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Abstract

Semi-structured networks (SSNs) merge the structures familiar from additive
models with deep neural networks, allowing the modeling of interpretable partial
feature effects while capturing higher-order non-linearities at the same time. A
significant challenge in this integration is maintaining the interpretability of the
additive model component. Inspired by large-scale biomechanics datasets, this
paper explores extending SSNs to functional data. Existing methods in functional
data analysis are promising but often not expressive enough to account for all
interactions and non-linearities and do not scale well to large datasets. Although the
SSN approach presents a compelling potential solution, its adaptation to functional
data remains complex. In this work, we propose a functional SSN method that
retains the advantageous properties of classical functional regression approaches
while also improving scalability. Our numerical experiments demonstrate that this
approach accurately recovers underlying signals, enhances predictive performance,
and performs favorably compared to competing methods.

1 Introduction

Incorporating additive structures in neural networks to enhance interpretability has been a major
theme of recent advances in deep learning. For example, neural additive models (NAMs; [1]) allow
users to learn basis functions in an automatic, data-driven fashion using feature subnetworks and
thereby provide an alternative modeling option to basis function approaches from statistics such
as generalized additive models (GAMs; [17]). Various extensions and related proposals have been
published in recent years. Notable examples include the joint basis function learning by [41] or the
combination of GAMs and neural oblivious decision ensembles [8]. When combining structural
assumptions with arbitrary deep architectures, the resulting network is often referred to as wide-
and-deep [10] or semi-structured network (SSN; [49, 52]). Various extensions of SSNs have been
proposed in recent years, including SSNs for survival analysis [24, 25], ordinal data fitting [22], for
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uncertainty quantification [2, 12], Bayesian SSNs [11], or SSNs incorporated into normalizing flows
[23]. One of the key challenges in SSNs is to ensure the identifiability of the additive model part in
the presence of a deep network predictor in order to maintain interpretability.

In this work, motivated by a large-scale biomechanical application, we study how to efficiently transfer
these two concepts — the embedding of basis functions into neural networks and the extension to
SSNs — for functional data analysis.

Functional data analysis Functional data analysis (FDA; [42]) is a research field of increasing
significance in statistics and machine learning (e.g., [3, 37, 38, 57]) that extends existing modeling
approaches to address the functional nature of some data types (e.g., sensor signals, waves, or growth
curves). One well-known extension is the class of functional additive models [15, 53], which represent
the functional analog of GAMs. These models adopt the classical regression model point of view but
allow for both in- and outputs to be (discretized) functions. Functional additive models, however, are
often not expressive enough to account for all interactions and non-linearities and do not scale well to
large datasets.

Biomechanics A prominent example of a research field dealing with functional data is biomechanics.
As in many other applications concerned with physical or biological signals, the integration of
machine learning in biomechanics research offers many advantages (see, e.g., [26, 29, 30]). The
research on joint moments in biomechanics, for example, provides insight into muscular activities,
motor control strategies, chronic pain, and injury risks (see, e.g., [13, 31, 36, 47, 56]). By combining
kinematic features with machine and deep learning to predict joint moments, researchers can bypass
the need to gather high-quality biomechanics data and instead use “cheap” sensor data obtained
through, e.g., everyday mobile devices which in turn allow predicting the “expensive” signals that
can only be obtained in laboratory setups [20, 32, 33]. While a promising research direction, existing
methods face various challenges including a lack of generalization and a missing clear understanding
of the relationship learned.

1.1 Related work in functional data analysis

In FDA, there has been a successful translation of many different methods for scalar data to function-
valued data, including functional regression models and functional machine learning techniques.

Functional regression models Regression models with scalar outputs and functional inputs are
called scalar-on-function regression models. An overview of such methods can be found in [45].
Models with functional output and scalar inputs are called function-on-scalar models [9, 15]. They
can be applied when the outcome or error function is assumed to be repeated realizations of a
stochastic process. Combining these two approaches yields the function-on-function regression
model with functions as input and output [see, e.g., 35, 53]. We provide a more technical description
of function-on-function regression is given in Section 2.1.

Functional machine learning In recent years, several machine learning approaches for functional
data have been proposed. One is Gaussian process functional regression [GPFR; 21, 54] which
combines mean estimation and a multivariate Gaussian process for covariance estimation. As for
classical Gaussian process regression, the GPFR suffers from scalability issues. Gradient boosting
approaches for functional regression models have been proposed by [4, 6]. These approaches result
in sparse and interpretable models, rendering them especially meaningful in high dimensions, but
lack expressivity provided by neural network approaches. Pioneered by the functional multi-layer
perceptron (MLP) of [48], various researchers have suggested different functional neural networks
(FNNs) [16, 44, 55], including MLPs with functional outcome (cf. Section 2.2 for technical details). A
recent overview is given in [59]. Existing approaches are similar in that they learn a type of embedding
to represent functions in a space where classical computations can be applied (cf. Fig. 2(a)).

