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ABSTRACT

Data science, which transforms raw data into actionable insights, is critical for
data-driven decision-making. However, these tasks are often complex, involving
steps for exploring multiple data sources and synthesizing findings to deliver in-
sightful answers. While large language models (LLMs) show significant promise
in automating this process, they often struggle with heterogeneous data formats
and generate sub-optimal analysis plans, as verifying plan sufficiency is inherently
difficult without ground-truth labels for such open-ended tasks. To overcome
these limitations, we introduce DS-STAR, a novel data science agent. Specifically,
DS-STAR makes three key contributions: (1) a data file analysis module that
automatically explores and extracts context from diverse data formats, including
unstructured types; (2) a verification step where an LLM-based judge evaluates
the sufficiency of the analysis plan at each stage; and (3) a sequential planning
mechanism that starts with a simple, executable plan and iteratively refines it
based on the DS-STAR’s feedback until its sufficiency is verified. This iterative
refinement allows DS-STAR to reliably navigate complex analyses involving di-
verse data sources. Our experiments show that DS-STAR achieves state-of-the-art
performance across three challenging benchmarks: DABStep, KramaBench, and
DA-Code. Moreover, DS-STAR particularly outperforms baselines on hard tasks
that require processing multiple data files with heterogeneous formats.

Data

Machine Learning
Predict health outcomes of horses.

Query

What percentage of the transactions 
are made using credit cards?

Draw a bar chart showing the 
number of people in each age group.

Data Wrangling

Data Insight

Visualization

import pandas as pd

payments_df = pd.read_csv('data/payments.csv')

merchant_data_df = pd.read_json('data/merchant_data.json')

fees_df = pd.read_json('data/fees.json')

merchant_name = 'Rafa_AI'

target_year, start_day_of_march, end_day_of_march = 2023, 60, 90

rafa_ai_march_transactions = payments_df[

   (payments_df['merchant'] == merchant_name) &

   (payments_df['year'] == target_year) &

   (payments_df['day_of_year'] >= start_day_of_march) &

   (payments_df['day_of_year'] <= end_day_of_march)

]

rafa_ai_merchant_info = 

   merchant_data_df[merchant_data_df['merchant'] == merchant_name]

merged_df = pd.merge(

   rafa_ai_march_transactions, rafa_ai_merchant_info,

   on='merchant', how='left')

… # Full code omitted due to the length

Solution Code

Outputs

Clean the dataset by deleting 
records with null values.

(a) Data Science Tasks (b) Experiment Summary

Figure 1: (a) Data science tasks require processing data files in various formats (e.g., csv, txt, xlsx,
md) to answer user queries, such as data analysis for extracting useful insights or predictive tasks
using machine learning. Data science agents are designed to accomplish this by writing code scripts
(e.g., Python) and answering based on the output from their execution. In addition to the solution
code, the output may include a trained model for prediction tasks, processed databases, text-formatted
answers, visual charts, and more. (b) We report normalized accuracy (%) for both easy (answer can
be found within a single file) and hard (requires processing multiple files) tasks in the DABStep,
KramaBench, and DA-Code benchmarks. DS-STAR consistently and significantly outperforms
competitive baselines, particularly in challenging hard tasks, showing DS-STAR’s superiority in
handling multiple data sources in heterogeneous formats.
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1 INTRODUCTION

The data science, which transforms raw data into actionable insights, is critical to solving real-world
problems (De Bie et al., 2022; Hassan et al., 2023); for instance, businesses rely on insights extracted
from data to make crucial directional decisions (Sun et al., 2018; Sarker, 2021). However, the data
science workflow is often complex, requiring deep expertise across diverse fields such as computer
science and statistics (Zhang et al., 2023; Hong et al., 2024). This workflow involves a series of time-
consuming tasks (Zhang et al., 2024; Martin Iglesias, 2025), ranging from understanding distributed
documents to intricate data processing and statistical analyses (see Figure 1).

To simplify this demanding workflow, recent research has explored using large language models
(LLMs) as autonomous data science agents (Hong et al., 2024). These agents aim to translate natural
language questions directly into functional code that generates corresponding answers (Ouyang
et al., 2025; Wu et al., 2023; Yang et al., 2025; Yao et al., 2023). While representing significant
advancements, current data science agents face several challenges that limit their practical utility and
impact. A primary limitation is their predominant focus on well-structured data, such as relational
databases composed of CSV files (Pourreza et al., 2024; Yu et al., 2018; Li et al., 2024). This narrow
scope neglects the wealth information available in the heterogeneous data formats encountered in
real-world scenarios, which can range from JSON to unstructured text and markdown files (Lai et al.,
2025). Furthermore, as many data science tasks are framed as open-ended questions where ground-
truth labels do not exist, verifying an agent’s reasoning path is a non-trivial challenge. For example,
most agents, like Data Interpreter (Hong et al., 2024), terminate their process upon successful code
execution; however, executable code does not always guarantee a correct answer. Consequently, this
lack of robust verification often leads an agent to adopt a sub-optimal plan for solving the given task.

