
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DS-STAR: DATA SCIENCE AGENT VIA ITERATIVE
PLANNING AND VERIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Data science, which transforms raw data into actionable insights, is critical for
data-driven decision-making. However, these tasks are often complex, involving
steps for exploring multiple data sources and synthesizing findings to deliver in-
sightful answers. While large language models (LLMs) show significant promise
in automating this process, they often struggle with heterogeneous data formats
and generate sub-optimal analysis plans, as verifying plan sufficiency is inherently
difficult without ground-truth labels for such open-ended tasks. To overcome
these limitations, we introduce DS-STAR, a novel data science agent. Specifically,
DS-STAR makes three key contributions: (1) a data file analysis module that
automatically explores and extracts context from diverse data formats, including
unstructured types; (2) a verification step where an LLM-based judge evaluates
the sufficiency of the analysis plan at each stage; and (3) a sequential planning
mechanism that starts with a simple, executable plan and iteratively refines it
based on the DS-STAR’s feedback until its sufficiency is verified. This iterative
refinement allows DS-STAR to reliably navigate complex analyses involving di-
verse data sources. Our experiments show that DS-STAR achieves state-of-the-art
performance across three challenging benchmarks: DABStep, KramaBench, and
DA-Code. Moreover, DS-STAR particularly outperforms baselines on hard tasks
that require processing multiple data files with heterogeneous formats.

Data

Machine Learning
Predict health outcomes of horses.

Query

What percentage of the transactions 
are made using credit cards?

Draw a bar chart showing the 
number of people in each age group.

Data Wrangling

Data Insight

Visualization

import pandas as pd

payments_df = pd.read_csv('data/payments.csv')

merchant_data_df = pd.read_json('data/merchant_data.json')

fees_df = pd.read_json('data/fees.json')

merchant_name = 'Rafa_AI'

target_year, start_day_of_march, end_day_of_march = 2023, 60, 90

rafa_ai_march_transactions = payments_df[

   (payments_df['merchant'] == merchant_name) &

   (payments_df['year'] == target_year) &

   (payments_df['day_of_year'] >= start_day_of_march) &

   (payments_df['day_of_year'] <= end_day_of_march)

]

rafa_ai_merchant_info = 

   merchant_data_df[merchant_data_df['merchant'] == merchant_name]

merged_df = pd.merge(

   rafa_ai_march_transactions, rafa_ai_merchant_info,

   on='merchant', how='left')

… # Full code omitted due to the length

Solution Code

Outputs

Clean the dataset by deleting 
records with null values.

(a) Data Science Tasks (b) Experiment Summary

Figure 1: (a) Data science tasks require processing data files in various formats (e.g., csv, txt, xlsx,
md) to answer user queries, such as data analysis for extracting useful insights or predictive tasks
using machine learning. Data science agents are designed to accomplish this by writing code scripts
(e.g., Python) and answering based on the output from their execution. In addition to the solution
code, the output may include a trained model for prediction tasks, processed databases, text-formatted
answers, visual charts, and more. (b) We report normalized accuracy (%) for both easy (answer can
be found within a single file) and hard (requires processing multiple files) tasks in the DABStep,
KramaBench, and DA-Code benchmarks. DS-STAR consistently and significantly outperforms
competitive baselines, particularly in challenging hard tasks, showing DS-STAR’s superiority in
handling multiple data sources in heterogeneous formats.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

The data science, which transforms raw data into actionable insights, is critical to solving real-world
problems (De Bie et al., 2022; Hassan et al., 2023); for instance, businesses rely on insights extracted
from data to make crucial directional decisions (Sun et al., 2018; Sarker, 2021). However, the data
science workflow is often complex, requiring deep expertise across diverse fields such as computer
science and statistics (Zhang et al., 2023; Hong et al., 2024). This workflow involves a series of time-
consuming tasks (Zhang et al., 2024; Martin Iglesias, 2025), ranging from understanding distributed
documents to intricate data processing and statistical analyses (see Figure 1).

To simplify this demanding workflow, recent research has explored using large language models
(LLMs) as autonomous data science agents (Hong et al., 2024). These agents aim to translate natural
language questions directly into functional code that generates corresponding answers (Ouyang
et al., 2025; Wu et al., 2023; Yang et al., 2025; Yao et al., 2023). While representing significant
advancements, current data science agents face several challenges that limit their practical utility and
impact. A primary limitation is their predominant focus on well-structured data, such as relational
databases composed of CSV files (Pourreza et al., 2024; Yu et al., 2018; Li et al., 2024). This narrow
scope neglects the wealth information available in the heterogeneous data formats encountered in
real-world scenarios, which can range from JSON to unstructured text and markdown files (Lai et al.,
2025). Furthermore, as many data science tasks are framed as open-ended questions where ground-
truth labels do not exist, verifying an agent’s reasoning path is a non-trivial challenge. For example,
most agents, like Data Interpreter (Hong et al., 2024), terminate their process upon successful code
execution; however, executable code does not always guarantee a correct answer. Consequently, this
lack of robust verification often leads an agent to adopt a sub-optimal plan for solving the given task.

To address these limitations, we introduce DS-STAR, a novel agent that tackles data science problems
by generating solution code through a robust, iterative process of planning and verification. The
proposed DS-STAR framework consists of two key stages. First, to ensure adaptability across
diverse data types, DS-STAR automatically analyzes all files within a given directory, generating
a textual summary of their structure and content. This summary then serves as a crucial context
for the DS-STAR’s approach to the given task. Second, DS-STAR enters a core loop of planning,
implementation, and verification. It begins by formulating a high-level plan, implementing it as a
code script, and then verifying to solve the problem. Notably, for verification, we propose using an
LLM-based judge (Gu et al., 2024; Zheng et al., 2023) that is prompted to explicitly evaluate whether
the current plan is sufficient to solve the problem. If the verification fails (i.e., the judge determines
the plan insufficient), DS-STAR refines its plan by adding or modifying steps and repeats the process.
Crucially, rather than creating a complete plan at once, our agent operates sequentially, reviewing the
results from each intermediate step before building upon them. 1 This iterative loop continues until a
satisfactory plan is verified, at which point the corresponding code is returned as the final solution.

We validate the effectiveness of our proposed DS-STAR through comprehensive evaluations on
a suite of established data science benchmarks. These benchmarks, including DABStep bench-
mark (Martin Iglesias, 2025), KramaBench (Lai et al., 2025), and DA-Code (Huang et al., 2024) are
specifically designed to assess performance on complex data analysis tasks (e.g., data wrangling,
machine learning, visualization, exploratory data analysis, data manipulation, etc) involving multiple
data sources and formats (see Section 4). The experimental results demonstrate that DS-STAR sig-
nificantly outperforms existing state-of-the-art methods across all evaluated scenarios. Specifically,
compared to the best alternative, DS-STAR improves accuracy from 41.0% to 45.2% on the DABStep
benchmark, from 39.8% to 44.7% on KramaBench, and from 37.0% to 38.5% on DA-Code.

The contributions of this paper can be summarized as follows:

• We introduce DS-STAR, a novel data science agent which operates on data with various formats
and on various tasks like data analysis, machine learning, visualization, and data wrangling, etc.

• We propose an LLM-based verification module that judges the sufficiency of a solution plan.

• We develop an iterative refinement strategy, enabling DS-STAR to sequentially build its solution.

• We provide a comprehensive evaluation on challenging benchmarks, showing DS-STAR’s efficacy.

1This mirrors the interactive process of an expert using a Jupyter notebook to observe interim results.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

LLM agents. Recent advancements in LLMs have spurred significant research into autonomous
agents designed to tackle complex and long-horizon tasks. A key strategy employed by these
multi-agent systems is the autonomous decomposition of a main objective into a series of smaller,
manageable sub-tasks, which can be delegated to sub-agents. General-purpose agents, such as
ReAct (Yao et al., 2023), HuggingGPT (Shen et al., 2023), and OpenHands (Wang et al., 2024), utilize
external tools to reason, plan, and act across a wide range of problems. Building on these foundational
capabilities, research has increasingly focused on specialized domains such as Voyager (Wang et al.,
2023) for navigating the Minecraft environment and AlphaCode (Li et al., 2022) for performing
sophisticated code generation. Furthermore, DS-Agent (Guo et al., 2024), AIDE (Jiang et al., 2025),
and MLE-STAR (Nam et al., 2025) are tailored specifically for machine learning engineering. In a
similar vein, our work, DS-STAR, is a specialized LLM agent for data science tasks.

Data science agents. Recent research has focused on developing data science agents that leverage
the advanced coding and reasoning capabilities of LLMs (Jiang et al., 2025; Jimenez et al., 2024).
Initial efforts utilized general-purpose frameworks like ReAct (Yao et al., 2023) and AutoGen (Wu
et al., 2023). Following these pioneering approaches, agents like DA-Agent (Huang et al., 2024),
which are specialized in autonomously generating code-based solutions for tasks such as data analysis
and visualization (Hu et al., 2024; Jing et al., 2025), has been developed. A notable example is
Data Interpreter (Hong et al., 2024), which employs a graph-based method to decompose a primary
task into a series of manageable sub-tasks and the resulting task graph is then progressively refined
based on the successful execution of these sub-tasks. However, a key limitation is that relying solely
on successful execution as feedback often results in sub-optimal plans, since such feedback cannot
confirm the plan’s correctness. To address this, DS-STAR introduces a novel verification process that
employs an LLM as a judge (Gu et al., 2024) to assess the quality of the generated solutions.

Text-to-SQL. The task of Text-to-SQL involves translating natural language questions into executable
SQL queries (Li & Jagadish, 2014; Li et al., 2023). Early approaches relied on sequence-to-sequence
architectures, which jointly encoded the user’s query and the database schema (Cao et al., 2021; Choi
et al., 2021). However, after the rise of LLMs, initial research focused on prompt engineering (Pour-
reza & Rafiei, 2023). This was soon followed by the development of more sophisticated, multi-step
pipelines incorporating techniques such as schema linking, self-correction, and self-consistency
to enhance generation accuracy (Talaei et al., 2024; Pourreza et al., 2024; Maamari et al., 2024).
While these pipelines function as specialized agents for data analysis, their fundamental reliance on
generating SQL restricts their use to structured, relational databases. In contrast, DS-STAR addresses
this limitation by adopting a Python language, thereby framing our approach as a Text-to-Python task.
To further facilitate this, we introduce a novel data file summarization mechanism which enables our
method to demonstrate significantly broader applicability than traditional Text-to-SQL systems, as it
can operate on a wide array of data formats, including JSON, Markdown, and unstructured text.

3 DS-STAR

In this section, we introduce DS-STAR, a framework for data science agents that leverages the coding
and reasoning capabilities of LLMs to tackle data science tasks. In a nutshell, our approach first
analyzes heterogeneous input data files to extract essential information (Section 3.1). Subsequently,
DS-STAR generates a code solution through an iterative process (Section 3.2). The prompts and
algorithms are detailed in Appendix G and A, respectively.

Problem setup. Our goal is to automatically generate a code solution s (i.e., a Python script) that
answers query q using a given data files D. We formulate this as a search problem over the space
of all possible scripts, denoted by S. The quality of any script s ∈ S is evaluated by a scoring
function h(s), which measures the correctness of its output, s(D), against a ground-truth answer
(e.g., accuracy) where s(D) represents the output generated by executing s, which loads the data D
to produce an answer. The objective is to identify the s∗ that is: s∗ = argmaxs∈S h(s(D)).
In this paper, we propose a multi-agent framework, A, designed to process the query q and data
files D, which may be numerous and in heterogeneous formats. This framework is composed of n
specialized LLM agents, {Ai}ni=1, where each agent possesses a distinct functionality, as detailed in
the subsequent sections (see Figure 2 for the problem setup and our agent’s overview).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Data Files

(a) Data Files Analysis

Agent
Analyzer

Generate
# Load the JSON data from the file

with open(file_path, 'r', encoding='utf-8') as f:

    data = json.load(f)

# Print Essential Information

print("--- Essential Information ---")

...

Python Script

--- Essential Information ---

Data Types of Columns: ...

First few records (up to 5 examples):

              merchant ... account_type

0         ossfit_Hanna ...            F

1 Golfclub_Baron_Friso ...            F

...

Data Description
Execute

Agent
Coder

Data Descriptions
Current Solution
Current Plan
- Step 1
- Step 2
- Step 3
- Step 4 (New)

Implement the next 
plan in current solution.

Exec.

New Solution & 
Exec. Result

Is this plan sufficient to 
solve the question?

Agent
Verifier

Sufficient

Insufficient

Agent
Router

Generate next step.

Agent
Planner

- Step 1
- Step 2

- Step 1
- Step 2
- Step 3
- Step 4

OR

How should we 
refine?

Final
Solution

Add next step!

Step 2 is wrong!Remove 2, 3
- Step 1

(b) Iterative Plan Generation and Verification

Figure 2: Overview of DS-STAR. (a) DS-STAR generates a Python script that analyzes heteroge-
neous input data files. (b) Starting with a simple single step, DS-STAR implements the plan and
executes it to obtain intermediate results. Next, using a verifier agent, DS-STAR determines whether
the current plan is sufficient to solve the user’s query. If it is not sufficient, DS-STAR’s router agent de-
cides whether to add the next step or remove the incorrect step from the plan. Finally, DS-STAR adds
the next step and implements it again. This iterative process of planning, implementation, execution,
and verification is repeated until the verifier agent determines that the plan is sufficient to answer the
user’s query or until the maximum number of iterations is reached.

3.1 ANALYZING DATA FILES

To effectively interact with the given data files, DS-STAR first requires a comprehensive understanding
of its contents and structure. We achieve this by generating a concise, analytical description for each
data file. This initial analysis phase is critical as it informs all subsequent actions taken by the agent.

Conventional frameworks for data science agents often rely on displaying a few sample rows from
structured files, such as CSVs. However, this approach is fundamentally limited to structured data and
fails for unstructured formats where the concept of a ‘row’ is ill-defined. To overcome this limitation,
we introduce a more general mechanism as follows. For each data fileDi ∈ D we employ an analyzer
agent, Aanalyzer, to generate a Python script, sidesc. This script is designed to correctly parse and load
the data fileDi and then extract its essential properties. For structured data, this might include column
names and data types; for unstructured data, it could be file metadata, text summaries. The resulting
analytical description, di, is captured directly from the script’s execution output (see Appendix D).
This process, which can be parallelized, is denoted as: di = exec(sidesc), s

i
desc = Aanalyzer(Di).

3.2 ITERATIVE PLAN GENERATION AND VERIFICATION

Initialization. After generating analytic descriptions of the N data files, DS-STAR begins the solution
generation process. First, a planner agent, Aplanner, generates an initial high-level executable step p0
(e.g., loading a data file) using the query q and obtained data descriptions: p0 = Aplanner(q, {di}Ni=1).

This single executable step is then implemented as a code script s0 by a coder agent Acoder and the
initial execution result r0 is then obtained by executing the script s0 as follows:

s0 = Acoder(p0, {di}Ni=1), r0 = exec(s0). (1)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Plan verification. The main challenge in data science tasks is guiding the refinement of a solution,
as determining its correctness is often non-trivial, since there are no ground-truth label. To address
this, we use an LLM as a judge to assess whether the current plan is sufficient for the user’s query.

Our approach introduces a verifier agent Averifier. At any given round k in the problem-solving
process, this agent evaluates the state of the solution, i.e., whether the plan is sufficient to solve the
problem. The evaluation is based on the cumulative plan p = {p0, · · · , pk}, the user’s query q, the
current solution code sk, which is an implementation of the cumulative plan, and its execution result
rk. The operation of Averifier is denoted as follows: v = Averifier(p, q, sk, rk).

Here, the output v is a binary variable: sufficient or insufficient. Note that our method does
not just compare the plan to the query. By conditioning the judgement on sk and its execution output
rk, Averifier can provide more grounded feedback since it assesses whether sk is well-implemented
following the plan, and whether the rk contains the information needed to fully address the query.

Plan refinement. If the verifier agentAverifier determines that the current plan is insufficient to solve
the user’s query q, DS-STAR must decide how to proceed. Such insufficiency could arise because the
plan is merely incomplete and requires additional steps, or because it contains erroneous steps that
invalidate the approach. To resolve this, DS-STAR employs a router agent, Arouter, which decides
whether to append a new step or to correct an existing one. The router’s decision w is generated as
follows, where p = {p0, · · · , pk} is the current cumulative plan: w = Arouter(p, q, rk, {di}Ni=1).

The output w is either the token Add Step or an index l ∈ {1, · · · , k}. If w is Add Step, Arouter

has determined the plan is correct but incomplete. In this case, we retain the plan p and proceed
to generate the next step. On the other hand, if w = l, Arouter has identified pl as erroneous. In
this case, we backtrack by truncating the plan to p← {p0, · · · , pl−1}. Here, we deliberately choose
to truncate and regenerate through the LLM’s random sampling, rather than directly correcting pl,
since our empirical finding has shown that revising a specific incorrect step often leads to an overly
complex replacement, therefore frequently flagged again byArouter in a next iteration. Following the
decision from theArouter, our agent proceeds with an updated plan p = {p0, · · · , pk′}, where k′ = k
or k′ = l − 1. Then DS-STAR generates a subsequent step: pk′+1 = Aplanner(p, q, rk, {di}Ni=1).

