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ABSTRACT

While Graph Neural Networks (GNNs) have achieved remarkable performance on
various machine learning tasks on graph data, they also raised questions regarding
their transparency and interpretability. Recently, there have been extensive re-
search efforts to explain the decision-making process of GNNs. These efforts of-
ten focus on explaining why a certain prediction is made for a particular instance,
or what discriminative features the GNNs try to detect for each class. However,
to the best of our knowledge, there is no existing study on understanding the de-
cision boundaries of GNNs, even though the decision-making process of GNNs
is directly determined by the decision boundaries. To bridge this research gap,
we propose a model-level explainability method called GNNBoundary, which at-
tempts to gain deeper insights into the decision boundaries of graph classifiers.
Specifically, we first develop an algorithm to identify the pairs of classes whose
decision regions are adjacent. For an adjacent class pair, the near-boundary graphs
between them are effectively generated by optimizing a novel objective function
specifically designed for boundary graph generation. Thus, by analyzing the near-
boundary graphs, the important characteristics of decision boundaries can be un-
covered. To evaluate the efficacy of GNNBoundary, we conduct experiments on
both synthetic and public real-world datasets. The results demonstrate that, via
the analysis of faithful near-boundary graphs generated by GNNBoundary, we
can thoroughly assess the robustness and generalizability of the explained GNNs.
The official implementation can be found at this GitHub repository.

1 INTRODUCTION

Graph Neural Networks (GNNs) are widely recognized as powerful tools for modeling graph data
across various domains, including chemistry, social networks, transportation, etc (Lin et al., 2022).
However, their success has raised questions regarding their transparency and interpretability, as
GNNs are often regarded as black-box models, similar to other types of deep learning models
(Wu et al., 2022). The complexity of GNNs makes it challenging for humans to comprehend their
decision-making processes, posing a significant obstacle to their application in real-world problems
(Chen et al., 2023b). For example, Partin et al. (2023) utilized GNN to predict cancer response
(sensitive or resistant) to drug treatments. Nonetheless, if the decision-making process of this GNN
is not adequately verified by humans, we cannot fully trust its prediction in real-world scenarios,
especially when it comes to serious matters such as human lives. This underscores the necessity
for developing methods to ensure the explainability of GNNs, enabling humans to gain insights into
their inner working mechanisms and build trust in their decisions.

Over the past few years, there has been a growing interest in explaining GNNs, leading to extensive
research efforts. These studies can be broadly categorized into two main groups: instance-level
explanations (Ying et al., 2019; Luo et al., 2020) and model-level explanations (Yuan et al., 2020;
Wang & Shen, 2023). Instance-level explanations are designed to explain why a certain prediction
is being made for a specific instance, while model-level explanations aim to disclose high-level
decision-making processes without respect to any particular instances. In this paper, the proposed
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method can also be categorized as a model-level explanation. However, unlike the existing model-
level explanation methods, we attempt to open the black box of GNNs from a different perspective.
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Figure 1: The overview of GNNBoundary. Given a trained GNN, GNNBoundary first identifies
adjacent class pairs, and then generates boundary graphs for each pair. The generated boundary
graphs can facilitate a deeper understanding of the decision boundaries of GNN.

In general, existing model-level methods explain the GNNs by generating a feature descriptor for
each class in the graph classification task (Chen et al., 2023a). By analyzing the feature descriptors
for each class they generate, one can understand the decision-making rule of the GNNs for individual
classes (Wang & Shen, 2023). However, they often fail to answer the following questions when
explaining the GNNs: (i) which classes are more similar to each other such that the explained
GNN will easily get confused? (ii) in what circumstances will the GNN be more uncertain and
less confident about its predictions? (iii) how to obtain a comprehensive overview of its decision-
making schema that effectively captures the complex relationships between different classes? All of
these questions are imperative for understanding the internal mechanism of GNNs, which strongly
motivated us to get a deeper understanding of their decision boundary rather than solely focusing on
individual classes. We believe that analyzing the decision boundary of GNNs is an indispensable step
to fully understand their decision-making process, and we are taking the first step in this direction.

In this paper, we propose a model-level explainability method, GNNBoundary, to explain the deci-
sion boundaries of GNNs on graph classification tasks. Specifically, we first introduce an algorithm
to identify pairs of classes whose decision regions are adjacent, given the fact that the decision
boundaries would only exist between those class pairs. For each adjacent class pair, GNNBoundary
generates graphs that are extremely close to the decision boundary by optimizing a novel objective
function specifically designed for satisfying the two desired properties we propose for boundary
graph generation. To facilitate the optimization process, a dynamic regularization scheduler is in-
troduced to reduce the likelihood of trapping in the local minima. In the experimental study, we
quantitatively and qualitatively evaluated the efficiency and effectiveness of GNNBoundary on both
synthetic and public real-world datasets. The experimental results show that we could consistently
generate faithful near-boundary graphs for each adjacent class pair. More importantly, we have
demonstrated in the case studies that the generated boundary graphs can be utilized to measure the
boundary thickness, boundary margin, and boundary complexity of GNNs trained on three datasets.
These three metrics would allow us to gain deep insights into the complexity of decision boundaries,
the potential risk of misclassification on unseen data, and the model robustness to perturbation.

2 RELATED WORK

Instance-Level Explanations of GNNs. Instance-level explanation methods provide input-
dependent explanations for the explained GNNs. Their main goal is to explain why a certain pre-
diction is made for a particular instance. Specifically, the important input features that contribute
the most to model predictions are identified for a given instance. Based on a recent survey (Kakkad
et al., 2023), instance-level explanation methods can be decomposed into five different categories:
decomposition methods (Schnake et al., 2021), gradient-based methods (Pope et al., 2019), sur-
rogate methods (Duval & Malliaros, 2021), perturbation-based methods (Ying et al., 2019), and
generation-based methods (Luo et al., 2020). They determine the important input features for the
prediction of a particular instance in a different way.