To address these limitations, we introduce DS-STAR, a novel agent that tackles data science problems
by generating solution code through a robust, iterative process of planning and verification. The
proposed DS-STAR framework consists of two key stages. First, to ensure adaptability across
diverse data types, DS-STAR automatically analyzes all files within a given directory, generating
a textual summary of their structure and content. This summary then serves as a crucial context
for the DS-STAR’s approach to the given task. Second, DS-STAR enters a core loop of planning,
implementation, and verification. It begins by formulating a high-level plan, implementing it as a
code script, and then verifying to solve the problem. Notably, for verification, we propose using an
LLM-based judge (Gu et al., 2024; Zheng et al., 2023) that is prompted to explicitly evaluate whether
the current plan is sufficient to solve the problem. If the verification fails (i.e., the judge determines
the plan insufficient), DS-STAR refines its plan by adding or modifying steps and repeats the process.
Crucially, rather than creating a complete plan at once, our agent operates sequentially, reviewing the
results from each intermediate step before building upon them. 1 This iterative loop continues until a
satisfactory plan is verified, at which point the corresponding code is returned as the final solution.

We validate the effectiveness of our proposed DS-STAR through comprehensive evaluations on
a suite of established data science benchmarks. These benchmarks, including DABStep bench-
mark (Martin Iglesias, 2025), KramaBench (Lai et al., 2025), and DA-Code (Huang et al., 2024) are
specifically designed to assess performance on complex data analysis tasks (e.g., data wrangling,
machine learning, visualization, exploratory data analysis, data manipulation, etc) involving multiple
data sources and formats (see Section 4). The experimental results demonstrate that DS-STAR sig-
nificantly outperforms existing state-of-the-art methods across all evaluated scenarios. Specifically,
compared to the best alternative, DS-STAR improves accuracy from 41.0% to 45.2% on the DABStep
benchmark, from 39.8% to 44.7% on KramaBench, and from 37.0% to 38.5% on DA-Code.

The contributions of this paper can be summarized as follows:

• We introduce DS-STAR, a novel data science agent which operates on data with various formats
and on various tasks like data analysis, machine learning, visualization, and data wrangling, etc.

• We propose an LLM-based verification module that judges the sufficiency of a solution plan.

• We develop an iterative refinement strategy, enabling DS-STAR to sequentially build its solution.

• We provide a comprehensive evaluation on challenging benchmarks, showing DS-STAR’s efficacy.

1This mirrors the interactive process of an expert using a Jupyter notebook to observe interim results.
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2 RELATED WORK

LLM agents. Recent advancements in LLMs have spurred significant research into autonomous
agents designed to tackle complex and long-horizon tasks. A key strategy employed by these
multi-agent systems is the autonomous decomposition of a main objective into a series of smaller,
manageable sub-tasks, which can be delegated to sub-agents. General-purpose agents, such as
ReAct (Yao et al., 2023), HuggingGPT (Shen et al., 2023), and OpenHands (Wang et al., 2024), utilize
external tools to reason, plan, and act across a wide range of problems. Building on these foundational
capabilities, research has increasingly focused on specialized domains such as Voyager (Wang et al.,
2023) for navigating the Minecraft environment and AlphaCode (Li et al., 2022) for performing
sophisticated code generation. Furthermore, DS-Agent (Guo et al., 2024), AIDE (Jiang et al., 2025),
and MLE-STAR (Nam et al., 2025) are tailored specifically for machine learning engineering. In a
similar vein, our work, DS-STAR, is a specialized LLM agent for data science tasks.

Data science agents. Recent research has focused on developing data science agents that leverage
the advanced coding and reasoning capabilities of LLMs (Jiang et al., 2025; Jimenez et al., 2024).
Initial efforts utilized general-purpose frameworks like ReAct (Yao et al., 2023) and AutoGen (Wu
et al., 2023). Following these pioneering approaches, agents like DA-Agent (Huang et al., 2024),
which are specialized in autonomously generating code-based solutions for tasks such as data analysis
and visualization (Hu et al., 2024; Jing et al., 2025), has been developed. A notable example is
Data Interpreter (Hong et al., 2024), which employs a graph-based method to decompose a primary
task into a series of manageable sub-tasks and the resulting task graph is then progressively refined
based on the successful execution of these sub-tasks. However, a key limitation is that relying solely
on successful execution as feedback often results in sub-optimal plans, since such feedback cannot
confirm the plan’s correctness. To address this, DS-STAR introduces a novel verification process that
employs an LLM as a judge (Gu et al., 2024) to assess the quality of the generated solutions.