1.2 Current limitation and our contribution

From the related literature, we can identify the most relevant methods suitable for our modeling
challenge. Neural network approaches such as the functional MLP provide the most flexible class
for functional data, whereas additive models and additive boosting approaches such as [6, 53] yield
interpretable models. An additive combination of these efforts to obtain both an interpretable model
part and the possibility of making the model more flexible is hence an attractive option.
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Open challenges While semi-structured models are suited for a combination of interpretable additive
structures and deep neural networks, existing approaches cannot simply be transferred for application
with functional data. Due to the structure and implementation of SSNs, a naïve implementation would
neither be scalable to large-scale datasets nor is it clear how to incorporate identifiability constraints
to ensure interpretability of the structured functional regression part in the presence of a deep neural
network.

Our contributions In this work, we address these limitations and propose an SSN approach for
functional data. Our method is not only the first semi-structured modeling approach in the domain
of functional data, but also presents a more scalable and flexible alternative to existing functional
regression approaches. In order to preserve the original properties of functional regression models,
we further suggest an orthogonalization routine to solve the accompanied identifiability issue.

2 Notation and background

We assume functional inputs are given by J ≥ 1 second-order, zero-mean stochastic processes Xj

with square integrable realizations xj : Sj → R, i.e. with xj ∈ L2(Sj), j = 1, . . . , J on real intervals
Sj . Similarly, a functional outcome is given by a suitable stochastic process Y over a compact set
T ⊂ R with realizations y : T → R, y ∈ L2(T ) =: G. For the functional inputs, we simplify
notation by combining all (random) input functions into a vector X(s) = (X1(s1), . . . , XJ(sJ))
with realization x(s) ∈ RJ , where s := (s1, . . . , sJ) ∈ S ⊂ RJ is a J-tuple from domain
S := S1 × · · · × SJ , and H := L2(S1)× · · · × L2(SJ).

Next, we introduce function-on-function regression (FFR) and establish a link to FNNs to motivate
our own approach.

2.1 Function-on-function regression

An FFR for the expected outcome µ(t) := E(Y (t)|X) of Y (t), t ∈ T using inputs X can be defined
as follows:

E(Y (t)|X = x) = τ

b(t) + J∑
j=1

∫
Sj

wj(s, t)xj(s)ds

 , (1)

where b(t) is a functional intercept/bias and the wj(s, t) are weight surfaces describing the influence
of the jth functional predictor at time point s ∈ Sj on the functional outcome at time point t ∈ T . τ
is a point-wise transformation function, mapping the affine transformation of functional predictors
to a suitable domain (e.g., τ(·) = exp(·) to obtain positive values in case Y is a count process).
Various extensions of the FFR model in (1) exist. Examples include time-varying integration limits
or changing the linear influence of x(t) to a non-linear mapping.
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Figure 1: Exemplary weight surface (center), feature signal
(bottom), and the resulting response signal (left) when
integrating

∫
x(s)w(s, t)ds.

Example Figure 1 shows an example of a
function-on-function regression by visualiz-
ing the corresponding learned weight surface,
with three highlighted areas: a) An isolated
positive weight multiplied with a positive fea-
ture signal at x(90) induces a small spike at
y(10). b) A more extensive negative weight
multiplied with mostly positive feature values
for s ∈ [1, 20] and integrated over all time
points results in a bell-shaped negative out-
come signal at around t = 30. c) A large but
faded positive weight region multiplied with
positive feature values results in a slight in-
crease in the response function in the range
t ∈ [50, 100]. In most applications of FFR, the
goal is to find these salient areas in the weight
surface to better understand the relationship
between input and output signal.
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2.2 Functional neural networks

To establish the connection between FFR and FNNs, it is instructive to consider a function-on-function
MLP (FFMLP). In its basic form, an MLP for scalar values consists of neurons h : R → R, x 7→
τ(b+w⊤x) arranged in multiple layers, each layer stacked one on top of the other. The extension to a
fully functional L-layer MLP can be defined recursively by the kth output neuron h(l)k of a functional
layer l = 1, . . . , L as

h
(l)
k (t) = τ (l)

b(l)k (t) +

Ml−1∑
m=1

∫
w

(l)
m,k(s, t)h

(l−1)
m (s)ds

 , (2)

where Ml denotes the number of neurons in layer l, b(l)k ∈ L2(U (l)
m ) and w(l)

m,k ∈ L2(U (l−1)
m × U (l)

m )

for some functional domains U (l)
m , input layer h(0)m (·) = xm(·) for all predictors m = 1, . . . , J , and

last layer with ML = 1 neuron h(L)(t) = E(Y (t)|X).

3 Semi-structured functional networks

Our approach generalizes the previous models by considering a general neural network Λ : H → G
that models the input-output mapping from the set of functional features X to the expected outcome
µ(t) of the functional response for t ∈ T as

µ(t) = Λ(X)(t) = τ
(
λ+(X)(t) + λ−(X)(t)

)
, (3)

comprising an FFR part λ+(X)(t) and a deeper FNN architecture λ−(X)(t), which are added and
transformed using an activation function τ . This combination can also be thought of as a functional
version of a residual connection. In the following, we drop the functional input arguments of λ+ and
λ− for better readability. The model in (3) combines structured interpretable models as described in
Section 2.1 with an arbitrary deep network such as the one in Section 2.2. In particular, this allows
for improving the performance of a simple FFR while retaining as much interpretability as possible
(cf. Section 3.3).