Model-Level Explanations of GNNs. On the contrary, model-level explanation methods focus on
explaining the high-level decision-making process of GNNs, which is not specific to any particular
instance. However, this is much less explored than instance-level methods. Generally speaking,
the existing model-level methods often produce a feature descriptor to describe the most discrimi-
native features GNNs try to detect for each class. This feature descriptor could be in the form of
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an explanation graph (Wang & Shen, 2023; Yuan et al., 2020) or a logic formula (Azzolin et al.,
2023). GNNBoundary also fall into this category. Similar to GNNInterpreter (Wang & Shen, 2023),
GNNBoundary also adopts the Gumbel-Softmax trick (Jang et al., 2016) to generate a graph that
minimizes an objective function. However, there is a fundamental difference in the objective func-
tion: GNNBoundary attempts to generate the graphs lying on decision boundaries, whereas GN-
NInterpreter aims at generating graphs with the most discriminative pattern of individual classes.
It is worth mentioning that, to the best of our knowledge, GNNBoundary is the first explainability
method that focuses on explaining and analyzing the decision boundaries of GNNs.

Explaining Decision Boundary of Neural Networks. Although there are no previous studies on
explaining the decision boundaries of GNNs, there are few studies on analyzing the decision bound-
aries of Convolutional Neural Networks (CNNs) or Multilayer Perceptron (MLP). In summary, they
mainly focus on analyzing model robustness (Yang et al., 2020), the dynamic of margin during
training (Mickisch et al., 2020), and model generalizability (Guan & Loew, 2020). One common ap-
proach is generating near-boundaries instances and analyzing those instances to gain insights about
the characteristics of decision boundaries (Berk et al., 2022). Inspired by this idea, we also aim
to generate boundary graphs with the purpose of understanding the decision boundaries of GNNs.
Given those boundary graphs, we have demonstrated in the case studies that the robustness and
generalizability of GNNs could be adequately assessed.

3 BACKGROUND

Notations. A graph is denoted by G = (V, E), where V = {v1, v2...vN} is the node set and
E ⊆ V × V is the edge set. M and N represent the number of edges and nodes, respectively. The
node adjacency information is encoded by an adjacency matrix A ∈ {0, 1}N×N , where aij = 1
when there exists an edge connecting node vi and node vj , and aij = 0 otherwise. Besides, the
node attributes are represented by the node feature matrix Z ∈ RN×d. For a graph neural network
f with L layers, ϕl denotes the embedding function composed of the first l layers of the network
which takes as input a graph G, while ηl denotes the scoring function that corresponds to the last
L− l layers of the network f before softmax.

Graph Neural Networks. The general idea of GNNs is the message-passing schema, which can
be decomposed into three operations: computing messages, aggregating messages, and updating
the hidden node representations (Wang et al., 2021). For each GNN layer l, these three opera-
tions will be performed sequentially to produce the hidden node representations H(l) = ϕl(G)

where H(l) ∈ RN×D(l)

. Specifically, at the computing messages step, the messages m
(l)
ij =

Compute(h
(l−1)
i ,h

(l−1)
j ) are computed based on the hidden node representation of node vi and

vj at the previous layer. Then, the messages propagated from the neighboring nodes are aggregated
with a function m

(l)
i = Aggregate({m(l)

ij |vj ∈ Nvi}). Lastly, the output hidden representation at

the current layer is updated via h(l)
i = Update(m

(l)
i ,h

(l−1)
i ), based on the aggregated message and

the hidden representation of itself at the previous layer.

Decision Region and Decision Boundary. Given a graph classifier f with L layers, it parti-
tions the input graph space and each embedding space into C decision regions {R(l)

c |c ∈ [1, C]}
for each layer l, where we denote Rc = R(0)

c as the decision region for the input space. For
each graph G ∈ Rc, the graph classifier f predicts G as class c, where c = argmaxkfk(G).
Besides, the decision boundary between class c1 and class c2 is defined as Bc1∥c2 = {G :
fc1(G) = fc2(G) > fc′(G),∀c′ ̸= c1, c2}, when the graph classifier believes that the graph G
has an equal probability of belonging to class c1 and c2. For the embedding spaces, we define
B(l)c1∥c2 = {H(l) : σ(ηl(H

(l)))c1 = σ(ηl(H
(l)))c2 > σ(ηl(H

(l)))c′ ,∀c′ ̸= c1, c2}.

4 GNNBOUNDARY

We propose a model-level explainability method, GNNBoundary, to explain the high-level decision-
making process of GNNs from the perspective of decision boundaries. We first develop an algorithm
to identify the pairs of classes that have adjacent decision regions. Then, we design a novel objective
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function that can effectively generate faithful near-boundary graphs for adjacent class pairs via the
Gumbel-Softmax trick (Jang et al., 2016). Besides, to facilitate the optimization, a dynamic regular-
ization scheduler is introduced to reduce the likelihood of being trapped in the local minima. Thus,
the generated near-boundary graphs can be used to analyze the robustness and generalizability of
GNNs. A high-level overview of GNNBoundary is shown in Figure 1.