Text-to-SQL. The task of Text-to-SQL involves translating natural language questions into executable
SQL queries (Li & Jagadish, 2014; Li et al., 2023). Early approaches relied on sequence-to-sequence
architectures, which jointly encoded the user’s query and the database schema (Cao et al., 2021; Choi
et al., 2021). However, after the rise of LLMs, initial research focused on prompt engineering (Pour-
reza & Rafiei, 2023). This was soon followed by the development of more sophisticated, multi-step
pipelines incorporating techniques such as schema linking, self-correction, and self-consistency
to enhance generation accuracy (Talaei et al., 2024; Pourreza et al., 2024; Maamari et al., 2024).
While these pipelines function as specialized agents for data analysis, their fundamental reliance on
generating SQL restricts their use to structured, relational databases. In contrast, DS-STAR addresses
this limitation by adopting a Python language, thereby framing our approach as a Text-to-Python task.
To further facilitate this, we introduce a novel data file summarization mechanism which enables our
method to demonstrate significantly broader applicability than traditional Text-to-SQL systems, as it
can operate on a wide array of data formats, including JSON, Markdown, and unstructured text.

3 DS-STAR

In this section, we introduce DS-STAR, a framework for data science agents that leverages the coding
and reasoning capabilities of LLMs to tackle data science tasks. In a nutshell, our approach first
analyzes heterogeneous input data files to extract essential information (Section 3.1). Subsequently,
DS-STAR generates a code solution through an iterative process (Section 3.2). The prompts and
algorithms are detailed in Appendix G and A, respectively.

Problem setup. Our goal is to automatically generate a code solution s (i.e., a Python script) that
answers query q using a given data files D. We formulate this as a search problem over the space
of all possible scripts, denoted by S. The quality of any script s ∈ S is evaluated by a scoring
function h(s), which measures the correctness of its output, s(D), against a ground-truth answer
(e.g., accuracy) where s(D) represents the output generated by executing s, which loads the data D
to produce an answer. The objective is to identify the s∗ that is: s∗ = argmaxs∈S h(s(D)).
In this paper, we propose a multi-agent framework, A, designed to process the query q and data
files D, which may be numerous and in heterogeneous formats. This framework is composed of n
specialized LLM agents, {Ai}ni=1, where each agent possesses a distinct functionality, as detailed in
the subsequent sections (see Figure 2 for the problem setup and our agent’s overview).
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Data Files

(a) Data Files Analysis

Agent
Analyzer

Generate
# Load the JSON data from the file

with open(file_path, 'r', encoding='utf-8') as f:

    data = json.load(f)

# Print Essential Information

print("--- Essential Information ---")

...

Python Script

--- Essential Information ---

Data Types of Columns: ...

First few records (up to 5 examples):

              merchant ... account_type

0         ossfit_Hanna ...            F

1 Golfclub_Baron_Friso ...            F

...

Data Description
Execute

Agent
Coder

Data Descriptions
Current Solution
Current Plan
- Step 1
- Step 2
- Step 3
- Step 4 (New)

Implement the next 
plan in current solution.

Exec.

New Solution & 
Exec. Result

Is this plan sufficient to 
solve the question?

Agent
Verifier

Sufficient

Insufficient

Agent
Router

Generate next step.

Agent
Planner

- Step 1
- Step 2

- Step 1
- Step 2
- Step 3
- Step 4

OR

How should we 
refine?

Final
Solution

Add next step!

Step 2 is wrong!Remove 2, 3
- Step 1

(b) Iterative Plan Generation and Verification

Figure 2: Overview of DS-STAR. (a) DS-STAR generates a Python script that analyzes heteroge-
neous input data files. (b) Starting with a simple single step, DS-STAR implements the plan and
executes it to obtain intermediate results. Next, using a verifier agent, DS-STAR determines whether
the current plan is sufficient to solve the user’s query. If it is not sufficient, DS-STAR’s router agent de-
cides whether to add the next step or remove the incorrect step from the plan. Finally, DS-STAR adds
the next step and implements it again. This iterative process of planning, implementation, execution,
and verification is repeated until the verifier agent determines that the plan is sufficient to answer the
user’s query or until the maximum number of iterations is reached.

3.1 ANALYZING DATA FILES

To effectively interact with the given data files, DS-STAR first requires a comprehensive understanding
of its contents and structure. We achieve this by generating a concise, analytical description for each
data file. This initial analysis phase is critical as it informs all subsequent actions taken by the agent.

