(τ)/Tpre(τ) ≤ C for some C > 0. For the
above MDP setting, the pretrained model Mθ satisfies
ETtest [Regτ (Mθ)] ≤ Õ(CH3/2S

√
AK).

A similar analysis due to (Russo & Van Roy, 2014) allows
us to prove why pretraining on (latently) linear bandits can
lead to substantial empirical gains, even when the in-context
datasets are generated by algorithms unaware of this struc-
ture. We observed this empirically in Section 4. Consider a
similar setup as there where S is a singleton, A is finite but
large, θτ ∈ Rd is sampled as θτ ∼ N (0, I/d), ϕ : A → Rd

is a fixed feature map with supa∈A ∥ϕ(a)∥2 ≤ 1, and the
reward of a ∈ A in task τ is distributed as N (⟨θτ , ϕ(a)⟩, 1).
This time, we let Dpre(·; τ) be given by running Thompson
Sampling with Gaussian priors and likelihood functions on
τ .

Corollary 6.5 (Latent representation learning in linear ban-
dits). For Ttest = Tpre in the above linear bandit setting, Mθ

satisfies ETtest [Regτ (Mθ)] ≤ Õ(d
√
K).

This significantly improves over the Õ(
√
|A|K) upper re-

gret bound for TS that does not leverage the linear structure.
This highlights how DPT can have provably tighter upper
bounds on future bandit problems than the algorithms used
to generate its (pretraining) data.

Invariance of Mθ to compliant Dpre. Our final result
sheds light on how Dpre impacts the final DPT behavior Mθ.
Combined with Assumption 6.1, Mθ is invariant to Dpre
satisfying Definition 6.2.

Proposition 6.6. Let P 1
pre and P 2

pre be pretraining distribu-
tions that differ only by their in-context dataset distributions,
denoted by D1

pre and D2
pre. If D1

pre and D2
pre are compli-

ant with the same support, then P 1
pre(a

⋆|squery, D, ξh) =
P 2
pre(a

⋆|squery, D, ξh) for all a⋆, squery, D, ξh.

That is, if we generate in-context datasets D by running var-
ious algorithms that depend only on the observed data in the
current task, we will end up with the same Mθ. For example,
TS could be used for D1

pre and PPO for D2
pre. Expert-biased

datasets discussed in Section 4 violate Definition 6.2, since
knowledge of τ is being used. This helps explain our empir-
ical results that pretraining on expert-biased datasets leads
to a qualitatively different learned model at test-time.

7. Discussion
In this paper, we studied the problem of in-context decision-
making. We introduced a new pretraining method and trans-
former model, DPT, which is trained via supervised learning
to predict optimal actions given an in-context dataset of in-
teractions. Through in-depth evaluations in classic decision
problems in bandits and MDPs, we showed that this simple
objective naturally gives rise to an in-context RL algorithm
that is capable of online exploration and offline decision-
making, unlike other algorithms that are explicitly trained or
designed to do these. Our empirical and theoretical results
provide first steps towards understanding these capabili-
ties that arise from DPT and what factors are important
for it to succeed. The inherent strength of pretraining lies
in its simplicity–we can sidestep the complexities of hand-
designing exploration or conservatism in RL algorithms
and while simultaneously allowing the transformer to de-
rive novel strategies that best leverage problem structure.
These findings underscore the potential of supervised pre-
training in equipping transformer models with in-context
decision-making abilities.

Limitations and future work. One limitation of DPT
is the requirement of optimal actions at pretraining. Em-
pirically, we find that this requirement can be relaxed by
using actions generated by another RL-trained agent during
pretraining, which only leads to a slight loss in performance.
However, fully understanding this problem and how best to
leverage multi-task decision-making datasets remains a key
open problem. We also discussed that the practical imple-
mentation for MDPs differs from true posterior sampling. It
would be interesting to further understand and bridge this
empirical-theoretical gap in the future. Our preliminary
analysis shows promise for DPT to generalize to new tasks
beyond its pretraining distribution. This suggests that di-
versifying the task distributions during pretraining could
significantly enhance the model’s ability to generalize to
new tasks. This possibility holds an exciting avenue for
future work. Finally, further investigation is required to
understand the implications of these findings for existing
foundation models, such as instruction-finetuned models,
that are increasingly being deployed in decision-making
settings (Wang et al., 2023).
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Additional Related Work
In-context learning. Beyond decision-making and reinforcement learning, our approach takes inspiration from general
in-context learning, a phenomenon observed most prominently in large language models in which large-scale autoregressive
modelling can surprisingly lead to a model that exhibits meta-learning capabilities (Brown et al., 2020). Recently, there has
been great interest in understanding the capabilities and properties of in-context learning in various settings (Garg et al., 2022;
von Oswald et al., 2022; Razeghi et al., 2022; Olsson et al., 2022; Kirsch et al., 2022; Shin et al., 2022; Li et al., 2023; Wies
et al., 2023; Akyürek et al., 2022; Abernethy et al., 2023; Ke et al., 2022; Goyal et al., 2022). While a common hypothesis
suggests that this phenomenon is due to properties of the data used to train large language models (Chan et al., 2022), our
work suggests that this phenomenon can also be encouraged in general settings via adjustments to the pre-training objective.
In fact, DPT could be interpreted as explicitly encouraging the ability to perform Bayesian inference, which is a popular
explanation for the mechanism behind in-context learning for large language models (Xie et al., 2021). For meta-learning
in-context, work by (Nguyen & Grover, 2022) proposed Transformer Neural Processes to address problems traditionally
addressed with neural processes. Their work focuses on supervised learning-style input-output pairs for meta-learning, but
they also applied this to contextual bandits to learn rewards.