4.1 IDENTIFYING ADJACENT CLASSES

In order to find a boundary graph Gc1∥c2 ∈ Bc1∥c2 , it is important to know how likely Gc1∥c2 actually
exists. However, this information can not be directly obtained from the input graph space. Instead, it
can be estimated from the embedding space of f , because Gc1∥c2 exists only if boundary embeddings
H

(l)
c1∥c2 ∈ B

(l)
c1∥c2 exist in the embedding space. We can determine the likelihood that Gc1∥c2 exists

by measuring how ubiquitously H
(l)
c1∥c2 exists in between R(l)

c1 and R(l)
c2 . We define the ubiquity of

H
(l)
c1∥c2 as the probability that H(l)

c1∥c2 exists in between a pair of embeddings H(l)
c1 = ϕl(Gc1) ∈ R

(l)
c1

and H
(l)
c2 = ϕl(Gc2) ∈ R

(l)
c2 . For simplicity, we choose to use the embedding space of the last hidden

layer output, where the decision boundaries are linear. Thus, we define the degree of adjacency of
two classes c1 and c2 as the ubiquity of H(L−1)

c1∥c2 , and c1 and c2 is said to be adjacent if their degree
of adjacency is greater than a certain threshold.

To find the class pairs c1 and c2, where boundary graph Gc1∥c2 is more likely to exist, we develop
an algorithm (shown in Algorithm 1) to measure the degree of adjacency between a pair of classes.
Following the definitions above, we apply Monte Carlo to randomly sample K pairs of graphs
Gc1 ∈ Rc1 and Gc2 ∈ Rc2 , then determine if H(L−1)

c1∥c2 ∈ B
(L−1)
c1∥c2 can be found by interpolating

between H
(L−1)
c1 and H

(L−1)
c2 . Due to the linearity of the decision boundary, this can be done by

checking if we need to pass through any other decision region R(L−1)
c′ when walking from H

(L−1)
c1

to H
(L−1)
c2 in a straight line. As a result, the degree of adjacency between c1 and c2 can be derived

by computing the ratio of H(L−1)
c1∥c2 found in K sampled pairs. By choosing a proper threshold, the

adjacent class pairs can be identified from the adjacency degree matrix for each pair of classes.

Algorithm 1: Measure the Degree of Adjacency of a Class Pair
1 count← 0
2 for k ← 1...K do
3 Randomly sample two graphs G1k ∈ Rc1 and G2k ∈ Rc2

4 Compute score =
∏

λ∈[0,1]

1{c1,c2}(argmax
c

ηL−1(λϕL−1(G1k) + (1− λ)ϕL−1(G2k)))

5 if score ̸= 0 then
6 count← count + 1

7 return count
K

4.2 LEARNING OBJECTIVE OF BOUNDARY GRAPHS GENERATION

To effectively generate boundary graphs, the learning objective needs to be properly defined to
balance the trade-off between the two boundary classes. For the sake of effective and efficient opti-
mization, we propose two desired properties of the objective function for the purpose of boundary
graph generation. Suppose c1 and c2 is an adjacent class pair of our interest. (1) For b ∈ {c1, c2},
the objective function should encourage p(b) if p(b) < 0.5 and discourage p(b) otherwise. For
b′ /∈ {c1, c2}, the objective function should always discourage posterior probability p(b′). (2) The
objective function should always encourage logit values f(G)b for b ∈ {c1, c2} and discourage
f(G)b′ for b′ /∈ {c1, c2}. As suggested by Berk et al. (2022), the cross-entropy loss below seems to
naturally fit our purpose and also satisfy the desired property (1),

min
G
L(G) = min

G
−

∑
c∈[1,C]

(ptarget)c log σ(f(G))c (1)
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where σ denotes the softmax function and ptarget is a C-dimensional vector whose c1-th and c2-th
element are both 0.5, and all other elements are 0. However, we can show that minimizing the cross-
entropy loss above is not efficient enough for the specific purpose of generating boundary graphs, as
it does not satisfy the desired property (2). We have proved the following proposition in Appendix A,
Proposition 4.1. Minimizing the cross-entropy loss is equivalent to minimizing the function below,

min
G

∑
b′ /∈{c1,c2}

f(G)b′ · p∗(b′)−
∑

b∈{c1,c2}

f(G)b ·
(
0.5− p∗(b)

)
, (2)

where p∗(c) is the detached version (no gradient) of the posterior probability p(c) = σ(f(G))c.
Corollary 4.1. In certain cases, even if b belongs to one of the boundary classes, namely b ∈
{c1, c2}, minimizing the cross-entropy loss would still discourage the logit value f(G)b.

From Corollary 4.1, it shows a clear limitation of cross-entropy loss that the logit value for either c1
or c2 can be minimized in some scenarios, which somehow contradicts our purpose of generating a
boundary graph that is as similar as possible to both c1 and c2 in terms of the discriminative graph
patterns. Therefore, we propose a novel objective function that encourages p(c) = p(c) = 0.5 while
ensuring f(G)c1 and f(G)c2 are never minimized throughout training. The proposed objective
function of generating boundary graphs, which satisfies the two desired properties, is written as

min
G
L(G) = min

G

∑
b′ /∈{c1,c2}

βf(G)b′ · p∗(b′)2 −
∑

b∈{c1,c2}

αf(G)b ·
(
1− p∗(b)

)2 · 1p∗(b)<maxc∈[1,C] p∗(c), (3)

where α and β are constant hyper-parameters. In addition to satisfying the two aforementioned
desired properties, comparing to Equation 2, the additional square on the logit weight terms,

(
1 −

p∗(b)
)2

and p∗(b′)2, further promote or penalize logit values that deviate significantly from the
target class probability vector ptarget. Based on our empirical observations in Appendix C, this
adaptive loss function effectively generates near-boundary graphs with faster convergence and a
reduced likelihood of being trapped in local minima.

