Under review as a conference paper at ICLR 2025

AUTOGETS: AUTOMATED GENERATION OF TEXT
SYNTHETICS FOR IMPROVING TEXT CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

When developing text classification models for real world applications, one ma-
jor challenge is the difficulty to collect sufficient data for all text classes. In this
work, we address this challenge by utilizing large language models (LLMs) to
generate synthetic data and using such data to improve the performance of the
models without waiting for more real data to be collected and labelled. As an
LLM generates different synthetic data in response to different input examples,
we formulate an automated workflow, which searches for input examples that lead
to more “effective” synthetic data for improving the model concerned. We study
three search strategies with an extensive set of experiments, and use experiment
results to inform an ensemble algorithm that selects a search strategy according
to the characteristics of a class. Our further experiments demonstrate that this en-
semble approach is more effective than each individual strategy in our automated
workflow for improving classification models using LLMs.

1 INTRODUCTION

A critical impediment to developing robust text classification models for real-world applications is
the pervasive challenge of class imbalance and data scarcity, particularly for underrepresented text
categories. Many industrial applications, such as ticketing systems, require classification models to
process large volumes of unstructured text data, such as problem descriptions and user comments,
which are often heavily imbalanced in class sizes. In modern industrial environments, ticketing sys-
tems play a vital role in managing and resolving technical issues, service requests, and operational
incidents (Al-Hawari & Barham| (2021})). As shown in the workflow (Figure , models are initially
trained on a set of labeled tickets, but newly introduced or infrequent classes often arise after de-
ployment, necessitating manual classification and correction. This reliance on manual intervention
for new or underrepresented classes creates operational bottlenecks and impairs model adaptation to
evolving data distributions. Over time, the model’s performance degrades, particularly for small or
specialized categories, as obtaining balanced and adequately labeled data across all classes remains
challenging. Consequently, models often fail to generalize effectively across diverse data distri-
butions, especially for underrepresented categories |(Gandla et al.| (2024). Traditionally, addressing
data scarcity involves collecting additional real-world data, which can be both time-consuming and
resource-intensive, especially for rare or newly introduced classes. Furthermore, the manual label-
ing of such data introduces additional delays and costs [Li et al.| (2022). In this context, synthetic
data generation has emerged as a promising solution to address class imbalance and data scarcity,
particularly for underrepresented classes. By augmenting training datasets with synthetic samples,
models can achieve improved performance and generalization across different categories.

Synthetic data has gained popularity in recent years as a way to overcome the limitations of real-
world data, which can be scarce, sensitive, or expensive to obtain (Patki et al.| (2016)). Research
in this area consistently highlights the potential of synthetic data to enhance the performance of
ML models across diverse fields (Lu et al.|(2023))), addressing challenges such as data shortages in
computer vision and NLP (Mumuni et al.| (2024))), generating diverse datasets in medical imaging
(Frid-Adar et al| (2018b)), and providing safe training scenarios for autonomous driving systems
(Song et al.[(2023)). Its utility extends to financial modeling for algorithm testing under simulated
market conditions and cybersecurity for developing threat detection systems (Potluru et al.| (2023));
Chalé & Bastian| (2022)). In the domain of text analysis, synthetic data has been increasingly em-
ployed to enhance ML models, particularly in tasks such as text classification, sentiment analysis,

Under review as a conference paper at ICLR 2025

and natural language understanding. Moreover, researchers have shown generating synthetic sam-
ples with only targeted data examples could more effectively improve the model (Jin et al.|(2024)).
However, the process of identifying these optimal data examples often requires substantial domain
expertise and manual effort, making it time-consuming and less scalable for real-world applications.

messages without class labels

trained . manual
MMM model M —| service 2 - classification 1 M

M service 1 |« I

with with
e newly introduced classes lertr) Oll”ieous corre;ct;)ec;
abe abe

e small classes for M service k
special business needs

further data collection
M MM M M . .
e time taken to collect a sufficient
amount of data to improve
data distribution for retraining

training trained

& testing model
messages with class labels

Figure 1: The workflow for developing and deploying a classification model in an industrial ticketing
system, and the main obstacles impacting on the performance of the model.

To overcome these challenges, this paper introduces Automated Generation of Text Synthetics (Au-
toGeTS), an algorithmic solution that automates the search for optimal data examples based on spe-
cific improvement objectives, eliminating the need for human intervention. Through experiments
with three search strategies and four objective functions, we identify key patterns between optimal
strategy-objective combinations and data characteristics. We propose an ensemble algorithm that
effectively improves text classification models across various real-world tasks.

2 RELATED WORK

Synthetic data is increasingly used as a powerful tool for generating realistic datasets to enhance the
performance of the task across various domains (Meier et al.| (1988)); Bersano et al.|(1997)). Early
synthetic data generation methods include bootstrapping (Efron| (1992); |Breiman| (1996))), which
resamples from original data to estimate distributions and reduce variance in predictions, proved
effective for a range of predictive algorithms including tree-based models (Sutton| (2005)). How-
ever, bootstrapping couldn’t introduce new patterns. The Synthetic Minority Over-sampling Tech-
nique (SMOTE) (Chawla et al.[{(2002)) advanced imbalanced dataset handling but risked overfitting.
Data augmentation (Jaderberg et al.| (2014)) improved model robustness by transforming existing
data points, increasing diversity, yet still limited to patterns in the original dataset. The advent of
deep learning introduced more sophisticated techniques, notably Generative Adversarial Networks
(GANSs) by Goodfellow et al. (Goodfellow et al.| (2014))), which generate highly realistic synthetic
data capturing dataset complexity. Studies have shown models trained on GAN-generated synthetic
data often perform comparably to those trained on real data in various predictive tasks (Zhang et al.
(2017); |Cortés et al.| (2020)). Frid-Adar et al. (Frid-Adar et al.[(2018a))) enhanced liver lesion diag-
nosis using GAN-generated images, while Yale et al. (2020) demonstrated comparable performance
using GAN-generated synthetic electronic health records for ICU patient predictions.

GANSs have been extensively used for synthetic text generation. For instance, Croce et al. (2020)
demonstrated their effectiveness in generating realistic text for NLP tasks, while He et al. (2022)
explored task-specific text generation. However, GAN-generated data for text classification often
lacks semantic coherence and relevance to specific tasks (Torres| (2018))). Recent advancements in
large language models (LLMs), such as GPT-2 (Croce et al.[(2020)), provide new approaches to
overcome these limitations. LLMs excel in few-shot and zero-shot learning (Brown| (2020); Wang
et al.|(2021)), adapting to unseen tasks and generating contextually relevant data that improves model
robustness. Yoo et al.’s GPT-3Mix (Yoo et al.|(2021)) demonstrates LLMs’ capability to generate di-
verse, high-quality synthetic data for text classification through careful prompt engineering. Prompt
optimization strategies have shown that carefully crafting input prompts can significantly impact
the quality of generated data (Wang et al.[|(2023)). Automated search techniques for identifying the

Under review as a conference paper at ICLR 2025

most effective prompts, such as those used in AutoPrompt (Shin et al.| (2020); Xu et al| (2024)),
offer a potential solution for improving synthetic data generation. Beyond prompt engineering, se-
lecting appropriate input examples has emerged as a crucial focus. Selecting example data, either
with a uniform distribution or human identification through VIS4ML, to form the prompt for LLM
to generate synthetics is shown effective (Li et al.| (2023)); Jin et al.| (2024))). Despite these advance-
ments, LLM-generated data still struggles to fully capture real-world diversity, especially in highly
subjective tasks (Li et al.| (2023))). To address this, we propose AutoGeTS, an automated approach
that optimizes input example selection for LLM-generated synthetic data. Designed for real-world
business requirements, AutoGeTS reduces human intervention while systematically identifying im-
pactful examples, enhancing model performance in scenarios of data scarcity and class imbalance.

3 METHODS

3.1 AUTOGETS ARCHITECTURE AND WORKFLOW

Figure2]illustrates the AutoGeTS architecture. After training and evaluating the original model M0,
improvement requirements (overall or class-specific) are determined. For a selected class C, visual
encoding is applied to the training dataset. The optimal strategy-objective is employed to select
example message sets F; from C, which are then fed to the LLM to generate synthetic samples.
These samples are appended to the training set for model retraining and testing. The best-performing
model, according to the specified goals, is selected for deployment.

selection

example algorithm imagery
LLM messages l data
v text E example v visual
L synthesis selection encoding)
) testing results
J of the selected model
T
M M M M M | —> training —> model — testing T -
M, 0
. testing model model
L : results — selection M,
Trg|n|ng DataAManagerAnent retraining —»| ml‘l’/[del —> testing — T, ——| currently the best
adding & removing synthetic data i model and potentially
[for deployment

Figure 2: The architecture of AutoGeTS and the workflow for training and improving a model.

3.2 OBIJECTIVES FOR MODEL OPTIMIZATION

Ticketing systems deployed in specific organizational environments often face different, sometimes
conflicting, requirements. Typical business requirements and related performance metrics include:

R1. The accuracy of every class should be as high as possible and above a certain threshold. One
may optimize a model with a performance metric such as class-based balanced accuracy
or F1-score as the objective function, with each threshold value as a constraint.

R2. The overall classification accuracy of a model should be as high as possible and above a
certain threshold because misclassified messages lead to undesirable consequences. One
may optimize a model with a global performance metric, such as overall balanced accuracy
and overall fI-score.

R3. The recall for some specific classes (e.g., important) should be as high as possible and above
a certain threshold in order to minimise the delay due to the messages in such a class being
sent to other services. Class-based recall is the obvious metric for this requirement. Often
one may make a balanced judgement by observing Pareto fronts of recall in conjunction
with another class-based metric (e.g., balanced accuracy or FI-score).

These requirements inform the definition of objective functions and constraints for AutoGeTS opti-
mization. However, because the use of LLMs to generate synthetic data to aid ML (i.e., the workflow
in Figure [2) is a recent approach, it is necessary to understand how different example selection al-
gorithms for LLMs may impact the optimization.

Under review as a conference paper at ICLR 2025

3.3 STRATEGIES FOR EXAMPLE SELECTION

Defining the search space for example selection is critical, especially when augmenting datasets with
synthetic examples. This space includes all possible subsets of training data D = x1, 22, ..., Ty,
each data dot labeled with a specific class. The primary objective is to identify the optimal subset
W* C D that maximizes performance metrics when used for synthetic data generation via LLM.
With 2™ — 1 possible subsets for n examples, exhaustive search becomes intractable, necessitating
heuristic strategies.

The general goal can be formulated as an ideal multi-objective optimization problem:

W* = arg max J(W) (D

where J(W) is the objective function measuring the performance of a retrained model M (W) using
synthetic data generated from subset W:

J(W) = wy - Recall(M (W)) + ws - BalancedAccuracy (M (W)) 4+ ws - FI(M(W)) (2)

where w1, wo, and ws reflect metrics’ weights in the overall objective. Given the practical challenges
in defining such a compound objective, we employ a simplified, single-metric function:

W* = arg max J (W) 3)

where J'(W) represents one of the following metrics: Class-based Recall (CR), Class-based Bal-
anced Accuracy (CBA), Overall Balanced Accuracy (OBA), and Overall F1-Score (OF1).