Conventional frameworks for data science agents often rely on displaying a few sample rows from
structured files, such as CSVs. However, this approach is fundamentally limited to structured data and
fails for unstructured formats where the concept of a ‘row’ is ill-defined. To overcome this limitation,
we introduce a more general mechanism as follows. For each data fileDi ∈ D we employ an analyzer
agent, Aanalyzer, to generate a Python script, sidesc. This script is designed to correctly parse and load
the data fileDi and then extract its essential properties. For structured data, this might include column
names and data types; for unstructured data, it could be file metadata, text summaries. The resulting
analytical description, di, is captured directly from the script’s execution output (see Appendix D).
This process, which can be parallelized, is denoted as: di = exec(sidesc), s

i
desc = Aanalyzer(Di).

3.2 ITERATIVE PLAN GENERATION AND VERIFICATION

Initialization. After generating analytic descriptions of the N data files, DS-STAR begins the solution
generation process. First, a planner agent, Aplanner, generates an initial high-level executable step p0
(e.g., loading a data file) using the query q and obtained data descriptions: p0 = Aplanner(q, {di}Ni=1).

This single executable step is then implemented as a code script s0 by a coder agent Acoder and the
initial execution result r0 is then obtained by executing the script s0 as follows:

s0 = Acoder(p0, {di}Ni=1), r0 = exec(s0). (1)
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Plan verification. The main challenge in data science tasks is guiding the refinement of a solution,
as determining its correctness is often non-trivial, since there are no ground-truth label. To address
this, we use an LLM as a judge to assess whether the current plan is sufficient for the user’s query.

Our approach introduces a verifier agent Averifier. At any given round k in the problem-solving
process, this agent evaluates the state of the solution, i.e., whether the plan is sufficient to solve the
problem. The evaluation is based on the cumulative plan p = {p0, · · · , pk}, the user’s query q, the
current solution code sk, which is an implementation of the cumulative plan, and its execution result
rk. The operation of Averifier is denoted as follows: v = Averifier(p, q, sk, rk).

Here, the output v is a binary variable: sufficient or insufficient. Note that our method does
not just compare the plan to the query. By conditioning the judgement on sk and its execution output
rk, Averifier can provide more grounded feedback since it assesses whether sk is well-implemented
following the plan, and whether the rk contains the information needed to fully address the query.

Plan refinement. If the verifier agentAverifier determines that the current plan is insufficient to solve
the user’s query q, DS-STAR must decide how to proceed. Such insufficiency could arise because the
plan is merely incomplete and requires additional steps, or because it contains erroneous steps that
invalidate the approach. To resolve this, DS-STAR employs a router agent, Arouter, which decides
whether to append a new step or to correct an existing one. The router’s decision w is generated as
follows, where p = {p0, · · · , pk} is the current cumulative plan: w = Arouter(p, q, rk, {di}Ni=1).

The output w is either the token Add Step or an index l ∈ {1, · · · , k}. If w is Add Step, Arouter

has determined the plan is correct but incomplete. In this case, we retain the plan p and proceed
to generate the next step. On the other hand, if w = l, Arouter has identified pl as erroneous. In
this case, we backtrack by truncating the plan to p← {p0, · · · , pl−1}. Here, we deliberately choose
to truncate and regenerate through the LLM’s random sampling, rather than directly correcting pl,
since our empirical finding has shown that revising a specific incorrect step often leads to an overly
complex replacement, therefore frequently flagged again byArouter in a next iteration. Following the
decision from theArouter, our agent proceeds with an updated plan p = {p0, · · · , pk′}, where k′ = k
or k′ = l − 1. Then DS-STAR generates a subsequent step: pk′+1 = Aplanner(p, q, rk, {di}Ni=1).

Notably, the planner agent Aplanner is conditioned on the last execution result, rk, enabling it to
generate a step that attempts to resolve the previously identified insufficiency. Once the new step
pk′+1 is defined, the plan is updated to: p← {p0, · · · , pk′ , pk′+1}.
Plan implement and execution. Finally, DS-STAR enters an execution and verification cycle. First,
Acoder implements p into code s. The execution of this code yields a new observation r = exec(s).
With this r, Averifier is invoked again to assess if the newly augmented plan is now sufficient. This
entire iterative procedure—routing, planning, coding, executing, and verifying—is repeated until
Averifier returns a sufficient or a predefined maximum number of iterations is reached.

3.3 ADDITIONAL MODULES FOR ROBUST DATA SCIENCE AGENTS

Debugging agent. When a Python script s fails during execution, it generates an error traceback
Tbug. To automatically debug the script, DS-STAR employs a debugging agent, Tdebugger. First,
when generating {di}Ni=1 using sdesc obtained from Aanalyzer (see Section 3.1), Adebugger iteratively
update the script using only the traceback: sdesc ← Adebugger(sdesc, Tbug).