Interpretable model part As in (1), we model the interpretable part λ+(t) =
∑J

j=0 λ
+
j (t) as a

sum of linear functional terms λ+j (t) =
∫
Sj
wj(s, t)xj(s)ds. To make our model more concrete, we

can expand each weight surface wj in a finite-dimensional tensor-product basis as

wj(s, t) = ψ(t)
⊤Θjϕj(s) (4)

over fixed function bases ϕj = {ϕjk}
Kj

k=1, ϕjk ∈ L2(Sj) and ψ(t) = {ψu}Uu=1, ψu ∈ L2(T )

with weight matrix Θj ∈ RU × RKj . Analogously, we can represent the intercept as λ+0 (t) =
b(t) = ψ(t)⊤Θ0. We may understand the model’s interpretable part for the jth feature as a
functional encoder ϕ∗

j (Xj) = {ϕ∗jk(Xj) =
∫
ϕjk(s)Xj(s)ds}

Kj

k=1, encoding Xj into a latent
variable zj ∈ RKj , and a linear decoder ψ with weights Θj mapping zj to the function λ+j (t):

Xj

ϕ∗
j7−→ zj

Θjψ7−→ λ+j .

Here, ϕ∗
j presents the dual basis to ϕj . Visually, the weight surface wj in (4) can be interpreted as

exemplarily shown in Figure 1.

Deep model part The part λ−(t) in (3) is a placeholder for a more complex network. For FNNs,
a conventional neural network might be applied after encoding X with ϕ∗ and before decoding its
results with ψ, such that en- and decoding are shared with the interpretable part λ+ as depicted
in Fig. 2a. Alternatively, a general FFMLP as described in Section 2.2 can be embedded into the
approach in Fig. 2a. As researchers have often already found well-working architectures for their
data, a practically more realistic architecture for semi-structured FNNs is to allow for a more generic
deep model as depicted in Fig. 2b. This is also the case in our application on biomechanical sensor
data in Section 4.2. Here, we choose λ−(t) to be a specific InceptionTime network architecture [19]
that is well-established in the field and train its weights along with the weights Θ of λ+(t).
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3.1 Implementation for discretized features

As functional predictors are usually only observed on a discretized grid on the domains Sj , we now
derive a way to implement λ+(t) in practice. Depending on the architecture used for the deep part,
we might proceed analogously with λ−(t). Let x(i)j (sr) ∈ R be the evaluation of the ith realization

x
(i)
j of Xj at time points sr, r = 1, . . . , R, stacked into a vector xj ∈ RR. For better readability, we

assume that these time points are equal across all J features. With only discrete evaluations available,
we approximate integrals over Sj numerically with integration weights ∆(sr), e.g., using trapezoidal
Riemann weights. Given the tensor-product basis representation of the weight surface wj(s, t) in (4),
we effectively evaluate ϕj(sr) for all R time points, yielding Φj = [ϕj(s1), . . . ,ϕj(sR)] ∈ RKj×R,
and obtain the row-vector Φ∗

j of approximate functionals

ϕ∗jk(xj) =

∫
ϕjk(s)xj(s)ds ≈

R∑
r=1

∆j(sr)ϕjk(sr)xj(sr)

as
Φ∗

j = (∆j ◦ xj)Φ
⊤
j ∈ R1×Kj ,

where ◦ denotes the Hadamard product and ∆j = [∆j(s1), . . . ,∆j(sR)]
⊤. Putting everything

together, we can represent the jth interpretable functional model term λ+j (t) as

λ+j (t) =

∫
Sj

xj(s)wj(s, t)ds ≈ Φ∗
jΘjψ(t). (5)

This model part is still a function over the outcome domain T , but discretized over the predictor
domains. We can now proceed with the optimization when the functional outcome is represented
with finitely many observations.

3.2 Optimization for discretized outcomes

For the ith observation, we can measure the goodness-of-fit of our model µ(t) by taking the point-wise
loss function l(y(i)(t), µ̂(i)(t)) of the ith realized function y(i) and the predicted outcome µ̂(i) given
x(i) and integrate over the functional domain to obtain the ith functional loss contribution ℓ, i.e.,

ℓ(y(i), µ̂(i)) =

∫
T
l(y(i)(t), µ̂(i)(t))dt. (6)

The overall objective, our empirical risk, is then given by the sum of (6) over all n observations. In
practice, integrals in (6) are not available in closed form in general and the functional outcome is only
observed on a finite grid. Therefore, similar to the discretization of the weight surface, let y(i)(tq)
be the observations of the outcome for time points tq ∈ T , q = 1, . . . , Q, summarized for all time
points as y(i) = (y(i)(t1), . . . , y

(i)(tQ)). Given a dataset D with n observations of these functions,
i.e., D = {(x(i),y(i))}i=1,...,n, our overall objective then becomes

min

n∑
i=1

Q∑
q=1

Ξ(tq)l(y
(i)(tq), µ̂

(i)(tq)), (7)

where Ξ(·) are integration weights.