Thus, the policy for selecting optimal subsets involves two core components:

1. A strategy for selecting subsets of examples for synthetic data generation and retraining.

2. An evaluation metric, J'(W), to be maximised as the objective for the search towards the
optimal subset W *.

The challenge is to efficiently search the space while balancing between computational cost (i.e.,
cumulative model retraining time) and performance improvement (i.e., maximum gain in J(W)).
We explore three primary strategies to optimize the subset selection: brute-force (Sliding Window,
SW), gradient-based (Hierarchical Sliding Window, HSW), and evolutionary algorithms (Genetic
Algorithm, GA), as illustrated in Figure 3]

3.3.1 SLIDING WINDOW (SW)

The Sliding Window (SW) strategy represents a brute-force approach, where the search space is
exhaustively segmented into "windows” or subsets. For each window W), C D, synthetic data is
generated, the model is retrained, and the performance is evaluated based on the objective function
J'(Wy,). The goal is to identify the window W} that yields the maximum improvement:

Wy = arg Jax J "(Wi) (4)

The brute-force nature of SW ensures that no region of the search space is neglected, but the cost in
terms of time and computational resources can become prohibitive.

3.3.2 HIERARCHICAL SLIDING WINDOW (HSW)

The Hierarchical Sliding Window (HSW) strategy builds on the principles of hierarchical selection,
offering a more computationally efficient approach by incrementally narrowing the search space to
promising regions. At each level [/, the current search space is partitioned into smaller windows
W1 For each window, synthetic data is generated, the model is retrained, and the performance

Under review as a conference paper at ICLR 2025

is evaluated. Only the windows with the highest objective function values are selected for further
hierarchical subdivision in the next level:

Wi = arg J Wii41) 3)

max
Wi, 141 ESubspace(Wy ;)

The process repeats until improvement in J’ (W) plateaus or a predefined stopping criterion is met.
HSW thus is akin to a targeted optimization approach that progressively homes in on the optimal
subset W*, balancing thorough exploration with reduced computational complexity compared to the
brute-force SW method.

lower-resolution
sliding window

orrect orrect
i] 0 member of the
sliding window E | current population

candidate
i | member,
After a lower-resolution scan, : ! le., training
select the most promising ,‘ ! data object
region to continue with ,‘
a higher-resolution scan

h\%hcr—rcsotut\on #]
sliding window i

Sliding Window Hierarchical-Sliding Window Genetic Algorithm

Figure 3: The three examples subset selection strategies.

3.3.3 GENETIC ALGORITHM (GA)

The Genetic Algorithm (GA) begins by initializing a population

P={5,8,...,5} (6)

where each candidate solution S; C D represents a subset of the training data D, encoded as a
priority value-based chromosome. Each above threshold element indicates that the corresponding
data example is included in the subset.

The GA evolves this population over generations, guided by a fitness score F'(.S) defined as the
objective function J'(.S), derived from the AutoGeTS process and subsequent performance evalua-
tion of the retrained model M (S). The algorithm applies three main genetic operators: Selection:
At each generation, Lexicase selection [Spector] (2012) and Clustered Tournament selection Xie &
Zhang| (2012)) are employed to select individuals into the mating pool based on their fitness, where
Lexicase selection evaluates the F'(.S) of input class and the J'(.S) of other randomly chosen classes.
Crossover: Weight Mapping Crossover (Gen et al.| (2006) is used to combine two parent solutions
S; and S; from the mating pool to produce offspring Oy, for local exploration. Mutation: Adaptive
Polynomia Mutation [Si et al.| (2011) is applied to offspring Oy, to introduce variability for global
search. The GA repeats the selection, crossover, and mutation process until reaching a specified
number of generations or a convergence criterion. The subset S* that maximizes the fitness score:

S* = arg max F(S;) @)

where F'(S;) = J'(S;), is finally retrieved. For further details and the step-by-step breakdown of
HSW and GA algorithms, refer to Algorithm[TJand[2]in Appendix [C.T}

Each AutoGeTS run targets a single class C;, aiming to improve its specific or overall performance
through synthetic sample addition. However, class interactions in synthetic data generation have
been observed; Jin et al.| (2024) found that synthetic data for one class can improve performance for
others. Given these interactions and the collective contribution of all classes to overall classification

Under review as a conference paper at ICLR 2025

performance, an ensemble algorithm applying AutoGeTS across multiple classes is necessary to
optimize both class-specific and overall performance.

3.4 ENSEMBLE ALGORITHM

The ensemble algorithm depends on the specific business requirements, as outlined in Section

To lift all classes performances above a threshold (R1): Iteratively apply AutoGeTS to each
underperforming class (Cj,,,) With optimal strategy-objective combination, in the order that most
likely improves class performance. In each iteration, append synthetic samples from the optimal
retrained model to the training set, and maintain improvements for processed Cj,,, above a specified
threshold. Terminate when unable to maintain improvements. To improve overall classification
accuracy (R2): The same process is applied to each class (C), except the class order that most
likely improves overall performance is used, and the algorithm terminates when overall performance
plateaus. To improve specific important class’s performance (R3): For an important class (IC),
identify related classes (RC) that could enhance IC performance with AutoGeTS. Apply AutoGeTS
to /C and RC iteratively with optimal strategy-objective combinations, in the order that prioritizes
IC performance improvement. Terminate when /C' performance plateaus.

Experimental determinations include performance thresholds, RC' identification, class order, and
optimal strategy-objective combinations, which will be studied in Sectiond] The specific details and
the step-by-step breakdown of the algorithms are provided in Algorithm [3||4] and[5]in Appendix[C.2}

4 EXPERIMENTS AND RESULTS

AutoGeTS is evaluated through 1 GPU hour fixed-time experiments to improve M0 in meeting
business requirements and to determine optimal strategy-objective policy as outlined in Section[3.2}

4.1 EXPERIMENT SETUP

Table 1: Original CatBoost Model M 0 Performance

Class | Class Size | Balanced Accuracy | Recall | FI-Score
T2 11350 0.950 0.941 0.921
T1 8529 0.986 0.979 0.977
T3 4719 0.952 0.914 0.922
T5 2755 0.889 0.794 0.794
T7 1963 0.883 0.780 0.766
T6 1888 0.821 0.665 0.623

T10 1699 0.761 0.540 0.554
T9 1466 0.861 0.747 0.680
T4 1387 0.899 0.801 0.859
T8 1028 0.828 0.665 0.672

T14 764 0.772 0.548 0.607

T15 543 0.726 0.452 0.596

T11 471 0.973 0.947 0.967

T12 358 0.742 0.484 0.608

T13 180 0.666 0.333 0.469

Overall 39100 0.923 0.856 0.856

We evaluated the AutoGeTS framework using a dataset from an enterprise I'T support ticketing sys-
tem, comprising 39,100 entries labeled into 15 task classes. The dataset is highly imbalanced, with
some classes representing less than 1% of the total entries. To mitigate the effect of this imbalance,
we split the dataset into 80% for training/validation and 20% for testing, with a further 80-20 split
on the training set for validation. The imbalanced nature of the dataset mirrors real-world challenges
faced by classification systems in industrial applications.

We used GPT-3.5 (version: 2023-03-15-preview) to generate synthetic text, employing parameters
such as temperature = 0.7, max tokens = 550, top p = 0.5, frequency penalty = 0.3, and presence
penalty = 0.0. For the baseline classification model, we utilized CatBoost with fixed hyperparameters
(300 iterations, learning rate = 0.2, depth = 8, L2 leaf regularization = 1) to ensure consistency

Under review as a conference paper at ICLR 2025

across all retrained models. More detailed M0 analysis and prompt are provided in Appendix [A]
and[B.1] The effectiveness of AutoGeTS was evaluated using class-based balanced accuracy, recall,
and F1-score for local performance, as well as overall balanced accuracy and F1-score for global
performance. The performance of the original CatBoost model /0 is shown in Table[I]

Table 2: Performance Comparison with M0, comparing Overall and Class Balanced Accuracy.

Class | Class MO Sliding Window Hierarchical SW Genetic Algorithm
Name | Size | Bal Acc | Overall Class Overall Class Overall Class
T2 [711350 | 0.950 0.0030 20.0050 | 20.0034 £0.0048 | 20.0009 v0.0010
T1 8529 | 0.986 0.0028 40.0005 | 40.0029 40.0005 | 40.0018 v0.0018
T3 4719 | 0.952 0.0030 40.0058 | 40.0027 40.0062 | 40.0029 40.0069
T5 2755 | 0.889 0.0032 40.0189 | 40.0034 £0.0140 | A0.0010 40.0059
T7 1963 | 0.883 0.0036 40.0228 | 40.0034 40.0226 | 10.0012 v0.0026
T6 1888 | 0.821 0.0035 40.0190 | 40.0030 40.0196 | 40.0015 £0.0073
T10 | 1699 | 0.761 0.0034 40.0281 0.0044 20.0247 | 40.0027 £0.0208
T9 1466 | 0.861 0.0036 40.0147 | 40.0027 40.0191 0.0026 40.0077
T4 1387 | 0.899 0.0029 20.0304 | 40.0033 £0.0369 | 10.0036 40.0323
T8 1028 | 0.828 0.0030 40.0321 0.0029 40.0358 | 40.0020 40.0142
T14 764 0.772 0.0023 40.0326 | 40.0029 £0.0395 | 40.0019 40.0396
T15 543 0.726 0.0033 40.0456 | 40.0034 £0.0446 | 10.0037 40.0533
T11 471 0.973 0.0030 40.0054 | 40.0030 40.0053 | £0.0039 40.0053
T12 358 0.742 0.0037 40.0699 | 40.0032 £0.0772 | A0.0036 40.0775
T13 180 0.666 0.0030 40.0443 | 410.0037 £0.0548 | 10.0034 10.0548

4.2 PERFORMANCE IMPROVEMENTS OVERVIEW

The AutoGeTS framework yielded significant improvements in both local and global performance
metrics, effectively addressing the class imbalance problem evident in Table[2]

Smaller, underrepresented classes experienced the largest improvements. For instance, T13’s bal-
anced accuracy increased by 5.48 percentage points (pp) from 66.6% in MO, while T12 showed a
7.75 pp improvement from 74.2%. In contrast, larger classes like T1 (98.6%) and T2 (95%) saw
only marginal gains of around 0.3 pp. This demonstrates AutoGeTS’s ability to significantly im-
prove underrepresented classes without affecting the performance of well-represented ones. This
balance is crucial in maintaining overall system performance. The overall balanced accuracy im-
proved consistently and comparably among classes, with T10 showing the highest overall balanced
accuracy improvement of 0.44 pp. This underscores AutoGeTS’s synergistic effect, where class-
based improvements translate to overall performance gains, with minimal trade-offs between local
and global performance improvements (see Appendix [D.I)).