Posterior Sampling. Posterior sampling originates from the seminal work of (Thompson, 1933), and has been popularized
and thoroughly investigated in recent years by a number of authors (Russo et al., 2018; Agrawal & Goyal, 2017; Strens, 2000;
Osband et al., 2013; Agrawal & Jia, 2017; Russo & Van Roy, 2014). For bandits, it is often referred to as Thompson Sampling,
but the framework is easily generalizable to RL. The principle is as follows: begin with a prior over possible models (i.e.
reward and transition functions), and maintain a posterior distribution over models by updating as new interactions are made.
At decision-time, sample a model from the posterior and execute its optimal policy. The aforementioned prior works have
developed strong theoretical guarantees on Bayesian and frequentist regret for posterior sampling. Despite its desirable
theoretical characteristics, a major limitation is that computing the posterior is often computationally intractable, leading
practitioners to rely on approximation-based solutions (Lu & Van Roy, 2017; Osband et al., 2016; 2018). In Section 6, we
show that a version of the DPT model learned from pretraining can be viewed as implementing posterior sampling as it
should be without resorting to approximations or deriving complicated posterior updates. Instead, the posterior update is
implicitly learned through pretraining to predict the optimal action. This suggests that in-context learning (or meta-learning
more generally) could be a key in unlocking practically applicable posterior sampling for RL.

A. Implementation and Experiment Details

Algorithm 2 Decision-Pretrained Transformer (detailed)
1: // Collecting pretraining dataset
2: Initialize empty dataset B
3: for i in [N ] do
4: Sample task τ ∼ Tpre
5: Sample interaction dataset D ∼ Dpre(·; τ) of length n
6: Sample squery ∼ Dquery and a⋆ ∼ π⋆

τ (·|squery)
7: Add (squery, D, a⋆) to B
8: end for
9: // Training model on dataset

10: Initialize model Mθ with parameters θ
11: while not converged do
12: Sample (squery, D, a⋆) from B
13: Predict p̂j(·) = Mθ(·|squery, Dj) for all j ∈ [n].
14: Compute loss in (4) with respect to a⋆ and backpropagate to update θ.
15: end while
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Algorithm 3 Offline test-time deployment (detailed)
1: // Task and offline dataset are generated without learner’s control
2: Sample unknown task τ ∼ Ttest
3: Sample dataset D ∼ Dtest(·; τ)
4: // Deploying offline policy Mθ(·|·, D)

5: s1 = reset(τ)
6: for h in [H] do
7: ah = argmaxa∈A Mθ(·|sh, D) // Most likely action
8: sh+1, rh = step(τ, ah)
9: end for

Algorithm 4 Online test-time deployment (detailed)
1: // Online, dataset is empty as learning is from scratch
2: Initialize D = {}
3: Sample unknown task τ ∼ Ttest
4: for ep in max eps do
5: s1 = reset(τ)
6: for h in [H] do
7: ah ∼ Mθ(·|sh, D) // Sample action from predicted distribution
8: sh+1, rh = step(τ, ah)
9: end for

10: // Experience from previous episode added to dataset
11: Add (s1, a1, r1, . . .) to D
12: end for

A.1. DPT Architecture: Formal Description

In this section, we provide a detailed description of the architecture alluded to in Section 3 and Figure 1. See hyperparameter
details for models in their respective sections. The model is implemented in Python with PyTorch (Paszke et al., 2019). The
backbone of the transformer architecture we use is an autoregressive GPT-2 model from the HuggingFace transformers
library.