As it less efficient to represent µ as an actual function of t if Y is only given for fixed observed time
points tq , we can adapt (5) to predict a Q-dimensional vector using

λ+
j ≈ Φ∗

jΘjΨ ∈ R1×Q (8)

Deep Neural
Network

Functional
Encoding

Functional
Decoding

Interpretable

Functional
Input

Functional
Output

(a) A semi-str. FNN with shared en- and decoding.

Deep Functional
Neural Network

Functional
Encoding

Functional
Decoding

Interpretable

Functional
Input

Functional
Output

+

(b) A semi-str. FNN with shared in- and output layer.

Figure 2: Different semi-structured architectures.
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where Ψ = [ψ(t1), . . . ,ψ(tQ)]. The deep network λ− naturally yields the same-dimensional output
when sharing the decoder. If a flexible deep model is used for λ− as in Fig. 2b, λ− can be defined
with Q output units to match the dimension of λ+. For one observation, the objective (7) can now be
written as a vector-based loss function of y(i) ∈ R1×Q and µ(i) =

∑
j λ

+
j

(i)
+ λ−(i) ∈ R1×Q, or,

when stacking these vectors, as loss function between two n×Q matrices.

3.3 Post-hoc orthogonalization
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Figure 3: Estimated weight surfaces of the one functional shank gyroscope predictor in λ+ for the different joints
(columns), before and after correcting with the orthogonalization (rows). The color of each surface corresponds
to the weight a predictor sensor signal at time points s (x-axis) is estimated to have on the tth time point (y-axis)
of the outcome (cf. Fig. 1). Without correction (upper row), the interpretable model part is not only incorrectly
estimated but no effect at all is attributed to it. After correction, distinct patterns for some of the time point
combinations and joints are visible, e.g., suggesting that an increased gyroscope value for early time points s has
a negative influence (dark purple color) on the first half of the hip adduction moment (bottom row, second plot
from the left).

Since λ− is a potentially very expressive deep neural network that can also capture all functional
linear dependencies modeled by λ+, the interpretable model part of the semi-structured FNN is not
identifiable without further constraints. Non-identifiability, in turn, means that we cannot simply
interpret the weights of the interpretable model part as it is not clear how much these are diluted
by the deep network part. This can, e.g., be seen in Figure 3 which shows selected weight surfaces
from our biomechanical application in Section 4. In this case, the deep network (an InceptionNet)
captures almost all linearity of the structured part (upper row) and only after correction do we obtain
the actual weight surfaces. We achieve this by extending the post-hoc orthogonalization [PHO; 49]
for functional in- and outputs. First, we rewrite λ+(t) ∈ R, the sum of all J terms in (5), as

λ+(t) = vec(λ+(t))
(5)
= vec

 J∑
j=1

Φ∗
jΘjψ(t)

 =

J∑
j=1

(ψ(t)⊤ ⊗Φ∗
j )vec(Θj) =:

J∑
j=1

Ωj(t)θj

with Ωj(t) = (ψ(t)⊤ ⊗ Φ∗
j ) ∈ R1×Kj ·U , where ⊗ denotes the Kronecker product, and θj =

vec(Θj) ∈ RKj ·U . This reformulation allows us to represent the functional interpretable model
part as a linear combination Ω(t)θ = [Ω1(t), . . . ,ΩJ(t)][θ

⊤
1 , . . . ,θ

⊤
J ]

⊤ of basis products and their
coefficients, and thereby to apply PHO for semi-structured FNNs. Let Ω{N} and λ{N} be the stacked
matrices for the N = n ·Q data points in the training set D after stacking the Ω(t) and λ−(t) for all
Q time points of all n observed curves. Then we can obtain an identifiable and thus interpretable
functional model part from the trained semi-structured FNN with basis matrix Ω{N}, parameters θ,
and deep network part λ−

{N} by computing the following:

θ̃ = θ +Ω†
{N}λ

−
{N} and λ⊥

{N} = P⊥
Ω{N}

λ−
{N}, (9)

where θ̃ is the corrected basis coefficient vector, Ω†
{N} is the Moore-Penrose pseudoinverse of Ω{N},

P⊥
Ω{N}

is a projection matrix projecting into the orthogonal complement spanned by columns of
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Ω{N}, and λ⊥
{N} are the corrected deep network predictions orthogonal to the interpretable part.

Using θ̃j from θ̃ = [θ̃1, . . . , θ̃J ] instead of the original θjs will yield updated weights w̃j for the
surfaces from (4) of the interpretable functional model part, which can be interpreted irrespective of
the presence of a deep network.