Notably, the planner agent Aplanner is conditioned on the last execution result, rk, enabling it to
generate a step that attempts to resolve the previously identified insufficiency. Once the new step
pk′+1 is defined, the plan is updated to: p← {p0, · · · , pk′ , pk′+1}.
Plan implement and execution. Finally, DS-STAR enters an execution and verification cycle. First,
Acoder implements p into code s. The execution of this code yields a new observation r = exec(s).
With this r, Averifier is invoked again to assess if the newly augmented plan is now sufficient. This
entire iterative procedure—routing, planning, coding, executing, and verifying—is repeated until
Averifier returns a sufficient or a predefined maximum number of iterations is reached.

3.3 ADDITIONAL MODULES FOR ROBUST DATA SCIENCE AGENTS

Debugging agent. When a Python script s fails during execution, it generates an error traceback
Tbug. To automatically debug the script, DS-STAR employs a debugging agent, Tdebugger. First,
when generating {di}Ni=1 using sdesc obtained from Aanalyzer (see Section 3.1), Adebugger iteratively
update the script using only the traceback: sdesc ← Adebugger(sdesc, Tbug).

Secondly, once DS-STAR obtains {di}Ni=1, Adebugger utilizes such information when generating a
solution Python script s (see Section 3.2). Our key insight is that tracebacks alone are often insufficient
for resolving errors in data-centric scripts, while {di}Ni=1 might include critical metadata such as
column headers in a CSV file, sheet names in an Excel workbook, or database schema information.
Therefore, Adebugger generates a corrected script, s , by conditioning on the original script s, the error
traceback Tbug , and this rich data context {di}Ni=1: s← Adebugger(s, Tbug, {di}Ni=1).

Retriever. A potential scalability challenge arises when the number of data files N is large (i.e.,
N > 100.). In such cases, the complete set of descriptions {di}Ni=1 cannot be prompted within the
predefined context length of LLMs. To address this limitation, we employ a retrieval mechanism that
leverages a pre-trained embedding model (Nie et al., 2024). Specifically, we identify the top-K most
relevant data files, which will be provided as context to the LLM, by computing the cosine similarity
between the embedding of the user’s query q and the embedding of each description di.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Main results from DABStep. All results are taken from the DABStep leaderboard (Mar-
tin Iglesias, 2025), except for the model marked with †. The highest scores are shown in bold.

Framework Model Easy-level
Accuracy (%)

Hard-level
Accuracy (%)

Model-only Gemini-2.5-Pro 66.67 12.70
o4-mini 76.39 14.55

ReAct (Yao et al., 2023) Claude-4-Sonnet 81.94 19.84
Gemini-2.5-Pro† 69.44 10.05

AutoGen (Wu et al., 2023) Gemini-2.5-Pro† 59.72 10.32
Data Interpreter (Hong et al., 2024) Gemini-2.5-Pro† 72.22 3.44
DA-Agent (Huang et al., 2024) Gemini-2.5-Pro† 68.06 22.49
Open Data Scientist DeepSeek-V3 84.72 16.40
Mphasis-I2I-Agents Claude-3.5-Sonnet 80.56 28.04
Amity DA Agent Gemini-2.5-Pro 80.56 41.01
DS-STAR (Ours) Gemini-2.5-Pro† 87.50 45.24

4 EXPERIMENTS

In this section, we conduct a comprehensive empirical evaluation of DS-STAR on three challenging
data science benchmarks: DABStep (Martin Iglesias, 2025), KramaBench (Lai et al., 2025), and
DA-Code (Huang et al., 2024). Our results show that DS-STAR significantly outperforms competitive
baselines, including those built upon various LLMs (Section 4.1). To understand the source of gains,
we perform a detailed ablation study, which confirms that our proposed analyzer and router agents
are critical components that provides a substantial performance improvement (Section 4.2).

Common setup. Unless otherwise specified, all experiments are conducted using Gemini-2.5-Pro
as the base LLM. Our agent, DS-STAR, operates for a maximum of 20 rounds per task. To ensure
properly formatted output, we employ a finalyzer agent,Afinalyzer, which takes formatting guidelines
(e.g., rounding to two decimal places) and generates the final solution code (see Appendix G).

4.1 MAIN RESULTS

DABStep. We evaluate DS-STAR on the DABStep benchmark (Martin Iglesias, 2025), which is
designed to mirror real-world data analysis challenges by requiring the processing of seven diverse
data files, including formats like JSON, Markdown, and CSV. The benchmark features two difficulty
levels; its hard-level tasks are particularly demanding, necessitating the analysis of multiple data
files and the application of domain-specific knowledge. As shown in Table 1, existing single-
LLM approaches struggle to surpass 20% accuracy, which underscores the significant room for
improvement. Additionally, its authors note that a human-reference solution for a hard-level task
spans 220 lines of code and is broken into four sequential steps. Detailed statistics and the full
execution logs of DS-STAR are provided in Appendix B and F, respectively.

The results, presented in Table 1, demonstrate that DS-STAR significantly outperforms all baselines.
For instance, integrating DS-STAR with Gemini-2.5-Pro boosts the hard-level accuracy from 12.70%
to 45.24%, an absolute improvement of over 32 percentage points. Notably, the DS-STAR using
Gemini-2.5-Pro substantially surpasses other commercial agents like Open Data Scientist, Mphasis-
I2I-Agents, and Amity DA Agent across both easy and hard difficulty levels. Crucially, DS-STAR also
outperforms other multi-agent systems built upon the same Gemini-2.5-Pro, highlighting that the
performance gains stem directly from the proposed effective sub-agent orchestration.

KramaBench. We additionally validate DS-STAR’s capability on Kramabench (Lai et al., 2025),
a benchmark that requires data discovery, i.e., selecting the correct data files from a vast data lake
to address a user’s query. For example, the Astronomy domain includes over 1,500 files, while
only a small subset is relevant to any single query (see Appendix B for the detailed statistics). To
navigate this, DS-STAR integrates a retrieval module that identifies the top 100 candidate files
2 based on embedding similarity between the user’s query and data descriptions, computed with
Gemini-Embedding-001 (Lee et al., 2025) (details can be found in Section 3.3).

2If the total data is less than 100, we fully utilized all the data for the task.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Main results from KramaBench. All results are taken from the original paper (Lai et al.,
2025), except the results with Gemini-2.5-Pro. The highest scores are shown in bold.

Framework Model Domains
Archaeology Astronomy Biomedical Environment Legal Wildfire Total

Original experimental setting for which the relevant data must be retrieved.

Model-only
o3 25.00 1.73 3.50 1.35 3.35 24.87 9.64
GPT-4o 0.00 1.41 1.98 0.45 1.46 1.45 1.62
Claude-3.5-Sonnet 16.67 1.62 2.87 1.17 7.33 13.63 7.45

DS-GURU
o3 25.00 3.53 8.95 19.60 13.89 50.73 22.08
GPT-4o 16.67 2.76 8.97 2.60 2.80 17.18 8.28
Claude-3.5-Sonnet 16.67 1.52 1.96 11.21 7.01 39.16 14.35

ReAct Gemini-2.5-Pro 16.67 4.77 3.69 26.17 41.95 51.40 30.31
AutoGen Gemini-2.5-Pro 16.67 4.39 7.25 19.38 26.38 41.76 22.83
Data Interpreter Gemini-2.5-Pro 41.67 12.72 28.05 9.87 30.04 59.67 31.32
DA-Agent Gemini-2.5-Pro 41.67 15.52 12.59 42.64 39.73 61.61 39.79
DS-STAR (Ours) Gemini-2.5-Pro 25.00 12.09 43.74 46.75 49.64 65.94 44.69

Oracle experimental setting with relevant data already provided.

ReAct Gemini-2.5-Pro 25.00 6.36 3.69 30.70 46.93 51.69 33.82
AutoGen Gemini-2.5-Pro 25.00 5.29 26.03 23.46 39.28 49.41 31.77
Data Interpreger Gemini-2.5-Pro 41.67 13.29 28.39 13.09 32.97 63.13 33.57
DA-Agent Gemini-2.5-Pro 41.67 15.77 44.26 44.55 56.42 65.92 48.61
DS-STAR (Ours) Gemini-2.5-Pro 25.00 19.08 55.24 58.80 59.66 70.18 52.55

Table 3: Main results from DA-Code. All results are taken from the original paper (Huang et al.,
2024), except the results with Gemini-2.5-Pro. The highest scores are shown in bold.

Framework Model Score
Data Wrangling ML EDA Easy Medium Hard Total

DA-Agent

Mixtral-8x22B 14.8 31.6 10.2 17.6 16.8 8.6 15.4
DeepSeek-Coder-V2.5 25.1 34.1 14.7 32.8 18.7 14.1 20.7
Qwen-2.5-72B 24.9 41.8 15.4 31.9 19.4 22.3 22.6
Claude-3-Opus 29.3 46.8 20.7 44.7 23.8 19.0 27.6
GPT-4 30.4 48.4 24.6 45.4 27.8 23.4 30.5
Gemini-2.5-Pro 34.8 57.2 31.1 50.0 34.2 32.0 37.0

ReAct Gemini-2.5-Pro 14.7 31.2 22.2 32.0 17.9 25.9 22.5
AutoGen Gemini-2.5-Pro 25.6 51.6 25.6 38.7 28.5 29.6 30.8
DS-STAR (Ours) Gemini-2.5-Pro 30.4 57.3 34.8 48.9 35.2 37.1 38.5

As detailed in Table 2, DS-STAR demonstrates a substantial performance advantage in this chal-
lenging setting. Using Gemini-2.5-Pro, DS-STAR achieves an accuracy of 44.69%, significantly
outperforming the 39.79% score of the state-of-the-art DA-Agent. Moreover, to isolate the impact of
data retrieval, we also evaluated performance in an oracle setting, assuming all relevant data for a task
is already provided. Under these ideal conditions, DS-STAR’s accuracy increases by 8 percentage
points. In contrast, other agentic frameworks like ReAct show only a marginal performance gain
in the same setting. This large gap highlights that while our current retrieval method is effective,
advanced data discovery is a promising direction for unlocking the full potential of DS-STAR.

DA-Code. To evaluate the generalization capabilities of DS-STAR, we additionally benchmark its
performance on the DA-Code dataset (Huang et al., 2024), which encompasses a diverse array of data
science tasks. Specifically, DA-Code is structured into three main categories: data wrangling, machine
learning (ML), and exploratory data analysis (EDA), with the EDA category further subdivided into
data manipulation, data insights, visualization, and statistical analysis. Here, we found that the
Data-Interpreter (Hong et al., 2024) struggles to generate answers with the right format required by
DA-Code tasks (e.g., saving in csv format), therefore excluded it from the baseline.

As shown in Table 3, DS-STAR outperforms the strongest baseline, i.e., DA-Agent, demonstrating
its robust applicability across various data science domains. The superiority of our framework is
particularly highlighted on more complex problems. Specifically, on the hard-difficulty tasks, DS-
STAR achieves 37.1% accuracy, representing a significant improvement over the 32.0% accuracy of
the DA-Agent baseline, even when both frameworks utilize the same Gemini-2.5-Pro. This showcases
the effectiveness of our approach, especially for challenging, real-world data science scenarios. We
provide qualitative results for each task type in Appendix E.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

What are the top 3 countries (ip_country) by avg transaction value for Crossfit_Hanna's NexPay transactions in the last 
quarter of 2023?

Question

import pandas as pd                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

payments_df = pd.read_csv('data/payments.csv')                                                                                                                                                                                                                                                                                                                                                                                                                                    

q4_2023_df = payments_df[(payments_df['year'] == 2023) &

                         (payments_df['day_of_year'] >= 274)]                                                                                                                                                                                                                                                                                                                                                                              

crossfit_hanna_df = 

    q4_2023_df[q4_2023_df['merchant'] == 'Crossfit_Hanna']                                                                                                                                                                                                                                                                                          

# The question asks about 'NexPay' transactions, but there is no 

column for the payment gateway.

# I will assume that the question is flawed and 'NexPay' is not a 

relevant filter.

# I will proceed without filtering for 'NexPay'.                                                                                                                                                                                                                                                                           

avg_transaction_value = 

    crossfit_hanna_df.groupby('ip_country')['eur_amount'].mean()

top_countries = 

    avg_transaction_value.sort_values(ascending=False).head(3)

top_countries_list = top_countries.index.tolist()

result = ",".join(top_countries_list)

print(result)

ReAct
import pandas as pd

payments_file = 'data/payments.csv'

payments_df = pd.read_csv(payments_file)

# Filter the DataFrame for 'Crossfit_Hanna' merchant, 'NexPay' card 

scheme, and Q4 transactions.

filtered_transactions = payments_df[

   (payments_df['merchant'] == 'Crossfit_Hanna') &

   (payments_df['card_scheme'] == 'NexPay') &

   (payments_df['day_of_year'] >= 274)

]

top_3_countries_by_avg_amount = (

   filtered_transactions.groupby('ip_country')['eur_amount']

   .mean()

   .sort_values(ascending=False)

   .head(3)

)

answer = ','.join(top_3_countries_by_avg_amount.index)

print(answer)

DS-STAR (Ours)

Figure 3: Qualitative result. We observed that while ReAct (Yao et al., 2023) failed to filter out the
‘NextPay’ value, leading to an incorrect answer, DS-STAR successfully filtered out due to the use of
data file analysis agent. See Appendix F for the full execution logs of DS-STAR.

Table 4: Ablation study on each component. Effectiveness of each agent and compatibility with
other LLMs on the DABStep benchmark (Martin Iglesias, 2025).

Framework Model Analyzer
Aanalyzer

Router
Arouter

Easy-level
Accuracy (%)

Hard-level
Accuracy (%)

DS-STAR (Variant 1) Gemini-2.5-Pro 7 3 75.00 26.98
DS-STAR (Variant 2) Gemini-2.5-Pro 3 7 79.17 39.95
DS-STAR (Ours) Gemini-2.5-Pro 3 3 87.50 45.24
DS-STAR (Ours) GPT-5 3 3 88.89 43.12

4.2 ABLATION STUDIES

In this section, we conduct ablation studies to verify the effectiveness of individual components.
Unless otherwise specified, all experiments use Gemini-2.5-Pro and are performed on the DABStep.

Effectiveness of the data file analysis agent. The data file analysis agent,Aanalyzer, which provides
contextual descriptions of data files, is crucial for achieving high performance. When we remove the
descriptions, DS-STAR’s accuracy on hard-level tasks in the DABStep benchmark drops significantly
to 26.98%. While this result is still substantially better than the 12.70% accuracy of a non-agentic
framework, it underscores the importance of the component. We hypothesize that the rich context of
the given data is vital for enabling DS-STAR to effectively plan and implement its approach.

To qualitatively demonstrate the effectiveness of our data file analysis agent, we present a comparative
case study in Figure 3. In this example, the competing baseline, ReAct (Yao et al., 2023), tries to filter
data based on a ‘NextPay’ value but fails to execute the request. The model incorrectly determines
that no such column value exists in the ‘payment.csv’ file due to ReAct’s limited understanding of
the provided data context. On the other hand, DS-STAR succeeds by first employing its data file
analysis to correctly understand the entire data structure. This allows it to identify the appropriate
column value and accurately filter the data as instructed. Further qualitative examples, including full
execution logs, showcasing the capabilities of DS-STAR can be found in Appendix F.

Effectiveness of the router agent. Arouter determines whether to append a new step or correct an
existing one in the plan. Here, we verify its importance against an alternative approach (Variant 2 in
Table 4) where Arouter is removed. In this variant, DS-STAR only uses Aplanner to simply add new
steps sequentially until the plan is sufficient or a maximum number of iterations is reached. As shown
in Table 4, this alternative performs worse on both easy and hard tasks. This is because building
upon an erroneous step leads to error accumulation, causing subsequent steps to also be incorrect, i.e.,
correcting errors in the plan is more effective than accumulating potentially flawed steps.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Distribution of number of required rounds (b) Sensitivity analysis on number of refinements

Figure 4: Sensitivity analysis on the number of refinement steps using DABStep. (a) Difficult
tasks require more iterations to generate sufficient plans. Specifically, hard-level tasks require an
average 5.6 iterations, while easy-level tasks require 3.0 iterations. Also, more than 50% of easy-level
tasks are done only with a single round. (b) Performing more iterations allows the agent to generate
sufficient plans, resulting in better performance for both easy and hard level tasks.

Compatibility with other LLMs. To evaluate the generalizability of DS-STAR across LLM types,
we conduct additional experiments using GPT-5. As shown in Table 4, DS-STAR with GPT-5 also
achieves promising results on the DABStep benchmark. Notably, DS-STAR with GPT-5 demonstrates
stronger performance on easy-level tasks, whereas the Gemini-2.5-Pro excels on hard-level tasks.