For the sake of exposition, we suppose that S and A are subsets of RdS and RdA respectively. We handle discrete state
and action spaces with one-hot encoding. Consider a single training datapoint derived from an (potentially unknown)
task τ : we have a dataset D of interactions within τ , a query state squery, and its corresponding optimal action a⋆ =
π⋆
τ (squery). We construct the embeddings to be passed to the GPT-2 backbone in the following way. From the dataset

D = {(sj , aj , s′j , rj)}j∈[n], we construct vectors ξj = (sj , aj , s
′
j , rj) by stacking the elements of the transition tuple into

dimension dξ := 2dS + dA + 1 for each j in the sequence. This sequence of n elements is concatenated with another vector
v := (squery,0) where the 0 vector is a vector of zeros of sufficient length to make the entire element dimension dξ. The
(n+ 1)-length sequence is given by X = (v, ξ1, . . . , ξn). As order does not often matter for the dataset D5, we do not use
positional encoding in order to take advantage of this invariance. We first apply a linear layer Linear(X) and pass the
result to the transformer, which outputs the sequence Y = (ŷ0, ŷ1, . . . , ŷn). In the continuous action case, these can be used
as is for predictions of a⋆. For the discrete action case, we use them as logits to be converted to either a distribution over
actions in A or one-hot vector predictions of a⋆. Here, we compute action probabilities

p̂j = softmax(ŷj) ∈ ∆(A) (2)

Because of the GPT-2 causal architecture (we defer details to the original papers (Radford et al., 2019; Brown et al., 2020)),
we note that p̂j depends only on squery and the partial dataset Dj = {(sk, ak, s′k, rk)}k∈[j], which is why we write the model
notation,

Mθ(·|squery, Dj) = p̂j(·), (3)

5This is not always true such as when data comes from an algorithm such as PPO or Thompson Sampling.
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to denote that the predicted probabilities of the jth element only depend on Dj and not the entire D for the model M with
parameters θ ∈ Θ. For example, with j = 0, the prediction of a⋆ is made without any contextual information about the task
τ except for squery, which can be interpreted as the prior over a⋆. We measure loss of this training example via the cross
entropy for each j ∈ [n]:

−
∑
j∈[n]

log p̂j(a
⋆) (4)

Intuition. Elements of the inputs sequence X represent transitions in the environment. When passed through the GPT-2
transformer, the model learns to associate elements of the sequence via the standard query-key-value mechanism of the
attention model. The query state squery is demarcated by its zeros vector (which also acts as padding). Unlike other
examples of transformers used for decision-making such as the Decision Transformer (Chen et al., 2021) and Algorithm
Distillation (Laskin et al., 2022), DPT does not separate the individual (s, a, s′, r) into their own embeddings to be made
into one long sequence. This is because we view the transition tuples in the dataset as their own singletons, to be related
with other singletons in the dataset through the attention mechanism. We note that there are various other implementation
variations one could take, but we found success and robustness with this one.

A.2. Implementation Details

A.2.1. BANDIT ALGORITHMS

First, we describe the comparisons from the bandit experiments with hyperparameters.

Empirical Mean (Emp). Emp has no hyperparameters, but we give it some mechanism to avoid degenerate scenarios. In
the offline setting, Emp will only choose from actions that have at least one example in the dataset. This gives Emp and
LCB-style effect when actions are missing. Similarly, online, Emp will sample each action at least once before defaulting to
its real strategy. These changes only improve Emp.

Upper Confidence Bound (UCB). According to the Hoeffding bound, we choose actions as â ∈
argmaxa∈A

{
µ̂a +

√
1/na

}
where µ̂a is the empirical mean so far for action a and na is the number of times a has

been chosen so far. To arrive at this constant for the bonus, we coarsely tried a set of plausible values given the noise and
found this to perform the best.

Lower Confidence Bound (LCB). We choose actions as â ∈ argmaxa∈A

{
µ̂a −

√
1/na

}
where µ̂a is the empirical

mean so far for action a and na is the number of times a has been chosen so far.

Thompson Sampling (TS). Since the means are sampled uniformly from [0, 1], Gaussian TS is partially misspecified;
however, we set prior mean and variance to 1

2 and 1
12 to match the true ones. The noise model was well-specified with the

correct variance. In the linear experiments of Figure 3a and Figure 3b, we set the prior mean and variance to 0 and 1 to fit
the true ones better.

LinUCB. We choose ât ∈ argmaxa∈A⟨θ̂t, ϕ(a)⟩+ β∥ϕ(a)∥Σ̂−1
t

where β = 1 and Σ̂t = I +
∑

s∈[t−1] ϕ(as)ϕ(as)
⊤ and

θ̂t = Σ̂−1
t

∑
s∈[t−1] rsϕ(as). Here, rs and as are the reward and action observed at time s.

LinReg. LinReg (offline) is the same as LinUCB except we set β = 0 to greedily choose actions.

DPT. The transformer for DPT has an embedding size of 32, context length of 500 for basic bandits and 200 for linear
bandits, 4 hidden layers, and 4 attention heads per attention layer for all bandits. We use the AdamW optimizer with weight
decay 1e-4, learning rate 1e-4, and batch-size 64. For all experiments, we shuffle the in-context dataset D since order does
not matter except in the linear bandit.