3.4 Scalable implementation

When implementing semi-structured FNNs, λ− can be chosen arbitrarily to the needs of the data
modeler. Hence, we do not explicitly elaborate on a particular option here and assume an efficient
implementation of this part. Instead, we focus on a careful implementation of the structured model
part to avoid unfavorable scaling as in other existing implementations (cf. Figure 4(b)). To mitigate
this problem (in particular reducing the space complexity), we propose two implementation tricks.
While these mainly reduce the complexity scaling w.r.t. J and R, implementing an FFR in a neural
network already yields an improvement by allowing to cap the memory costs to a fixed amount
through the use of mini-batch training. In contrast, a full-batch optimization routine of (7) as
implemented in classic approaches (e.g., [5, 53]) scales both with n and Q as data is transformed
in a long-format, which can grow particularly fast for sensor data. For example, only n = 1000
observations of a functional response evaluated at Q = 1000 time points already results in a data
matrix of 1 million rows. Classic implementations also scale unfavorably in terms of the number
of features J and observed times points R for these functions. In the case where all functional
predictors are measured on the same scale, fitting an FFR model requires inverting a matrix of size
(n ·Q)× ((

∑J
j=1Kj) · U), which becomes infeasible for larger amounts of predictors. Even setting

up and storing this matrix can be a bottleneck.

Array computation In contrast, when using the representation in (5), the basis matrices in s- and
t-dimension (i.e. for in- and output) are never explicitly combined into a larger matrix, but set up
individually, and a network forward-pass only requires their multiplication with the weight matrix Θ.
As the matrix Ψ is the same for all J model terms, we can further recycle it for these computations.

Basis recycling In addition, if some or all predictors in X share the same time domain and evaluation
points s1, . . . , sR, we can save additional memory by not having to set up J individual bases Φj .

4 Numerical experiments

In the following, we show that our model is able to recover the true signal in simulation experiments
and compares favorably to state-of-the-art methods both in simulated and real-world applications.
As comparison methods, we use an additive model formulation of the FFR model as proposed in
[53], an FFR model based on boosting [5] and a deep neural network without interpretable model
part. For the latter and the deep part of the semi-structured model, we use a tuned InceptionTime
[19] architecture from the biomechanics literature [32]. As FFR and boosting provide an automatic
mechanism for smoothing, no additional tuning is required. In all our experiments, we use thin plate
regression splines [60] but also obtained similar results with B-splines of order three and first-order
difference penalties.

Hypotheses In our numerical experiments, we specifically investigate the following hypotheses:

• Comparable performance with better scalability: For additive models without the deep
part, our model can recover complex simulated function-on-function relationships (H1a)
with similar estimation and prediction performance as other interpretable models (H1b)
while scaling better than existing approaches (H1c).

• Favorable real-world properties: In real-world applications, our model is on par or
better in prediction performance with current approaches (H2a), with a similar or better
resemblance when generating output functions (H2b), and provides a much more meaningful
interpretation than the deep MLP (H2c). Further, we conjecture that our approach is better in
prediction performance than its two (structured, deep) individual components alone (H2d).
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Figure 4: Simulation study results.

4.1 Simulation study

Prediction and estimation performance (H1a,b) For the model’s estimation and prediction
performance, we simulate a function-on-function relationship based on a complex weight relationship
w(s, t) between one functional predictor and a functional outcome. Figure 4(a) depicts this true
weight along with an exemplary estimation by the different methods. The estimation performance of
the weight surface and all methods’ prediction performance over 30 different simulation runs each
with a signal-to-noise ratio SNR ∈ {0.1, 1} and n ∈ {320, 640, 1280} functional observations is
summarized in Figure 6 in the Appendix. While the models perform on par in most cases, we find that
the network works better for more noisy settings (SNR = 0.1) and is not as good as other methods for
higher signal-to-noise ratio (as also shown in Figure 4(a)), but with negligible differences. Overall,
there are only minor differences in both estimation and prediction performance. This result suggests
that our method works just as well as the other methods for estimating FFR.

Scalability (H1c) To investigate the scalability of all methods, we subsample the data from the
Carmago study presented in the following subsection by reducing observations n, features J , and/or
the number of observed time points R. More specifically, we investigate the memory consumption
of the three implementations previously discussed (additive model, boosting, neural network) for
n ∈ {25, 50, 100} functional observations, Q = R ∈ {25, 50, 100} observed data points, and
J ∈ {1, 2, 4} functional features. We restrict this study to rather small functional datasets as the
memory consumption of other methods is superlinear. This can also be seen in Figure 4(b) presented
earlier, which summarizes the result of this simulation study and clearly shows the advantage of our
implementation compared to existing ones form [5, 53].

4.2 Real-world datasets

Our method being originally motivated by applications in the field of biomechanics, we now analyze
two real-world datasets with biomechanical sensor data. In addition to these applications in biome-
chanics, we provide further applications to EMG-EEG synchronization, air quality prediction and hot
water consumption profiles in Appendix C to demonstrate the versatility of our approach.