4.3 COMPARISON OF EXAMPLE SELECTION STRATEGIES AND OPTIMIZATION OBJECTIVES

Figure 4| compared the performance of three search strategies—SW, HSW, GA—and four objec-
tives—maximising CR, CBA, OBA, OF1—with respect to both local (class-specific) and global
(overall) metrics. Each bar chart is divided into 4 sections for 4 performance metrics, with the four
bars each representing the maximum improvement in the objective of maximising CR, CBA, OBA,
or OF1. The choice of strategy-objective played a critical role in the effectiveness of AutoGeTsS,
with each demonstrating distinct advantages depending on the size of the target class, and their
performance trajectories over retraining time (see Appendix [D.2).

For larger classes, HSW consistently yielded the best results, such as the highest class T1 balanced
accuracy improvement of 0.5%. HSW’s progressive narrowing of the search space proves effective
for larger datasets where an exhaustive search is computationally prohibitive. Objective-wise, max-
imising CR or CBA each best improved its respective metric, while maximising OBA or OF1 both
led to the best improvements in global metrics.

GA strategy proved superior for smaller and mid-sized classes, as shown by T13 and T12’s highest
balanced accuracy gains. GA’s evolutionary nature generates diverse synthetic samples, crucial for
small datasets. For these classes, maximising CBA outperformed other objectives in local metrics,
while OBA or OF1 maximisation equally improved global metrics, except for T11, T12, and T15.

Under review as a conference paper at ICLR 2025

SW showed moderate performance across mid-sized classes, such as improving T5 and T6 balanced
accuracy by up to 1.89% and 1.90%, respectively. SW offers a balanced trade-off between compu-
tational cost and performance improvement for mid-sized datasets. For these classes, maximising
CR or CBA equally improved both local metrics, and the same applies to maximising OBA or OF1.

CR % CBA % OBA % OF1 %
BB o A wOBAR L%y,
30 30 30
20 20 20 20
10 10 10 10
&:347 2% PECELN 00232,
Class T2
CR % CBA % OBA % OF1 %
wSB%ow wBAY wd
30 30
20 20 20 20
10, 74 10 10 10
2:423, 0.364 0.732
0 0 [\] e 0 =Te
Class T5
CR % CBA % OBA % OF1 %
30 30
20 20 20 20
12.15!
10 T 10 10 10
0 03 %% ° 0.475, 0.956,
Class T10
CR % CBA % OBA % OF1 %
wBAF o e
30 30 30
20 20 20 20
11.465,
10 10 10 10
4.328
0 0 0 0327, o 0.658,
Class T8
CR % CBA % OBA % OF1 %
30 'Ga'GA''GA 'ca 30 30 30
20 20 20 20
10 10 10 10
g2 PEEEN ° 0423 o 0.852
Class T11

HEEE Optimized on: Class Recall

CR % CBA % OBA % OF1 % CR % CBA % OBA % OF1 %
SR on WAL wOBA wlh wREw wCAFa @Ak WAl
30 ' 30 30 G
20 20 20 20 20 20 20 20
10 10 10 10 10 10 10 10
P o0 096 0 0312, o 0.628, 02-%°7° FRen 0 0327, ¢ 0.658,
Class T1 Class T3
CR % CBA % OBA % OF1 % CR % CBA % OBA % OF1 %
s S ow A wPA% s WAl sw SR w A W sw
30
20 20 20 20 20 20 20 20
10,4, 10 2300 10 10 105,855 10 - 10 10
° 0 FBe .. P .. ° 328, 0379, o 0.762,
Class T7 Class T6
CR % CBA % OBA % OF1 % CR % CBA % OBA % OF1 %
SR SBA A 5w A sw % sw BAYsw AP0 Wil
30 30 30 30 30 30
20 20 20 20 20 20 20 20
1 10 10 10 10°%7% 10 10 10
05.3560 2,221, 0.393, 0.792 4393 0.386, 0.777
0 0 o -393, o 292, 0 0 0 -386, o 277,
Class T9 Class T4
% CBA % OBA % OF1 % CR % CBA % OBA % OF1 %
30 4 30 0 30 39 30 30
4.528
20616 20 20 20 20 20 20 20
10 10 5.135 10 10 10 1Qr.340, 10 10
° ° 0 0312, o 0.628, ° ° ° 0401 ¢ 0.§07
Class T14 Class T15
32,2587 % @A aBAPw WA 3308 % o @AY BB A
30 o 30 30 W@V 3 30 30
20 ., by s 20 20 20 20 , 20 20 20
@ &
10 10 1°#% 10 10 10 10 8330 10 10
o o o o401, o 0807, o o o o401, o 0807,
Class T12 Class T13

HEEm Optimized on: Class Balanced Accuracy
W SW Strategy HS

EEm Optimized on: Overall Balanced Accuracy
W GA Strategy == = Benchmark: Imp = 0

EEm Optimized on: Overall F1-Score

Figure 4: Comparison of improvements across 4 metrics for all classes, showing best-performing
strategies (SW, HSW, GA) and highest improvement values for each objective

4.4 PARETO ANALYSIS FOR REPRESENTATIVE CLASSES

0.2
0.0
-0.2
-0.4
-0.6

Accuacy Imp %

HSW - Maximise CR
HSW - Maximise CR Pareto Front
HSW - Maximise CBA

HSW - Maximise CBA Pareto Front

_1.0 + Benchmark
1.250-1.5-1.0 -0.5 0.0 0.5

T1 (Large)

Maximise on: Class Recall

1
4
)

lass Balanced

c
|

Class Baanced Accuacy Imp %
I
P WNFHFOKN

Maximise on: Class Balanced Accuracy

is
76
* $a
1o - Hasimisa Gon ParetsPonk 2 0
-6-4-20 2 4 6 8 ~20-50
Class Recall Imp %
T6 (Middle)

GA- Maximise CBA
GA - Maximise CBA Pareto Front
A R

GA - Maximise CR Pareto Front
Benchmark

5 10 15 20 25 30 35

Class Recall Imp %

T13 (Small)

= Benchmark: Imp =0

Figure 5: Improvements and Pareto Fronts in Class Recall vs Class Balanced Accuracy for topics
T1, T6, and T13, showing models maximizing TR and TBA (note different axis ranges).

Figure|§|sh0ws trade-offs between Class Recall (CR) and Class Balanced Accuracy (CBA) improve-
ments for classes T1 (large), T6 (mid-sized), and T13 (small) when maximizing either CR or CBA.

CR improvements generally correlate with CBA gains, varying by class size. Large class T1 shows
the largest divergence (CR +3.5%, CBA +1.2%). The more synthetic samples needed to impact
a large class directly affects recall but indirectly specificity, leading to larger CR and CBA diver-
gence. Mid-sized class T6 demonstrates aligned improvements, with targeting CR increasing CBA

Under review as a conference paper at ICLR 2025

by 2.9%, indicating a less critical objective choice between maximising CR or CBA. Small class T13
exhibits substantial improvements in both CR and CBA regardless of which metric is maximized, as
maximizing CR improved recall by 33.3% and CBA by 8.2%, reflecting the effectiveness of diverse
synthetic samples and the GA strategy for underrepresented classes and small, imbalanced datasets.
Practically, maximizing CR is preferable for large important classes to minimize misclassification
delay, while either CR or CBA optimization can be effective for middle and small classes.

5 ENSEMBLE ALGORITHM AND FURTHER EXPERIMENTATION

5.1 SUMMARY OF STRATEGY-OBJECTIVE COMBINATIONS

Building on our analysis in Section we synthesize the effectiveness of different strategy-
objective combinations across varying class sizes and performance metrics.

Table 3: Optimal Strategy-Objective Combinations across Classes

Class Performance Overall Performance

Topic Recall | Topic Balanced Accuracy | Overall Balanced Accuracy [Overall FI-Score
T2 HSW-TR HSW-TBA/OBA HSW-TBA/OBA
T1 HSW-TBA HSW-OBA/OFT
T3 GA-TR/TBA SW-OBA/OFI
T5 SW-TR/TBA HSW-OBA/OFI
T7 SW-TBA
T6 | SWTR | HSW-OBAJOFI SW-OBA/OFI
TI10 SW-TR/TBA HSW-OBA/OFI
T9 SW-OBA/OFI
T4 HSW-TR/TBA GA-OBA/OFI1
T8 SW-OBA/OFI
T14 HSW-OBA/OFI
T15 GA-OF1
TTI1 GA-TBA GA-OBA
T12 GA-OFI
TI3 HSW-OBA/OFI

Table |3| summarizes optimal Strategy-Objective combinations for improving 4 metrics across all
classes, serving as a look-up table for the ensemble algorithm in Section 3]

5.2 LOCAL AND GLOBAL METRICS IMPROVEMENT ACROSS CLASSES

‘We now examine the broader impacts of applying AutoGeTS to individual classes, considering inter-
class effects and overall system performance.

Figure [6a] illustrates interaction effects when applying AutoGeTS to each class, showing improve-
ments or detriments to other classes. This heatmap identifies related classes (RC) for an important
class (IC') and determines class order. Figure [6b|displays overall balanced accuracy improvements,
guiding class order determination when aiming to enhance overall performance.

5.3 ENSEMBLE CASE STUDY RESULTS FOR R3

We applied ensemble AutoGeTS to improve important class T13 following Algorithm 5] with related
classes T12, T10, T11, and TS identified and ordered based on Figure [@ We selected optimal
strategy-objective combinations for each class from Table 3] Benchmarks included iterating single
strategies and random combinations. We conducted three runs with different train-validation splits
and random seeds. T13 balanced accuracy was used as the performance metric instead of T13 recall,
as they align well for T13 while reflecting changes in other classes (negative instances for T13) not
captured by the recall.

The Ensemble Algorithm in Figure [/| achieved the highest T13 balanced accuracy and second-
highest global improvements, with faster and consistently higher T13 performance gains. The HSW,
GA, and ensemble algorithm reached their best improvements within 20% of retraining time, com-
pared to SW’s 40%, demonstrating superior efficiency and scalability for larger datasets. These

Under review as a conference paper at ICLR 2025

results indicate that the ensemble AutoGeTS offers a robust solution for enhancing critical class per-
formance while concurrently improving overall system metrics, with HSW’s logarithmic complexity
and GA’s evolutionary nature demonstrating potential in computational efficiency and scalability.