A.2.2. RL ALGORITHMS

Below, we describe the comparisons from the MDP experiments and their hyperparameters.
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Proximal Policy Optimization (PPO). The reported results for PPO use the Stable Baselines3 implementation (Raffin
et al., 2021) with the default hyperparameters, which successfully learns each task given 100K environment steps in Dark
Room and 125K environment steps in Miniworld. In Dark Room, the policy is implemented as a multi-layer perceptron
with two hidden layers of 64 units each. In Miniworld, the policy is a convolutional neural network with two convolutional
layers with 16 3× 3 kernels each, followed by a linear layer with output dimension of 8.

Algorithm Distillation (AD). We first collect learning histories with PPO for each of the training tasks. Then, given a
cross-episodic context of length H , where H is the task horizon, the model is trained to predict the actions taken K episodes
later (given the states visited in that episode). This was shown to lead to faster algorithms in (Laskin et al., 2022). We
evaluated AD across different values of K. Between K = 10, 50, 100, we found K = 100 to be most performant in the
Dark Room environment. In Miniworld, we also subsampled with K = 100. In Dark Room, the transformer has similar
hyperparameters as DPT: an embedding size of 32, context length of 100 steps, 4 hidden layers, and 4 attention heads per
attention layer. In Miniworld, as with DPT, we first encode the image with a convolutional network with two convolutional
layers with 16 3× 3 kernels each, followed by a linear layer with output dimension of 8.

RL2. The reported results for RL2 use an open-sourced implementation from (Zintgraf et al., 2020). The implementation
uses PPO as the RL algorithm and defines a single trial as four consecutive episodes. The policy is implemented with one
hidden layer of 32 units in Dark Room. In Miniworld, the policy is parameterized with a convolutional neural network with
two convolutional layers with 16 3× 3 kernels each, followed by a linear layer with output dimension of 8.

DPT. The transformer for DPT has an embedding size of 32, context length of 100 steps, 4 hidden layers, and 4 attention
heads per attention layer in Dark Room. In Miniworld, the image is first passed through a convolutional network with two
convolutional layers 16 3× 3 kernels each, followed by a linear layer with output dimension of 8. The transformer model
that processes these image embeddings otherwise has the same hyperparameters as in Dark Room. We use the AdamW
optimizer with weight decay 1e-4, learning rate 1e-3, and batch-size 128.

A.3. Bandit Pretraining and Testing

Basic Bandit. Offline, to generate the in-context datasets for pretraining, we used a Dirichlet distribution to sample action
frequencies in order to generate datasets with diverse compositions (i.e. some more uniform, some that only choose a few
actions, etc.): p1 ∼ Dir(1) where p1 ∈ ∆(A) and 1 ∈ R|A|. We also mixed this with a distribution that has all mass on
one action: â ∼ Unif(A) and p2(â) = 1 and p2(a) = 0 for all a ̸= â. The final action distribution is p = (1− ω)p1 + ωp2
where ω ∼ Unif(0.1[10]). We train on 100,000 pretraining samples for 300 epochs with an 80/20 train/validation split. In
Figure 2a, Dtest is generated in the same way.

Expert-Biased Bandit. To generate expert-biased datasets for pretraining, we compute the action frequencies to bias
the dataset towards the optimal action. Let a⋆ be the optimal one. As before, we take p1 ∼ Dir(1). Then, p2(a⋆) = 1
and p2(a) = 0 for all a ̸= a⋆. For of bias of ω, we take p = (1 − ω)p1 + ωp2 with ω ∼ Unif(0.1[10]). We use the
same pretraining sample size and epochs as before. For testing, Dtest is generated the same way except we fix a particular
ω ∈ {0, 0.5, 1} to test on.

Linear Bandit. We consider the case where |A| = 10 and d = 2. To generate environments from Tpre, we first sampled a
fixed set of actions from N (0, Id/d) in Rd to represent the features. Then, for each τ , we sampled θτ ∼ N (0, Id/d) to
produce the means µa = ⟨θτ , ϕ(a)⟩ for a ∈ A. To generate the in-context dataset, we ran Gaussian TS (which does not
leverage ϕ) over n = 200 steps (see hyperparameters in previous section). Because order matters, we did not shuffle and
used 1, 000, 000 pretraining samples over 200 epochs with an 80/20 train/validation split. At test time, we set Ttest = Tpre
and Dtest = Dpre. Note that ϕ is fixed over all τ , as is standard for a linear bandit.

A.4. MDP Environment Details

Dark Room. The agent must navigate a 10× 10 grid to find the goal within H = 100 steps. The agent’s observation is its
xy-position, the allowed actions are left, right, up, down, and stay, and the reward is only r = 1 when the agent is at the
goal, and r = 0 otherwise. At test time, the agent begins at the (0, 0) position. We randomly designate 80 of the 100 grid
squares to be goals for the training tasks, and hold out the remaining 20 for evaluation.
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Figure 6. (a) Final (after 500 steps) offline suboptimality on out-of-distribution bandits with different Gaussian noise standard deviations.
(b) Offline performance on out-of-distribution Bernoulli bandits, given random in-context datasets. (c) Online cumulative regret on
Bernoulli bandits. The mean and standard error are computed over 200 test tasks.