4.3 LEARNING BOUNDARY GRAPHS DISTRIBUTION

Due to the discrete nature of the graph data, the objective function in Equation 3 cannot be directly
optimized via gradient-based methods, because ∇AL(G) does not exist. To resolve this issue, we
continuously relax the graph G and optimize the objective function via reparameterization trick
(Jang et al., 2016), inspired by Wang & Shen (2023) and Luo et al. (2020). Adopting the reparame-
terization trick with continuous relaxation of graphs has the advantage that it can make our approach
applicable to generating boundary graphs with discrete node features and discrete edge features effi-
ciently and effectively. Here, we only present the mathematical formulation for generating boundary
graphs with discrete node features but without edge features for simplicity.

Assuming the boundary graph is a Gilbert random graph (Gilbert, 1959) and the node features are
independently distributed, we formulate the boundary graph distribution as follows,

P (G) =
∏
vi∈V

P (zi) ·
∏

(vi,vj)∈E

P (aij) (4)

where aij = 1 if node vi and vj are connected and aij = 0 otherwise, and zi denotes a cate-
gorical node feature of node vi. A straightforward instantiation of P (aij) and P (zi) are aij ∼
Bernoulli(θij) and zi ∼ Categorical(pi) with ∥pi∥1 = 1. To make the graph G = (A,Z) differen-
tiable with respect to our objective function, we continuously relax aij to be ãij ∈ [0, 1] and zi to be
z̃i ∈ [0, 1]d, ∥z̃i∥1 = 1. Since the Concrete distribution (Maddison et al., 2016) is a continuous ver-
sion of Categorical distribution with closed-form density, we have ãij ∼ BinaryConcrete(ωij , τa)
and z̃i ∼ Concrete(ζi, τz), where τa and τz are the hyper-parameters to control the approxima-
tion of Categorical distribution, ωij ∈ Ω and ζi ∈ Z . To make the sampling procedure of ãij
and z̃i differentiable, the Gumbel-Softmax trick (Jang et al., 2016) is adopted to sample ãij and z̃i
as: ãij = sigmoid ((ωij + log ϵ− log(1− ϵ)) /τa) and z̃i = Softmax ((ζi − log(− log ϵ)) /τz),
where ϵ ∼ Uniform(0,1). Thanks to this trick, we can sample ãij and z̃i as an approximation of
aij and zi in a differentiable sampling procedure. Thus, the distribution of boundary graphs can be
learned by minimizing the following objective function via Monte Carlo and gradient descent,

min
A,Z
L(G) = min

Θ,P
EG∼P (G)[L(A,Z)] ≈ min

Ω,Z
Eϵ∼U(0,1)[L(Ã, Z̃)] ≈ min

Ω,Z

1

K

∑
k=1

L(Ã, Z̃). (5)
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4.4 TRAINING GNNBOUNDARY

Near-Boundary Criterion. The training procedure should terminate when it successfully generates
a boundary graph. However, it is practically not possible to generate boundary graph Gc1∥c2 ∈
Bc1∥c2 with σ(f(G))c1 = σ(f(G))c2 = 0.5 exactly. Thus, a relaxed criterion is needed to determine
whether a graph G approximately belongs to Bc1∥c2 . We define the near-boundary criterion as,

Ψ(G) = 1p(c1),p(c2)∈[pmin,pmax](G). (6)

Regularization. In addition to the proposed objective function in Equation 3, we apply multiple
regularization terms to facilitate the training process and impose desired constraints on the generated
boundary graphs. Following GNNInterpreter (Wang & Shen, 2023), our regularization terms include
L1 and L2 regularizations RLs for s ∈ {1, 2} that mitigates saturating gradient problem, as well as
the budget penalty Rbudget that encourages the succinct boundary graph to be generated.

Rbudget = Softplus (∥sigmoid(Ω)∥1 −B)
2
, (7)

where B is the anticipated maximum number of edges in the boundary graph G.

Dynamic Regularization Scheduler. Due to the unique characteristics of the graph data opti-
mization problem, where a budget penalty is employed to regulate the graph size, this additional
constraint may potentially hinder convergence. To mitigate this side effect, we propose a dynamic
scheduling method within the training procedure that adaptively adjusts the budget penalty weight.
Intuitively speaking, we impose a smaller budget penalty weight when the input graph does not
meet the near-boundary criterion and progressively increase the weight as it approaches the target.
Formally, the budget penalty weight w(t)

budget for iteration t is recursively defined as,

w
(t)
budget = w

(t−1)
budget · s

1{Ψ(G(t))}
inc · s

1{¬Ψ(G(t))∧(sdec·w(t−1)
budget≥w

(0)
budget)}

dec , (8)

where G(t) = EG∼P (G)[G] for iteration t, and w
(0)
budget, sinc, and sdec are hyper-parameters for

initial weight, weight increment, and weight decrement, respectively. Compared with constant
scheduling of budget penalty, dynamic scheduling prevents the budget penalty from interfering with
the main loss function during the early stage of the optimization and thus facilitates the convergence
of optimization. The overall training procedure for GNNBoundary is presented in Algorithm 2.

Algorithm 2: Training GNNBoundary with Dynamic Regularization Scheduler
1 Initialize sampler parameters Ω and Z
2 for each iteration t do
3 Sample a batch of k graphs {G1...GK} from sampler with parameters Ω and Z
4 loss← 1

K

∑
k L(Gk) + w

(t)
budget ·Rbudget(Ω) + wL ·RLs

(Ω,Z)

5 Minimize loss with respect to Ω and Z
6 if Ψ(E[G]) = 1 and the size of E[G] < B then
7 return Ω and Z

5 EVALUATION AND CASE STUDY

To thoroughly assess the efficacy and effectiveness of GNNBoundary, we conduct experimental
studies on both synthetic and real-world datasets. First, a detailed description of the datasets will be
presented in Section 5.1. For these datasets, the adjacent class pairs and the faithfulness of generated
boundary graphs will be evaluated and discussed in Section 5.2. Lastly, we will perform three case
studies in Section 5.3 to showcase how the generated boundary graphs can assist in analyzing the
decision boundaries. The additional experimental details can be found in Appendix B.