Class Balanced Accuracy Improvement Overall Balanced Accuracy
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 Ovr Imp

00005 0.0005 00016 00053 -0.0027 0.004 0.0051 0.0005 0.0037 0.0045 0.0 -0.000) 0075 (0,087, -0.0003 T1-HSW-OBA/OF1 0002

-0.0044

0.0003 0.0048 0.0011 0.0102 0.0031 0.0021 0.0125 00125 0.0039 00132 0.0 0.0314 EJFFRY 0.0036 0.0086 0.0034

T2-HSW-TBA/OBA - 0.0034
0.0042
00008 -0.0005 00069 0.0051 0.0022 00027 0.0041 -0.0019 -0.0039 00119 0.0

T3-SW-OBA/OF1- 00030

-0.0007 -0.0005 -0.0002 |0.0369. 0.0028 (40,0091 0.0063 0.0068 100143 00 eozstw X 004 T4-GA-OBA/OF1 - 00036

0.0040
-0.0011 00041 0.0014 00002 0.0189 (0.0186 0.0011 0.0135 0.0005 0.0022 0.0001 |0.0079' 0.0001 |0.0075

T5-HSW-OBA/OF1- 00024

-0.0019 0.0018 -0.0009 0.007 0.0067 0.0196 0.0016 -0.0058 “0.0087| 0.0014 0.0001 [0.0078 0.0 -0.0035

T6-SW-OBA/OF1 00035
-0.0038

T7-SW-TR/OBA/OF1 - 0.0036

T8-SW-OBA/OF1 . 00030

-0.0036
0.0019

Applied Class

T15T14T13 T12T11T10 T9 T8 T7 T6 T5 T4 T3 T2 T1

0001 00023 00008 0.0054 0.0076 [-0.006 | 0.007 .00BL 0.0191 0.0127 0.0001 00235 -0.0001 FUIE TO-SW-OBA/OF1
-SW- - 0.0036
0,016 -0.0003 0.0016 -0.0017 -0.003 -0.0017 0.0073 FUIIL 00281 00 0011 0004 -0.0004
T10-HSW-TBA - 000aa
-0.0034
0,003 0.0013 0.0023 -0.0002 |0.0076| 0.0101 0.0101 0.0067 010078 0.0084 0.0053 0.0076(00001 0.0 [AFEE 0.0008

T11-GA-OBA 00020

HHIDNHBEHA
&
Class-Strategy-Objective

0.0015 00007 0.0012 00071 0.0064 -0.0013 0.0037 0.0005 0.0075| 0.0044 0.0 00775 0.0111 0.0037 0.0007

[T12-SW-OBA/OF1- 00037

0.0026 00026 0.0006 0.0049 |0.0056|0.0062 0.0197 0.0058 [0.0085| 0.0033 0.0 0.0077 0,0548 .0034 010087 0.0003 0.0032

T13-HSW-OBA/OF1- 00037

T14-HSW-OBA/OF1 - 00020
T15-GA-OF1- 00037

(a) Class Balanced Accuracy. (b) Overall Balanced Accuracy.

0.0001

Figure 6: Each class impact on class-based@and overall balanced accuracyapplying AutoGeTS.

Average Maximum Imp %
Average Maximum Imp %
Average Maximum Imp %
Average Maximum Imp %
Average Maximum Imp %

0 0 0 0 o

[5000 10000 15000 0 5000 10000 15000 0 5000 10000 15000 0 5000 10000 15000 0 5000 10000 15000
Cumulative Time (s) Cumulative Time (s) Cumulative Time (s) Cumulative Time (s) Cumulative Time (s)

Algorithm Stack T13-SW Stack T13-HSW Stack T13-GA Random

Figure 7: Average maximum cumulative T13 and overall improvements for 5 ensemble sequences.

6 CONCLUSIONS

This work introduces AutoGeTS, an automated framework optimizing example data selection for
synthetic text generation using Large Language Models (LLMs). AutoGeTS significantly enhances
the level of automation, reducing human efforts in selecting effective examples. This approach
addresses class imbalance and data scarcity challenges in real-world text classification tasks. Exper-
iments demonstrate AutoGeTS’s effectiveness in improving both local and global performance met-
rics. Using Sliding Window, Hierarchical Sliding Window, and Genetic Algorithms, significant im-
provements in underrepresented classes are observed without compromising well-represented ones.
The ensemble algorithm for optimizing the important class shows promising results with the highest
performances and reduced computational time. These findings suggest AutoGeTS offers a scalable,
efficient solution for enriching training data with synthetic samples under real-world requirements,
potentially surpassing expert-driven methods. However, limitations in single-objective optimization
and the heuristic nature of our multi-class ensemble approach suggest avenues for future research.
While our results provide a strong foundation, future work is needed to explore multi-objective
optimization strategies, design more sophisticated ensemble algorithms, and conduct larger-scale
experiments in more complex domains to deepen our understanding of synthetic data generation
dynamics and its interactions with real-world data across various machine learning contexts.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Feras Al-Hawari and Hala Barham. A machine learning based help desk system for it service
management. Journal of King Saud University-Computer and Information Sciences, 33(6):702—
718, 2021.

Tom Bersano, Brad Clement, and Leonid Shilkrot. Synthetic data for testing in databases. University
of Michigan, 1997.

Leo Breiman. Bagging predictors. Machine learning, 24:123-140, 1996.
Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Marc Chalé and Nathaniel D Bastian. Generating realistic cyber data for training and evaluating
machine learning classifiers for network intrusion detection systems. Expert Systems with Appli-
cations, 207:117936, 2022.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16:321-357, 2002.

Andoni Cortés, Clemente Rodriguez, Gorka Vélez, Javier Barandiardn, and Marcos Nieto. Analysis
of classifier training on synthetic data for cross-domain datasets. IEEE Transactions on Intelligent
Transportation Systems, 23(1):190-199, 2020.

Danilo Croce, Giuseppe Castellucci, and Roberto Basili. Gan-bert: Generative adversarial learning
for robust text classification with a bunch of labeled examples. In Proceedings of the 58th annual
meeting of the association for computational linguistics, pp. 2114-2119, 2020.

Bradley Efron. Bootstrap methods: another look at the jackknife. In Breakthroughs in statistics:
Methodology and distribution, pp. 569-593. Springer, 1992.

Maayan Frid-Adar, Idit Diamant, Eyal Klang, Michal Amitai, Jacob Goldberger, and Hayit
Greenspan. Gan-based synthetic medical image augmentation for increased cnn performance
in liver lesion classification. Neurocomputing, 321:321-331, 2018a.

Maayan Frid-Adar, Eyal Klang, Michal Amitai, Jacob Goldberger, and Hayit Greenspan. Synthetic
data augmentation using gan for improved liver lesion classification. In 2018 IEEE 15th interna-
tional symposium on biomedical imaging (ISBI 2018), pp. 289-293. IEEE, 2018b.

Phani Krishna Kollapur Gandla, Rajesh Kumar Verma, Chhabi Rani Panigrahi, and Bibudhendu
Pati. Ticket Classification Using Machine Learning, pp. 487-501. Springer Nature Singapore,
2024. ISBN 9789819950157.

Mitsuo Gen, Fulya Altiparmak, and Lin Lin. A genetic algorithm for two-stage transportation prob-
lem using priority-based encoding. OR spectrum, 28:337-354, 2006.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Xuanli He, Islam Nassar, Jamie Kiros, Gholamreza Haffari, and Mohammad Norouzi. Generate,
annotate, and learn: Nlp with synthetic text. Transactions of the Association for Computational
Linguistics, 10:826-842, 2022.

M Jaderberg, K Simonyan, A Vedaldi, and A Zisserman. Synthetic data and artificial neural net-
works for natural scene text recognition. In NIPS Deep Learning Workshop. Neural Information
Processing Systems, 2014.

Siwei Jiang, Yew-Soon Ong, Jie Zhang, and Liang Feng. Consistencies and contradictions of perfor-
mance metrics in multiobjective optimization. IEEE transactions on cybernetics, 44(12):2391-
2404, 2014.

Yuanzhe Jin, Adrian Carrasco-Revilla, and Min Chen. igaiva: Integrated generative ai and visual
analytics in a machine learning workflow for text classification. arXiv preprint arXiv:2409.15848,
2024.

11

Under review as a conference paper at ICLR 2025

Qian Li, Hao Peng, Jianxin Li, Congying Xia, Renyu Yang, Lichao Sun, Philip S Yu, and Lifang
He. A survey on text classification: From traditional to deep learning. ACM Transactions on
Intelligent Systems and Technology (TIST), 13(2):1-41, 2022.

Zhuoyan Li, Hangxiao Zhu, Zhuoran Lu, and Ming Yin. Synthetic data generation with large lan-
guage models for text classification: Potential and limitations. In The 2023 Conference on Em-
pirical Methods in Natural Language Processing, 2023.

Yingzhou Lu, Minjie Shen, Huazheng Wang, Xiao Wang, Capucine van Rechem, and Wenqi Wei.
Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062, 2023.

Alan K Meier, John Busch, and Craig C Conner. Testing the accuracy of a measurement-based
building energy model with synthetic data. Energy and buildings, 12(1):77-82, 1988.

Alhassan Mumuni, Fuseini Mumuni, and Nana Kobina Gerrar. A survey of synthetic data augmen-
tation methods in computer vision. arXiv preprint arXiv:2403.10075, 2024.

Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The synthetic data vault. In 2016 IEEE
international conference on data science and advanced analytics (DSAA), pp. 399-410. IEEE,
2016.

Vamsi K Potluru, Daniel Borrajo, Andrea Coletta, Niccolo Dalmasso, Yousef El-Laham, Elizabeth
Fons, Mohsen Ghassemi, Sriram Gopalakrishnan, Vikesh Gosai, Eleonora Kreaci¢, et al. Syn-
thetic data applications in finance. arXiv preprint arXiv:2401.00081, 2023.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. Autoprompt:
Eliciting knowledge from language models with automatically generated prompts. In Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics, 2020.

Tapas Si, ND Jana, and Jaya Sil. Particle swarm optimization with adaptive polynomial mutation.
In 2011 World Congress on Information and Communication Technologies, pp. 143-147. 1EEE,
2011.

Zhihang Song, Zimin He, Xingyu Li, Qiming Ma, Ruibo Ming, Zhiqi Mao, Huaxin Pei, Lihui Peng,
Jianming Hu, Danya Yao, et al. Synthetic datasets for autonomous driving: A survey. IEEE
Transactions on Intelligent Vehicles, 2023.

Lee Spector. Assessment of problem modality by differential performance of lexicase selection
in genetic programming: a preliminary report. In Proceedings of the 14th annual conference
companion on Genetic and evolutionary computation, pp. 401-408, 2012.

Clifton D Sutton. Classification and regression trees, bagging, and boosting. Handbook of statistics,
24:303-329, 2005.

D Garcia Torres. Generation of synthetic data with generative adversarial networks. Unpublished
doctoral dissertation). Ph. D. Thesis, Royal Institute of Technology, Stockholm, Sweden, 26, 2018.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric
Xing, and Zhiting Hu. Promptagent: Strategic planning with language models enables expert-
level prompt optimization. In The Twelfth International Conference on Learning Representations,
2023.

Zirui Wang, Adams Wei Yu, Orhan Firat, and Yuan Cao. Towards zero-label language learning.
arXiv preprint arXiv:2109.09193, 2021.

Huayang Xie and Mengjie Zhang. Parent selection pressure auto-tuning for tournament selection in
genetic programming. IEEE Transactions on Evolutionary Computation, 17(1):1-19, 2012.

Ran Xu, Hejie Cui, Yue Yu, Xuan Kan, Wenqi Shi, Yuchen Zhuang, May Dongmei Wang, Wei Jin,
Joyce Ho, and Carl Yang. Knowledge-infused prompting: Assessing and advancing clinical text
data generation with large language models. In Findings of the Association for Computational
Linguistics ACL 2024, pp. 15496-15523, 2024.

12

Under review as a conference paper at ICLR 2025

Andrew Yale, Saloni Dash, Ritik Dutta, Isabelle Guyon, Adrien Pavao, and Kristin P Bennett. Gen-
eration and evaluation of privacy preserving synthetic health data. Neurocomputing, 416:244-255,
2020.