4.3 ANALYSIS

In this section, we analyze the impact of the number of refinement rounds. Specifically, we measure
the number of iterations required to generate a sufficient plan and conduct a sensitivity analysis on the
maximum number of iterations. All experiments were done on the DABStep using Gemini-2.5-Pro.
In addition, we provide cost analysis of DS-STAR in the Appendix C.

Required number of refinement steps. As shown in Figure 4(a), generating a successful plan for
hard tasks requires a greater number of refinement rounds. Specifically, on the DABStep, hard tasks
required an average of 5.6 rounds, in contrast to the 3.0 rounds needed for easy tasks. This disparity
is further underscored by the fact that while over 50% of easy-level tasks were solved by the initial
plan p0 alone, nearly all, i.e., 98% of the hard tasks necessitated at least one refinement iteration.

Sensitivity analysis on the maximum number of refinement steps. In our experiments, DS-
STAR uses a default maximum of 20 refinement iterations. To analyze the sensitivity of this
hyper-parameter, we conduct an experiment by lowering the limits to 5, 10, and 15. If the process
reaches this maximum without finding a sufficient plan, DS-STAR generates a final solution using the
intermediate plan it has developed. Figure 4(b) shows a positive correlation between the maximum
number of refinements and task accuracy for both easy and hard-level tasks. A higher iteration
limit increases the probability that DS-STAR will generate a sufficient plan. This seems to be more
critical for hard-level tasks, where accuracy consistently improves as the maximum number of rounds
increases, verifying the importance of sufficient number of refinement steps for complex problems.

5 CONCLUSION

We introduce DS-STAR, a novel agent designed to autonomously solve data science problems. Our
approach features two key components: (1) the automatic analysis of files to handle heterogeneous
data formats, and (2) the generation of a sequential plan that is iteratively refined with a novel LLM-
based verification mechanism. We show the effectiveness of DS-STAR on the DABStep, Kramabench,
and DA-Code, where it establishes a new state-of-the-art by outperforming prior methods.

Limitation and future works. Our current work focuses on a fully automated framework for DS-
STAR. A compelling avenue for future research is to extend this framework to a human-in-the-loop
setting. Investigating how to synergistically combine the automated capabilities of DS-STAR with the
intuition and domain knowledge of a human expert presents a promising direction for significantly
boosting performance and enhancing the system’s practical utility.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao, Su Zhu, and Kai Yu. Lgesql: line graph enhanced
text-to-sql model with mixed local and non-local relations. arXiv preprint arXiv:2106.01093,
2021.

DongHyun Choi, Myeong Cheol Shin, EungGyun Kim, and Dong Ryeol Shin. Ryansql: Recursively
applying sketch-based slot fillings for complex text-to-sql in cross-domain databases. Computa-
tional Linguistics, 2021.

Tijl De Bie, Luc De Raedt, José Hernández-Orallo, Holger H Hoos, Padhraic Smyth, and Christo-
pher KI Williams. Automating data science. Communications of the ACM, 2022.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. arXiv preprint arXiv:2411.15594,
2024.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. DS-agent: Automated
data science by empowering large language models with case-based reasoning. International
Conference on Machine Learning, 2024.

Md Mahadi Hassan, Alex Knipper, and Shubhra Kanti Karmaker Santu. Chatgpt as your personal
data scientist. arXiv preprint arXiv:2305.13657, 2023.

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Ceyao Zhang, Chenxing Wei,
Danyang Li, Jiaqi Chen, Jiayi Zhang, et al. Data interpreter: An llm agent for data science. arXiv
preprint arXiv:2402.18679, 2024.

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Qianli Ma, Guoyin Wang, Xuwu Wang, Jing Su,
Jingjing Xu, Ming Zhu, et al. Infiagent-dabench: Evaluating agents on data analysis tasks. arXiv
preprint arXiv:2401.05507, 2024.

Yiming Huang, Jianwen Luo, Yan Yu, Yitong Zhang, Fangyu Lei, Yifan Wei, Shizhu He, Lifu Huang,
Xiao Liu, Jun Zhao, et al. Da-code: Agent data science code generation benchmark for large
language models. arXiv preprint arXiv:2410.07331, 2024.

Zhengyao Jiang, Dominik Schmidt, Dhruv Srikanth, Dixing Xu, Ian Kaplan, Deniss Jacenko, and
Yuxiang Wu. Aide: Ai-driven exploration in the space of code. arXiv preprint arXiv:2502.13138,
2025.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? International
Conference on Learning Representations, 2024.

Liqiang Jing, Zhehui Huang, Xiaoyang Wang, Wenlin Yao, Wenhao Yu, Kaixin Ma, Hongming
Zhang, Xinya Du, and Dong Yu. Dsbench: How far are data science agents to becoming data
science experts? International Conference on Learning Representations, 2025.

Eugenie Lai, Gerardo Vitagliano, Ziyu Zhang, Sivaprasad Sudhir, Om Chabra, Anna Zeng, Anton A
Zabreyko, Chenning Li, Ferdi Kossmann, Jialin Ding, et al. Kramabench: A benchmark for ai
systems on data-to-insight pipelines over data lakes. arXiv preprint arXiv:2506.06541, 2025.

Jinhyuk Lee, Feiyang Chen, Sahil Dua, Daniel Cer, Madhuri Shanbhogue, Iftekhar Naim, Gus-
tavo Hernández Ábrego, Zhe Li, Kaifeng Chen, Henrique Schechter Vera, et al. Gemini embedding:
Generalizable embeddings from gemini. arXiv preprint arXiv:2503.07891, 2025.

Fei Li and Hosagrahar V Jagadish. Constructing an interactive natural language interface for relational
databases. Proceedings of the VLDB Endowment, 2014.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. Can llm already serve as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural Information Processing Systems, 2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. Can llm already serve as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural Information Processing Systems, 2024.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 2022.

Karime Maamari, Fadhil Abubaker, Daniel Jaroslawicz, and Amine Mhedhbi. The death of schema
linking? text-to-sql in the age of well-reasoned language models. arXiv preprint arXiv:2408.07702,
2024.

Friso Kingma Martin Iglesias, Alex Egg. Data agent benchmark for multi-step reasoning (DABStep),
2025.

Jaehyun Nam, Jinsung Yoon, Jiefeng Chen, Jinwoo Shin, Sercan Ö Arık, and Tomas Pfister. Mle-
star: Machine learning engineering agent via search and targeted refinement. arXiv preprint
arXiv:2506.15692, 2025.

Zhijie Nie, Zhangchi Feng, Mingxin Li, Cunwang Zhang, Yanzhao Zhang, Dingkun Long, and
Richong Zhang. When text embedding meets large language model: a comprehensive survey.
arXiv preprint arXiv:2412.09165, 2024.

Shuyin Ouyang, Dong Huang, Jingwen Guo, Zeyu Sun, Qihao Zhu, and Jie M Zhang. Ds-bench: A
realistic benchmark for data science code generation. arXiv preprint arXiv:2505.15621, 2025.

Mohammadreza Pourreza and Davood Rafiei. Din-sql: Decomposed in-context learning of text-to-sql
with self-correction. Advances in Neural Information Processing Systems, 2023.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun, Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and Sercan O Arik. Chase-sql: Multi-path reasoning
and preference optimized candidate selection in text-to-sql. arXiv preprint arXiv:2410.01943,
2024.

Iqbal H Sarker. Data science and analytics: an overview from data-driven smart computing, decision-
making and applications perspective. SN Computer Science, 2021.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugginggpt:
Solving ai tasks with chatgpt and its friends in hugging face. Advances in Neural Information
Processing Systems, 2023.

Zhaohao Sun, Lizhe Sun, and Kenneth Strang. Big data analytics services for enhancing business
intelligence. Journal of Computer Information Systems, 2018.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini, and Amin Saberi.
Chess: Contextual harnessing for efficient sql synthesis. arXiv preprint arXiv:2405.16755, 2024.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv: Arxiv-2305.16291, 2023.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
developers as generalist agents. International Conference on Learning Representations, 2024.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-agent
conversation. arXiv preprint arXiv:2308.08155, 2023.

Xu Yang, Xiao Yang, Shikai Fang, Bowen Xian, Yuante Li, Jian Wang, Minrui Xu, Haoran Pan,
Xinpeng Hong, Weiqing Liu, et al. R&d-agent: Automating data-driven ai solution building through
llm-powered automated research, development, and evolution. arXiv preprint arXiv:2505.14738,
2025.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. International Conference on Learning
Representations, 2023.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. arXiv preprint arXiv:1809.08887, 2018.

Wenqi Zhang, Yongliang Shen, Weiming Lu, and Yueting Zhuang. Data-copilot: Bridging billions of
data and humans with autonomous workflow. arXiv preprint arXiv:2306.07209, 2023.

Yuge Zhang, Qiyang Jiang, Xingyu Han, Nan Chen, Yuqing Yang, and Kan Ren. Benchmarking data
science agents. arXiv preprint arXiv:2402.17168, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in neural information processing systems, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ALGORITHMS

Algorithm 1 DS-STAR

1: Input: query q, data files D, maximum number of refinement round M
2: # Analyzing data files
3: for i = 1 to N do
4: sidesc = Aanalyzer(Di)
5: di = exec(sidesc)
6: end for
7: # Iterative plan generation and verification
8: p0 = Aplanner(q, {di}Ni=1)
9: s0 = Acoder(p0, {di}Ni=1)

10: r0 = exec(s0)
11: p = {p0}
12: for k = 0 to M − 1 do
13: v = Averifier(p, q, sk, rk)
14: if v = sufficient then
15: break
16: else if v = insufficient then
17: w = Arouter(p, q, rk, {di}Ni=1)
18: if w ∈ {0, · · · , len(p)− 1} then
19: l = w − 1
20: else if w = Add Step then
21: l = k
22: end if
23: p← {p0, · · · , pl}
24: pl+1 = Aplanner(p, q, rk, {di}Ni=1)
25: p← {p0, · · · , pl, pl+1}
26: sk+1 = Acoder(p, q, sk, {di}Ni=1)
27: rk+1 = exec(sk+1)
28: end if
29: end for
30: Output: Final solution s

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B BENCHMARK

Table 5: Statistics of benchmark. For the DA-Code benchmark (Huang et al., 2024), we report the
average of number of data files required for each tasks in each domain.

Benchmark Domain # Tasks # Hard Tasks # Data files

DABStep (Martin Iglesias, 2025) 450 378 7

KramaBench (Lai et al., 2025)

Archeology 12 6 5
Astronomy 12 6 1556
Biomedical 9 6 7
Environment 20 14 37
Legal 30 16 136
Wildfire 21 15 23

DA-Code (Huang et al., 2024)

Data Insight 79 5 3.7
Data Manipulation 73 23 5.8
Data Wrangling 100 16 6.2
Machine Learning 100 34 3.9
Statistical Analysis 70 10 4.5
Visualization 78 14 4.5

We evaluate DS-STAR against several alternatives using two challenging benchmarks: DABStep (Mar-
tin Iglesias, 2025) and KramaBench (Lai et al., 2025).

• DABStep is composed of 450 tasks (72 easy and 378 hard) that require analyzing a shared set of
seven data files. The ground-truth labels for these tasks are hidden, and evaluation is performed by
submitting results to an official server, ensuring a blind assessment.

• KramaBench tests an agent’s ability to perform autonomous data discovery. It contains tasks
across six distinct domains, where each domain includes up to 1,556 data files. This setup requires
the agent to automatically identify and select the relevant data files for given task.

• DA-Code is structured into three main categories: data wrangling, machine learning, and ex-
ploratory data analysis (EDA), with the EDA category further divided into data manipulation, data
insights, visualization, and statistical analysis. See Appendix E for the example tasks.

Table 5 provides detailed statistics for both benchmarks.

C COST ANALYSIS

Table 6: Cost analysis on DABStep. We report the average cost when using Gemini-2.5-Pro.

Method # LLM calls # Input tokens # Output tokens Cost ($)

ReAct (Yao et al., 2023) 7.1 44691 2928 0.09
DA-Agent (Huang et al., 2024) 8.8 39999 4123 0.09
DS-STAR (Ours) 12.7 154669 3373 0.23

In this section, we quantitatively analyze the LLM usage cost. We evaluate DS-STAR on 10
development tasks from the DABStep benchmark (Martin Iglesias, 2025), reporting the average
number of LLM calls, input tokens, and output tokens.

We acknowledge that DS-STAR incurs higher cost due to its increased token usage. As shown in
Table 6, DS-STAR requires 3.5 times more input tokens than the ReAct baseline. This increase is
primarily because our method utilizes comprehensive analytic descriptions of each data file, which
inherently necessitates more input tokens. Nevertheless, this translates to a modest practical cost;
using Gemini-2.5-Pro (priced at $1.25/$10.00 per 1M input/output tokens3), the expense for DS-
STAR averages only $0.23 per data science task. We argue this higher cost is a justifiable trade-off,
as DS-STAR consistently and significantly achieves better results than ReAct.

3https://ai.google.dev/gemini-api/docs/pricing

14

https://ai.google.dev/gemini-api/docs/pricing


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D QUALITATIVE RESULTS ON THE ANALYZER AGENT

D.1 CODE GENERATED BY THE ANALYZER AGENT

import json

def describe_json_data(file_path):
"""
Loads a JSON file, prints its full content, and then describes its structure
and essential information, including column names (keys) and example data.
"""
# Load the JSON data from the file
# Using utf-8 encoding is a good practice for JSON.
with open(file_path, 'r', encoding='utf-8') as f:

data = json.load(f)

print(f"--- Describing content of: {file_path} ---")
print("\n")

# 1. Print the full loaded content as per requirement
# "The Python code should print out the content of data/merchant_data.json."
print("--- Full Loaded Content ---")
# Using json.dumps for a pretty-printed representation of the loaded Python object.
# ensure_ascii=False allows for proper display of unicode characters.
print(json.dumps(data, indent=4, ensure_ascii=False))
print("-" * 50)
print("\n")

# 2. Print Essential Information
print("--- Essential Information ---")
data_type = type(data)
print(f"Overall Data Type: {data_type.__name__}")

if isinstance(data, dict):
print("The data is a single JSON object (dictionary).")
keys = list(data.keys())
print(f"Number of top-level keys: {len(keys)}")

if not keys:
print("The dictionary is empty.")

else:
# Requirement: "print out all the column names."
print("Top-level keys (can be considered as 'column names' for the main object):")
for key in keys:

print(f" - {key}")

# Requirement: "If there are too many structured data, print out just few examples."
print("\n--- Example Key-Value Pairs (first 5 if more exist) ---")
count = 0
for key, value in data.items():

if count < 5:
value_str = str(value)
# Truncate long values for a concise preview
preview = (value_str[:70] + '...') if len(value_str) > 70 else value_str
print(f" {key}: {preview}")
count += 1

else:
print(" ... (more key-value pairs exist)")
break

if count == 0 and not keys: # Should be caught by 'if not keys:' earlier
print(" (Dictionary is empty - no key-value pairs to show)")

elif isinstance(data, list):
print("The data is a JSON array (list).")
num_items = len(data)
print(f"Number of items in the list: {num_items}")

if num_items == 0:
print("The list is empty.")

else:
first_item = data[0]
print(f"Type of the first item in the list: {type(first_item).__name__}")

# Check if it's a list of dictionaries (common for structured data records)
if isinstance(first_item, dict):

print("The list appears to contain JSON objects (dictionaries), suggesting structured
data.")↪→

# Requirement: "print out all the column names."
# For a list of objects, column names are typically the keys of these objects.
# We'll use the keys from the first object as representative column names.
first_item_keys = list(first_item.keys())
if not first_item_keys:

print("The first object in the list is an empty dictionary (no column names to infer).")
else:

print("Keys of the first object (assumed to be common 'column names' for the items):")
for key in first_item_keys:

print(f" - {key}")

# Requirement: "If there are too many structured data, print out just few examples."

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

num_examples_to_show = min(3, num_items) # Show up to 3 examples
print(f"\n--- Example Items (first {num_examples_to_show} of {num_items}) ---")
for i in range(num_examples_to_show):

print(f"Item {i+1}:")
# Pretty print each example item. Truncate if an individual item is very large.
example_item_str = json.dumps(data[i], indent=2, ensure_ascii=False)
lines = example_item_str.split('\n')
if len(lines) > 15: # Arbitrary limit: max 15 lines per example item summary

print('\n'.join(lines[:15]))
print(" ... (item content truncated for brevity in this summary)")

else:
print(example_item_str)

if num_items > num_examples_to_show:
print(f"\n... and {num_items - num_examples_to_show} more items in the list.")