Secondly, once DS-STAR obtains {di}Ni=1, Adebugger utilizes such information when generating a
solution Python script s (see Section 3.2). Our key insight is that tracebacks alone are often insufficient
for resolving errors in data-centric scripts, while {di}Ni=1 might include critical metadata such as
column headers in a CSV file, sheet names in an Excel workbook, or database schema information.
Therefore, Adebugger generates a corrected script, s , by conditioning on the original script s, the error
traceback Tbug , and this rich data context {di}Ni=1: s← Adebugger(s, Tbug, {di}Ni=1).

Retriever. A potential scalability challenge arises when the number of data files N is large (i.e.,
N > 100.). In such cases, the complete set of descriptions {di}Ni=1 cannot be prompted within the
predefined context length of LLMs. To address this limitation, we employ a retrieval mechanism that
leverages a pre-trained embedding model (Nie et al., 2024). Specifically, we identify the top-K most
relevant data files, which will be provided as context to the LLM, by computing the cosine similarity
between the embedding of the user’s query q and the embedding of each description di.
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Table 1: Main results from DABStep. All results are taken from the DABStep leaderboard (Mar-
tin Iglesias, 2025), except for the model marked with †. The highest scores are shown in bold.

Framework Model Easy-level
Accuracy (%)

Hard-level
Accuracy (%)

Model-only Gemini-2.5-Pro 66.67 12.70
o4-mini 76.39 14.55

ReAct (Yao et al., 2023) Claude-4-Sonnet 81.94 19.84
Gemini-2.5-Pro† 69.44 10.05

AutoGen (Wu et al., 2023) Gemini-2.5-Pro† 59.72 10.32
Data Interpreter (Hong et al., 2024) Gemini-2.5-Pro† 72.22 3.44
DA-Agent (Huang et al., 2024) Gemini-2.5-Pro† 68.06 22.49
Open Data Scientist DeepSeek-V3 84.72 16.40
Mphasis-I2I-Agents Claude-3.5-Sonnet 80.56 28.04
Amity DA Agent Gemini-2.5-Pro 80.56 41.01
DS-STAR (Ours) Gemini-2.5-Pro† 87.50 45.24

4 EXPERIMENTS

In this section, we conduct a comprehensive empirical evaluation of DS-STAR on three challenging
data science benchmarks: DABStep (Martin Iglesias, 2025), KramaBench (Lai et al., 2025), and
DA-Code (Huang et al., 2024). Our results show that DS-STAR significantly outperforms competitive
baselines, including those built upon various LLMs (Section 4.1). To understand the source of gains,
we perform a detailed ablation study, which confirms that our proposed analyzer and router agents
are critical components that provides a substantial performance improvement (Section 4.2).

Common setup. Unless otherwise specified, all experiments are conducted using Gemini-2.5-Pro
as the base LLM. Our agent, DS-STAR, operates for a maximum of 20 rounds per task. To ensure
properly formatted output, we employ a finalyzer agent,Afinalyzer, which takes formatting guidelines
(e.g., rounding to two decimal places) and generates the final solution code (see Appendix G).

4.1 MAIN RESULTS

DABStep. We evaluate DS-STAR on the DABStep benchmark (Martin Iglesias, 2025), which is
designed to mirror real-world data analysis challenges by requiring the processing of seven diverse
data files, including formats like JSON, Markdown, and CSV. The benchmark features two difficulty
levels; its hard-level tasks are particularly demanding, necessitating the analysis of multiple data
files and the application of domain-specific knowledge. As shown in Table 1, existing single-
LLM approaches struggle to surpass 20% accuracy, which underscores the significant room for
improvement. Additionally, its authors note that a human-reference solution for a hard-level task
spans 220 lines of code and is broken into four sequential steps. Detailed statistics and the full
execution logs of DS-STAR are provided in Appendix B and F, respectively.

The results, presented in Table 1, demonstrate that DS-STAR significantly outperforms all baselines.
For instance, integrating DS-STAR with Gemini-2.5-Pro boosts the hard-level accuracy from 12.70%
to 45.24%, an absolute improvement of over 32 percentage points. Notably, the DS-STAR using
Gemini-2.5-Pro substantially surpasses other commercial agents like Open Data Scientist, Mphasis-
I2I-Agents, and Amity DA Agent across both easy and hard difficulty levels. Crucially, DS-STAR also
outperforms other multi-agent systems built upon the same Gemini-2.5-Pro, highlighting that the
performance gains stem directly from the proposed effective sub-agent orchestration.

KramaBench. We additionally validate DS-STAR’s capability on Kramabench (Lai et al., 2025),
a benchmark that requires data discovery, i.e., selecting the correct data files from a vast data lake
to address a user’s query. For example, the Astronomy domain includes over 1,500 files, while
only a small subset is relevant to any single query (see Appendix B for the detailed statistics). To
navigate this, DS-STAR integrates a retrieval module that identifies the top 100 candidate files
2 based on embedding similarity between the user’s query and data descriptions, computed with
Gemini-Embedding-001 (Lee et al., 2025) (details can be found in Section 3.3).