Kang Min Yoo, Dongju Park, Jaewook Kang, Sang-Woo Lee, and Woomyoung Park. Gpt3mix:
Leveraging large-scale language models for text augmentation. In Findings of the Association for
Computational Linguistics: EMNLP 2021, pp. 2225-2239, 2021.

Yizhe Zhang, Zhe Gan, Kai Fan, Zhi Chen, Ricardo Henao, Dinghan Shen, and Lawrence Carin. Ad-
versarial feature matching for text generation. In International conference on machine learning,
pp- 4006-4015. PMLR, 2017.

Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms: a comparative case study
and the strength pareto approach. IEEE transactions on Evolutionary Computation, 3(4):257-
271, 1999.

13

Under review as a conference paper at ICLR 2025

APPENDICES

In the following appendices, we provide further experiment results through visu-
alization plots. The experimental data will be made available on GitHub after the
double-blind review process. These appendices include:

A. Parameters for ML Training — We report the pilot experiments for select-
ing parameters that were used in the training of the benchmark model MO
(trained without synthetic data). The relatively optimal parameter set was
chosen and used for retraining all other models (trained with both collected
data and synthetic data).

B. Parameters for Example Search — We report the pilot experiments se-
lecting parameters to be used by different algorithms that search message
examples to be used as the inputs to LLMs in order to generate synthetic
data.

C. Algorithms — We report the detailed algorithm flowcharts for example data
subset selection, determined after pilot experiments, and multi-class ensem-
ble algorithms, determined through experiments in Section 4}

D. Fixed-Time Experiments — We report a set of experiments, where three
workflows were allowed to use exactly one hour of GPU time for searching
message examples, generating synthetic data, training and testing a model
in multiple iterations in order to develop a model to improve the benchmark
model MO.

A PILOT EXPERIMENTS: PARAMETER FOR ML TRAINING

Before developing the AutoGeTS framework, we aimed to improve the original
CatBoost model, M 0, through parameter tuning. A grid search was conducted with
the following parameter ranges:

* learning_rate: [0.01, 0.05, 0.1, 0.2, 0.5]
* depth: [4, 6, 8, 10]
* 12 leaf reg: [1, 3, 5, 10]

Five-fold cross-validation was employed, with overall classification accuracy as the
primary criterion for evaluating the model performance.

14

Under review as a conference paper at ICLR 2025

A.1 BENCHMARK MO PARAMETERS EXPERIMENTS

Parallel Coordinates Plot for Benchmark M0 Catboost Model
- th lefreg T ™ 2 6 i

leaming_rate depth 12 accursey

Figure 8: MO Parameter Experiments Overview.

Figure [§| presents an overview of all experimented MO CatBoost model parameters
in a parallel coordinate plot. Each line represents a unique parameter set and its
corresponding classification performance. The first three coordinates depict the
experimented parameters: learning rate, tree depth, and L2 leaf regularization. The
subsequent 15 coordinates (T1 to T15) represent the recall for each of the 15 classes,
while the final coordinate shows the overall classification accuracy, which is the
primary performance metric.

(a) MO Top Performing Parameters. (b) Performances of Learning Rate = 0.2.

Figure 9: MO Top Performances and Learning Rate = 0.2.

Figure [9a] highlights the top-performing parameter sets. These sets consistently
use a learning rate of 0.2, tree depths of 6 or 8, and L2 leaf regularization values
of 1 or 3. Based on these observations, we further examine the performance of
learning rate = (.2 and determine the optimal values for depth and L2 leaf regular-
ization.

Figure [Ob] highlights parameter sets with learning_rate = 0.2. All highlighted sets
demonstrate good accuracy, including the three best accuracy scores, confirming
0.2 as the optimal learning rate among the experimented values.

Figures [I0a and [TOb] compare model performances between depth = 6 and
depth = 8 with learning rate set to 0.2. While both depth values yield good ac-
curacy, depth = 8 shows slightly superior results overall, making it the preferred
choice.

15

Under review as a conference paper at ICLR 2025

(a) Performances of Depth = 6. (b) Performances of Depth = 8.

Figure 10: MO Best Experimented Depth Value.

o f = I A 7 — I
/

A i .

(a) Performances of L2 Leaf Regularization = 1. (b) Performances of L2 Leaf Regularization = 3.

Figure 11: MO Best Experimented L2 Leaf Regularization Value.

Figures |l1a] and compare model performances between
L2 leaf_regularization = 1 and L2_leaf _regularization = 3 with learning rate
set to 0.2. Both values produce good performances, but L2 leaf_regularization = 1
demonstrates marginally better results.

Based on these analyses, the optimal parameter set for the MO benchmark CatBoost
model is:

* learning_rate = 0.2
e depth=8
* L2 leaf regularization = 1

This parameter set is used for all experiments involving the CatBoost model.

A.2 FURTHER ANALYSIS ON MO

Despite identifying a relatively optimal parameter set, analysis of class-specific per-
formance revealed significant shortcomings. As shown in Table [I} several classes,
particularly small or underrepresented ones (T12, T13, T14, and T15), exhibited
unacceptable performance levels. These classes had balanced accuracies below 0.8
and recall rates around or below 0.5, potentially causing severe delays in messages
and error reports processing.

To this end, we further realised that a serious class imbalance problem exists in the
dataset with these small classes ranging only from 0.5% to 2% of the whole dataset,
and 1.6% to 6.7% of the largest class. Moreover, data scarcity exists in these small
classes, as illustrated in figure[I2]that the red and blue dots distribute loosely across
the plot. We therefore decided to investigate the use of synthetic data to improve
this text classification model.

16

Under review as a conference paper at ICLR 2025

PCA_1 vs PCA 2 - Class: T12 PCA_1vs PCA 2 -Class: T13 PCA_1vs PCA 2 -Class: T14 PCA_1vs PCA 2 - Class: T15

0.6 0.6 0.6 0.6
0.4 0.4 % 0.4 0.4
~ 0.2 ~ 0.2 ~ 0.2 ~ 0.2
< <
£ 0.0 £ o.0 g o0.0 g 0.0
—02 -0.2 —02 -0.2
-0.4| i -0.4 1% -0.4 i -0.4 1%
—-0.6-0.4-0.20.0 0.2 0.4 0.6 -0.6-0.4-0.20.0 0.2 0.4 0.6 -0.6-0.4-0.20.0 0.2 0.4 0.6 —-0.6-0.4-0.20.0 0.2 0.4 0.6
PCA_1 PCA_1 PCA_1 PCA_1
(a) T12. (b) T13. (c) T14. (d) T15.
Other Classes @® Correctly Classified Incorrectly Classified

Figure 12: MO PCA Plots for Small Classes T12, T13, T14, T15.

B PI1LOT EXPERIMENTS: PARAMETERS FOR EXAMPLE SEARCH

In developing the AutoGeTS framework described in Section [3.1} we found that
parameters for both the LLM’s synthetic sample generation and the three example
selection strategies significantly influenced AutoGeTS performance. To determine
optimal parameter sets and understand their impact, we conducted extensive exper-
iments on each component.

Given that our objectives for each retrained model were to maximize both overall
accuracy and class-specific recall for the chosen class, we employed the Hypervol-
ume (HV) indicator (Zitzler & Thiele| (1999); Jiang et al. (2014)) to evaluate per-
formance. This indicator allows us to compare results across different parameter
configurations by considering both class-based recall and overall accuracy simulta-
neously.

We implemented 5-fold cross-validation throughout our experiments. In addition to
the HV indicator, we tracked the best accuracy and best class recall across all five
folds as supplementary performance metrics.

B.1 SYNTHETIC DATA GENERATION PARAMETER EXPERIMENTS

The input prompt to the LLM for generating synthetic samples follows this format:

"Generate ' + str(num) + ’ lines of the data similar to this format data:
+ ’ meta_data[’text’].values[i] ' + ’'put & at the end of each line’

where 'num’ is the number of generated samples, meta_data is the input data, and
1’ is the data index number. We investigated the impact of varying 'num’ on Auto-
GeTS performance.

17

Under review as a conference paper at ICLR 2025

Parallel Coordinates Plot for Number of Synthetic Samples Parameter Tests (3 Topics Overlay)
Sintumber ae

oooz| W\ | oooi

uuuuuuuuuu

oss32
olsss2
0.0008

aaaaaa

e

N osses

o264

0.0004

Figure 13: Synthetic Data Generation Parameter Experiments Overview.

Figure [13] presents a parallel coordinate plot of synthetic text generation parameter
experiments. The study utilized the Hierarchical Sliding Window approach, focus-
ing on classes T2 (orange, largest class), T9 (blue, median size class), and T13
(green, smallest class). The primary parameter under investigation, ’Syn Number,”
represents the number of synthetic text samples generated for each selected origi-
nal text data point. The primary criterion, HV, appears as both the second-left and
rightmost coordinates in the plot.

The results indicate that Syn Number = 5 consistently yielded the best Hypervol-
ume for all three classes among the tested values. Consequently, we adopted the
generation of five synthetic samples per selected original data point for all subse-
quent experiments.

B.1.1 PCA PROJECTION OF SYNTHETIC SAMPLES

To verify the effectiveness of generated synthetic samples in addressing class im-
balance and data scarcity, we projected these data using the same fitted vectorizer
and PCA model used for the original data.

PCA_1 vs PCA_2 - Class: T12 PCA_1 vs PCA_2 - Class: T13 PCA_1 vs PCA_2 - Class: T14 PCA_1 vs PCA_2 - Class: T15

~, 0.2
g 0.0
-0.2
-0.4| y y y
—o.s—o.4—o.i 0.0 0.2 0.4 0.6 —o.s—o.4—o.io.o 0.2 0.4 0.6 —0.6—0.4—0.’2 0.0 0.2 0.4 0.6 —0.6—0.4—0.’2 0.0 0.2 0.4 0.6
PCA_1 PCA_1 PCA_1 PCA_1
(@) T12. (b) T13. (c) T14. (d) T15.
Other Classes @® Correctly Classified Incorrectly Classified Synthetic Samples

Figure 14: MO PCA Plots with Synthetic Samples for Small Classes T12, T13, T14, T15.

Figure [14] presents updated PCA plots for small classes T12, T13, T14, and T15.
The inclusion of synthetic samples significantly increased the number of colored
data points. Moreover, these additional points appear more densely clustered, sug-
gesting improvement on the previous data scarcity issues.

18

Under review as a conference paper at ICLR 2025

To illustrate the nature of the synthetic data generated, we present an example of an
original data example and its corresponding LLLM-generated synthetic samples. The
following listing shows the original Spanish text followed by five synthetic samples,
demonstrating how the LLM maintains the context and structure while introducing
variations in content:

Listing 1: Original data example and LLM-generated synthetic samples

Original Data Example:

phone_nmb

En el ticket REQ0026231 se le solicita acceso a unidades de red pero
sigue sin poder acceder y figura como resuelto, revisar por favor, la
usuaria lleva 2 meses con este problema

Synthetic Samples:
1. E1 cliente reporta que su cuenta de correo electronico ha sido
bloqueada, por favor revisar el caso REQ0027456.