# Else, it's a list of other types (e.g., strings, numbers - unstructured or semi-structured)
else:

print("The list contains non-object items (e.g., strings, numbers, booleans, or mixed
types).")↪→

print("This is often considered unstructured or semi-structured data.")
num_examples_to_show = min(5, num_items) # Show up to 5 examples
print(f"\n--- Example Items (first {num_examples_to_show} of {num_items}) ---")
for i in range(num_examples_to_show):

item_str = str(data[i])
# Truncate long string representations for a concise preview
preview = (item_str[:70] + '...') if len(item_str) > 70 else item_str
print(f"Item {i+1}: {preview}")

if num_items > num_examples_to_show:
print(f"\n... and {num_items - num_examples_to_show} more items in the list.")

elif isinstance(data, (str, int, float, bool)) or data is None:
# For simple scalar types, the "Full Loaded Content" print is the primary information.
# This section just confirms the nature of the data.
print(f"The data is a simple JSON scalar value (not an object or array).")
if data is None:

print("Specifically, the JSON content is 'null'.")
# The actual value was already printed in the "Full Loaded Content" section.

else:
# This case should ideally not be reached if json.load() was successful
# and returned a standard Python type corresponding to a valid JSON root element.
print("The data type is unusual for a root JSON element (e.g., a custom object if json.load was

hooked).")↪→
# The actual value was already printed in the "Full Loaded Content" section.

print("\n" + "-" * 50)
print("--- End of Description ---")

if __name__ == "__main__":
# The path to the JSON file.
# This script assumes 'data/merchant_data.json' exists relative to where the script is run.
# For example, if the script is in /home/user/scripts/, it expects

/home/user/scripts/data/merchant_data.json↪→
json_file_path = 'data/merchant_data.json'

# Call the function to load and describe the JSON data.
# As per requirements, no try-except blocks are used for error handling.
# If the file doesn't exist, a FileNotFoundError will be raised.
# If the file's content is not valid JSON, a json.JSONDecodeError will be raised.
# These errors will halt the program, and debugging can proceed from there.
describe_json_data(json_file_path)

Listing 1: Python code for generating the description of ‘merchant_data.json’ in DABStep.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

import pandas as pd
import numpy as np
import io
import os

# --- Configuration ---
# Define the path to the Excel file to be analyzed.
# This script assumes the file is located at 'data/1-s2.0-S0092867420301070-mmc4.xlsx'.
file_path = 'data/1-s2.0-S0092867420301070-mmc4.xlsx'

# --- Analyst's Report Generation ---

# Print a formatted header for the analysis report.
print("=====================================================")
print(f" Expert Data Analysis Report for: {file_path}")
print("=====================================================")

# Check for file existence to provide a clear startup message.
# The script will still raise an error if not found, as per requirements.
if not os.path.exists(file_path):

print(f"\n[STATUS] File not found at the specified path: '{file_path}'")
print("Please ensure the file exists and the path is correct before execution.")
# The script will exit here due to a FileNotFoundError from pandas,
# allowing for debugging as requested.

# --- 1. Loading Data and Sheet Information ---

print("\n--- 1. Loading & Sheet Information ---")
# Use pandas.ExcelFile to inspect the workbook without loading all data initially.
# This is efficient for understanding the structure of a multi-sheet Excel file.
excel_file = pd.ExcelFile(file_path)
sheet_names = excel_file.sheet_names
print(f"Found {len(sheet_names)} sheet(s) in the workbook: {sheet_names}")

# For this analysis, we will focus on the first sheet.
first_sheet_name = sheet_names[0]
print(f"Loading data from the first sheet: '{first_sheet_name}'")
df = pd.read_excel(excel_file, sheet_name=first_sheet_name)
print("Data loaded successfully.")

# --- 2. High-Level Overview ---

print("\n--- 2. Data Dimensions and Structure ---")
rows, cols = df.shape
print(f"The dataset contains {rows} rows and {cols} columns.")

# An analyst's initial assessment of data structure.
if cols == 1:

print("Observation: With only one column, the data might be unstructured (e.g., a list of texts or
IDs).")↪→

elif 1 < cols < 5:
print("Observation: With a few columns, the data appears to be structured but simple.")

else:
print("Observation: With multiple columns, the data appears to be well-structured.")

# --- 3. Column Analysis ---

print("\n--- 3. Column Names ---")
print("The following columns are present in the dataset:")
# Using a list comprehension for clean printing of column names.
print(" | ".join([f"'{col}'" for col in df.columns]))

# --- 4. Data Types and Non-Null Counts ---

print("\n--- 4. Data Types & Memory Usage ---")
# Capture the output of df.info() to present it cleanly within the report.
buffer = io.StringIO()
df.info(buf=buffer)
info_str = buffer.getvalue()
print(info_str)

# --- 5. Missing Value Analysis ---

print("\n--- 5. Missing Values Summary ---")
missing_values = df.isnull().sum()
total_missing = missing_values.sum()
if total_missing == 0:

print("Excellent! No missing values were found in the dataset.")
else:

print(f"Found a total of {total_missing} missing values.")
# Display columns that have at least one missing value.
missing_per_column = missing_values[missing_values > 0].sort_values(ascending=False)
print("Columns with missing values:")
print(missing_per_column.to_string())

# --- 6. Descriptive Statistics for Numerical Data ---

print("\n--- 6. Descriptive Statistics (for Numerical Columns) ---")
# The describe() method provides a powerful summary of central tendency,
# dispersion, and shape of the distribution for numerical columns.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

# It automatically excludes non-numerical columns.
descriptive_stats = df.describe()
if descriptive_stats.empty:

print("No numerical columns found to generate statistics for.")
else:

print(descriptive_stats)

# --- 7. Data Preview ---

print("\n--- 7. Data Sample (First 5 Rows) ---")
# Displaying the head of the DataFrame is crucial for getting a feel
# for the actual content and format of the data.
print(df.head())

# --- 8. Analysis of Categorical / Object Data ---
print("\n--- 8. Unique Values in Categorical Columns ---")
# Select columns with 'object' dtype, which are often categorical.
object_cols = df.select_dtypes(include=['object']).columns

if len(object_cols) == 0:
print("No categorical (object type) columns found for value count analysis.")

else:
print(f"Analyzing {len(object_cols)} categorical column(s): {list(object_cols)}\n")
for col in object_cols:

unique_count = df[col].nunique()
print(f"-> Column '{col}' has {unique_count} unique values.")
# To avoid flooding the output, only show value counts for columns with few unique values.
if unique_count > 1 and unique_count <= 15:

print(" Value Counts:")
print(df[col].value_counts().to_string())
print("-" * 20)

# --- End of Report ---
print("\n=====================================================")
print(" End of Analysis Report")
print("=====================================================")

Listing 2: Python code for generating the description of ‘1-s2.0-S0092867420301070-mmc4.xlsx’ in
KramaBench.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D.2 EXAMPLES OF GENERATED DATA DESCRIPTIONS

f'''
File: data/merchant_data.json (6857 bytes)
Top-level type: array
root: array with 30 items
Element types: object=30
Columns (5): ['account_type', 'acquirer', 'capture_delay', 'merchant',

'merchant_category_code']↪→
Sample rows (first 5):
[

{
"merchant": "Crossfit_Hanna",
"capture_delay": "manual",
"acquirer": [
"gringotts",
"the_savings_and_loan_bank",
"bank_of_springfield",
"dagoberts_vault"

],
"merchant_category_code": 7997,
"account_type": "F"

},
{
"merchant": "Martinis_Fine_Steakhouse",
"capture_delay": "immediate",
"acquirer": [
"dagoberts_geldpakhuis",
"bank_of_springfield"

],
"merchant_category_code": 5812,
"account_type": "H"

},
{
"merchant": "Belles_cookbook_store",
"capture_delay": "1",
"acquirer": [
"lehman_brothers"

],
"merchant_category_code": 5942,
"account_type": "R"

},
{
"merchant": "Golfclub_Baron_Friso",
"capture_delay": "2",
"acquirer": [
"medici"

],
"merchant_category_code": 7993,
"account_type": "F"

},
{
"merchant": "Rafa_AI",
"capture_delay": "7",
"acquirer": [
"tellsons_bank"

],
"merchant_category_code": 7372,
"account_type": "D"

}
]
'''

Listing 3: Description of ‘merchant_data.json’ in DABstep.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

f'''
=====================================================

Expert Data Analysis Report for:
data/1-s2.0-S0092867420301070-mmc4.xlsx↪→

=====================================================

--- 1. Loading & Sheet Information ---
Found 4 sheet(s) in the workbook: ['README', 'A-Variants', 'B-Novel

Splice Junctions', 'C-Alternate Splice Junctions']↪→
Loading data from the first sheet: 'README'
Data loaded successfully.

--- 2. Data Dimensions and Structure ---
The dataset contains 25 rows and 2 columns.
Observation: With a few columns, the data appears to be structured but

simple.↪→

--- 3. Column Names ---
The following columns are present in the dataset:
'IN THIS FILE: a list of variants and alternate splice junctions for

which we found peptide evidence. For more information, please see
STAR Methods' | 'Unnamed: 1'

↪→
↪→

--- 4. Data Types & Memory Usage ---
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 25 entries, 0 to 24
Data columns (total 2 columns):
# Column

Non-Null Count Dtype↪→
--- ------

-------------- -----↪→
0 IN THIS FILE: a list of variants and alternate splice junctions for

which we found peptide evidence. For more information, please see
STAR Methods 21 non-null object

↪→
↪→
1 Unnamed: 1

21 non-null object↪→
dtypes: object(2)
memory usage: 528.0+ bytes

--- 5. Missing Values Summary ---
Found a total of 8 missing values.
Columns with missing values:
IN THIS FILE: a list of variants and alternate splice junctions for

which we found peptide evidence. For more information, please see
STAR Methods 4

↪→
↪→
Unnamed: 1

4↪→

--- 6. Descriptive Statistics (for Numerical Columns) ---
IN THIS FILE: a list of variants and alternate splice junctions

for which we found peptide evidence. For more information, please
see STAR Methods Unnamed: 1

↪→
↪→
count 21

21↪→
unique 21

21↪→
top Sheet

Description↪→
freq 1

1↪→

--- 7. Data Sample (First 5 Rows) ---

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

IN THIS FILE: a list of variants and alternate splice junctions for
which we found peptide evidence. For more information, please see
STAR Methods Unnamed: 1

↪→
↪→
0 NaN

NaN↪→
1 NaN

NaN↪→
2 Sheet

Description↪→
3 A-Variants

Both single amino acid variants (SAAVs) and in...↪→
4 B-Novel Splice Junctions

Splice junctions where neither boundary was at...↪→

--- 8. Unique Values in Categorical Columns ---
Analyzing 2 categorical column(s): ['IN THIS FILE: a list of variants

and alternate splice junctions for which we found peptide evidence.
For more information, please see STAR Methods', 'Unnamed: 1']

↪→
↪→

-> Column 'IN THIS FILE: a list of variants and alternate splice
junctions for which we found peptide evidence. For more information,
please see STAR Methods' has 21 unique values.

↪→
↪→
-> Column 'Unnamed: 1' has 21 unique values.

=====================================================
End of Analysis Report

=====================================================
'''

Listing 4: Description of ‘1-s2.0-S0092867420301070-mmc4.xlsx’ in KramaBench.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E QUALITATIVE RESULTS FOR EACH TASK TYPE

This section provides qualitative results. It includes queries on DA-Code benchmark, solution code
generated by DS-STAR, output generated by DS-STAR, and ground-truth answer. Specifically, it
presents examples for each task, such as statistical analysis, data insights, data wrangling, machine
learning, and visualization tasks.

E.1 STATISTICAL ANALYSIS

f'''Could you analyze our Business Case dataset to perform a hypothesis
test comparing bike rentals across different weather conditions? I
need the results formatted and saved in a file named 'weather.csv'
following the requirement in tips.md.'''

↪→
↪→
↪→

Listing 5: User’s question.

import pandas as pd
from scipy.stats import kruskal
import os

# Define the file path for the input dataset
input_file_path = 'data/yulu_bike_sharing_dataset.csv'

# Load the dataset into a pandas DataFrame
yulu_df = pd.read_csv(input_file_path)

# The goal is to perform a Kruskal-Wallis H-test to compare the distribution of bike rentals ('count')
# across different weather conditions ('weather').

# The 'weather' column contains numerical codes for different weather conditions.
# First, we need to find the unique weather conditions in the dataset.
unique_weather_conditions = sorted(yulu_df['weather'].unique())

# Next, we create a list of data samples, where each sample is an array of 'count'
# values corresponding to a specific weather condition.
weather_groups = [yulu_df['count'][yulu_df['weather'] == weather] for weather in unique_weather_conditions]

# Perform the Kruskal-Wallis H-test. The * operator unpacks the list of groups
# into separate arguments for the function.
statistic, p_value = kruskal(*weather_groups)

# Define the significance level (alpha) as specified in the guidelines.
alpha = 0.05

# Based on the p-value, determine the hypothesis conclusion and the comment
# as per the format requirements in 'data/tips.md'.
if p_value < alpha:

hypothesis_conclusion = "Strong Evidence to Reject Null Hypothesis"
comment_on_results = "Different distributions"

else:
hypothesis_conclusion = "No Evidence to Reject Null Hypothesis"
comment_on_results = "No evidence of different distributions"

# Create a dictionary containing the results in the required format.
results_data = {

'Test Type': ["Non Parametric"],
'Kruskal Statistic': [statistic],
'P-Value': [p_value],
'Hypothesis': [hypothesis_conclusion],
'Comment': [comment_on_results]

}

# Create a new pandas DataFrame from the results dictionary.
weather_results_df = pd.DataFrame(results_data)

# Define the output directory and file path.
output_dir = 'final'
output_file_path = os.path.join(output_dir, 'weather.csv')

# Ensure the output directory exists.
os.makedirs(output_dir, exist_ok=True)

# Save the resulting DataFrame to the specified CSV file,
# ensuring the index is not written to the file.
weather_results_df.to_csv(output_file_path, index=False)

# print(f"Analysis complete. Results saved to {output_file_path}")
# print(weather_results_df.to_string())

Listing 6: Solution code.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 7: Generated output by DS-STAR in csv format.
Test Type Kruskal Statistic P-Value Hypothesis Comment

Non Parametric 205.00216514479087 3.501611300708679e-44 Strong Evidence to Reject Null Hypothesis Different distributions

E.2 DATA INSIGHT

f'''Could you please analyze the matches between Argentina and Brazil?
Record the total number of matches, the number of wins for each
team, and the number of draws. Indicate if Brazil has won more
matches ("Yes" or "No"). Present your findings in the following
format:

↪→
↪→
↪→
↪→

"""
{

"Total Matches between Argentina and Brazil": [...],
"Arg Wins": [...],
"Brazil Wins": [...],
"Draws": [...],
"Result": [...]

}
"""'''

Listing 7: User’s question.

import pandas as pd
import numpy as np
import json
import os

# Ensure the 'final' directory exists for the output file
output_dir = 'final'
os.makedirs(output_dir, exist_ok=True)

# Load the results.csv file into a pandas DataFrame
results_df = pd.read_csv('data/results.csv')

# Filter for matches where the home team is Argentina and the away team is Brazil
arg_vs_bra = results_df[

(results_df['home_team'] == 'Argentina') & (results_df['away_team'] == 'Brazil')
]

# Filter for matches where the home team is Brazil and the away team is Argentina
bra_vs_arg = results_df[

(results_df['home_team'] == 'Brazil') & (results_df['away_team'] == 'Argentina')
]

# Concatenate the two DataFrames to get all matches between Argentina and Brazil
argentina_brazil_matches = pd.concat([arg_vs_bra, bra_vs_arg])

# Sort the combined DataFrame by date for a chronological view
argentina_brazil_matches = argentina_brazil_matches.sort_values(by='date').copy()

# Define the conditions for determining the winner based on scores
# A draw in regular/extra time is considered a draw, regardless of a penalty shootout outcome.
conditions = [

argentina_brazil_matches['home_score'] > argentina_brazil_matches['away_score'],
argentina_brazil_matches['away_score'] > argentina_brazil_matches['home_score']

]

# Define the corresponding outcomes (the winning team's name)
choices = [

argentina_brazil_matches['home_team'],
argentina_brazil_matches['away_team']

]

# Create the 'winner' column using np.select, with 'Draw' as the default
argentina_brazil_matches['winner'] = np.select(conditions, choices, default='Draw')

# Count the total wins for each team and the number of draws
win_counts = argentina_brazil_matches['winner'].value_counts()

# Calculate the total number of matches, wins for each team, and draws from the win_counts Series
total_matches = int(win_counts.sum())
argentina_wins = int(win_counts.get('Argentina', 0))
brazil_wins = int(win_counts.get('Brazil', 0))
draws = int(win_counts.get('Draw', 0))

# Determine the 'Result' value. 'Yes' if Brazil has more wins, otherwise 'No'.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

result_value = 'Yes' if brazil_wins > argentina_wins else 'No'

# Construct the dictionary to store the analysis results with the specified keys
analysis_results = {

"Total Matches between Argentina and Brazil": total_matches,
"Arg Wins": argentina_wins,
"Brazil Wins": brazil_wins,
"Draws": draws,
"Result": result_value

}

# Define the output file path
output_path = os.path.join(output_dir, 'result.json')

# Save the final results dictionary to a JSON file in the 'final' directory
with open(output_path, 'w') as f:

json.dump(analysis_results, f, indent=4)

Listing 8: Solution code.

f'''{
"Total Matches between Argentina and Brazil": [109],
"Arg Wins": [40],
"Brazil Wins": [43],
"Draws": [26],
"Result": ["Yes"]

}'''

Listing 9: Generated output by DS-STAR, in json format.