Miniworld. The agent must navigate to the correct box, which is initially unknown, from 25×25 RGB image observations.
The agent is additionally conditioned on its own direction vector. In each episode, the environment is initialized with four
boxes of different colors, one in each corner of the square room. The agent can turn left, turn right, or move forward. The
reward is only r = 1 when the agent is near the correct box and r = 0 otherwise, and each episode is 50 time-steps long. At
test time, the agent begins in the middle of the room.

A.5. MDP Pretraining Datasets

Dark Room. In Dark Room, we collect 100K in-context datasets, each of length H = 100 steps, with a uniform-random
policy. The 100K datasets are evenly collected across the 100 goals. The query states are uniformly sampled from the state
space, and the optimal actions are computed as follows: move up/down until the agent is on the same y-position as the goal,
then move left/right until the agent is on the x-position as the goal. Of the 100K collections of datasets, query states, and
optimal actions, we use the first 80K (corresponding to the first 80 goals) for training and the remaining 20K for validation.

Miniworld. While this task is solved from image-based observations, we also note that there are only four distinct tasks
(one for each colored box), and the agent does not need to handle new tasks at test time. Hence, the number of in-context
datasets required in pretraining is fewer – we use 40K datasets each of length H = 50 steps. So as to reduce computation,
the in-context datasets only have only (s, a, r) tuples. The query states, which consist of image and direction are sampled
uniformly from the entire state space, i.e., the agent is place uniformly at random in the environment, pointing in a random
direction. The optimal actions are computed as follows: turn towards the correct box if the agent is not yet facing it (within
±15 degrees), otherwise move forward. Of the 40K collections of datasets, query states, and optimal actions, we use 32K
for training and the remaining 8K for validation.

B. Additional Experimental Results
B.1. Bandits

This section reports additional experimental results in bandit environments.

Out-of-distribution reward variances. In Figures 2c and 6a, we demonstrate the robustness of the basic pretrained model
under shifts in the reward distribution at test time by varying the amount of noise observed in the rewards. DPT maintains
robustness to these shifts similar to TS.

Bernoulli rewards. We test the out-of-distribution ability of DPT further by completely changing the reward distribution
from Gaussian to Bernoulli bandits. Despite being trained only on Gaussian tasks during pretraining, DPT maintains strong
performance both offline and online in Figures 6b and 6c.

B.2. Markov Decision Processes
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Figure 8. All comparisons in Dark Room evaluated on the tasks that were seen during pretraining, displayed next to their evaluations on
test task counterparts from the main text.
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Figure 9. Sensitivity analysis of the offline Dark Rook task over the GPT-2 transformer’s hyperparameters: (a) layers (b) attention heads
(c) embedding dimensions (d) pretraining samples.
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This section reports additional experimental results in the Dark Room and Miniworld
environments.

Performance on training tasks. In Fig. 8, we show the performance of each method
on the training tasks in Dark Room. Offline, DPT and AD demonstrate comparable
performance as on the training tasks, indicating a minimal generalization gap to new goals.
Online, DPT, AD, and RL2 also achieve performance on the training tasks similar to that
on the test tasks.

Generalization to new dynamics. In this experiment, we study generalization to vari-
ations in a different aspect of the MDP, namely the dynamics. We design Dark Room
(Permuted), a variant of Dark Room in which the goal is fixed to a corner but the action
space is randomly permuted. Hence, the agent must leverage its historical context to infer
the effect of each action. On a held-out set of 20 permutations, DPT infers the optimal policy correctly every time offline,
given only 100 offline samples, matching the optimal policy at 83 return. Similarly, the online performance immediately
snaps to a near optimal policy in one episode once it identifies the novel permutation in Figure 7.

B.3. Sensitivity Analysis

We next seek to understand the sensitivity of DPT to different hyperparameters, including the model size and size of the
pretraining dataset. These experiments are performed in the Dark Room environment. As shown in Fig. 9, the performance
of DPT is robust to the model size; it is the same across different embedding sizes, number of layers, and number of attention
heads. Notably, the performance is slightly worse with 8 attention heads, which may be attributed to slight overfitting. We
do see that when the pretraining dataset is reduced to 10% of its original size (10000 samples) the performance degrades,
but otherwise has similar performance with larger pretraining datasets.
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C. Additional Theory and Omitted Proofs
We start with a well-known concentration inequality for the maximum-likelihood estimate (MLE) to provide some more
justification for the approximation made in Assumption 6.1. We state a version from (Agarwal et al., 2020). Let F be a
finite function class used to model a conditional distribution pY |X(y|x) for x ∈ X and y ∈ Y . Assume there is f⋆ ∈ F such
that p(y|x) = f⋆(y|x) (realizable), and f(·|x) ∈ ∆(Y) for all x ∈ X and f ∈ F (proper). Let D = {xi, yi}i∈[N ] denote a
dataset of i.i.d samples where xi ∼ pX and yi ∼ pY |X(·|xi). Let

f̂ = argmax
f∈F

∑
i∈[N ]

log f(yi|xi) (5)