5.1 DATASETS AND GRAPH CLASSIFIERS

We evaluated GNNBoundary on one synthetic dataset and two real-world datasets. Motif is a syn-
thetically generated dataset following the same generation procedure as GNNInterpreter (Wang &
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Shen, 2023). It contains four classes: House, House-X, Complete-4, and Complete-5, each of which
corresponds to a motif that would appear in the graphs. A graph classifier has been trained on its
training set with 10,378 graphs and obtained a test accuracy of 0.99 on 1,153 test graphs. Collab
(Yanardag & Vishwanathan, 2015) is a real-world dataset related to the scientific Collaboration net-
work in multiple different fields. The classes in this dataset represent ego networks of researchers
in three scientific fields in physics: High Energy (HE), Condensed Matter (CM), and Astro. Collab
contains 4,500 training graphs and 500 test graphs, and the trained graph classifier achieves a test
accuracy of 0.74. Enzymes (Borgwardt et al., 2005) is a real-world molecule dataset with 6 classes
and 3 types of nodes. Each class corresponds to one type of enzyme. The graph classifier to be
explained is trained on 540 graphs and tested on 60 graphs with a test accuracy of 0.52.

5.2 EVALUATION RESULTS

On these three datasets, we carefully analyzed the degree of adjacency between every pair of classes
and quantitatively evaluated the near-boundary graphs generated by GNNBoundary. Unfortunately,
since there is no existing work on understanding the decision boundaries of GNNs, we have no
existing approach to compare with. However, to better assess the effectiveness of GNNBoundary,
we created a baseline method that generates boundary graphs by connecting a randomly sampled pair
of graphs, G1 ∈ Rc1 , G2 ∈ Rc2 , with a random edge. It follows a general idea that the boundary
graphs should contain the discriminative features of both c1 and c2. Due to the page limit, the
quantitative comparison with another baseline approach using cross-entropy loss and the qualitative
comparison with GNNInterpreter are presented in Appendix C and Appendix D, respectively.

Adjacency between Classes. First, it is essential to identify pairs of classes with adjacent decision
regions via Algorithm 1. It is worth noting that the sampled graph pairs, G1,k ∈ Rc1 and G2,k ∈
Rc2 , could be either the true graphs from the training data or the synthetically generated graphs. In
this experimental study, we choose to use the synthetic graphs generated by GNNInterpreter because
we do not want to make assumptions about having full access to the training data of the GNNs
being explained. With the threshold value of 0.8, we identified 3, 2, and 6 adjacent class pairs, for
the Motif, Collab, and Enzymes datasets, respectively (see Figure 2). For the Motif dataset, it is
interesting to see that three non-adjacent pairs indeed are easier to differentiate compared with 3
adjacent pairs, based on the true motif presented in Figure 4. For example, regarding Complete-5
vs. House, Complete-5 has much more edge connectivity than House.

(a) Collab (b) Motif (c) Enzymes

Figure 2: The degree of adjacency between every pair of classes. It is computed with 10,000 ran-
domly sampled pairs of graphs generated by GNNInterpreter.

Generated Boundary Graphs. To demonstrate the effectiveness of GNNBoundary on generating
faithful boundary graphs, we generated 500 near-boundary graphs for each adjacent class pair, given
the near-boundary criterion pmin = 0.45 and pmax = 0.55. Based on Table 1, it is evident that the
average predicted class probability of those generated boundary graphs are all centered around 0.5
with a very small standard deviation, for all GNNs trained on three datasets. This result demonstrates
that we can consistently generate boundary graphs that are extremely close to the decision bound-
ary of interest. However, the boundary graphs generated by the random baseline approach obtain
an average prediction probability far away from 0.5 for all three datasets, even though each gener-
ated graph combines a pair of training graphs from both c1 and c2. It is clear that GNNBoundary
significantly outperforms the baseline approach on all three datasets.
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Table 1: The quantitative evaluation of boundary graphs generated by both GNNBoundary and the
baseline approach. The average predicted class probability of 500 generated boundary graphs along
with the corresponding standard deviation is presented below. Besides, the complexity (Equation 11)
is computed with the boundary graphs generated by GNNBoundary, ranging from 0 to 1.

Dataset c1 c2
GNNBoundary Baseline

Complexity p(c1) p(c2) p(c1) p(c2)

Motif
House HouseX 6.55e-8 0.501± 0.028 0.499± 0.028 0.041± 0.136 0.949± 0.145
House Comp4 6.55e-8 0.498± 0.028 0.501± 0.028 0.279± 0.278 0.717± 0.285

HouseX Comp5 2.57e-7 0.491± 0.026 0.509± 0.026 0.007± 0.049 0.993± 0.049

Collab HE CM 0.0463 0.473± 0.015 0.487± 0.016 0.835± 0.327 0.153± 0.318
HE Astro 0.0246 0.526± 0.013 0.466± 0.013 0.364± 0.462 0.631± 0.465