2. Se solicita la instalacion de un software especifico en el equipo del
usuario, el ticket es REQ0028745.

3. El usuario indica que no puede imprimir desde su equipo, se necesita
revision del caso REQ0029367.

4. La usuaria reporta problemas con su conexion a internet, el ticket es
REQ0030172.

5. Se requiere la asignacion de permisos adicionales en el sistema para
el usuario, el caso es REQ0031298.

As evident from Listing [I] the synthetic samples maintain the overall structure of
a ticketing system entry while diversifying the reported issues, demonstrating the
LLM'’s ability to generate contextually relevant and varied data.

B.1.2 SYNTHETIC SAMPLES PERFORMANCES WITHOUT EXAMPLES SELECTION

To evaluate the potential of our generated synthetic samples in improving the text
classification model M0, we appended all generated synthetic samples to the train-
ing set and retrained the CatBoost model M0 for small classes T12, T13, T14, and
T15.

Tables 4] and [5] present the results of this experiment. We observed that class-based
performance often improved when synthetic samples for that class were appended,
demonstrating the potential of synthetic data. However, only T12 showed improve-
ment in overall performance. Notably, T13 failed to improve even its class-specific
performance.

These mixed results suggest that indiscriminate use of all generated synthetic sam-
ples may not consistently yield improvements. This observation led us to conclude
that a selective approach to choosing text examples for synthetic data generation is
necessary. Such selection consequently filters the generated samples to be appended
for retraining the text classification model.

Based on these findings, we developed three example selection strategies and con-
ducted parameter studies for each, which we present in the following sections.

19

Under review as a conference paper at ICLR 2025

Table 4: Performance of Retrained Models with T12 and T13 Synthetic Samples

Class A Balanced Accuracy A Recall A FI-Score
T12 T13 T12 T13 T12 T13
T1 v0.0014 v0.00IT | v0.0034 v0.0023 | v0.0006 v0.0009
T2 0.0036 v0.0033 0.0044 v0.0058 0.0053 v0.0040
T3 0.0015 v0.0003 0.0032 0.0011 0.0013 v0.0054
T4 0.0104 v0.0001 0.0214 0.0000 0.0064 v0.0016
T5 v0.0015 v0.0018 | v0.0038 v0.0038 0.0022 v0.0015
T6 v0.0021 0.0036 | v0.0027 0.0080 | v0.0102 v0.0003
T7 0.0023 v0.0039 0.0025 v0.0076 0.0161 v0.0065
T8 0.0046 v0.0104 0.0085 v0.0212 0.0144 v0.0101
T9 v0.0011 v0.0066 | v0.0036 v0.0144 0.0093 0.0014
T10 0.0094 0.0043 0.0179 0.0090 0.0192 0.0041
T11 0.0001 0.0000 0.0000 0.0000 0.0053 0.0000
T12 0.0376 v0.0234 0.0781 v0.0469 | v0.0497 v0.0364
T13 v0.0333 v0.0127 | v0.0667 v0.0222 | v0.0753 v0.1506
T14 0.0110 0.0040 0.0222 0.0074 0.0144 0.0184
T15 v0.0045 v0.0298 | v0.0085 Vv0.0598 | v0.0177 v0.0543
Overall 0.0015 v0.0023 0.0028 v0.0043 0.0028 v0.0043

Table 5: Performance of Retrained Models with T14 and T15 Synthetic Samples

Class A Balanced Accuracy A Recall A FI-Score
T14 T15 T14 T15 T14 T15
T1 v0.00IT v0.0004 | VvO. v0.0017 | v0.0003 0.0005
T2 v0.0014 v0.0039 | v0.0071 v0.0097 0.0011 v0.0030
T3 v0.0027 v0.0027 | v0.0054 v0.0043 | v0.0029 v0.0063
T4 v0.0071 0.0069 | v0.0142 0.0142 | v0.0071 0.0037
TS5 v0.0035 v0.0044 | v0.0075 Vv0.0094 | v0.0023 v0.0027
T6 0.0023 v0.0027 0.0054 v0.0054 | v0.0012 v0.0042
T7 0.0073 0.0023 0.0152 0.0051 0.0053 v0.0007
T8 v0.0080 v0.0104 | v0.0169 v0.0212 | v0.0013 v0.0101
T9 v0.0024 v0.0031 | v0.0072 v0.0072 0.0165 0.0047
T10 v0.0095 0.0016 | v0.0179 0.0030 | v0.0200 0.0039
T11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
T12 v0.0156 0.0001 | v0.0313 0.0000 | v0.0278 0.0122
T13 0.0000 v0.0111 0.0000 v0.0222 | 0.0000 v0.0243
T14 0.0135 v0.0259 0.0370 v0.0519 | v0.1219 v0.0388
T15 v0.0128 0.0219 | v0.0256 0.0513 | v0.0241 v0.1079
Overall | v0.0026 v0.0026 [v0.0049 v0.0049 | v0.0049 v0.0049

20

Under review as a conference paper at ICLR 2025

B.2 EXAMPLE SELECTION STRATEGIES PARAMETER EXPERIMENTS
B.2.1 SLIDING WINDOW (SW) PARAMETERS EXPERIMENTS

We investigated the parameters of the Sliding Window strategy. Figure [I5a|presents
an overview of the experimental results. The parameters under investigation are:

* Area Size: the dimensions of the area to which the sliding window is applied
* Num Seg: the number of segments/bins per dimension
* Window Size: the number of bins per window

These parameters are represented by the three leftmost coordinates in the plot. We

used the Hypervolume Indicator as the primary comparison metric, supplemented
by the maximum values of both objectives in each of the 5 cross-validation folds.

(a) Performances of Sliding Window Parameter
Experiments. (b) Sliding Window Top Results.

Figure 15: Sliding Window Parameter Experiments Overview and Top Results.

Figure [15b] highlights the top-performing parameter sets. The two best configu-
rations both used Number of Segments (Num Seg) = 16 and Window Size = 4.
Subsequent analysis focuses on verifying the effectiveness of these values and de-
termining the optimal Area Size.

(a) Performances of Num Seg = 16. (b) Performances of Window Size = 4.

Figure 16: Sliding Window Num Seg and Window Size Parameter Experiments.

Figure [16a] shows that Num Seg = 16 yields both top and suboptimal results,
with consistently good performance when Window Size ;, 1. Similarly, Figure [I6b|
demonstrates that Window Size = 4 produces good results when Num Seg # 4.
These findings confirm that Num Seg = 16 and Window Size = 4 are optimal
values among those tested.

Figures and compare the two Area Size values tested:

* FullSize: using the minimum and maximum values from the entire dataset
for each dimension

21

Under review as a conference paper at ICLR 2025

| . .
(a) Performances of Area Size = FullSize. (b) Performances of Area Size = TopicMinMax.

Figure 17: Sliding Window Area Size Parameter Experiments.

* TopicMinMax: using the minimum and maximum values only from the se-
lected topic/class

The results show no clear advantage for either option. Therefore, we selected
the Area Size that produced the higher hypervolume given Num Seg = 16 and
Window Size = 4. In conclusion, the experimentally determined optimal parame-
ter set for the Sliding Window strategy is:

* Area Size = TopicMinMax
* Num Seg = 16
* Window Size =4

B.2.2 HIERARCHICAL SLIDING WINDOW (HSW) PARAMETERS EXPERIMENTS

We investigated the parameters of the Hierarchical Sliding Window (HSW) strategy.
Figure [18a presents an overview of the parameter experiments. The parameters
under investigation are:

* Area Size

* Window Size

* Level 0 Num Seg

* Level 1 Num Seg

* Level 2 Num Seg (using a 3-level structure for HSW)

These parameters are represented by the five leftmost coordinates in the plot. We
used the Hypervolume Indicator as the primary comparison metric, supplemented
by the maximum values of both objectives in each of the 5 cross-validation folds.

Figure [I8b|highlights the top two parameter sets, both using Area Size = TopicMin-
Max and Window Size = Half of each level’s Num Seg. Subsequent analysis focuses
on verifying these parameter choices and determining optimal Num Seg values for
each level.

Figures and compare FullSize and TopicMinMax Area Size values. While
both show variable performance, TopicMinMax yields more top results, leading to
its selection.

Figures and compare the Window Size of Half and 1. Window Size = Half
clearly outperforms, leading to its selection.

22

Under review as a conference paper at ICLR 2025

/ | h » '
V \ N A
y NIy A /
o v \ \

(a) Performances of Hierarchical Sliding Window j : i
Parameter Experiments. (b) Hierarchical Sliding Window Top Results.

Figure 18: Hierarchical Sliding Window Parameter Experiments Overview and Top Results.

[I } / I
(a) Performances of Area Size = FullSize. (b) Performances of Area Size = TopicMinMax.

Figure 19: Hierarchical Sliding Window Area Size Parameter Experiments.

| . » \ ERY
(a) Performances of Window Size = Half. (b) Performances of Window Size = 1.

Figure 20: Hierarchical Sliding Window Window Size Parameter Experiments.

(a) Performances of Level 0 Num Seg = 8. (b) Performances of Level 0 Num Seg = 2.

Figure 21: Hierarchical Sliding Window Level 0 Number of Segments Parameter Experiments.

23

Under review as a conference paper at ICLR 2025

Figures [21a] and [2Tb] compare Level 0 Num Seg values of 8 and 2, when Window
Size = Half. Num Seg = 8 shows more consistent good performance, leading to its
selection.

(a) Performances of Level 1 Num Seg = 8. (b) Performances of Level 1 Num Seg = 4.

Figure 22: Hierarchical Sliding Window Level 1 Number of Segments Parameter Experiments.

Figures[22a] and 22b|compare Level 1 Num Seg values of 8 and 4. While both yield
top results, Num Seg = 4 shows better overall performance, leading to its selection.

Figure 23: Performances of Level 2 Num Seg = 2.

Figure[23|shows results for Level 2 Num Seg = 2. Performance is consistently good
when Level 1 Num Seg # 2, aligns with our previous parameter choices. Therefore,
with Level 0 Num Seg = 8 and Level 1 Num Seg = 4, Level 2 Num Seg = 2 will
provide top results.

In conclusion, the optimal parameter set for the Hierarchical Sliding Window strat-
egy is:

* Area Size = TopicMinMax

* Window Size = Half of each Level’s Num Seg
* Level 0 Num Seg =8

* Level 1 Num Seg =4

* Level 2 Num Seg =2

24

Under review as a conference paper at ICLR 2025

B.2.3 GENETIC ALGORITHM (GA) PARAMETERS EXPERIMENTS

We investigated the parameters for the Genetic Algorithm (GA) strategy. Figure
presents an overview of the parameter experiments. The parameters under investi-
gation are:

* Population Size and Selection Size

¢ Crossover Rate and Initial Mutation Rate

These parameters are represented by the four leftmost coordinates in the plot. We
used the Hypervolume Indicator as the primary comparison metric, supplemented
by the maximum values of both objectives in each of the 5 cross-validation folds.

]
Parallel Coordinates Plot for GA Parameter Tests

popse

Figure 24: Genetic Algorithm Parameters Experiment Overview.

(a) Performances of Population and Selection (b) Performances of Crossover and Initial Muta-
Sizes of 20 and 20. tion rates of 0.7 and 0.3.