E.3 DATA MANIPULATION

f'''Calculate the total quantity sold and total sales revenue for each
bike category from 2016 to 2018. Ensure that total sales revenue
accounts for any discounts applied to each order. Write the results
into result.csv, following the exact structure and formatting of
sample_result.csv.'''

↪→
↪→
↪→
↪→

Listing 10: User’s question.

import pandas as pd
import os

# Ensure the output directory exists
os.makedirs('final', exist_ok=True)

# Load the required data files into pandas DataFrames
order_items_df = pd.read_csv('data/order_items.csv')
products_df = pd.read_csv('data/products.csv')
categories_df = pd.read_csv('data/categories.csv')
sample_result_df = pd.read_csv('data/sample_result.csv')

# Calculate the sales revenue for each item, accounting for discounts.
# sales_revenue = quantity * list_price * (1 - discount)
order_items_df['sales_revenue'] = order_items_df['quantity'] * order_items_df['list_price'] * (1 -

order_items_df['discount'])↪→

# Merge the order items with product information to get model_year and category_id
merged_df = pd.merge(order_items_df, products_df, on='product_id')

# Merge with category information to get category_name
merged_df = pd.merge(merged_df, categories_df, on='category_id')

# Filter the DataFrame to include only products with model years from 2016 to 2018
filtered_df = merged_df[(merged_df['model_year'] >= 2016) & (merged_df['model_year'] <= 2018)]

# Group the filtered data by 'category_name' and aggregate the total quantity and total sales revenue.
category_summary = filtered_df.groupby('category_name').agg(

total_quantity=('quantity', 'sum'),
total_price=('sales_revenue', 'sum')

).reset_index()

# Use the sample_result.csv to define the structure and order of the final output.
# Perform a left merge to ensure all categories from the sample are present in the final result, in the

correct order.↪→
final_df = pd.merge(sample_result_df[['category_name']], category_summary, on='category_name', how='left')

# Fill any potential NaN values with 0 for categories that had no sales in the filtered period.
final_df[['total_quantity', 'total_price']] = final_df[['total_quantity', 'total_price']].fillna(0)

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

# Ensure the column order matches the sample_result.csv file: ['total_quantity', 'total_price',
'category_name']↪→

final_df = final_df[['total_quantity', 'total_price', 'category_name']]

# Convert the 'total_quantity' column to integer type as it represents a count of items.
final_df['total_quantity'] = final_df['total_quantity'].astype(int)

# Define the output path
output_path = 'final/result.csv'

# Save the final DataFrame to the specified path, without the index.
final_df.to_csv(output_path, index=False)

print(f"Successfully generated '{output_path}'")
print("Content of the generated file:")
print(final_df)

Listing 11: Solution code.

Table 8: Generated output by DS-STAR in csv format.

total_quantity total_price category_name

1755 2715079.53 Mountain Bikes
559 1665098.49 Road Bikes

2063 995032.62 Cruisers Bicycles
315 916684.78 Electric Bikes
394 711011.84 Cyclocross Bicycles
813 394020.10 Comfort Bicycles

1179 292189.20 Children Bicycles

E.4 DATA WRANGLING

f'''Manage missing data in the NYC_Open_Data_Parking_Violations dataset
by either dropping or replacing it. Drop rows if necessary, and drop
columns only if most entries are empty. Replace missing values with
the mean, mode, or other appropriate methods. Save the cleaned data
to 'cleaned_data.csv'.'''

↪→
↪→
↪→
↪→

Listing 12: User’s question.

import pandas as pd
import numpy as np
import os

# The user prompt mentions cleaning the 'NYC_Open_Data_Parking_Violations' dataset,
# however, the provided data file is 'data/data.csv', which contains automobile data.
# This script will proceed with cleaning the provided 'data/data.csv' file based on the
# general data cleaning guidelines in the prompt.

# Define file paths
input_file = 'data/data.csv'
output_dir = 'final'
output_file = os.path.join(output_dir, 'cleaned_data.csv')

# Create the output directory if it does not exist
if not os.path.exists(output_dir):

os.makedirs(output_dir)

# Load the data, interpreting '?' as Not a Number (NaN)
df = pd.read_csv(input_file, na_values='?')

# --- Data Cleaning Steps ---

# Guideline: "Drop rows if necessary"
# The 'price' column is crucial for most analyses. Rows with a missing price are dropped.
df.dropna(subset=['price'], inplace=True)

# Guideline: "Replace missing values with the mean, mode, or other appropriate methods"

# Identify columns for mean and mode imputation
# Numerical columns with missing values to be imputed with the mean
numeric_cols_to_impute_mean = ['normalized-losses', 'bore', 'stroke', 'horsepower', 'peak-rpm']

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

# Categorical columns with missing values to be imputed with the mode
categorical_cols_to_impute_mode = ['num-of-doors']

# Impute numerical columns with the mean
for col in numeric_cols_to_impute_mean:

# Convert column to numeric type. This is necessary because the '?'
# values caused pandas to read them as 'object' type.
df[col] = pd.to_numeric(df[col])
# Calculate the mean of the column (NaNs are automatically excluded)
mean_val = df[col].mean()
# Fill the missing (NaN) values with the calculated mean
df[col].fillna(mean_val, inplace=True)

# Impute categorical columns with the mode
for col in categorical_cols_to_impute_mode:

# Calculate the mode (most frequent value) of the column.
# .mode() returns a Series, so we take the first element.
mode_val = df[col].mode()[0]
# Fill the missing (NaN) values with the calculated mode
df[col].fillna(mode_val, inplace=True)

# Guideline: After handling missing values, ensure data types are correct.
# The 'price' column was loaded as 'object' and needs to be converted to a numeric type.
df['price'] = df['price'].astype(float)

# --- Save the Cleaned Data ---

# Save the final cleaned DataFrame to 'final/cleaned_data.csv'
# The index is not saved as it's not part of the original data.
df.to_csv(output_file, index=False)

# --- Verification ---
# This part confirms that the cleaning was successful and the file was created.
print(f"Successfully cleaned the dataset and saved it to '{output_file}'")

# Load the cleaned data to verify its integrity
cleaned_df = pd.read_csv(output_file)

print("\n--- Verification of Cleaned Data ---")
print(f"Shape of the cleaned data: {cleaned_df.shape}")

# Check for any remaining missing values
missing_values_summary = cleaned_df.isnull().sum()
total_missing = missing_values_summary.sum()

print("\nMissing values per column in the cleaned file:")
print(missing_values_summary)
print(f"\nTotal remaining missing values: {total_missing}")

if total_missing == 0:
print("\nVerification successful: The cleaned dataset has no missing values.")

else:
print("\nVerification failed: The cleaned dataset still contains missing values.")

Listing 13: Solution code.

Table 9: Generated output by DS-STAR in csv format.
symboling normalized-losses make fuel-type aspiration num-of-doors body-style drive-wheels engine-location wheel-base length width height curb-weight engine-type num-of-cylinders engine-size fuel-system bore stroke compression-ratio horsepower peak-rpm city-mpg highway-mpg price

3 122.0 alfa-romero gas std two convertible rwd front 88.6 168.8 64.1 48.8 2548 dohc four 130 mpfi 3.47 2.68 9.0 111 5000 21 27 13495
3 122.0 alfa-romero gas std two convertible rwd front 88.6 168.8 64.1 48.8 2548 dohc four 130 mpfi 3.47 2.68 9.0 111 5000 21 27 16500
1 122.0 alfa-romero gas std two hatchback rwd front 94.5 171.2 65.5 52.4 2823 ohcv six 152 mpfi 2.68 3.47 9.0 154 5000 19 26 16500
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

E.5 MACHINE LEARNING

f'''As a contestant in the Bank customer data churn prediction
competition, you need to predict the data in test.csv according to
the competition requirements. Write the results into submission.csv
following the format specified in sample_submission.csv.'''

↪→
↪→
↪→

Listing 14: User’s question.

import pandas as pd
import numpy as np
from sklearn.model_selection import StratifiedKFold
import lightgbm as lgb
from sklearn.metrics import roc_auc_score
import optuna
import os

# Create the 'final' directory if it doesn't already exist to store the output.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

os.makedirs('final', exist_ok=True)

# Suppress Optuna's logging to keep the output clean during the study.
optuna.logging.set_verbosity(optuna.logging.WARNING)

# 1. Load All Data
# Load data from the 'data/' directory.
original_train_df = pd.read_csv('data/train.csv')
test_df = pd.read_csv('data/test.csv')
additional_data_df = pd.read_csv('data/Churn_Modelling.csv')

# The provided test.csv uses 'CustomerId' as the unique identifier.
# We will use 'CustomerId' for the submission file's 'id' column as required by the competition format.
test_ids = test_df['CustomerId']

# 2. Preprocess Data: Augment and Clean
# Select a consistent set of feature columns and the target variable ('Exited') to ensure uniformity across

datasets.↪→
feature_cols = ['CreditScore', 'Geography', 'Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts',

'HasCrCard', 'IsActiveMember', 'EstimatedSalary', 'Exited']↪→

# Augment the training data by combining the original training set with the additional 'Churn_Modelling.csv'
dataset.↪→

train_df = pd.concat([original_train_df[feature_cols], additional_data_df[feature_cols]], ignore_index=True)

# --- START: Feature Engineering ---
def feature_engineer(df):

"""Creates new features based on domain knowledge and interactions between existing features."""
# A small epsilon is added to denominators to prevent division by zero errors.
epsilon = 1e-6
df['BalanceSalaryRatio'] = df['Balance'] / (df['EstimatedSalary'] + epsilon)
df['TenureByAge'] = df['Tenure'] / (df['Age'] + epsilon)
df['CreditScoreGivenAge'] = df['CreditScore'] / (df['Age'] + epsilon)
df['Loyalty'] = df['Tenure'] * df['IsActiveMember']
df['ProductsPerTenure'] = df['NumOfProducts'] / (df['Tenure'] + epsilon)
return df

print("Applying feature engineering to training and test data...")
train_df = feature_engineer(train_df)
test_df = feature_engineer(test_df)
# --- END: Feature Engineering ---

# Drop identifier columns ('CustomerId', 'Surname', 'id') that are not useful for the model.
# 'errors='ignore'' handles cases where a column might not exist in a dataframe.
drop_cols = ['CustomerId', 'Surname', 'id']
train_df = train_df.drop(columns=[col for col in drop_cols if col in train_df.columns and col != 'Exited'],

errors='ignore')↪→
test_df = test_df.drop(columns=[col for col in drop_cols if col in test_df.columns], errors='ignore')

# One-Hot Encode categorical features ('Geography', 'Gender') to convert them into a machine-readable
format.↪→

categorical_features = ['Geography', 'Gender']
train_df = pd.get_dummies(train_df, columns=categorical_features, drop_first=True)
test_df = pd.get_dummies(test_df, columns=categorical_features, drop_first=True)

# Separate the target variable ('Exited') from the training features.
train_labels = train_df['Exited']
train_df = train_df.drop(columns=['Exited'])

# Align the training and test dataframes to ensure they have the exact same feature columns in the same
order.↪→

# 'inner' join keeps only columns that are present in both dataframes.
train_df, test_df = train_df.align(test_df, join='inner', axis=1)

# Define the final feature set (X) and target (y).
X = train_df
y = train_labels

# 3. Define the Objective Function for Optuna Hyperparameter Tuning
def objective(trial):

"""Defines the hyperparameter search space and evaluation metric for Optuna to optimize."""
# Define the hyperparameter search space for the LightGBM model.
params = {

'objective': 'binary',
'metric': 'auc',
'boosting_type': 'gbdt',
'n_estimators': trial.suggest_int('n_estimators', 2000, 10000),
'learning_rate': trial.suggest_float('learning_rate', 0.01, 0.05),
'num_leaves': trial.suggest_int('num_leaves', 20, 100),
'max_depth': trial.suggest_int('max_depth', 5, 10),
'seed': 42,
'n_jobs': -1,
'verbose': -1,
'colsample_bytree': trial.suggest_float('colsample_bytree', 0.5, 0.9),
'subsample': trial.suggest_float('subsample', 0.5, 0.9),
'reg_alpha': trial.suggest_float('reg_alpha', 0.01, 0.5),
'reg_lambda': trial.suggest_float('reg_lambda', 0.01, 0.5),

}

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

N_SPLITS = 5
skf = StratifiedKFold(n_splits=N_SPLITS, shuffle=True, random_state=42)
oof_auc_scores = []

# Perform cross-validation to get a robust estimate of the model's performance for a given set of
hyperparameters.↪→

for fold, (train_idx, val_idx) in enumerate(skf.split(X, y)):
X_train, y_train = X.iloc[train_idx], y.iloc[train_idx]
X_val, y_val = X.iloc[val_idx], y.iloc[val_idx]

model = lgb.LGBMClassifier(**params)
model.fit(X_train, y_train,

eval_set=[(X_val, y_val)],
eval_metric='auc',
callbacks=[lgb.early_stopping(100, verbose=False)])

val_preds = model.predict_proba(X_val)[:, 1]
auc = roc_auc_score(y_val, val_preds)
oof_auc_scores.append(auc)

# Return the mean AUC score, which Optuna will try to maximize.
return np.mean(oof_auc_scores)

# 4. Run the Optimization Study
print("Running hyperparameter optimization...")
study = optuna.create_study(direction='maximize')
# The number of trials can be adjusted; 50 provides a reasonable balance between search time and

performance.↪→
study.optimize(objective, n_trials=50)
best_params = study.best_params
print(f"\nBest trial parameters: {best_params}")
print(f"Best trial mean OOF AUC: {study.best_value}")

# 5. Train Final Model with Best Parameters and Create Submission
print("\nTraining final model with tuned parameters...")
N_SPLITS = 5
skf = StratifiedKFold(n_splits=N_SPLITS, shuffle=True, random_state=42)
test_preds = np.zeros(len(test_df))
oof_auc_scores = []

# Combine the best parameters found by Optuna with fixed model settings.
final_params = {

'objective': 'binary', 'metric': 'auc', 'boosting_type': 'gbdt',
'seed': 42, 'n_jobs': -1, 'verbose': -1, **best_params

}

for fold, (train_idx, val_idx) in enumerate(skf.split(X, y)):
print(f"===== Fold {fold+1} =====")
X_train, y_train = X.iloc[train_idx], y.iloc[train_idx]
X_val, y_val = X.iloc[val_idx], y.iloc[val_idx]

model = lgb.LGBMClassifier(**final_params)
model.fit(X_train, y_train,

eval_set=[(X_val, y_val)],
eval_metric='auc',
callbacks=[lgb.early_stopping(100, verbose=False)])

val_preds = model.predict_proba(X_val)[:, 1]
auc = roc_auc_score(y_val, val_preds)
oof_auc_scores.append(auc)
print(f"Fold {fold+1} AUC: {auc}")

# Accumulate predictions on the test set, averaging over the folds to improve robustness.
test_preds += model.predict_proba(test_df)[:, 1] / N_SPLITS

# Print the final average validation score from the cross-validation.
print(f"\nAverage OOF AUC with tuned parameters: {np.mean(oof_auc_scores)}")

# Create the submission DataFrame using the averaged test predictions.
submission_df = pd.DataFrame({'id': test_ids, 'Exited': test_preds})

# Save the DataFrame to a CSV file in the 'final' directory for submission.
submission_df.to_csv('final/submission.csv', index=False)

print("\nSubmission file created successfully at 'final/submission.csv'.")
print("First 5 rows of the submission file:")
print(submission_df.head())

Listing 15: Solution code and machine learning model.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

E.6 VISUALIZATION

f'''Draw a stacked bar chart that displays the percentage of restaurants
offering online ordering options versus those not offering online
ordering options across different rating levels. Save this chart as
'result.jpg'. The title of the image should be "Percentage of
Restaurants' Online Order Option by Rating", with the xlabel as
"Rating", and the ylabel as "Percentage of Online Orders".'''