Proposition C.1 (Theorem 21 of (Agarwal et al., 2020)). Let D and f̂ be given as above under the aforementioned
conditions. Then, with probability at least 1− δ,

Ex∼pX
∥f̂(·|x)− pY |X(·|x)∥21 ≤ 8 log (|F|/δ)

N
(6)

The finiteness of F is done for simplicity, but we can see that this yields dependence on the log-cardinality, a common
measure of complexity. Extensions to infinite F of bounded statistical complexity can be readily made to replace this.
For our setting, the bound suggests that EPpre∥Ppre(·|squery, D, ξh) − Mθ(·|squery, D, ξh)∥21 → 0 as N → ∞ with high
probability, provided the function class of Mθ has bounded statistical complexity.

C.1. Posterior Sampling

Posterior sampling is most generally described with the following procedure (Osband et al., 2013). Initialize a prior
distribution T1 = Tpre and dataset D = {}. For k ∈ [K]

1. Sample τk ∼ Tk and compute π̂τk

2. Execute π⋆
τk

and add interactions to D

3. Update posterior distribution Tk+1(τ) = P (τ |D).

The prior and posteriors are typically over models such as reward functions in bandits or transition dynamics in MDPs.

C.2. Proof of Theorem 6.3

Theorem 6.3 (DPT ⇐⇒ PS). Let the above assumptions hold. Then, Pps(ξH | D, τc) = PMθ
(ξH | D, τc) for all

trajectories ξH .

Proof. Without loss of generality, for a task τ , we take π⋆
τ (·|s) to be deterministic and denote the optimal action in state s as

π⋆
τ (s). Recall that we consider a fixed current task τc and a fixed in-context dataset D. Define ξh = (s1, a1, . . . , sh, ah).

We now formally state the variant of the full joint distribution from which we sample during pretraining. Let τ and D′ be an
arbitrary task and dataset and let a⋆ ∈ A, squery ∈ S, ξH−1 ∈ (S ×A)H−1, and h ∈ [0, H − 1] be arbitrary.

Ppre(τ, a
⋆, squery, D

′, ξH−1, h) = Tpre(τ)Dpre(D
′; τ)Dquery(squery)SH(s1:H)π⋆

τ (a
⋆|squery) (7)

× Unif[0, H − 1]
∏

i∈[H]

π⋆
τ (ai|si) (8)

The Unif[0, H − 1] is due to the fact that we sample h ∼ Unif[0, H − 1] and then truncate ξh from ξH−1 (or, equivalently,
sample ξh ∼ Sh directly), marginalizing out the other variables. For h′ ≤ h − 1, recall that we also use the notation
Sh′(s1:h′) to denote the marginalization of the full joint SH . We will eventually work with the posterior of this distribution
given the data D and history ξh:

Ppre(τ |D, ξh) ∝ Tpre(τ)Dpre(D; τ)
∏
i∈[h]

π⋆
τ (ai|si) (9)

∝ Ppre(τ |D)
∏
i∈[h]

π⋆
τ (ai|si) (10)
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We define the following random sequences and subsequences:

Ξps(h;D) = (Sps
1 , Aps

1 , . . . , Sps
h , Aps

h ) (11)

where the variables are generated according to the following conditional process: τps ∼ P (·|D), Sps
1 ∼ ρτc , Aps

h ∼
π⋆
τps(·|S

ps
h ), and Sps

h+1 ∼ Tτc(·|S
ps
h , Aps

h ). We also define Ξps(h
′ : h;D) to be the last h − h′ elements of Ξps(h;D).

Analogously, we define

Ξpre(h;D) = (Spre
1 , Apre

1 , . . . , Spre
h , Apre

h ) (12)

where the variables are from the process: Spre
1 ∼ ρτc , Apre

h ∼ Ppre(·|Spre
h , D,Ξpre(h − 1;D)), and Spre

h+1 ∼
Tτc(·|S

pre
h , Apre

h ). Note that Apre
h is sampled conditioned on the sequence Ξpre(h;D) so far.

We will show that Ξps(h;D) and Ξpre(h;D) follow the same distribution for all h ∈ [H]. For convenience, we will
drop notational dependence on D, except where it resolves ambiguity. Also, because of Assumption 6.1, we have that
Ppre(·|Spre

h , D,Ξpre(h− 1)) = Mθ(·|Spre
h , D,Ξpre(h− 1)), so we will just work with Ppre for the remainder of the proof.

We will also make use of the following lemma.

Lemma C.2. If Dpre is complaint, then Ppre(τ |D) = P (τps = τ |D).