Figure 25: Genetic Algorithm Parameters Experiments.

Figure 254 illustrates the performance when both population size and selection size
are set to 20. These results consistently outperform the alternative configuration of
population size 20 and selection size 10.

Figure 25b shows the performance with a crossover rate of 0.7 and an initial mu-
tation rate of 0.3. This configuration demonstrates superior performance compared
to the alternative rates of 0.9 and 0.1, respectively, when population and selection
sizes are held constant.

Based on these experiments, we determined the optimal parameter set for the Ge-
netic Algorithm strategy:

25

Under review as a conference paper at ICLR 2025

* Population Size = 20
¢ Selection Size = 20
¢ Crossover Rate = 0.7

¢ Initial Mutation Rate = 0.3

C ALGORITHMS
C.1 EXAMPLES SUBSET SELECTION STRATEGIES

Based on the parameter experiments reported in Appendix [B] we finalized the work-
flows for the three example selection algorithms. To complement the description
provided in Section [3.3] we present here the detailed workflows for the Hierarchi-
cal Sliding Window (HSW) and Genetic Algorithm (GA) strategies.

Algorithm 1 Hierarchical Sliding Window Selection Strategy

Require: a_s — x and y range of each PCA plot; n_s — list of number of segments for each level,;
w_s — list of window sizes for each level; data_syn — synthetic data; class — the selected class;
[—level of hierarchical sliding window
Ensure: Best windows found on each level
1: for each plot in PC' A_plots do
2: Initialize [< 0
3: Initialize selected_windows + {a_s}
4: while ! < length of n_s and not terminated do
5: best_windows < {}
6 for each area in selected_windows do
7 Perform sliding window on area using n_s[l] and w_s|[l]
8 for each window in sliding window do

9: Retrieve data dots from window belonging to class
10: syn_samples <— AutoGeTS(data dots, data_syn)
11: Train classification model using syn_samples
12: Evaluate model and compute performance metric J' (1)
13: Record performance metric as the score for window
14: end for
15: Add window with maximum score to best_windows
16: end for
17: selected_windows < best_windows
18: l<—1+1
19: if termination condition met then
20: Set terminated to True
21: end if
22: end while
23: end for

24: return selected_windows

Algorithm |I{ outlines the Hierarchical Sliding Window (HSW) selection strategy.
This algorithm iteratively refines the search space across multiple levels, efficiently
identifying optimal windows for synthetic data generation.

Algorithm [2] details the Genetic Algorithm (GA) selection strategy. This evolu-
tionary approach uses fitness-based selection, crossover, and mutation operations
to optimize the set of data examples used for synthetic data generation.

26

Under review as a conference paper at ICLR 2025

Algorithm 2 GA Selection-Generation-Retraining Approach

Require: n — population size; gm.x — maximum generations; F'(S) — fitness score from objective
function; mutation — representation mutation function; crossover — representation crossover
function; p¢r, — crossover probability; pmy — mutation probability.

Ensure: The final individual(s) maximises the fitness score

1: Py < randomly generated population of selected data examples of size n with priority value
based chromosome representation
2: Fy + {F(PR[i]) | i € 1,...,n} {Evaluate initial population fitness through AutoGeTS pro-
cess}
3: G < 0 {Generation counter}
4: while G < gmax do
5: Select individuals for the mating pool using Lexicase and Clustered tournament selection
based on fitness score
6: P’ < Generate offspring using weight mapping crossover and adaptive polynomial mutation
with probability pcr, and ppy
7: Evaluate offspring: F' < {F(P'[i]) | i € 1,...,n} {Evaluate new population}
8: Combine parent and offspring populations: R + Pg U P’
9: Select the next generation Pg; from R using elitism.

10: G < G + 1 {Increment generation counter }

11: end while

12: Return the best set(s) of data examples in Pg based on fitness score

C.2 ENSEMBLE MULTI-CLASS ALGORITHMS

This section presents detailed algorithms for the ensemble strategies outlined in
Section These algorithms are designed to address specific business require-
ments identified in Section

Algorithm 3| addresses Requirement 1, focusing on improving the performance of
underperforming classes. Algorithm [] targets Requirement 2, aiming to enhance
overall classification performance. Algorithm [5| addresses Requirement 3, which
prioritizes improving the performance of a specific important class.

Each algorithm iteratively utilizes the AutoGeTS process, incorporating insights
from our experimental results, including the strategy-objective combinations from
Table [3|and class relationships and class order from Figures [6b|and [6a]

D FIXED-TIME EXPERIMENTS

D.1 FiXED-TIME EXPERIMENTS: IMPROVING LOCAL VS GLOBAL METRIC

Following our analysis of the Performance Improvement Overview in Section 4.2]
and before comparing strategies and objectives in Section #.3] we investigated
whether AutoGeTS could simultaneously improve both class-specific and overall
performance, and to what extent these goals might be contradictory. To this end,
we compared models trained with synthetic data that achieved maximum improve-
ments in either the local metric (Class Balanced Accuracy) or the global metric
(Overall Balanced Accuracy) for all 15 classes.

27

Under review as a conference paper at ICLR 2025

Algorithm 3 Requirement 1: Improve Bad Performing Classes

Require: Classes with performance metrics, AutoGeTS process, GA parameters
Ensure: Improved classification model for bad-performing classes

1: Sort classes by class size in ascending order

2: for Iteration 4, each class C; with class balanced accuracy < 0.8 do

3: Select strategy-objective that best improves C; balanced accuracy from Lookup Table
4: Apply AutoGeTS to C;
5: if improvement achieved then
6: Record maximum improvement and corresponding model m for C;
7: if exist M maintain improvement in each C, ; balanced accuracy by at least 50% then
8: Select model m from M that best improves C;’s balanced accuracy
9: else
10: Terminate algorithm
11: end if
12: Append the synthetic sample from m to the training set
13: else
14: Terminate algorithm
15: endif
16: end for

Algorithm 4 Requirement 2: Improve Overall Performance

Require: Classes with performance metrics, AutoGeTS process, GA parameters
Ensure: Improved overall classification performance
1: while overall performance can be improved do
2: Select a class C' in descending order of improving overall performance based on figure [6b]
3: Select strategy-objective combination that best improves global metrics for C' from Lookup
Table[3]
4: Apply AutoGeTS to C'
5: Record maximum improvement and corresponding model m for C
6: Append the synthetic sample from m to the training set
7. if overall performance not improved then
8: Terminate algorithm
9: endif
0

1 end while

Algorithm 5 Requirement 3: Improve Important Class

Require: Classes with performances, AutoGeTS process, GA parameters, Important class /C
Ensure: Improved important class performance
1: Identify related classes RC of IC' from figure [6a]
2: Sort IC and RC in descending order of JC' improvement according to figure [6a}
3: for iteration %, each class IC; or RC in the order do
4: Apply AutoGeTS to IC; or RC with the strategy-objective combination that best improves
its local metrics according to Lookup Table[3]
5: Record maximum improvement in /C;’s class performance and corresponding model m
6: Append the synthetic sample from m to the training set
7. if IC performance not improved then
8: Terminate algorithm
9: endif
0

10: end for

28

Under review as a conference paper at ICLR 2025

< 0.] < 0. < 0.

o 0.2 o 0.2 o 0.2

S o S o i

g-01 g-01 g-01

- 0 2 4 6 8 1012 ~— 0 2 4 6 8 1012 ~— 0 2 4 6 8 10 12
Imp: TBA (%) Imp: TBA (%) Imp: TBA (%)
Class T2 Class T1 Class T3

e 05 e 05 e 05

< 3 iR gt

5 03 5 03 5 03

S B S o I

g-01 g-01 . g-01

- 0 2 4 6 8 1012 ~— 0 2 4 6 8 1012 ~— 0 2 4 6 8 10 12
Imp: TBA (%) Imp: TBA (%) Imp: TBA (%)
Class T5 Class T7 Class T6

5 02 = 02 . 5 02

o 01 . o 01 o 01 .

5 0.0 5 0.0 5 0.0

£-01 £-01 £-01

- 0 2 4 6 8 1012 ~— 0 2 4 6 8 1012 ~— 0 2 4 6 8 10 12
Imp: TBA (%) Imp: TBA (%) Imp: TBA (%)
Class T10 Class T9 Class T4

5 03 5 03 5 03

S B S o & -

g-01 . g-01 i g-01

- 0 2 4 6 8 1012 ~— 0 2 4 6 8 1012 ~— 0 2 4 6 8 10 12
Imp: TBA (%) Imp: TBA (%) Imp: TBA (%)
Class T8 Class T14 Class T15

24 2 i SR

s 02 ° & 02 3 02

2 0 2 0 - S8 :

g-01 g-01 g-01

- 0 2 4 6 8 1012 ~— 0 2 4 6 8 1012 ~— 0 2 4 6 8 10 12
Imp: TBA (%) Imp: TBA (%) Imp: TBA (%)
Class T11 Class T12 Class T13

Figure 26: Models Found with Maximum Improvements in Class Balanced Accuracy or Overall
Balanced Accuracy for each of 15 Classes.

Analysis of Figure [26] reveals significant insights into AutoGeTS’s performance.
When optimizing for local metrics, 11 out of 15 classes (excluding T1, T7, T8, and
T14) showed improvements without negatively impacting the global metric. Only
T7 and T8 exhibited relatively larger decreases (—0.1%) in global performance
when local performance was maximized. Similarly, when optimizing for global
metrics, 11 out of 15 classes (excluding T1, T9, T11, and T14) demonstrated im-
provements without compromising local performance. In this case, only T9 showed
a relatively larger decrease (-1%) in local performance when global performance
was maximized. These observations demonstrate AutoGeTS’s capability to simul-
taneously improve both local and global metrics in the majority of cases, confirming
its effectiveness in addressing both class-specific and overall performance goals.

29

Under review as a conference paper at ICLR 2025

However, the instances where trade-offs occurred between local and global perfor-
mance suggest the need for future research into advanced optimization methods.
Such research could explore both example selection strategies and objective func-
tions capable of optimizing multiple objectives simultaneously, potentially elimi-
nating these trade-offs and further enhancing AutoGeTS’s performance across all
classes.

D.2 FiXED-TIME EXPERIMENTS: PERFORMANCE TRAJECTORIES OVER RETRAINING TIME

Following the comparison of the three example selection strategies in Section 4.3
we further analyzed their performance improvements with respect to retraining
time. Four experiments were conducted, each maximizing a different metric: Class
Recall, Class Balanced Accuracy, Overall Balanced Accuracy, and Overall F1-
Score. The three example search strategies and 15 classes served as independent
variables, with a constraint of 1 hour total GPU running time.

Figure [27| compares improvements in Class Recall when maximizing Class Recall
is the optimization objective. Figure[28] compares improvements in Class Balanced
Accuracy when maximizing Class Balanced Accuracy is the optimization objective.
Figure 29| compares improvements in Overall Balanced Accuracy when maximiz-
ing Overall Balanced Accuracy is the optimization objective. Figure 30| compares
improvements in Overall F1-Score when maximizing Overall F1-Score is the opti-
mization objective.