↪→
↪→
↪→
↪→
↪→

Listing 16: User’s question.

import pandas as pd
import sqlite3
import zipfile
import os
import numpy as np
import matplotlib.pyplot as plt

def generate_chart():
"""
Loads data from the Zomato SQLite database, cleans the 'rate' column,
calculates the percentage of restaurants offering online ordering for each rating,
and generates a stacked bar chart of the results, saving it to the 'final' directory.
"""
# Define file paths
zip_path = 'data/zomato_rawdata.sqlite.zip'
db_name = 'zomato_rawdata.sqlite'
extract_path = '.' # Extract to the current directory
output_dir = 'final'
output_path = os.path.join(output_dir, 'result.jpg')

# --- Step 1: Create output directory if it doesn't exist ---
if not os.path.exists(output_dir):

os.makedirs(output_dir)

# --- Step 2: Extract the database from the zip file ---
db_path = os.path.join(extract_path, db_name)
with zipfile.ZipFile(zip_path, 'r') as zip_ref:

# Extract the database file, ensuring the correct member is chosen
for member in zip_ref.infolist():

if db_name in member.filename:
# To handle cases where the zip file has directory structures
member.filename = os.path.basename(member.filename)
zip_ref.extract(member, path=extract_path)
break

# --- Step 3: Load data from the SQLite database ---
conn = None
try:

conn = sqlite3.connect(db_path)
# Select only the columns needed for this analysis
query = "SELECT rate, online_order FROM Users"
df = pd.read_sql_query(query, conn)

finally:
if conn:

conn.close()

# --- Step 4: Clean the 'rate' column ---
# Make a copy to avoid SettingWithCopyWarning
df = df.copy()

# Replace special non-numeric strings 'NEW' and '-' with numpy.nan
df['rate'] = df['rate'].replace(['NEW', '-'], np.nan)

# Remove the '/5' suffix from the rating strings
df['rate'] = df['rate'].str.replace('/5', '').str.strip()

# Convert the cleaned column to a numeric (float) type
df['rate'] = pd.to_numeric(df['rate'], errors='coerce')

# Drop rows where 'rate' or 'online_order' is NaN as they are not useful for this analysis
df.dropna(subset=['rate', 'online_order'], inplace=True)

# --- Step 5: Aggregate the data for plotting ---
# Create a cross-tabulation to get counts of 'Yes' and 'No' for each rating
online_order_counts = pd.crosstab(df['rate'], df['online_order'])

# Calculate the percentage by dividing each row by its sum
rate_online_percentage_df = online_order_counts.div(online_order_counts.sum(axis=1), axis=0) * 100

# --- Step 6: Generate and save the stacked bar chart ---
# Create the plot figure and axes
fig, ax = plt.subplots(figsize=(14, 8))

# Generate the stacked bar chart
rate_online_percentage_df.plot(kind='bar', stacked=True, ax=ax)

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

# Set the title and labels as required
ax.set_title("Percentage of Restaurants' Online Order Option by Rating", fontsize=16)
ax.set_xlabel("Rating", fontsize=12)
ax.set_ylabel("Percentage of Online Orders", fontsize=12)

# Improve aesthetics and readability
ax.tick_params(axis='x', rotation=90)
ax.legend(title='Online Order')
ax.grid(axis='y', linestyle='--', alpha=0.7)

# Adjust layout to prevent labels from being cut off
plt.tight_layout()

# Save the resulting chart to the final directory
plt.savefig(output_path)

# Close the plot to free up memory
plt.close(fig)

print(f"Chart has been generated and saved as '{output_path}'.")

# --- Step 7: Clean up the extracted file ---
if os.path.exists(db_path):

os.remove(db_path)

# Execute the function to generate the chart
generate_chart()

Listing 17: Solution code.

Figure 5: Generated bar chart.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

F FULL EXECUTION LOGS OF DS-STAR
In this section, we provide full logs of DS-STAR to better understand its behavior.

f'''In February 2023 what delta would Rafa_AI pay if the relative fee of
the fee with ID=17 changed to 99?'''↪→

Listing 18: User’s question.

# Step 1
f'''First, I will filter the `payments.csv` data to select only the

transactions for the merchant 'Rafa_AI' that occurred in February
2023. Since 2023 is not a leap year, February corresponds to the
days of the year from 32 to 59.'''

↪→
↪→
↪→

Listing 19: Round 0: Initial plan.

import pandas as pd

# Load the payments data
try:

payments_df = pd.read_csv('data/payments.csv')
except FileNotFoundError:

print("Error: 'data/payments.csv' not found. Please ensure the file is in the correct directory.")
exit()

# Define the filter for the merchant 'Rafa_AI'
merchant_filter = payments_df['merchant'] == 'Rafa_AI'

# Define the filter for February 2023.
# 2023 is not a leap year. January has 31 days.
# February runs from day 32 (31+1) to day 59 (31+28).
date_filter = (payments_df['day_of_year'] >= 32) & (payments_df['day_of_year'] <= 59)

# Apply both filters to the DataFrame
rafa_ai_feb_transactions = payments_df[merchant_filter & date_filter]

# Display the resulting filtered DataFrame
print(rafa_ai_feb_transactions)

Listing 20: Round 0: Initial implementation.

f'''Insufficient'''

Listing 21: Round 0: Validation.

f'''Add Step'''

Listing 22: Round 0: Routing. Add Step 2 to the initial plan.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

# Step 1
f'''First, I will filter the `payments.csv` data to select only the

transactions for the merchant 'Rafa_AI' that occurred in February
2023. Since 2023 is not a leap year, February corresponds to the
days of the year from 32 to 59.'''

↪→
↪→
↪→

# Step 2
f'''I will calculate the original total fee paid by Rafa_AI in February

2023. This involves loading the `merchant_data.json` and `fees.json`
files, enriching the transaction data with all attributes required
for fee matching (including merchant details, monthly volume,
monthly fraud rate, and intracountry status), then applying the
corresponding fee rule to each transaction and summing the
calculated fees..'''

↪→
↪→
↪→
↪→
↪→
↪→

Listing 23: Round 1: Plan.

import pandas as pd
import json

# --- 1. Load All Necessary Data ---
try:

payments_df = pd.read_csv('data/payments.csv')
merchant_data_df = pd.read_json('data/merchant_data.json')
fees_df = pd.read_json('data/fees.json')
acquirer_countries_df = pd.read_csv('data/acquirer_countries.csv')

except FileNotFoundError as e:
print(f"Error loading data: {e}. Please ensure all data files are in the 'data/' directory.")
exit()

# --- 2. Filter Transactions (Based on Previous Plan) ---
# Define the filter for the merchant 'Rafa_AI'
merchant_filter = payments_df['merchant'] == 'Rafa_AI'

# Define the filter for February 2023.
# 2023 is not a leap year. January has 31 days.
# February runs from day 32 (31+1) to day 59 (31+28).
date_filter = (payments_df['day_of_year'] >= 32) & (payments_df['day_of_year'] <= 59)

# Apply both filters to the DataFrame and create a copy to avoid warnings
rafa_ai_feb_transactions = payments_df[merchant_filter & date_filter].copy()

# --- 3. Enrich Transaction Data with Merchant and Acquirer Information ---

# Get Rafa_AI's specific merchant data
rafa_ai_merchant_info = merchant_data_df[merchant_data_df['merchant'] == 'Rafa_AI'].iloc[0]

# Add merchant-specific attributes to the transaction DataFrame
rafa_ai_feb_transactions['account_type'] = rafa_ai_merchant_info['account_type']
rafa_ai_feb_transactions['capture_delay'] = str(rafa_ai_merchant_info['capture_delay']) # Ensure consistent

type↪→
rafa_ai_feb_transactions['merchant_category_code'] = rafa_ai_merchant_info['merchant_category_code']

# FIX: The original code failed on the next line.
# The error "ValueError: Length of values (1) does not match length of index (2126)"
# suggests that rafa_ai_merchant_info['acquirer'] is a list-like object with one element
# (e.g., ['gringotts']) instead of a scalar string. Assigning a list of length 1 to a
# column of a different length causes this error.
# The fix is to extract the scalar string from the list before assigning it.
acquirer_name = rafa_ai_merchant_info['acquirer']
if isinstance(acquirer_name, list):

# If it's a list, take the first element. If empty, it becomes None.
acquirer_name = acquirer_name[0] if acquirer_name else None

# Now assign the scalar acquirer name to the new column.
rafa_ai_feb_transactions['acquirer'] = acquirer_name

# Create a mapping from acquirer name to country code
acquirer_country_map = acquirer_countries_df.set_index('acquirer')['country_code']

# Add acquirer country to the transaction data
rafa_ai_feb_transactions['acquirer_country'] =

rafa_ai_feb_transactions['acquirer'].map(acquirer_country_map)↪→

# Determine if each transaction is intracountry
rafa_ai_feb_transactions['intracountry'] = rafa_ai_feb_transactions['issuing_country'] ==

rafa_ai_feb_transactions['acquirer_country']↪→

# --- 4. Calculate Monthly Aggregates for Fee Matching ---

# Calculate total transaction volume for Rafa_AI in February

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

monthly_volume = rafa_ai_feb_transactions['eur_amount'].sum()

# Calculate fraudulent transaction volume for the same period
fraudulent_volume =

rafa_ai_feb_transactions[rafa_ai_feb_transactions['has_fraudulent_dispute']]['eur_amount'].sum()↪→

# Calculate the monthly fraud rate as a percentage
# Avoid division by zero if there's no volume
monthly_fraud_rate = (fraudulent_volume / monthly_volume) if monthly_volume > 0 else 0
monthly_fraud_percentage = monthly_fraud_rate * 100

# Add these aggregates to each transaction row for easy lookup during fee matching
rafa_ai_feb_transactions['monthly_volume'] = monthly_volume
rafa_ai_feb_transactions['monthly_fraud_percentage'] = monthly_fraud_percentage

# --- 5. Implement Fee Matching Logic ---

def parse_numeric_value(s):
"""Helper to parse strings like '100k' or '1m' into numbers."""
s = s.strip().lower()
if 'k' in s:

return float(s.replace('k', '')) * 1_000
if 'm' in s:

return float(s.replace('m', '')) * 1_000_000
return float(s)

def check_volume_rule(rule_str, value):
"""Checks if a value fits a volume rule string (e.g., '100k-1m')."""
if pd.isnull(rule_str): return True
rule_str = rule_str.replace(' ', '')
if '-' in rule_str:

low_str, high_str = rule_str.split('-')
return parse_numeric_value(low_str) <= value < parse_numeric_value(high_str)

if '>' in rule_str:
return value >= parse_numeric_value(rule_str.replace('>', ''))

if '<' in rule_str:
return value < parse_numeric_value(rule_str.replace('<', ''))

return False

def check_fraud_rule(rule_str, value):
"""Checks if a value fits a fraud rule string (e.g., '7.7%-8.3%')."""
if pd.isnull(rule_str): return True
rule_str = rule_str.replace('%', '')
if '-' in rule_str:

low_str, high_str = rule_str.split('-')
return float(low_str) <= value < float(high_str)

if '>' in rule_str:
return value >= float(rule_str.replace('>', ''))

if '<' in rule_str:
return value < float(rule_str.replace('<', ''))

return False

def find_matching_fee_rule(transaction, all_rules_df):
"""Iterates through fee rules to find the first one that matches the transaction."""
for _, rule in all_rules_df.iterrows():

# A rule with an empty list for a category applies to all values in that category
if rule['card_scheme'] != transaction['card_scheme']: continue
if rule['account_type'] and transaction['account_type'] not in rule['account_type']: continue
if rule['merchant_category_code'] and transaction['merchant_category_code'] not in

rule['merchant_category_code']: continue↪→
if rule['aci'] and transaction['aci'] not in rule['aci']: continue

# A rule with a null value for a category applies to all values
if pd.notnull(rule['is_credit']) and rule['is_credit'] != transaction['is_credit']: continue
if pd.notnull(rule['intracountry']) and rule['intracountry'] != transaction['intracountry']:

continue↪→
if pd.notnull(rule['capture_delay']) and rule['capture_delay'] != transaction['capture_delay']:

continue↪→

# Check complex range-based rules
if not check_volume_rule(rule['monthly_volume'], transaction['monthly_volume']): continue
if not check_fraud_rule(rule['monthly_fraud_level'], transaction['monthly_fraud_percentage']):

continue↪→

# If all checks pass, this is the correct rule
return rule['fixed_amount'], rule['rate']

# Return default/zero fees if no rule is found (should not happen with complete data)
return 0, 0

# --- 6. Calculate Fees and Final Sum ---

# Apply the matching function to each transaction to get its specific fee parameters
fee_params = rafa_ai_feb_transactions.apply(

lambda row: find_matching_fee_rule(row, fees_df),
axis=1

)

# Assign the found fee parameters back to the DataFrame
rafa_ai_feb_transactions[['fixed_amount', 'rate']] = pd.DataFrame(

fee_params.tolist(),

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

index=rafa_ai_feb_transactions.index
)

# Calculate the fee for each transaction using the formula from the manual
# fee = fixed_amount + rate * transaction_value / 10000
rafa_ai_feb_transactions['fee'] = rafa_ai_feb_transactions['fixed_amount'] + \

(rafa_ai_feb_transactions['rate'] * rafa_ai_feb_transactions['eur_amount'] /
10000)↪→

# Calculate the total fee by summing up the fees for all transactions
total_original_fee = rafa_ai_feb_transactions['fee'].sum()

# Display the final result
print(f"The original total fee paid by Rafa_AI in February 2023 was: {total_original_fee:.2f} EUR")

Listing 24: Round 1: Implementation.

f'''Insufficient'''

Listing 25: Round 1: Validation.

f'''Add Step'''

Listing 26: Round 1: Routing. Add Step 3 to the current plan.

# Step 1
f'''First, I will filter the `payments.csv` data to select only the

transactions for the merchant 'Rafa_AI' that occurred in February
2023. Since 2023 is not a leap year, February corresponds to the
days of the year from 32 to 59.'''

↪→
↪→
↪→

# Step 2
f'''I will calculate the original total fee paid by Rafa_AI in February

2023. This involves loading the `merchant_data.json` and `fees.json`
files, enriching the transaction data with all attributes required
for fee matching (including merchant details, monthly volume,
monthly fraud rate, and intracountry status), then applying the
corresponding fee rule to each transaction and summing the
calculated fees..'''

↪→
↪→
↪→
↪→
↪→
↪→

# Step 3
f'''I will calculate the new total fee for Rafa_AI's February 2023

transactions using the modified fee structure where the fee rule
with ID=17 has its `rate` changed to 99. Then, I will subtract the
original total fee (778.52 EUR) from this new total fee to find the
requested delta.'''

↪→
↪→
↪→
↪→

Listing 27: Round 2: Plan.

import pandas as pd
import json

# --- 1. Load All Necessary Data ---
try:

payments_df = pd.read_csv('data/payments.csv')
merchant_data_df = pd.read_json('data/merchant_data.json')
fees_df = pd.read_json('data/fees.json')
acquirer_countries_df = pd.read_csv('data/acquirer_countries.csv')

except FileNotFoundError as e:
print(f"Error loading data: {e}. Please ensure all data files are in the 'data/' directory.")
exit()

# --- 2. Filter Transactions (Based on Previous Plan) ---
# Define the filter for the merchant 'Rafa_AI'
merchant_filter = payments_df['merchant'] == 'Rafa_AI'

# Define the filter for February 2023.
# 2023 is not a leap year. January has 31 days.
# February runs from day 32 (31+1) to day 59 (31+28).