2If the total data is less than 100, we fully utilized all the data for the task.
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Table 2: Main results from KramaBench. All results are taken from the original paper (Lai et al.,
2025), except the results with Gemini-2.5-Pro. The highest scores are shown in bold.

Framework Model Domains
Archaeology Astronomy Biomedical Environment Legal Wildfire Total

Original experimental setting for which the relevant data must be retrieved.

Model-only
o3 25.00 1.73 3.50 1.35 3.35 24.87 9.64
GPT-4o 0.00 1.41 1.98 0.45 1.46 1.45 1.62
Claude-3.5-Sonnet 16.67 1.62 2.87 1.17 7.33 13.63 7.45

DS-GURU
o3 25.00 3.53 8.95 19.60 13.89 50.73 22.08
GPT-4o 16.67 2.76 8.97 2.60 2.80 17.18 8.28
Claude-3.5-Sonnet 16.67 1.52 1.96 11.21 7.01 39.16 14.35

ReAct Gemini-2.5-Pro 16.67 4.77 3.69 26.17 41.95 51.40 30.31
AutoGen Gemini-2.5-Pro 16.67 4.39 7.25 19.38 26.38 41.76 22.83
Data Interpreter Gemini-2.5-Pro 41.67 12.72 28.05 9.87 30.04 59.67 31.32
DA-Agent Gemini-2.5-Pro 41.67 15.52 12.59 42.64 39.73 61.61 39.79
DS-STAR (Ours) Gemini-2.5-Pro 25.00 12.09 43.74 46.75 49.64 65.94 44.69

Oracle experimental setting with relevant data already provided.

ReAct Gemini-2.5-Pro 25.00 6.36 3.69 30.70 46.93 51.69 33.82
AutoGen Gemini-2.5-Pro 25.00 5.29 26.03 23.46 39.28 49.41 31.77
Data Interpreger Gemini-2.5-Pro 41.67 13.29 28.39 13.09 32.97 63.13 33.57
DA-Agent Gemini-2.5-Pro 41.67 15.77 44.26 44.55 56.42 65.92 48.61
DS-STAR (Ours) Gemini-2.5-Pro 25.00 19.08 55.24 58.80 59.66 70.18 52.55

Table 3: Main results from DA-Code. All results are taken from the original paper (Huang et al.,
2024), except the results with Gemini-2.5-Pro. The highest scores are shown in bold.

Framework Model Score
Data Wrangling ML EDA Easy Medium Hard Total

DA-Agent

Mixtral-8x22B 14.8 31.6 10.2 17.6 16.8 8.6 15.4
DeepSeek-Coder-V2.5 25.1 34.1 14.7 32.8 18.7 14.1 20.7
Qwen-2.5-72B 24.9 41.8 15.4 31.9 19.4 22.3 22.6
Claude-3-Opus 29.3 46.8 20.7 44.7 23.8 19.0 27.6
GPT-4 30.4 48.4 24.6 45.4 27.8 23.4 30.5
Gemini-2.5-Pro 34.8 57.2 31.1 50.0 34.2 32.0 37.0

ReAct Gemini-2.5-Pro 14.7 31.2 22.2 32.0 17.9 25.9 22.5
AutoGen Gemini-2.5-Pro 25.6 51.6 25.6 38.7 28.5 29.6 30.8
DS-STAR (Ours) Gemini-2.5-Pro 30.4 57.3 34.8 48.9 35.2 37.1 38.5

As detailed in Table 2, DS-STAR demonstrates a substantial performance advantage in this chal-
lenging setting. Using Gemini-2.5-Pro, DS-STAR achieves an accuracy of 44.69%, significantly
outperforming the 39.79% score of the state-of-the-art DA-Agent. Moreover, to isolate the impact of
data retrieval, we also evaluated performance in an oracle setting, assuming all relevant data for a task
is already provided. Under these ideal conditions, DS-STAR’s accuracy increases by 8 percentage
points. In contrast, other agentic frameworks like ReAct show only a marginal performance gain
in the same setting. This large gap highlights that while our current retrieval method is effective,
advanced data discovery is a promising direction for unlocking the full potential of DS-STAR.

DA-Code. To evaluate the generalization capabilities of DS-STAR, we additionally benchmark its
performance on the DA-Code dataset (Huang et al., 2024), which encompasses a diverse array of data
science tasks. Specifically, DA-Code is structured into three main categories: data wrangling, machine
learning (ML), and exploratory data analysis (EDA), with the EDA category further subdivided into
data manipulation, data insights, visualization, and statistical analysis. Here, we found that the
Data-Interpreter (Hong et al., 2024) struggles to generate answers with the right format required by
DA-Code tasks (e.g., saving in csv format), therefore excluded it from the baseline.