Proof. From the definition of posterior sampling (using the same prior, Tpre), we have that

P (τps = τ |D) ∝ P (D|τ)Tpre(τ) (13)

∝ Tpre(τ)
∏
j∈[n]

Tτ (s
′
j |sj , aj)Rτ (rj |sj , aj) (14)

∝ Tpre(τ)
∏
j∈[n]

Tτ (s
′
j |sj , aj)Rτ (rj |sj , aj)Dpre(aj |sj , Dj−1) (15)

= Tpre(τ)Dpre(D; τ) (16)
= Ppre(τ |D) (17)

where the second line crucially uses the fact that posterior sampling chooses actions based only on the prior and history
so far. Similarly, the third line uses the fact that Dpre is compliant. Since the two sides are proportional in τ , they are
equivalent.

We will prove Theorem 6.3 via induction for each h ∈ [H]. First, consider the base case for a sequence of length h = 1.
Recall that ρτc denotes the initial state distribution of τc. We have that the densities can be written as

P (Ξps(1) = ξ1) = P (Sps
1 = s1, A

ps
1 = a1) (18)

= ρτc(s1)P (Aps
1 = a1|Sps

1 = s1) (19)

= ρτc(s1)

∫
τ

P (Aps
1 = a1, τps = τ |Sps

1 = s1)dτ (20)

= ρτc(s1)

∫
τ

π⋆
τ (a1|s1)Pps(τps = τ |D,Sps

1 = s1)dτ (21)

= ρτc(s1)

∫
τ

π⋆
τ (a1|s1)Pps(τps = τ |D)dτ (22)

= ρτc(s1)Ppre(A
pre
1 = a1|s1, D) (23)

= P (Ξpre(1) = ξ1) (24)

where the second line uses the sampling process of Spre
1 ; the third marginalizes over τps, which is the task that posterior

sampling samples to find the optimal policy; the fourth decomposes this into the optimal policy and the posterior over τps
given D and Sps

1 . Since Sps
1 is independent of sampling of τps this dependence goes away in the next line. The sixth line

applies Lemma C.2 and then, for h = 1, there is no history to condition on.
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Now, we leverage the inductive hypothesis to prove the full statement. Suppose that the hypothesis holds for h− 1. Then,

P (Ξps(h) = ξh) = P (Ξps(h− 1) = ξh−1)P (Sps
h = sh, A

ps
h = ah|Ξps(h− 1) = ξh−1) (25)

(26)

By the hypothesis, we have that P (Ξps(h− 1) = ξh−1) = P (Ξpre(h− 1) = ξh−1). For the second factor,

P (Sps
h = sh, A

ps
h = ah|Ξps(h− 1) = ξh−1) (27)

= Tτc(sh|sh−1, ah−1) · P (Aps
h = ah|Sps

h = sh,Ξps(h− 1) = ξh−1) (28)

= Tτc(sh|sh−1, ah−1) ·
∫
τ

P (Aps
h = ah, τps = τ |Sps

h = sh,Ξps(h− 1) = ξh−1)dτ (29)

As before, we can further rewrite the last factor as

P (Aps
h = ah, τps = τ |Sps

h = sh,Ξps(h− 1) = ξh−1) (30)
= π⋆

τ (ah|sh) · P (τps = τ |Sps
h = sh,Ξps(h− 1) = ξh−1) (31)

where

P (τps = τ |Sps
h = sh,Ξps(h− 1) = ξh−1) =

P (Sps
h = sh,Ξps(h− 1) = ξh−1|τps = τ)P (τps = τ |D)

P (Sps
h = sh,Ξps(h− 1) = ξh−1)

(32)

∝ Ppre(τ |D)
∏

i∈[h−1]

Tτc(si+1|si, ai)π⋆
τ (ai|si) (33)

∝ Ppre(τ |D)
∏

i∈[h−1]

π⋆
τ (ai|si) (34)

∝ Ppre(τ |D)Dquery(sh)Sh−1(s1:h−1)
∏

i∈[h−1]

π⋆
τ (ai|si) (35)

∝ Ppre(τ |sh, D, ξh−1) (36)
(37)

where ∝ denotes that the two sides are equal up to multiplicative factors independent of τ . In the first line, we used Bayes
rule. In the second line, given that τps = τ (i.e. posterior sampling selected τ to deploy), we decompose the probability of
observing that sequence of states of actions. We also used Lemma C.2. The denominator does not depend on τ . Similarly,
for the third and fourth lines, Tτc and S do not depend on τ . The final line follows from the definition of the joint pretraining
distribution in this regime.

Therefore, we conclude that the posterior over the value of τps is the same as the posterior over the task in the pretraining
distribution, given sh, D, ξh−1. Substituting back through all the previous equations, we have

P (Ξps(h) = ξh) (38)

= P (Ξpre(h− 1) = ξh−1) · Tτc(sh|sh−1, ah−1)

∫
τ

π⋆
τ (ah|sh)Ppre(τ |sh, D, ξh−1)dτ (39)

= P (Ξpre(h− 1) = ξh−1) · Tτc(sh|sh−1, ah−1)Ppre(ah|sh, D, ξh−1) (40)
= P (Ξpre(h) = ξh) (41)

This concludes the proof.