4.2.1 Fukuchi and Liew datasets (H2a)

The data analyzed in the first experiment is a collection of three publicly available running datasets
[14, 27, 28]. A recent study of [32] used this data set to show the potential of deep learning approaches
for predicting joint moments during gait (in total 12 different outcome features). The given data
set collection is challenging as it provides only n = 490 functional samples but J = 27 partially
highly correlated functional features. We follow the preprocessing steps of [32] and split the data into
80% training and 20% test data for measuring performance according to the authors’ split indices.
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As predictors we use the gait cycle of all available joint measurements, that is the 3D joint angle,
velocity, and acceleration of the bilateral ankle, knee, and hip joints. Predictors in both training and
test datasets are separately demeaned and scaled using only the information from the training set.
As in the simulation studies, we run the additive model, Boosting, and our approach and compare
the performance across all 6 different outcome variables. We use the relative and absolute root
mean squared error (RMSE) as suggested in [46] and the Pearson correlation coefficient [20] to
measure performance. In contrast to our simulation study, the additive model implementation of FFR
cannot deal with this large amount of functional features. We, therefore, split our analysis into one
comparison of the additive model, an FNN, and a semi-structured FNN (SSFNN) on a selected set of
features, and a comparison of SSFNN against boosting (which has an inbuilt feature selection).

Results in Table 1 summarize test performances across all 12 different outcome types. We see that the
(SS)FNN approaches perform equally well or better compared to the additive model on the selected
set of features, and SSFNN also matches the performance of Boosting when using all features.

Table 1: Median (and mean absolute deviation in brackets) of the relative RMSE across all outcome responses in
the Fukuchi and Liew datasets for different methods (columns) using either selected (sel.) or all features (all).
The best method is highlighted in bold.

Add. Model (sel.) FNN (sel.) SSFNN (sel.) Boosting (all) SSFNN (all)

rel. RMSE (↓) 0.36 (0.08) 0.31 (0.08) 0.30 (0.03) 0.30 (0.10) 0.25 (0.04)

4.2.2 Carmago data set (H2a-c)
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Figure 5: Comparison of performance improvements
(larger is better) in mean squared error (MSE) for different
joints (outcomes).

The second data set is a publicly available
dataset on lower limb biomechanics in walk-
ing across different surfaces level-ground
walking, treadmill walking, stair ascent, stair
descent, ramp ascent, and ramp descent [7].
Due to the size of the data set consisting of
21787 functional observations, Q = R = 101
observed time points, and J = 24 predic-
tors, it is not feasible to apply either addi-
tive model-based FFR or boosting. We, there-
fore, compare SSFNN to a (structured) neural-
based FFR model and a deep-only neural net-
work. Based on the pre-defined 70/30% split
for training and testing, we run the models
for each of the 5 outcomes (joints) and com-
pute the relative MSE difference, a functional
R2 analogon with values in (−∞, 1] (see Ap-
pendix A.1 for definition). Table 2 shows the results averaged for all outcome types while Figure 5
provides performance changes individually for the 5 different joints.

We observe that the semi-structured model performs better than the deep model, which in turn is
better than the structured model. Figure 8 in the Appendix further depicts the predicted functions
for all 5 outcomes using the 3 models. While for some joints the prediction of the semi-structured
and deep-only model is very similar, the performance for the subtalar joint is notably better when
combining a structured model and the deep neural network to form a semi-structured model.

Table 2: Mean performance (standard deviation in brackets) of the relative MSE difference (a value of 1
corresponds to the optimal model with zero error) across all five outcomes.

Structured Deep Semi-Structured

0.872 (0.094) 0.923 (0.065) 0.955 (0.030)
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5 Discussion

Our proposed method is an extension of semi-structured networks to cater to functional data and deals
with the issue of identifiability by proposing a functional extension of post-hoc orthogonalization.
Using array computations and basis recycling the method also solves scalability issues present in
existing methods. Our experimental results reveal that functional semi-structured networks yield
similar or superior performance compared to other methods across varied biomechanical sensor
datasets.

Novelty The approach proposed in Section 3 shows similarities to an autoeconder architecture. While
a functional autoencoder has been proposed in the past [18] and most recently by [61], these studies
focus on the representation learning (and reconstruction) of the same signal. Other papers focusing
on function-on-function regression (e.g., [34, 43, 58]) suggest similar approaches to ours but without
the option to jointly train a structured model and a deep network.

Limitations and Future Research While our model shows good performance on various datasets
and in simulations, we believe that our approach can be further improved for applications on high-
dimensional sensor data by incorporating appropriate sparsity penalties. Due to the functional nature
of the data, feature selection would result in a great reduction of complexity and thereby potentially
yield better generalization. Our general model formulation would further allow the extension to a non-
linear FFR model λ−(t) =

∑J
j=1

∫
Sj
fj(xj(s), t)ds using smooth functions fj in three dimensions

(feature-, s- and t-direction). Although this extension is still an additive model in the functional
features, it is challenging to interpret the resulting additive effects.
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A Further details

A.1 Functional R2 definition

Let n be the number of observed curves indexed with i. Given the ith observation of a function output
signal y(i)(t) for t ∈ T with functional domain T and corresponding predicted value µ(i)(t), we
define the functional R2 as