As shown in Table 3, DS-STAR outperforms the strongest baseline, i.e., DA-Agent, demonstrating
its robust applicability across various data science domains. The superiority of our framework is
particularly highlighted on more complex problems. Specifically, on the hard-difficulty tasks, DS-
STAR achieves 37.1% accuracy, representing a significant improvement over the 32.0% accuracy of
the DA-Agent baseline, even when both frameworks utilize the same Gemini-2.5-Pro. This showcases
the effectiveness of our approach, especially for challenging, real-world data science scenarios. We
provide qualitative results for each task type in Appendix E.
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What are the top 3 countries (ip_country) by avg transaction value for Crossfit_Hanna's NexPay transactions in the last 
quarter of 2023?

Question

import pandas as pd                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

payments_df = pd.read_csv('data/payments.csv')                                                                                                                                                                                                                                                                                                                                                                                                                                    

q4_2023_df = payments_df[(payments_df['year'] == 2023) &

                         (payments_df['day_of_year'] >= 274)]                                                                                                                                                                                                                                                                                                                                                                              

crossfit_hanna_df = 

    q4_2023_df[q4_2023_df['merchant'] == 'Crossfit_Hanna']                                                                                                                                                                                                                                                                                          

# The question asks about 'NexPay' transactions, but there is no 

column for the payment gateway.

# I will assume that the question is flawed and 'NexPay' is not a 

relevant filter.

# I will proceed without filtering for 'NexPay'.                                                                                                                                                                                                                                                                           

avg_transaction_value = 

    crossfit_hanna_df.groupby('ip_country')['eur_amount'].mean()

top_countries = 

    avg_transaction_value.sort_values(ascending=False).head(3)

top_countries_list = top_countries.index.tolist()

result = ",".join(top_countries_list)

print(result)

ReAct
import pandas as pd

payments_file = 'data/payments.csv'

payments_df = pd.read_csv(payments_file)

# Filter the DataFrame for 'Crossfit_Hanna' merchant, 'NexPay' card 

scheme, and Q4 transactions.

filtered_transactions = payments_df[

   (payments_df['merchant'] == 'Crossfit_Hanna') &

   (payments_df['card_scheme'] == 'NexPay') &

   (payments_df['day_of_year'] >= 274)

]

top_3_countries_by_avg_amount = (

   filtered_transactions.groupby('ip_country')['eur_amount']

   .mean()

   .sort_values(ascending=False)

   .head(3)

)

answer = ','.join(top_3_countries_by_avg_amount.index)

print(answer)

DS-STAR (Ours)

Figure 3: Qualitative result. We observed that while ReAct (Yao et al., 2023) failed to filter out the
‘NextPay’ value, leading to an incorrect answer, DS-STAR successfully filtered out due to the use of
data file analysis agent. See Appendix F for the full execution logs of DS-STAR.

Table 4: Ablation study on each component. Effectiveness of each agent and compatibility with
other LLMs on the DABStep benchmark (Martin Iglesias, 2025).

Framework Model Analyzer
Aanalyzer

Router
Arouter

Easy-level
Accuracy (%)

Hard-level
Accuracy (%)

DS-STAR (Variant 1) Gemini-2.5-Pro 7 3 75.00 26.98
DS-STAR (Variant 2) Gemini-2.5-Pro 3 7 79.17 39.95
DS-STAR (Ours) Gemini-2.5-Pro 3 3 87.50 45.24
DS-STAR (Ours) GPT-5 3 3 88.89 43.12

4.2 ABLATION STUDIES

In this section, we conduct ablation studies to verify the effectiveness of individual components.
Unless otherwise specified, all experiments use Gemini-2.5-Pro and are performed on the DABStep.

Effectiveness of the data file analysis agent. The data file analysis agent,Aanalyzer, which provides
contextual descriptions of data files, is crucial for achieving high performance. When we remove the
descriptions, DS-STAR’s accuracy on hard-level tasks in the DABStep benchmark drops significantly
to 26.98%. While this result is still substantially better than the 12.70% accuracy of a non-agentic
framework, it underscores the importance of the component. We hypothesize that the rich context of
the given data is vital for enabling DS-STAR to effectively plan and implement its approach.

To qualitatively demonstrate the effectiveness of our data file analysis agent, we present a comparative
case study in Figure 3. In this example, the competing baseline, ReAct (Yao et al., 2023), tries to filter
data based on a ‘NextPay’ value but fails to execute the request. The model incorrectly determines
that no such column value exists in the ‘payment.csv’ file due to ReAct’s limited understanding of
the provided data context. On the other hand, DS-STAR succeeds by first employing its data file
analysis to correctly understand the entire data structure. This allows it to identify the appropriate
column value and accurately filter the data as instructed. Further qualitative examples, including full
execution logs, showcasing the capabilities of DS-STAR can be found in Appendix F.