C.3. Proof of Corollary 6.4

Corollary C.3 (Finite MDPs). Suppose that supτ Ttest(τ)/Tpre(τ) ≤ C for some C > 0. For the above MDP setting, the
pretrained model Mθ satisfies ETtest [Regτ (Mθ)] ≤ Õ(CH3/2S

√
AK).
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Proof. Note that Dpre is clearly compliant since it is generated by random sampling. We use the equivalence between Mθ

and posterior sampling established in Theorem 6.3. The proof then follows immediately from Theorem 1 of (Osband et al.,
2013) to guarantee that

ETpre [Regτ (Mθ)] ≤ Õ
(
H3/2S

√
AK

)
(42)

where the notation Õ omits polylogarithmic dependence. The bound on the test task distribution follows from the assumed
bound on the likelihood ratio under the priors:∫

Ttest(τ)Regτ (Mθ)dτ ≤ C
∫

Tpre(τ)Regτ (Mθ)dτ. (43)

C.4. Proof of Corollary 6.5

Corollary C.4 (Latent representation learning in linear bandits). For Ttest = Tpre in the above linear bandit setting, Mθ

satisfies ETtest [Regτ (Mθ)] ≤ Õ(d
√
K).

Proof. The distribution Dpre satisfies compliance by definition because it is generated by an adaptive algorithm TS. The
proof once again follows by immediately deferring to the established result of (Russo & Van Roy, 2014) (Proposition 3) for
linear bandits by the posterior sampling equivalence of Theorem 6.3. This ensures that posterior sampling achieves regret
Õ(d

√
K). It remains, however, to justify that Ppre(·|Dk) will be covered by Gaussian Thompson Sampling for all Dk

with k ∈ [K]. This is verified by noting that Pps(a|Dk) > 0 for non-degenerate Gaussian Thompson Sampling (positive
variances of the prior and likelihood functions) and finite K. This guarantees that any Dk will have support.

C.5. Proof of Proposition 6.6

Proposition C.5. Let P 1
pre and P 2

pre be pretraining distributions that differ only by their in-context dataset distribu-
tions, denoted by D1

pre and D2
pre. If D1

pre and D2
pre are compliant with the same support, then P 1

pre(a
⋆|squery, D, ξh) =

P 2
pre(a

⋆|squery, D, ξh) for all a⋆, squery, D, ξh.

Proof. The proof follows by direct inspection of the pretraining distributions. For P 1
pre, we have

P 1
pre(a

⋆|squery, D, ξ) =

∫
τ

π⋆
τ (a

⋆|squery)P
1
pre(τ |squery, D, ξ)dτ (44)

The posterior distribution over tasks is simply

P 1
pre(τ |squery, D, ξ) =

P 1
pre(τ, squery, D, ξ)

P 1
pre(squery, D, ξ)

(45)

∝ P 1
pre(τ)P

1
pre(ξ|τ)Dquery(squery)D1

pre(D; τ) (46)

= P 2
pre(τ)P

2
pre(ξ|τ)Dquery(squery)D1

pre(D; τ) (47)

Then, the distribution over the in-context dataset can be decomposed as

D1
pre(D; τ) =

∏
i∈[n]

Rτ (ri|si, ai)Tτ (s
′
i|si, ai)D1

pre(ai|si, Di−1; τ) (48)

=
∏
i∈[n]

Rτ (ri|si, ai)Tτ (s
′
i|si, ai)D1

pre(ai|si, Di−1) (49)

∝
∏
i∈[n]

Rτ (ri|si, ai)Tτ (s
′
i|si, ai)D2

pre(ai|si, Di−1) (50)

= D2
pre(D; τ), (51)
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where the second equality holds because D1
pre(aj |sj , Dj ; τ) is assumed to be invariant to τ by compliance, and the fifth

equality holds because D2
pre(aj |sj , Dj ; τ) is assumed to be invariant to τ .

Therefore, we conclude that, for any s,D, ξ,

P 1
pre(τ |s,D, ξ) ∝ P 2

pre(τ)P
2
pre(ξ|τ)Dquery(s)D2

pre(D; τ) (52)

∝ P 2
pre(τ |s,D, ξ). (53)

Since also
∫
τ
P 1
pre(τ |s,D, ξ) = 1 =

∫
τ
P 2
pre(τ |s,D, ξ), then

P 1
pre(τ |s,D, ξ) = P 2

pre(τ |s,D, ξ). (54)

Substituting this back into Equation44 yields P 1
pre(a

⋆|s,D, ξ) = P 1
pre(a

⋆|s,D, ξ).