Enzymes

EC1 EC4 0.0754 0.489± 0.023 0.487± 0.021 0.249± 0.368 0.219± 0.365
EC1 EC5 0.1413 0.492± 0.023 0.489± 0.025 0.242± 0.365 0.360± 0.430
EC1 EC6 0.1492 0.485± 0.028 0.472± 0.017 0.225± 0.351 0.245± 0.358
EC2 EC3 0.2325 0.488± 0.025 0.488± 0.025 0.148± 0.290 0.239± 0.363
EC4 EC5 0.1363 0.480± 0.024 0.486± 0.024 0.268± 0.381 0.351± 0.419
EC5 EC6 0.2120 0.481± 0.022 0.486± 0.023 0.391± 0.432 0.269± 0.368

5.3 CASE STUDY

In these case studies, we utilized the generated boundary graphs, which served as an approximation
to the decision boundary learned by GNNs, to measure the boundary thickness, boundary margin,
and boundary complexity. Each of them provides unique insights into the decision boundaries of the
explained GNNs from different perspectives. In these case studies, Gc ∈ Rc are all generated by
GNNInterpreter rather than obtained from the training data. This decision is driven by two primary
reasons: (i) we aim to avoid making assumptions about the accessibility of training data, and (ii) we
hope to gain insights into the decision boundaries that extend beyond in-distribution data.

Boundary Margin. A classifier with a large margin can have better generalization properties and
robustness to input perturbation (Elsayed et al., 2018). Formally, following Yang et al. (2020), the
asymmetric margin of boundaries can be defined as,

Φ(f, c1, c2) = min(Gc1
,Gc1∥c2 )

∥ϕl(Gc1)− ϕl(Gc1∥c2)∥ (9)

where (Gc1 , Gc1∥c2) could be any pair that Gc1 ∈ Rc1 and Gc1∥c2 ∈ Bc1∥c2 , and ϕl is the graph em-
bedding function of graph classifier f . As pointed out by Elsayed et al. (2018), the margin of deep
networks can be defined based on any intermediate representation of the classifier and the ultimate
decision boundary. In this paper, for the choice of ϕl, we calculate the boundary margin based on
the output embedding from the graph pooling layer, in line with the standard practices for interpret-
ing deep neural networks (Bajaj et al., 2021). Given the graphs generated by GNNBoundary, the
asymmetric boundary margin for each adjacent pair is presented in Figure 3, which demonstrates the
inherent relationship between margin and robustness to perturbation. For the GNN trained on Mo-
tif, the margin from RHouseX to BHouse∥HouseX is 1.64 smaller than the margin to BHouseX∥Comp5,
which would potentially result in higher risk of misclassifying House into Comp4 compared with
HouseX. This is further verified by the confusion matrix in Figure 3. For the GNN trained on Col-
lab, the margin from RHE to BHE∥Astro is smaller than the margin to BHE∥CM, which also expose
a higher potential risk of misclassifying HE into Astro compared with CM (consistent with the con-
fusion matrix). Similar observation can be obtained for the GNN on Enzymes, by comparing the
margin from REC1 to BEC1∥EC5 and that from REC1 to BEC1∥EC4. Therefore, since the risk of
misclassification is inherently related to the robustness of boundaries to perturbation, our case study
shows that a larger margin may suggest greater robustness to perturbation over graphs.

Boundary Thickness. It has been shown that thick decision boundaries enhance the model robust-
ness, whereas thin decision boundaries would result in overfitting and reduced robustness (Yang
et al., 2020). Following Yang et al. (2020), the asymmetric boundary thickness is defined as follows,

Θ(f, γ, c1, c2) = E(Gc1
,Gc1∥c2 )∼P

[
∥ϕl(Gc1)− ϕl(Gc1∥c2)∥

∫ 1

0

1γ>σ(ηl(h(t)))c1−σ(ηl(h(t)))c2
dt

]
(10)

where h(t) = (1 − t) · ϕl(Gc1) + t · ϕl(Gc1∥c2) for t ∈ [0, 1], ϕl is the graph embedding function
of graph classifier f , Gc1 ∈ Rc1 , and Gc1∥c2 ∈ Bc1∥c2 . Similar to Yang et al. (2020), we let γ =
0.75 when computing the asymmetric boundary thickness in Figure 3. From analyzing the boundary
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thickness matrix of GNNs trained on three datasets, we can identify their corresponding thickest and
thinnest decision boundaries. For example, for the GNN trained on Collab, the thickest boundary
is from RHE to BHE∥CM with a thickness of 11.52. This indicates that GHE might have greater
adversarial robustness and out-of-distribution robustness with respect to Condensed Matter.

Boundary Complexity. The complexity of decision boundaries measures their generalization abil-
ity, which is crucial in determining how effectively the GNNs will perform on unseen graphs. Similar
to Guan & Loew (2020), the complexity measure ranging from 0 to 1 can be computed by

Γ(f, c1, c2) = H(λ/∥λ∥1)
/
logD =

(
−
∑
i

(λi/∥λ∥1) log(λi/∥λ∥1)
)/

logD (11)

where λ denotes the eigenvalues of the covariance matrix of Xc1∥c2 , and Xc1∥c2 ∈ R|Bc1∥c2 |×D is
formed by the ϕL−1(Gc1∥c2), ∀ Gc1∥c2 ∈ Bc1∥c2 . The embedding of the last hidden layer ϕL−1 is
chosen because this measurement of complexity is only applicable to linearly separable boundaries.
For each adjacent pair, the complexity measure is presented in Table 1. It is interesting to observe
that the boundaries of the GNN trained on Enzymes exhibit the highest complexity among all the
explained GNNs, while the boundaries of the GNN for Motif are the simplest. In general, the real-
world datasets are anticipated to be more challenging and the tasks involving more classes can even
make the decision-making rules more complex. Therefore, the observation that the GNN trained on
Enzymes possesses the most intricate boundaries closely aligns with our expectations.