κ({y(i), µ(i)}i=1,...,n) := n−1
n∑

i=1

∫
T (y

(i)(t))2dt−
∫
T (y

(i)(t)− µ(i)(t))2dt∫
T (y

(i)(t))2dt
. (10)

Since
∫
T (y

(i)(t) − µ(i)(t))2dt ≥ 0, the nominator is the smallest for y(t) ≡ µ(t), in which case
κ = 1. In contrast, if the prediction µ is µ ≡ 0, κ = 0. For models that perform worse than the
constant zero predictor

∫
T (y

(i)(t)−µ(i)(t))2dt can be larger than
∫
T (y

(i)(t))2dt, yielding a negative
nominator and hence negative κ values.

A.2 Penalization scheme

In order to enforce smoothness of estimated functional relationships in λ+ in both s- and t-direction,
we can employ a quadratic smoothing penalty. For regression splines with evaluated bases Φj and Ψ,
smoothness is usually defined by some form of difference penalties, which we define to be encoded in
the matrices Ps and Pt, respectively. For the array computation, we want to penalize all differences
in s-direction, which can be done by using

pens = vec(Θ)⊤(IU ⊗ Ps)vec(Θ) = vec(Θ ◦ (PsΘ))⊤1.

Analogously, the t-direction can be penalized as

pent = vec(Θ)⊤(Pt ⊗Kj)vec(Θ) = vec((ΘPt) ◦Θ)⊤1.

Putting both penalties together, we obtain the total penalty for the array product as pens + pent.

B Additional results

B.1 Simulation study

Figure 6 shows the estimation error of the weight surface using different established methods and our
proposed implementation (Neural Network).

All methods perform equally well with minor differences in the weight surface estimation. As
expected, neural networks perform better in small signal-to-noise (SNR) settings due to their implicit
regularization when trained with stochastic gradient descent and using mini-batches, whereas for
large SNR, the full batch routines implemented by boosting and additive models perform slightly
better. As becomes apparent in Figure 4(a), these differences are negligible in practice.

B.2 Application

Figure 7 gives an excerpt of the estimated weight surfaces that provide insights into how the relation-
ship between input features (rows; here acceleration measures from the x-dimension) and outcome
joints is estimated.

For example, the trunk acceleration (last row in Figure 7) having a short negative and almost
instantaneous effect (dark circle) on the ankle and hip adduction moment (first and second column) is
a reasonable result from a biomechanical perspective.

We can further plot the predicted curves by all employed methods (Figure 8) and compare the results
with the ground truth. While for some joints the prediction of the semi-structured and deep-only
model is very similar, the performance for the subtalar joint is notably better when combining a
structured model and the deep neural network to form a semi-structured model.
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Figure 7: Estimated weight surfaces for different accelerometer predictors (rows) for the different joints
(columns). The color of each surface corresponds to the weight a predictor sensor signal at time points s (x-axis)
is estimated to have on the tth time point (y-axis) of the outcome.

Comparison with [32] As requested by an anonymous reviewer, we have also compared our
method against the approach suggested in [32]. Compared to [32], we use a different pre-processing
of functional predictors which is more in line with our main results. We then run their best model
once using a deep-only variant and once using a semi-structured model. The RelRMSE results are
given in Table 3, showing that the semi-structured extension works similarly well or in most cases
better.

C Additional experiments

In order to demonstrate our method’s applicability beyond biomechanical applications, we run several
additional experiments. Datasets come from different fields of application and have different sizes
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Figure 8: Comparison of predictions of the structured, deep, and semi-structured model as well as the true sensor
data (columns) for different joints (rows).

Table 3: Comparison of a plain deep and a semi-structured approach, where the former is based on [32] and the
latter its extension to a SSN.

Measurement Deep Semi-str.
ankle (dim 1) 0.261 0.212
ankle (dim 2) 0.247 0.208
ankle (dim 3) 0.423 0.359
com (dim 1) 0.054 0.048
com (dim 2) 0.275 0.275
com (dim 3) 0.077 0.078
hip (dim 1) 0.342 0.314
hip (dim 2) 0.301 0.300
hip (dim 3) 0.376 0.303
knee (dim 1) 0.281 0.225
knee (dim 2) 0.318 0.270
knee (dim 3) 0.405 0.383

(number of observations, number of functional predictors, number of observed time points). We also
use these examples to 1) compare the two different architectures suggested in Fig. 2(a) and Fig. 2(b),
2) compare against a non-linear FFR implementation from [40].