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

date_filter = (payments_df['day_of_year'] >= 32) & (payments_df['day_of_year'] <= 59)

# Apply both filters to the DataFrame and create a copy to avoid warnings
rafa_ai_feb_transactions = payments_df[merchant_filter & date_filter].copy()

# --- 3. Enrich Transaction Data with Merchant and Acquirer Information ---

# Get Rafa_AI's specific merchant data
rafa_ai_merchant_info = merchant_data_df[merchant_data_df['merchant'] == 'Rafa_AI'].iloc[0]

# Add merchant-specific attributes to the transaction DataFrame
rafa_ai_feb_transactions['account_type'] = rafa_ai_merchant_info['account_type']
rafa_ai_feb_transactions['capture_delay'] = str(rafa_ai_merchant_info['capture_delay']) # Ensure consistent

type↪→
rafa_ai_feb_transactions['merchant_category_code'] = rafa_ai_merchant_info['merchant_category_code']

# FIX: The original code failed on the next line.
# The error "ValueError: Length of values (1) does not match length of index (2126)"
# suggests that rafa_ai_merchant_info['acquirer'] is a list-like object with one element
# (e.g., ['gringotts']) instead of a scalar string. Assigning a list of length 1 to a
# column of a different length causes this error.
# The fix is to extract the scalar string from the list before assigning it.
acquirer_name = rafa_ai_merchant_info['acquirer']
if isinstance(acquirer_name, list):

# If it's a list, take the first element. If empty, it becomes None.
acquirer_name = acquirer_name[0] if acquirer_name else None

# Now assign the scalar acquirer name to the new column.
rafa_ai_feb_transactions['acquirer'] = acquirer_name

# Create a mapping from acquirer name to country code
acquirer_country_map = acquirer_countries_df.set_index('acquirer')['country_code']

# Add acquirer country to the transaction data
rafa_ai_feb_transactions['acquirer_country'] =

rafa_ai_feb_transactions['acquirer'].map(acquirer_country_map)↪→

# Determine if each transaction is intracountry
rafa_ai_feb_transactions['intracountry'] = rafa_ai_feb_transactions['issuing_country'] ==

rafa_ai_feb_transactions['acquirer_country']↪→

# --- 4. Calculate Monthly Aggregates for Fee Matching ---

# Calculate total transaction volume for Rafa_AI in February
monthly_volume = rafa_ai_feb_transactions['eur_amount'].sum()

# Calculate fraudulent transaction volume for the same period
fraudulent_volume =

rafa_ai_feb_transactions[rafa_ai_feb_transactions['has_fraudulent_dispute']]['eur_amount'].sum()↪→

# Calculate the monthly fraud rate as a percentage
# Avoid division by zero if there's no volume
monthly_fraud_rate = (fraudulent_volume / monthly_volume) if monthly_volume > 0 else 0
monthly_fraud_percentage = monthly_fraud_rate * 100

# Add these aggregates to each transaction row for easy lookup during fee matching
rafa_ai_feb_transactions['monthly_volume'] = monthly_volume
rafa_ai_feb_transactions['monthly_fraud_percentage'] = monthly_fraud_percentage

# --- 5. Implement Fee Matching Logic ---

def parse_numeric_value(s):
"""Helper to parse strings like '100k' or '1m' into numbers."""
s = s.strip().lower()
if 'k' in s:

return float(s.replace('k', '')) * 1_000
if 'm' in s:

return float(s.replace('m', '')) * 1_000_000
return float(s)

def check_volume_rule(rule_str, value):
"""Checks if a value fits a volume rule string (e.g., '100k-1m')."""
if pd.isnull(rule_str): return True
rule_str = rule_str.replace(' ', '')
if '-' in rule_str:

low_str, high_str = rule_str.split('-')
return parse_numeric_value(low_str) <= value < parse_numeric_value(high_str)

if '>' in rule_str:
return value >= parse_numeric_value(rule_str.replace('>', ''))

if '<' in rule_str:
return value < parse_numeric_value(rule_str.replace('<', ''))

return False

def check_fraud_rule(rule_str, value):
"""Checks if a value fits a fraud rule string (e.g., '7.7%-8.3%')."""
if pd.isnull(rule_str): return True
rule_str = rule_str.replace('%', '')
if '-' in rule_str:

low_str, high_str = rule_str.split('-')
return float(low_str) <= value < float(high_str)

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

if '>' in rule_str:
return value >= float(rule_str.replace('>', ''))

if '<' in rule_str:
return value < float(rule_str.replace('<', ''))

return False

def find_matching_fee_rule(transaction, all_rules_df):
"""Iterates through fee rules to find the first one that matches the transaction."""
for _, rule in all_rules_df.iterrows():

# A rule with an empty list for a category applies to all values in that category
if rule['card_scheme'] != transaction['card_scheme']: continue
if rule['account_type'] and transaction['account_type'] not in rule['account_type']: continue
if rule['merchant_category_code'] and transaction['merchant_category_code'] not in

rule['merchant_category_code']: continue↪→
if rule['aci'] and transaction['aci'] not in rule['aci']: continue

# A rule with a null value for a category applies to all values
if pd.notnull(rule['is_credit']) and rule['is_credit'] != transaction['is_credit']: continue
if pd.notnull(rule['intracountry']) and rule['intracountry'] != transaction['intracountry']:

continue↪→
if pd.notnull(rule['capture_delay']) and rule['capture_delay'] != transaction['capture_delay']:

continue↪→

# Check complex range-based rules
if not check_volume_rule(rule['monthly_volume'], transaction['monthly_volume']): continue
if not check_fraud_rule(rule['monthly_fraud_level'], transaction['monthly_fraud_percentage']):

continue↪→

# If all checks pass, this is the correct rule
return rule['fixed_amount'], rule['rate']

# Return default/zero fees if no rule is found (should not happen with complete data)
return 0, 0

# --- 6. Calculate Fees and Final Sum ---

# Apply the matching function to each transaction to get its specific fee parameters
fee_params = rafa_ai_feb_transactions.apply(

lambda row: find_matching_fee_rule(row, fees_df),
axis=1

)

# Assign the found fee parameters back to the DataFrame
rafa_ai_feb_transactions[['fixed_amount', 'rate']] = pd.DataFrame(

fee_params.tolist(),
index=rafa_ai_feb_transactions.index

)

# Calculate the fee for each transaction using the formula from the manual
# fee = fixed_amount + rate * transaction_value / 10000
rafa_ai_feb_transactions['fee'] = rafa_ai_feb_transactions['fixed_amount'] + \

(rafa_ai_feb_transactions['rate'] * rafa_ai_feb_transactions['eur_amount'] /
10000)↪→

# Calculate the total fee by summing up the fees for all transactions
total_original_fee = rafa_ai_feb_transactions['fee'].sum()

# Display the final result from the previous step
print(f"The original total fee paid by Rafa_AI in February 2023 was: {total_original_fee:.2f} EUR")

# --- 7. Calculate New Fee with Modified Rule ---

# Create a copy of the fees dataframe to avoid altering the original
fees_df_modified = fees_df.copy()

# Implement the plan: change the rate for the rule with ID=17 to 99
fees_df_modified.loc[fees_df_modified['ID'] == 17, 'rate'] = 99

# Apply the matching function again, this time with the modified fee rules
new_fee_params = rafa_ai_feb_transactions.apply(

lambda row: find_matching_fee_rule(row, fees_df_modified),
axis=1

)

# Assign the new fee parameters to new columns in the DataFrame
rafa_ai_feb_transactions[['new_fixed_amount', 'new_rate']] = pd.DataFrame(

new_fee_params.tolist(),
index=rafa_ai_feb_transactions.index

)

# Calculate the new fee for each transaction using the new rate
rafa_ai_feb_transactions['new_fee'] = rafa_ai_feb_transactions['new_fixed_amount'] + \

(rafa_ai_feb_transactions['new_rate'] *
rafa_ai_feb_transactions['eur_amount'] / 10000)↪→

# Calculate the new total fee by summing up the individual new fees
new_total_fee = rafa_ai_feb_transactions['new_fee'].sum()

# Calculate the difference (delta) between the new total fee and the original total fee
fee_delta = new_total_fee - total_original_fee

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

# --- 8. Display the Final Delta ---
print(f"The new total fee with the modified rule would be: {new_total_fee:.2f} EUR")
print(f"The requested delta (New Fee - Original Fee) is: {fee_delta:.2f} EUR")

Listing 28: Round 2: Implementation.

f'''Insufficient'''

Listing 29: Round 2: Validation.

f'''Step 3 is wrong'''

Listing 30: Round 2: Routing. Remove Step 3 from the current plan and add Step 3 again.

# Step 1
f'''First, I will filter the `payments.csv` data to select only the

transactions for the merchant 'Rafa_AI' that occurred in February
2023. Since 2023 is not a leap year, February corresponds to the
days of the year from 32 to 59.'''

↪→
↪→
↪→

# Step 2
f'''I will calculate the original total fee paid by Rafa_AI in February

2023. This involves loading the `merchant_data.json` and `fees.json`
files, enriching the transaction data with all attributes required
for fee matching (including merchant details, monthly volume,
monthly fraud rate, and intracountry status), then applying the
corresponding fee rule to each transaction and summing the
calculated fees..'''

↪→
↪→
↪→
↪→
↪→
↪→

# Step 3
f'''I will filter the transactions for 'Rafa_AI' in February 2023

(day_of_year from 32 to 59) that meet all the conditions of fee rule
ID=17: `card_scheme` must be 'SwiftCharge', `is_credit` must be
True, and `aci` must be 'A'. Then, for these matching transactions,
I will calculate the total fee difference using the formula: (99 -
60) * SUM(eur_amount) / 10000.'''

↪→
↪→
↪→
↪→
↪→

Listing 31: Round 3: Plan.

import pandas as pd
import json

# --- 1. Load All Necessary Data ---
# This part is based on the loading logic from the base code.
try:

payments_df = pd.read_csv('data/payments.csv')
merchant_data_df = pd.read_json('data/merchant_data.json')
fees_df = pd.read_json('data/fees.json')

except FileNotFoundError as e:
print(f"Error loading data: {e}. Please ensure all data files are in the 'data/' directory.")
exit()

# --- Implementation of the Current Plan ---
# I will filter the transactions for 'Rafa_AI' in February 2023 (day_of_year from 32 to 59)
# that meet all the conditions of fee rule ID=17: `card_scheme` must be 'SwiftCharge',
# `is_credit` must be True, and `aci` must be 'A'. Then, for these matching transactions,
# I will calculate the total fee difference using the formula:
# (99 - 60) * SUM(eur_amount) / 10000.

print("--- Calculating fee difference for 'Rafa_AI' in Feb 2023 under specific conditions ---")

# Step 1: Define the conditions for filtering based on the plan.
# February 2023 corresponds to day_of_year 32 to 59 (2023 is not a leap year).
feb_start_day = 32
feb_end_day = 59
merchant_name = 'Rafa_AI'
required_card_scheme = 'SwiftCharge'
required_is_credit = True
required_aci = 'A'

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

# Step 2: Filter the payments DataFrame to find transactions matching all conditions.
matching_transactions = payments_df[

(payments_df['merchant'] == merchant_name) &
(payments_df['day_of_year'] >= feb_start_day) &
(payments_df['day_of_year'] <= feb_end_day) &
(payments_df['card_scheme'] == required_card_scheme) &
(payments_df['is_credit'] == required_is_credit) &
(payments_df['aci'] == required_aci)

]

print(f"\n[INFO] Found {len(matching_transactions)} transactions for '{merchant_name}' in February 2023
matching all specified conditions.")↪→

# Step 3: Calculate the total fee difference for these matching transactions.
if not matching_transactions.empty:

# Sum the 'eur_amount' for all matching transactions.
total_matching_volume = matching_transactions['eur_amount'].sum()
print(f"[INFO] Total volume of these transactions: {total_matching_volume:.2f} EUR")

# Apply the fee difference formula provided in the plan.
# Formula: (new_rate - old_rate) * SUM(eur_amount) / 10000
rate_difference = 99 - 60
total_fee_difference = (rate_difference * total_matching_volume) / 10000

# --- Final Conclusion ---
print("\n----------------------CONCLUSION----------------------")
print(f"The total fee difference for the matching transactions is: {total_fee_difference:.4f} EUR.")

else:
# --- Final Conclusion ---
print("\n----------------------CONCLUSION----------------------")
print("No transactions were found that match all the specified criteria.")
print("Therefore, the total fee difference is 0.00 EUR.")

Listing 32: Round 3: Implementation.

f'''Insufficient'''

Listing 33: Round 3: Validation.

f'''Step 3 is wrong'''

Listing 34: Round 3: Routing. Remove Step 3 from the current plan and add Step 3 again.

# Step 1
f'''First, I will filter the `payments.csv` data to select only the

transactions for the merchant 'Rafa_AI' that occurred in February
2023. Since 2023 is not a leap year, February corresponds to the
days of the year from 32 to 59.'''

↪→
↪→
↪→

# Step 2
f'''I will calculate the original total fee paid by Rafa_AI in February

2023. This involves loading the `merchant_data.json` and `fees.json`
files, enriching the transaction data with all attributes required
for fee matching (including merchant details, monthly volume,
monthly fraud rate, and intracountry status), then applying the
corresponding fee rule to each transaction and summing the
calculated fees..'''

↪→
↪→
↪→
↪→
↪→
↪→

# Step 3
f'''Calculate the fee delta by subtracting the original `rate` of fee ID

17 from the new `rate` of 99, multiplying the result by the total
volume of the affected transactions (686.48 EUR), and then dividing
by 10000.'''

↪→
↪→
↪→

Listing 35: Round 4: Plan.

import pandas as pd
import json

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

# --- 1. Load All Necessary Data ---
# This part is based on the loading logic from the base code.
try:

payments_df = pd.read_csv('data/payments.csv')
merchant_data_df = pd.read_json('data/merchant_data.json')
fees_df = pd.read_json('data/fees.json')

except FileNotFoundError as e:
print(f"Error loading data: {e}. Please ensure all data files are in the 'data/' directory.")
exit()

# --- Implementation of the Current Plan ---
# Calculate the fee delta by subtracting the original `rate` of fee ID 17 from the new `rate` of 99,
# multiplying the result by the total volume of the affected transactions (686.48 EUR),
# and then dividing by 10000.

print("--- Calculating fee delta for affected 'Rafa_AI' transactions ---")

# Step 1: Define the constants given in the plan.
new_rate = 99
total_affected_volume = 686.48 # EUR
fee_divisor = 10000

# Step 2: Find the original rate for fee ID 17 from the fees_df DataFrame.
fee_rule_17 = fees_df[fees_df['ID'] == 17]

if fee_rule_17.empty:
print("\n[ERROR] Fee rule with ID 17 was not found in fees.json.")
original_rate = None # Set to None to prevent further calculation

else:
# Extract the 'rate' value from the filtered DataFrame.
# .iloc[0] selects the first row of the result.
original_rate = fee_rule_17['rate'].iloc[0]
print(f"\n[INFO] Original rate for fee ID 17 is: {original_rate}")
print(f"[INFO] New rate to be applied is: {new_rate}")
print(f"[INFO] Total volume of affected transactions is: {total_affected_volume:.2f} EUR")

# Step 3: Calculate the fee delta using the specified formula.
if original_rate is not None:

# Calculate the difference in rates.
rate_difference = new_rate - original_rate

# Apply the formula: (rate_difference * total_volume) / 10000
fee_delta = (rate_difference * total_affected_volume) / fee_divisor

# --- Final Conclusion ---
print("\n----------------------CONCLUSION----------------------")
print(f"The calculated fee delta, by changing the rate from {original_rate} to {new_rate} for the

affected volume, is: {fee_delta:.4f} EUR.")↪→

else:
# --- Final Conclusion ---
print("\n----------------------CONCLUSION----------------------")
print("Could not perform calculation because the original fee rate for ID 17 was not found.")

Listing 36: Round 4: Implementation.

f'''Insufficient'''

Listing 37: Round 4: Validation.

f'''Add Step'''

Listing 38: Round 4: Routing. Add Step 4 to the current plan.

# Step 1
f'''First, I will filter the `payments.csv` data to select only the

transactions for the merchant 'Rafa_AI' that occurred in February
2023. Since 2023 is not a leap year, February corresponds to the
days of the year from 32 to 59.'''

↪→
↪→
↪→

# Step 2

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

f'''I will calculate the original total fee paid by Rafa_AI in February
2023. This involves loading the `merchant_data.json` and `fees.json`
files, enriching the transaction data with all attributes required
for fee matching (including merchant details, monthly volume,
monthly fraud rate, and intracountry status), then applying the
corresponding fee rule to each transaction and summing the
calculated fees..'''

↪→
↪→
↪→
↪→
↪→
↪→

# Step 3
f'''Calculate the fee delta by subtracting the original `rate` of fee ID

17 from the new `rate` of 99, multiplying the result by the total
volume of the affected transactions (686.48 EUR), and then dividing
by 10000.'''

↪→
↪→
↪→

# Step 4
f'''Calculate the total original fee for Rafa_AI's transactions in

February 2023 that are affected by fee ID=17, and then calculate the
new total fee for the same transactions using the modified rate of
99. The delta is the difference between these two amounts.'''