Motif

Collab

Boundary Thickness Boundary Margin Confusion Matrix

Enzymes

Figure 3: Three metrics for analyzing the decision boundaries of GNNs trained on three datasets.

6 CONCLUSION

In this paper, we take the first step toward explaining the GNNs through the lens of decision bound-
aries. We propose a model-level explainability method, GNNBoundary, which attempts to under-
stand the decision boundaries of GNNs by generating and analyzing boundary graphs. Specifically,
we first develop an algorithm to identify the pairs of classes that have adjacent decision regions.
Given the adjacent class pairs, we generate faithful near-boundary graphs by optimizing a novel
objective function tailored to satisfy the two desired properties we propose for boundary graph gen-
eration. The experimental results on both real-world and synthetic datasets have shown that we
could consistently generate faithful near-boundary graphs. More importantly, our case studies illus-
trate that the boundary graphs generated by GNNBoundary can be utilized to measure the boundary
thickness, boundary margin, and complexity of the boundary. In essence, through the analysis of
boundary graphs generated by GNNBoundary, we can obtain profound insights into the robustness
to perturbation, out-of-distribution robustness, and generalizability of GNNs. These insights would
pave the way for establishing unwavering trust in decisions made by GNNs and encouraging in-
creasing deployment of GNNs in real-world applications.
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A PROOF OF PROPOSITION 4.1

Proof. Let x = ϕL−1(G) be the logits predicted by f . The cross-entropy loss function is defined as

L =−
∑

c∈[1,C]

(ptarget)c log σ(x)c (12)

Then, we have

L =−
∑

c∈[1,C]

(ptarget)c log σ(x)c (13)

=−
∑

c∈[1,C]

(ptarget)c · log
exc∑
k e

xk
(14)

=−
∑

c∈[1,C]

(ptarget)c ·
(
xc − logsumexp(x)

)
(15)

= logsumexp(x)− ptarget · x (16)
(17)

Take the gradient of the function L with respect to x

∇xL =
∂

∂x
logsumexp(x)− ptarget · x (18)

= Softmax(x)− ptarget (19)

In the specific case of finding boundary graphs for c1 and c2, we have

∂L
∂xc

=

{
σ(x)c − 0.5, c ∈ {c1, c2}
σ(x)c, c /∈ {c1, c2}

(20)

Next, let’s compute the partial derivatives of Equation 2,

∇xL′ =
∂

∂x
−

∑
b∈{c1,c2}

f(G)b ·
(
0.5− p∗(b)

)
+

∑
b′ /∈{c1,c2}

f(G)′b · p∗(b′) (21)

=
∂

∂x

∑
b∈{c1,c2}

xb ·
(
p∗(b)− 0.5

)
+

∑
b′ /∈{c1,c2}

xb′ · p∗(b′) (22)

(23)
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Then we can get

∂L′

∂xc
=

{
p∗(c)− 0.5, c ∈ {c1, c2}
p∗(c), c /∈ {c1, c2}

(24)

=

{
σ(x)c − 0.5, c ∈ {c1, c2}
σ(x)c, c /∈ {c1, c2}

(25)

∂L′

∂xc
=

∂L
∂xc

,∀c (26)

Therefore, with gradient back-propagation, minimizing cross-entropy loss defined by Equation 1 is
the same as minimizing Equation 2.

B EXPERIMENTAL DETAILS

The experiments were conducted on an Apple M1 Max processor. In terms of software configu-
ration, the models were developed using Python 3.10. For auto-differentiation and numerical op-
timization tasks, PyTorch 2.0 was utilized. The Graph Convolutional Network (GCN) architecture
was selected for both the Collab and Motif datasets and was constructed using the PyTorch Geomet-
ric 2.2 framework. Vector gather-scatter operations were managed using the PyTorch-Scatter library.
Additionally, the generation and manipulation of graph data were facilitated through the NetworkX
library. Regarding hyperparameter configurations, we set the temperature of the Concrete Distribu-
tion τ to 0.15. The sample size K for every Monte Carlo sampling is set at 32. For the optimization
procedure, we employed the Stochastic Gradient Descent (SGD) optimizer with a learning rate of
1. Pertaining to the regularization weights for RL1

and RL2
, both are consistently set to 1 across all

experimental runs.

C COMPARISON WITH CROSS-ENTROPY LOSS

Table 2: The quantitative comparison in terms of convergence speed between the proposed adaptive
boundary loss and the cross-entropy loss. The success rate measures how many times the near-
boundary graphs can be successfully generated within 500 iterations of optimization over 1000 runs.
The average convergence iteration is the expected number of iterations required for convergence over
all the successful runs out of 1000. The numbers in bold indicate the superior performance.

Dataset c1 c2
Success Rate Average Convergence Iteration

GNNBoundary Cross-entropy
Baseline GNNBoundary Cross-entropy

Baseline

Motif
House HouseX 0.86 0.80 136.25 180.30
House Comp4 1.00 1.00 20.44 24.69

HouseX Comp5 0.76 0.55 178.95 158.76

Collab
HE CM 1.00 0.95 46.62 50.80
HE Astro 1.00 0.98 15.70 17.07

Enzymes

EC1 EC4 0.63 0.47 177.79 224.60
EC1 EC5 0.96 0.87 88.39 87.12
EC1 EC6 0.75 0.25 138.75 180.00
EC2 EC3 0.74 0.66 136.43 172.39
EC4 EC5 0.57 0.43 167.71 251.79
EC5 EC6 1.00 0.98 80.40 115.82