For all the additional experiments, the deep network version from Fig. 2(a) uses the same encoding
and decoding basis for both λ+ and λ− (using Kj = 20 basis functions for the s-direction and
U = 20 basis function for the t-direction). The trunk of the deep network part λ− is defined as a
fully connected neural network with 100 neurons each, followed by a dropout layer with dropout
rate of 0.2 and a batch normalization layer. The deep network version from Fig. 2(b) uses the same
architecture, but instead of using a shared encoding and decoding part, it simply concatenates the
inputs and processes the three-dimensional object until the last layer, which is then reshaped to
have the correct dimensions. We have not tuned this architecture, the number of layers, neurons, or
dropout rate, as the purpose of these additional experiments is solely to demonstrate that the (SS)FNN
approach yields competitive results with only the structured part while the deep part can further help
to improve predictive performance.
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C.1 Predicting EMG from EEG signals in cognitive affective neuroscience

The dataset analyzed in [50] contains 192 observations of three different EMG signals from facial
muscles used as different outcomes (similar to the different joint moments) and up to 64 EEG signals
measured at different parts of the brain. Both EMG and EEG signals are measured at 384 equidistant
time points. Following [50], we choose the EXG4-EXG5 signal as output signal and the Fz-, FCz-,
POz-, and Pz-electrode as input signals. Based on 10 train/test-splits, we obtain the following table:

Table 4: Model performance comparison

Model Rel. RMSE (↓) Correlation (↑)

Boosting 0.195 (0.137) 0.184 (0.130)
FNN 0.190 (0.132) 0.171 (0.111)
SSFNN (a) 0.210 (0.152) 0.201 (0.162)
SSFNN (b) 0.192 (0.177) 0.184 (0.287)

Results confirm again that our FNN implementation leads to similar values as Boosting, while
including a deep neural network part can improve the performance.

C.2 Predicting air quality from temperature curves

The dataset analyzed in [40] contains 355 observations of daily NO2 measurement curves (i.e., the
functional domain is the hours 1 to 24) together with four other functional pollutants as well as
the temperature and relative humidity. The goal is to predict the NO2 concentration using other
pollutants, the temperature, and the humidity. The proposed approach in [40] uses a non-linear
function-on-function regression (FFR) which we compare against. The results are given in the
following table:

Table 5: Comparison of Model Metrics

Model Rel. RMSE (↓) Correlation (↑)

Non-linear FFR 1.000 (0.000) 0.878 (0.024)
FNN 1.000 (0.000) 0.908 (0.009)
SSFNN (a) 0.988 (0.024) 0.880 (0.052)
SSFNN (b) 0.991 (0.042) 0.897 (0.047)

Results suggest that the given task is rather easy and a linear FFR model is already sufficient to obtain
good prediction performance. Hence FNN outperforms both the non-linear FFR model and the two
semi-structured approaches

C.3 Predicting hot water consumption profiles in urban regions

The dataset taken from [39] contains hourly hot water consumption profiles (i.e., the functional
domain is again 1 to 24) which are available for different administrative districts. The goal of the
analysis is to predict the hot water consumption of a specific region given multiple (here 6) far-distant
administrative districts. The results are given in the following table:

Table 6: Model Performance Evaluation

Model Rel. RMSE (↓) Correlation (↑)

Additive Model 0.814 (0.006) 0.761 (0.006)
FNN 0.810 (0.008) 0.754 (0.010)
SSFNN (a) 0.887 (0.052) 0.799 (0.042)
SSFNN (b) 0.893 (0.077) 0.803 (0.037)

Similar to the first dataset, the FNN achieves similar performance as the reference model while
including a deep neural network improves the performance.
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D Experimental details and computational environment

D.1 Experimental details

In all experiments, we use the Adam optimizer with default hyperparameters. No additional
learning rate schedule was used. The batch size, maximum number of epochs and early stop-
ping patience was adjusted depending on the size of the dataset. A prototypical implemen-
tation is available as an add-on package of deepregression [51] at https://github.com/
neural-structured-additive-learning/funnel.

D.2 Computational environment

All computations were performed on a user PC with Intel(R) Core(TM) i7-8665U CPU @ 1.90GHz, 8
cores, 16 GB RAM using Python 3.8, R 4.2.1, and TensorFlow 2.10.0. Run times of each experiment
do not exceed 48 hours.
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Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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is part of the numerical experiments.
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• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
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a complete (and correct) proof?
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Answer: [Yes] .
Justification: While mathematical details are not formulated as theorems or similar, the nota-
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The algorithm’s implementation is given in detail, allowing readers to recon-
struct our implementation. The details provided in the numerical experiments should further
allow readers to reproduce simulation studies and real-world experiments.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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tions to faithfully reproduce the main experimental results, as described in supplemental
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Answer: [Yes]

Justification: Code is attached as supplementary material. Open access data is referenced.
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possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
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6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The information is given in the respective section and in Appendix D.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Simulation studies are repeated multiple times and report error bars; for real-
world data, replications are done for different data scenarios, also allowing to report standard
deviations.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
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run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information is given in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the code of ethics. There are no ethical concerns or similar.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: While biomechanical applications often involve data from humans, our work
does not deal with this type of data in a way that would imply any particular societal impact.
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• The answer NA means that there is no societal impact of the work performed.

23

https://neurips.cc/public/EthicsGuidelines


• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not provide data. Models themselves do not pose a risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The datasets used are referenced and code is CC-BY licensed.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code is documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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