For these class-specific metrics, we observed that HSW often achieves its best or
near-best improvements within the first 1/3 of training time, especially for classes
where it performs best. GA typically reaches its peak performance within the first
1/3 of retraining time, except for T14 and T15. However, for these classes, GA
outperforms other strategies even before reaching its best performance. These ob-
servations confirm the computational efficiency of HSW and GA strategies.

SW also often achieves its best performance around 1/3 of retraining time. But for
classes where it outperforms other strategies (e.g., TS and T10), SW only surpasses
others quite late, starting from around 2/3 or even 4/5 of retraining time. This
reflects both its advantage in avoiding plateaus and its computational inefficiency
due to its brute-force nature.

Figure [30| compares improvements in Overall F1-Score when maximizing Overall
F1-Score is the optimization objective.

For these global metrics, we observed that all three strategies often required more
than 1/3 of retraining time to reach their best or near-best performance, especially
for Overall Balanced Accuracy. This suggests improving global metrics would be
more computationally complex than improving local metrics for all three strategies,
as it would require a more synergistic effect.

When improving global metrics, GA often leads in performance gain from early
on (around 1/3 retraining time) for classes where it obtains the largest improve-
ment. SW and HSW show more variable timing in achieving leading performance,
ranging from early to late in the retraining process. GA’s performance pattern con-

30

Under review as a conference paper at ICLR 2025

08
:
f0.6
£
0.4
0.5 1000 2000 3000
Cumulative Retraining Time / Seconds
Class T2
(08
:
06
E
0.4
0.5 1000 2000 3000
Cumulative Retraining Time / Seconds
Class TS5
08
i
EO'G =
i
0.4
0.% 1000 2000 3000
Cumulative Retraining Time / Seconds
Class T10
1.0 s, timiz pic ", Comparing in "T8 Recall”
08
s
{06
:
0.4
0.5 1000 2000 3000
Cumulative Retraining Time / Seconds
Class T8
08
:
f0.6
£
0.4
0.5 1000 2000 3000

Cumulative Retraining Time / Seconds
Class T11

= === Max SW we e Max HSW

m— u Max GA

08
:
{06
£
0.4
0.% 1000 2000 3000
Cumulative Retraining Time / Seconds
Class T'1
Lo ™ R —_—
20.8‘:'_ e ——
:
206
:
0.4
0.% 1000 2000 3000
Cumulative Retraining Time / Seconds
Class T7

Improvement
g
o

<
s

0%

1000 2000

Cumulative Retraining Time / Seconds

Class T9

3000

08
:
206
£
04
0.% 1000 2000 3000
‘Cumulative Retraining Time / Seconds
Class T3
08
E &
206
:
f0.4
0.5 1000 2000 3000
Cumulative Retraining Time / Seconds
Class T6
N
:
206
£
04
0.% 1000 2000 3000

Cumulative Retraining Time / Seconds

Class T4

,0.8 08
: :
50,6 2z 206
‘E" E Ve
0.4 04
0.% 1000 2000 3000 0.5 1000 2000 3000
Cumulative Retraining Time / Seconds ‘Cumulative Retraining Time / Seconds
Class T14 Class T15
08
:
206
£
0.4p=——r==
0.2 1000 2000 3000 0.5 1000 2000 3000
Cumulative Retraining Time / Seconds Cumulative Retraining Time / Seconds
Class T12 Class T13
avg SW avg HSW avg GA Benchmark

Figure 27: Fixed Time, Class Recall as Objective, Comparing on Class Recall Improvement: each
time series plot has six lines. SW max, HSW max, GA max, SW avg, HSW avg, GA avg.

31

Under review as a conference paper at ICLR 2025

- 1o : , pgommm——
09 09 09
: : :
508 0.8 50,8
H ¢ i
0.7 0.7 f0.7
08 1000 2000 3000 08 1000 2000 3000 08 1000 2000 3000
Cumulative Retraining Time / Seconds Cumulative Retraining Time / Seconds Cumulative Retraining Time / Seconds
Class T2 Class T1 Class T3
T " T . g S - fompd.
09 e — 09
E E g peeeyers;
508 f08 f08"
H H i
f07 f07 f07
08 1000 2000 3000 08 1000 2000 3000 08 1000 2000 3000
Cumulative Retraining Time / Seconds Cumulative Retraining Time / Seconds Cumulative Retraining Time / Seconds
Class T5 Class T7 Class T6
¥o , re : , - .
(09 09 0 9=
: : :
50,8 f0.8 5.8
07 07 07
04 1000 2000 3000 08 1000 2000 3000 08 1000 2000 3000
‘Cumulative Retraining Time / Seconds Cumulative Retraining Time / Seconds Cumulative Retraining Time / Seconds
Class T10 Class T9 Class T4
T'0 ' T:0 inkd o s i A i o i . gonm
09 09 09
0.8 £0.8 grmumen 0.8
: i i
f07 f07 f07
08 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Cumulative Retraining Time / Seconds Cumulative Retraining Time / Seconds Cumulative Retraining Time / Seconds
Class T8 Class T14 Class T15
L0 ; - T 7 " - To '
E0.9 E0.9 E0,9
: : :
f08) 08
0‘7 0.7 0.7 Pmdapiensiarrirrrin
04 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Cumulative Retraining Time / Seconds Cumulative Retraining Time / Seconds Cumulative Retraining Time / Seconds
Class T11 Class T12 Class T13
= === Max SW s Max HSW e u Max GA avg SW avg HSW avg GA Benchmark

Figure 28: Fixed Time, Class Balanced Accuracy as Objective, Comparing on Class Balanced Ac-
curacy Improvement: each time series plot has six lines. SW max, HSW max, GA max, SW avg,
HSW avg, GA avg.

32

Under review as a conference paper at ICLR 2025

s ¢]
£ £ *0.920
0 1000 2000 3000 0 000 2000 3000 0 000 2000 3000
Cumulative Retraining Time / Seconds Cumulative Retraining Time / Seconds Cumulative Retraining Time / Seconds
Class T2 Class T1 Class T3
N - ‘
,0.9257 ,0. 0,925, .t
: : : o
i i i
E E B i
0.920 0.9207
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Cumulative Retraining Time / Seconds Cumulative Retraining Time / Seconds Cumulative Retraining Time / Seconds

Class T7 Class T6

.................................... RN A —

. . 092577

§ ¢ | §

£ £ £

70.920 70.920 70.920

0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000

Cumulative Retraining Time / Seconds Cumulative Retraining Time / Seconds Cumulative Retraining Time / Seconds
Class T10 Class T9 Class T4

) 0 09257
¢ 8 §
i : :
: ; £0.920
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Cumulative Retraining Time / Seconds Cumulative Retraining Time / Seconds Cumulative Retraining Time / Seconds

Class T8 Class T14 Class T15

‘0.925%' . ,0.925 |

P i ¢

£ £ i £

70.920 "0.920 70.920

0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Cumulative Retraining Time / Seconds. Cumulative Retraining Time / Seconds Cumulative Retraining Time / Seconds.
Class T11 Class T12 Class T13
= === Max SW e wes Max HSW m—— u Max GA avg SW avg HSW avg GA Benchmark

Figure 29: Fixed Time, Overall Balanced Accuracy as Objective, Comparing on Overall Balanced
Accuracy Improvement: each time series plot has six lines. SW max, HSW max, GA max, SW avg,
HSW avg, GA avg.

33

Under review as a conference paper at ICLR 2025

087" — SV — . . 087" S .

g . E B g . gO.SGE’JJ 3

£0. £0. £0.85

0.84 1000 2000 3000 0.84 1000 2000 3000 0.84 1000 2000 3000
Cumulative Retraining Time / Seconds Cumulative Retraining Time / Seconds Cumulative Retraining Time / Seconds
Class T2 Class T1 Class T3

087 S s 0.g7" s g7 v see: S

£0. 20,86 £0.86

H E E H

i i P

£0.85; £0.85" £0.85/

0.84 1000 2000 3000 0.84 1000 2000 3000 0.84 1000 2000 3000
Cumulative Retraining Time / Seconds Cumulative Retraining Time / Seconds Cumulative Retraining Time / Seconds
Class T Class T7 Class T6

0.87™ “overall F1 scorer, in “Overall F1 score” 0.87™ “overallF1 Score’, in“Overall F1 0.87™ “overall F1 score", in “Overall F1 Score*

g . §0.86éir_ §0.86:-'_--—--

H P H

£0.85 £0.85/ £0.85

0.84 1000 2000 3000 0.84 1000 2000 3000 0.84 1000 2000 3000
Cumulative Retraining Time / Seconds Cumulative Retraining Time / Seconds Cumulative Retraining Time / Seconds
Class T10 Class T9 Class T4

087 I T — st v R et et st R

£ L. £

£0.85 f0.

0.84 1000 2000 3000 0.84 1000 2000 3000 0.84 1000 2000 3000
Cumulative Retraining Time / Seconds Cumulative Retraining Time / Seconds Cumulative Retraining Time / Seconds
Class T8 Class T14 Class T15

086, 086, 0

¢ ¢ ¢

£0.85 £0.85 £0.85

1000 2000

Cumulative Retraining Time / Seconds
Class T11

= = == Max SW

3000

w = Max HSW

= Max GA

1000 2000

Cumulative Retraining Time / Seconds
Class T12

avg SW

3000

avg HSW

1000 2000

Cumulative Retraining Time / Seconds
Class T13

avg GA

3000

Benchmark

Figure 30: Fixed Time, Overall F1-Score as Objective, Comparing on Overall F1-Score Improve-
ment: each time series plot has six lines. SW max, HSW max, GA max, SW avg, HSW avg, GA

avg.

34

Under review as a conference paper at ICLR 2025

firms its evolutionary nature, demonstrating an ability to maintain and exploit good
solutions once found.

35

	Introduction
	Related Work
	Methods
	AutoGeTS Architecture and Workflow
	Objectives for Model Optimization
	Strategies for Example Selection
	Sliding Window (SW)
	Hierarchical Sliding Window (HSW)
	Genetic Algorithm (GA)

	Ensemble Algorithm

	Experiments and Results
	Experiment Setup
	Performance Improvements Overview
	Comparison of Example Selection Strategies and Optimization Objectives
	Pareto Analysis for Representative Classes

	Ensemble Algorithm and Further Experimentation
	Summary of Strategy-Objective Combinations
	Local and Global Metrics Improvement Across Classes
	Ensemble Case Study Results for R3

	Conclusions
	Pilot Experiments: Parameter for ML Training
	Benchmark M0 Parameters Experiments
	Further Analysis on M0

	Pilot Experiments: Parameters for Example Search
	Synthetic Data Generation Parameter Experiments
	PCA Projection of Synthetic Samples
	Synthetic Samples Performances without Examples Selection

	Example Selection Strategies Parameter Experiments
	Sliding Window (SW) Parameters Experiments
	Hierarchical Sliding Window (HSW) Parameters Experiments
	Genetic Algorithm (GA) Parameters Experiments

	Algorithms
	Examples Subset Selection Strategies
	Ensemble Multi-Class Algorithms

	Fixed-Time Experiments
	Fixed-Time Experiments: Improving Local vs Global Metric
	Fixed-Time Experiments: Performance Trajectories over Retraining Time