Even though there is no existing method for understanding the decision boundaries of GNNs, we
still manage to compare our performance with some proper baseline approaches. In addition to the
random baseline approach mentioned in Section 5.2 of the manuscript, we also evaluate the compara-
tive performance of GNNBoundary with the proposed adaptive loss function against GNNBoundary
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with the cross-entropy loss. Cross-entropy loss is a commonly used objective function for generat-
ing boundary cases of Deep Neural Networks or Convolutional Neural Networks Berk et al. (2022).
However, based on Proposition 4.1 and Corollary 4.1, minimizing the cross-entropy loss has a limi-
tation that the logit value of boundary classes will be discouraged in some scenarios, which hinders
the convergence during the optimization. Thus, we propose an adaptive loss function (see Equa-
tion 3) to mitigate this issue such that optimizing the proposed adaptive loss function is less likely
to be trapped in local minima without converging. Therefore, in this section, we conducted exper-
iments to empirically compare the convergence speed of our loss function and cross-entropy loss
function.

To evaluate the comparative performance, we assessed the convergence speed by measuring the
success rate and average convergence rate. Namely, the success rate measures how many times the
boundary graphs satisfying the near-boundary criterion in Equation 7 can be successfully generated
within 500 iterations; the average convergence rate is the expected number of iterations required
for convergence, if the near-boundary graphs are successfully generated within 500 iterations. We
evaluated these two metrics by optimizing both loss functions for 1000 runs. As shown in Table 2,
for all adjacent pairs in all three datasets, GNNBoundary obtains a significantly higher success
rate within 500 iterations. Also, comparing the average convergence iteration, GNNBoundary can
converge within a substantially smaller number of iterations on average, for almost all adjacent
pairs across three datasets. In conclusion, this empirical result has demonstrated that the adaptive
boundary loss function we proposed can effectively and consistently generate near-boundary graphs
with faster convergence and reduced likelihood of being trapped in local minima.

D QUALITATIVE COMPARISON WITH GNNINTERPRETER

Given the fact that GNNBoundary is a model-level explanation method for GNNs, it would be
meaningful if we could compare it with the existing model-level explanation methods. The existing
model-level explainability method often focuses on extracting discriminative features for each class
in the graph classification task. However, different from other model-level explanation methods,
GNNBoundary focuses on understanding the decision boundaries of GNNs. Obviously, we have
a totally different objective than the existing model-level explanation methods so the quantitative
comparison might not make sense here. Therefore, in this section, we aim to qualitatively compare
with an existing model-level explanation method called GNNIntrepreter (Wang & Shen, 2023). In
Figure 4, we present the qualitative examples of boundary graphs generated by GNNBoundary, and
the examples of explanation graphs generated by GNNInterpreter.

In general, qualitatively analyzing the explanation graphs for GNNs trained on real-world datasets
would be very challenging, because the ground-truth class features for most real-world graph classi-
fication datasets are not known. Otherwise, we can directly use some greedy rule-based algorithms
to classify the graphs without the need to train a GNN model. Therefore, for real-world datasets, hu-
mans cannot form a meaningful expectation for the generated explanation graphs since the ground
truth features of each class are unknown. For this reason, our qualitative analysis would mainly
focus on the synthetic dataset, Motif.

Through the qualitative analysis of the generated boundary graphs, we indeed observed several in-
teresting patterns indicating that the boundary graphs share some commonalities with both boundary
classes but do not belong to any of them. For example, the boundary graph between House-X and
Comp-5 has much denser edge connectivity than the boundary graph between House-X and House,
even though those two boundary graphs are both predicted as House-X with almost 0.5 probability.
For another example, we observed that the boundary graph between House and Comp-4 contains
only a single purple node while the boundary graph between House and House-X has 4 purple
nodes, which may be caused by the fact that Comp-4 does not have a purple node but both House-X
and House has a purple node. However, we also realized that the boundary graphs generated by
GNNBoundary might not be fully consistent with the general expectations of humans regarding the
boundary graphs to some extent. This actually indicates a potential discrepancy between the bound-
ary graphs in the belief of humans and the boundary graphs in the belief of the models. In other
words, the boundary graphs presented in Figure 4, in fact, reflect the difference in the decision-
making rules between GNNs and humans.
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Training Examples

HouseComp-5 House-X Comp-4

Condensed
Matter

High
Energy Astro

GNNBoundary

GNNInterpreter

Collab

Ground-truth Motifs

GNNBoundary
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GNNInterpreter
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Training Examples
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Figure 4: The qualitative comparison of explanation graphs between GNNBoundary and GNNIN-
terpreter. In addition to the explanation graphs, we also present an example of a true graph for each
class in the Collab and Enzymes dataset, and the ground-truth motif corresponding with each class
in the Motif dataset.

Speaking of GNNInterpreter, since their explanation graph is generated to trigger a specific response
(the class of interest) from the GNN as much as possible, their explanation graph is supposed to en-
capsulate all the discriminative features of the target class. To be specific, the explanation graphs
generated by GNNInterpreter will be classified by the GNNs as the target class with a probability
of 1; the explanation graphs generated by GNNBoundary will be classified by the GNNs as two
boundary classes with equal probability. Therefore, we should set a completely different expecta-
tion for the explanation graphs generated by GNNInterpreter. For House-X, House, and Comp-4
in the Motif dataset, we can observe a clear discrepancy between the ground-truth motif and the
explanation graphs generated by GNNInterpreter. In other words, the GNN trained on Motif will
misclassify the explanation graphs generated by the GNNInterpreter since they actually do not con-
tain the ground-truth motifs. This is similar to what we observed in the boundary graph generated
by GNNBoundary, which indicates a potential flaw in the decision-making rules of GNNs.
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