↪→
↪→
↪→

Listing 39: Round 5: Plan.

import pandas as pd
import json

# --- 1. Load All Necessary Data ---
# This part is based on the loading logic from the base code.
try:

payments_df = pd.read_csv('data/payments.csv')
merchant_data_df = pd.read_json('data/merchant_data.json')
fees_df = pd.read_json('data/fees.json')

except FileNotFoundError as e:
print(f"Error loading data: {e}. Please ensure all data files are in the 'data/' directory.")
exit()

# --- Implementation of the Current Plan ---
# Calculate the total original fee for Rafa_AI's transactions in February 2023
# that are affected by fee ID=17, and then calculate the new total fee for the same
# transactions using the modified rate of 99. The delta is the difference.

print("--- Identifying transactions for 'Rafa_AI' in February 2023 affected by fee rule ID 17 ---")

# Step 1: Filter payments for 'Rafa_AI' in February 2023.
# February corresponds to days of the year from 32 to 59 (since 2023 is not a leap year).
feb_transactions_df = payments_df[

(payments_df['merchant'] == 'Rafa_AI') &
(payments_df['day_of_year'] >= 32) &
(payments_df['day_of_year'] <= 59)

].copy()

# Step 2: Enrich transaction data with merchant-specific information.
# Get the specific data for 'Rafa_AI' from the merchant data file.
rafa_ai_data = merchant_data_df[merchant_data_df['merchant'] == 'Rafa_AI']

# Merge the February transactions with the merchant's data.
if not rafa_ai_data.empty and not feb_transactions_df.empty:

# Use a left merge to add merchant details (like mcc, account_type) to each transaction.
full_transaction_data = feb_transactions_df.merge(rafa_ai_data, on='merchant', how='left')

else:
print("\n[ERROR] No transactions found for 'Rafa_AI' in February or 'Rafa_AI' data not found.")
exit()

# Step 3: Retrieve the specific conditions for the fee rule with ID=17.
fee_rule_17 = fees_df[fees_df['ID'] == 17]

if fee_rule_17.empty:
print("\n[ERROR] Fee rule with ID 17 was not found in fees.json.")
exit()

else:
# Use .iloc[0] to get the rule as a Series
fee_rule_17 = fee_rule_17.iloc[0]

# Step 4: Filter the transactions that match all conditions of the fee rule.
# The manual states that a null or empty list in a rule field means it applies to all values.
mask = pd.Series(True, index=full_transaction_data.index)

# Match card_scheme (string)
if fee_rule_17['card_scheme']:

mask &= (full_transaction_data['card_scheme'] == fee_rule_17['card_scheme'])

# Match account_type (list)

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

if fee_rule_17['account_type']: # An empty list evaluates to False, correctly skipping the filter
mask &= full_transaction_data['account_type'].isin(fee_rule_17['account_type'])

# Match merchant_category_code (list)
if fee_rule_17['merchant_category_code']:

mask &= full_transaction_data['merchant_category_code'].isin(fee_rule_17['merchant_category_code'])

# Match aci (list)
if fee_rule_17['aci']:

mask &= full_transaction_data['aci'].isin(fee_rule_17['aci'])

# Match is_credit (boolean, but can be null)
if fee_rule_17['is_credit'] is not None:

mask &= (full_transaction_data['is_credit'] == fee_rule_17['is_credit'])

# Apply the combined mask to get the affected transactions
affected_transactions_df = full_transaction_data[mask]

# Step 5: Calculate the original and new fees for the affected transactions.
if affected_transactions_df.empty:

print("\n[INFO] No transactions for 'Rafa_AI' in February match the criteria for fee rule ID 17.")
total_original_fee = 0
total_new_fee = 0
fee_delta = 0

else:
total_affected_volume = affected_transactions_df['eur_amount'].sum()
num_affected_transactions = len(affected_transactions_df)

print(f"\n[INFO] Found {num_affected_transactions} transactions matching the fee rule.")
print(f"[INFO] Total volume of these transactions: {total_affected_volume:.2f} EUR")

# Get fee parameters from the rule
original_rate = fee_rule_17['rate']
fixed_amount = fee_rule_17['fixed_amount']
new_rate = 99
fee_divisor = 10000

# Calculate total original fee using the formula: fee = fixed_amount + rate * value / 10000
# Vectorized calculation for efficiency
total_fixed_component = fixed_amount * num_affected_transactions
total_original_rate_component = (original_rate * total_affected_volume) / fee_divisor
total_original_fee = total_fixed_component + total_original_rate_component

# Calculate total new fee with the modified rate
total_new_rate_component = (new_rate * total_affected_volume) / fee_divisor
total_new_fee = total_fixed_component + total_new_rate_component

# The delta is the difference between the new and original total fees
fee_delta = total_new_fee - total_original_fee

# --- Final Conclusion ---
print("\n----------------------CONCLUSION----------------------")
print(f"Total original fee for affected transactions: {total_original_fee:.4f} EUR")
print(f"Total new fee with rate={new_rate}: {total_new_fee:.4f} EUR")
print(f"The calculated fee delta is: {fee_delta:.4f} EUR.")
print("This represents the total increase in fees for Rafa_AI's affected February transactions due to the

rate change.")↪→

Listing 40: Round 5: Implementation.

f'''Sufficient'''

Listing 41: Round 4: Validation.

import pandas as pd
import json

# --- 1. Load All Necessary Data ---
# This part is based on the loading logic from the base code.
payments_df = pd.read_csv('data/payments.csv')
merchant_data_df = pd.read_json('data/merchant_data.json')
fees_df = pd.read_json('data/fees.json')

# --- Implementation of the Calculation ---
# Calculate the total original fee for Rafa_AI's transactions in February 2023
# that are affected by fee ID=17, and then calculate the new total fee for the same
# transactions using the modified rate of 99. The delta is the difference.

# Step 1: Filter payments for 'Rafa_AI' in February 2023.
# February corresponds to days of the year from 32 to 59 (since 2023 is not a leap year).
feb_transactions_df = payments_df[

(payments_df['merchant'] == 'Rafa_AI') &
(payments_df['day_of_year'] >= 32) &
(payments_df['day_of_year'] <= 59)

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

].copy()

# Step 2: Enrich transaction data with merchant-specific information.
# Get the specific data for 'Rafa_AI' from the merchant data file.
rafa_ai_data = merchant_data_df[merchant_data_df['merchant'] == 'Rafa_AI']

# Merge the February transactions with the merchant's data.
full_transaction_data = pd.DataFrame()
if not rafa_ai_data.empty and not feb_transactions_df.empty:

# Use a left merge to add merchant details (like mcc, account_type) to each transaction.
full_transaction_data = feb_transactions_df.merge(rafa_ai_data, on='merchant', how='left')

# Step 3: Retrieve the specific conditions for the fee rule with ID=17.
fee_delta = 0.0
if not full_transaction_data.empty:

fee_rule_17 = fees_df[fees_df['ID'] == 17]

if not fee_rule_17.empty:
# Use .iloc[0] to get the rule as a Series
fee_rule_17 = fee_rule_17.iloc[0]

# Step 4: Filter the transactions that match all conditions of the fee rule.
# The manual states that a null or empty list in a rule field means it applies to all values.
mask = pd.Series(True, index=full_transaction_data.index)

# Match card_scheme (string)
if fee_rule_17['card_scheme']:

mask &= (full_transaction_data['card_scheme'] == fee_rule_17['card_scheme'])

# Match account_type (list)
if fee_rule_17['account_type']: # An empty list evaluates to False, correctly skipping the filter

mask &= full_transaction_data['account_type'].isin(fee_rule_17['account_type'])

# Match merchant_category_code (list)
if fee_rule_17['merchant_category_code']:

mask &=
full_transaction_data['merchant_category_code'].isin(fee_rule_17['merchant_category_code'])↪→

# Match aci (list)
if fee_rule_17['aci']:

mask &= full_transaction_data['aci'].isin(fee_rule_17['aci'])

# Match is_credit (boolean, but can be null)
if fee_rule_17['is_credit'] is not None:

mask &= (full_transaction_data['is_credit'] == fee_rule_17['is_credit'])

# Apply the combined mask to get the affected transactions
affected_transactions_df = full_transaction_data[mask]

# Step 5: Calculate the original and new fees for the affected transactions.
if not affected_transactions_df.empty:

total_affected_volume = affected_transactions_df['eur_amount'].sum()
num_affected_transactions = len(affected_transactions_df)

# Get fee parameters from the rule
original_rate = fee_rule_17['rate']
fixed_amount = fee_rule_17['fixed_amount']
new_rate = 99
fee_divisor = 10000

# Calculate total original fee using the formula: fee = fixed_amount + rate * value / 10000
total_fixed_component = fixed_amount * num_affected_transactions
total_original_rate_component = (original_rate * total_affected_volume) / fee_divisor
total_original_fee = total_fixed_component + total_original_rate_component

# Calculate total new fee with the modified rate
total_new_rate_component = (new_rate * total_affected_volume) / fee_divisor
total_new_fee = total_fixed_component + total_new_rate_component

# The delta is the difference between the new and original total fees
fee_delta = total_new_fee - total_original_fee

# --- Final Output ---
print(f"{fee_delta:.14f}")

Listing 42: Final solution code.

f'''2.67727200000000'''

Listing 43: Generated answer by DS-STAR. Obtained by executing the above final solution code.

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

G PROMPTS

G.1 ANALYZER AGENT

f'''You are an expert data analysist.
Generate a Python code that loads and describes the content of

{filename}.↪→

# Requirement
- The file can both unstructured or structured data.
- If there are too many structured data, print out just few examples.
- Print out essential informations. For example, print out all the

column names.↪→
- The Python code should print out the content of {filename}.
- The code should be a single-file Python program that is self-contained

and can be executed as-is.↪→
- Your response should only contain a single code block.
- Important: You should not include dummy contents since we will debug

if error occurs.↪→
- Do not use try: and except: to prevent error. I will debug it

later.'''↪→

Listing 44: Prompt used to generate Python scripts that describe data files.

DS-STAR begins by creating a description of each data file. Specifically, it utilizes an analyzer agent
Aanalyzer that takes a file name (e.g., ‘payment.csv’) as input to generate a Python script sdesc, using
the above prompt. The script is then executed to summarize the dataset’s core information. An
example of this process, including the generated script and its output, is provided in Appendix D.

G.2 PLANNER AGENT

f'''You are an expert data analysist.
In order to answer factoid questions based on the given data, you have

to first plan effectively.↪→

# Question
{question}

# Given data: {filenames}
{filenames #1}
{summaries #1}
...
{filenames #N}
{summaries #N}

# Your task
- Suggest your very first step to answer the question above.
- Your first step does not need to be sufficient to answer the question.
- Just propose a very simple initial step, which can act as a good

starting point to answer the question.↪→
- Your response should only contain an initial step.'''

Listing 45: Prompt used to generate an initial plan.

DS-STAR begins the solution generation process after generating analytic descriptions of N data
files. First, a planner agentAplanner generates an initial high-level executable step p0 using the above
prompt. Here, the query q and obtained data descriptions are used as inputs.

f'''You are an expert data analysist.
In order to answer factoid questions based on the given data, you have

to first plan effectively.↪→
Your task is to suggest next plan to do to answer the question.

# Question
{question}

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

# Given data: {filenames}
{filenames #1}
{summaries #1}
...
{filenames #N}
{summaries #N}

# Current plans
1. {Step 1}
...
k. {Step k}

# Obtained results from the current plans:
{result}

# Your task
- Suggest your next step to answer the question above.
- Your next step does not need to be sufficient to answer the question,

but if it requires only final simple last step you may suggest it.↪→
- Just propose a very simple next step, which can act as a good

intermediate point to answer the question.↪→
- Of course your response can be a plan which could directly answer the

question.↪→
- Your response should only contain an next step without any

explanation.'''↪→

Listing 46: Prompt used to generate a plan after the initialization step.

After the initial plan is obtained, DS-STAR’s planner agent generates a subsequent step using
the above prompt. Unlike the initialization round, planner agent Aanalyzer additionally uses the
intermediate step-by-step plans, and the obtained results after execution of its implementation.

G.3 CODER AGENT

f'''# Given data: {filenames}
{filenames #1}
{summaries #1}
...
{filenames #N}
{summaries #N}

# Plan
{plan}

# Your task
- Implement the plan with the given data.
- Your response should be a single markdown Python code (wrapped in

```).↪→
- There should be no additional headings or text in your response.'''

Listing 47: Prompt used to generate a implementation of an initial plan in a Python code.

The initial step for the plan is implemented as a code script s0 by a coder agent Acoder, using the
above prompt. Here, analytic descriptions of data files are additionally used to provide some essential
information like column names.

f'''You are an expert data analysist.
Your task is to implement the next plan with the given data.

# Given data: {filenames}
{filenames #1}
{summaries #1}
...
{filenames #N}

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

{summaries #N}

# Base code
```python
{base_code}
```

# Previous plans
1. {Step 1}
...
k. {Step k}

# Current plan to implement
{Step k+1}

# Your task
- Implement the current plan with the given data.
- The implementation should be done based on the base code.
- The base code is an implementation of the previous plans.
- Your response should be a single markdown Python code (wrapped in

```).↪→
- There should be no additional headings or text in your response.'''

Listing 48: Prompt used to generate a implementation of a plan after the initialization round.

For every round beyond the initial one, DS-STAR’s coder agent Acoder converts the current plan step
pk+1 into a Python script using the above prompt. Unlike the initial round, the agent is provided with
the intermediate solution code that implements all preceding step p0, · · · , pk. This allows the agent
to incrementally build upon the existing code, simplifying the implementation of each subsequent
step.

G.4 VERIFIER AGENT

f'''You are an expert data analysist.
Your task is to check whether the current plan and its code

implementation is enough to answer the question.↪→
# Plan
1. {Step 1}
...
k. {Step k}

# Code
```python
{code}
```

# Execution result of code
{result}

# Question
{question}

# Your task
- Verify whether the current plan and its code implementation is enough

to answer the question.↪→
- Your response should be one of 'Yes' or 'No'.
- If it is enough to answer the question, please answer 'Yes'.
- Otherwise, please answer 'No'.'''

Listing 49: Prompt used to verify the current plan.

We introduce a verifier agent Averifier. At any given round, this agent evaluates the state of the
solution, i.e., whether the plan in sufficient or insufficient to solve the problem. The evaluation is

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

based on the cumulative plan, the user’s query, the solution code, which is an implementation of the
cumulative plan, and its execution result, using the above prompt.

G.5 ROUTER AGENT

f'''You are an expert data analysist.
Since current plan is insufficient to answer the question, your task is

to decide how to refine the plan to answer the question.↪→

# Question
{question}

# Given data: {filenames}
{filenames #1}
{summaries #1}
...
{filenames #N}
{summaries #N}

# Current plans
1. {Step 1}
...
k. {Step k}

# Obtained results from the current plans:
{result}

# Your task
- If you think one of the steps of current plans is wrong, answer among

the following options: Step 1, Step 2, ..., Step K.↪→
- If you think we should perform new NEXT step, answer as 'Add Step'.
- Your response should only be Step 1 - Step K or Add Step.'''

Listing 50: Prompt used for the router agent which determines how to refine the plan.

If the verifier agent Averifier determines that the current plan is insufficient to solve the user’s query,
DS-STAR must decide how to proceed. To this end, DS-STAR employs a router agent Arouter which
decides whether to append a new step or to correct an existing one, which leverages the above prompt.

G.6 FINALYZER AGENT

f'''You are an expert data analysist.
You will answer factoid question by loading and referencing the

files/documents listed below.↪→
You also have a reference code.
Your task is to make solution code to print out the answer of the

question following the given guideline.↪→

# Given data: {filenames}
{filenames #1}
{summaries #1}
...
{filenames #N}
{summaries #N}

# Reference code
```python{code}
```

# Execution result of reference code
{result}

# Question
{question}

# Guidelines

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

{guidelines}

# Your task
- Modify the solution code to print out answer to follow the give

guidelines.↪→
- If the answer can be obtained from the execution result of the

reference code, just generate a Python code that prints out the
desired answer.

↪→
↪→
- The code should be a single-file Python program that is self-contained

and can be executed as-is.↪→
- Your response should only contain a single code block.
- Do not include dummy contents since we will debug if error occurs.
- Do not use try: and except: to prevent error. I will debug it later.
- All files/documents are in `data/` directory.'''

Listing 51: Prompt used to generate a final solution, which outputs the answer with the desired
format.

To ensure properly formatted output, DS-STAR employs a finalyzer agent Afinalyzer, which takes
formatting guidelines, if exist, and generates the final solution code.

G.7 DEBUGGING AGENT

f'''# Error report
{bug}

# Your task
- Remove all unnecessary parts of the above error report.
- We are now running {filename}.py. Do not remove where the error

occurred.'''↪→

Listing 52: Prompt used to summarize the traceback of the error.

When debugging, we first summarize the obtained traceback of error using the above prompt, since
the traceback may be too lengthy.

f'''# Code with an error:
```python
{code}
```

# Error:
{bug}

# Your task
- Please revise the code to fix the error.
- Provide the improved, self-contained Python script again.
- There should be no additional headings or text in your response.
- Do not include dummy contents since we will debug if error occurs.
- All files/documents are in `data/` directory.'''

Listing 53: Prompt used for debugging when analyzing data files.

When generating {di}Ni=1 using sdesc obtained fromAanalyzer, our debugging agent iteratively update
the script using only the summarized traceback, using the above prompt.

f'''# Given data: {filenames}
{filenames #1}
{summaries #1}
...
{filenames #N}
{summaries #N}

# Code with an error:
```python

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

{code}
```

# Error:
{bug}

# Your task
- Please revise the code to fix the error.
- Provide the improved, self-contained Python script again.
- Note that you only have {filenames} available.
- There should be no additional headings or text in your response.
- Do not include dummy contents since we will debug if error occurs.
- All files/documents are in `data/` directory.'''

Listing 54: Prompt used for debugging when generating a solution code.

Once DS-STAR obtains {di}Ni=1, our debugging agent utilizes such information with the above
prompt when generating a solution Python script.

H LARGE LANGUAGE MODEL USAGE FOR WRITING

In this paper, Gemini was utilized as a general-purpose writing tool. When draft text was provided to
Gemini, it improved the writing (e.g., by correcting grammatical errors). The generated text was then
manually revised by the authors.

48


	Introduction
	Related work
	DS-STAR
	Analyzing data files
	Iterative plan generation and verification
	Additional modules for robust data science agents

	Experiments
	Main results
	Ablation studies
	Analysis

	Conclusion
	Algorithms
	Benchmark
	Cost analysis
	Qualitative results on the analyzer agent
	Code generated by the analyzer agent
	Examples of generated data descriptions

	Qualitative results for each task type
	Statistical analysis
	Data insight
	Data manipulation
	Data wrangling
	Machine learning
	Visualization

	Full execution logs of DS-STAR
	Prompts
	Analyzer agent
	Planner agent
	Coder agent
	Verifier agent
	Router agent
	Finalyzer agent
	Debugging agent

	Large language model usage for writing