Effectiveness of the router agent. Arouter determines whether to append a new step or correct an
existing one in the plan. Here, we verify its importance against an alternative approach (Variant 2 in
Table 4) where Arouter is removed. In this variant, DS-STAR only uses Aplanner to simply add new
steps sequentially until the plan is sufficient or a maximum number of iterations is reached. As shown
in Table 4, this alternative performs worse on both easy and hard tasks. This is because building
upon an erroneous step leads to error accumulation, causing subsequent steps to also be incorrect, i.e.,
correcting errors in the plan is more effective than accumulating potentially flawed steps.
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(a) Distribution of number of required rounds (b) Sensitivity analysis on number of refinements

Figure 4: Sensitivity analysis on the number of refinement steps using DABStep. (a) Difficult
tasks require more iterations to generate sufficient plans. Specifically, hard-level tasks require an
average 5.6 iterations, while easy-level tasks require 3.0 iterations. Also, more than 50% of easy-level
tasks are done only with a single round. (b) Performing more iterations allows the agent to generate
sufficient plans, resulting in better performance for both easy and hard level tasks.

Compatibility with other LLMs. To evaluate the generalizability of DS-STAR across LLM types,
we conduct additional experiments using GPT-5. As shown in Table 4, DS-STAR with GPT-5 also
achieves promising results on the DABStep benchmark. Notably, DS-STAR with GPT-5 demonstrates
stronger performance on easy-level tasks, whereas the Gemini-2.5-Pro excels on hard-level tasks.

4.3 ANALYSIS

In this section, we analyze the impact of the number of refinement rounds. Specifically, we measure
the number of iterations required to generate a sufficient plan and conduct a sensitivity analysis on the
maximum number of iterations. All experiments were done on the DABStep using Gemini-2.5-Pro.
In addition, we provide cost analysis of DS-STAR in the Appendix C.

Required number of refinement steps. As shown in Figure 4(a), generating a successful plan for
hard tasks requires a greater number of refinement rounds. Specifically, on the DABStep, hard tasks
required an average of 5.6 rounds, in contrast to the 3.0 rounds needed for easy tasks. This disparity
is further underscored by the fact that while over 50% of easy-level tasks were solved by the initial
plan p0 alone, nearly all, i.e., 98% of the hard tasks necessitated at least one refinement iteration.

Sensitivity analysis on the maximum number of refinement steps. In our experiments, DS-
STAR uses a default maximum of 20 refinement iterations. To analyze the sensitivity of this
hyper-parameter, we conduct an experiment by lowering the limits to 5, 10, and 15. If the process
reaches this maximum without finding a sufficient plan, DS-STAR generates a final solution using the
intermediate plan it has developed. Figure 4(b) shows a positive correlation between the maximum
number of refinements and task accuracy for both easy and hard-level tasks. A higher iteration
limit increases the probability that DS-STAR will generate a sufficient plan. This seems to be more
critical for hard-level tasks, where accuracy consistently improves as the maximum number of rounds
increases, verifying the importance of sufficient number of refinement steps for complex problems.

5 CONCLUSION

We introduce DS-STAR, a novel agent designed to autonomously solve data science problems. Our
approach features two key components: (1) the automatic analysis of files to handle heterogeneous
data formats, and (2) the generation of a sequential plan that is iteratively refined with a novel LLM-
based verification mechanism. We show the effectiveness of DS-STAR on the DABStep, Kramabench,
and DA-Code, where it establishes a new state-of-the-art by outperforming prior methods.

Limitation and future works. Our current work focuses on a fully automated framework for DS-
STAR. A compelling avenue for future research is to extend this framework to a human-in-the-loop
setting. Investigating how to synergistically combine the automated capabilities of DS-STAR with the
intuition and domain knowledge of a human expert presents a promising direction for significantly
boosting performance and enhancing the system’s practical utility.
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A ALGORITHMS

Algorithm 1 DS-STAR

1: Input: query q, data files D, maximum number of refinement round M
2: # Analyzing data files
3: for i = 1 to N do
4: sidesc = Aanalyzer(Di)
5: di = exec(sidesc)
6: end for
7: # Iterative plan generation and verification
8: p0 = Aplanner(q, {di}Ni=1)
9: s0 = Acoder(p0, {di}Ni=1)

10: r0 = exec(s0)
11: p = {p0}
12: for k = 0 to M − 1 do
13: v = Averifier(p, q, sk, rk)
14: if v = sufficient then
15: break
16: else if v = insufficient then
17: w = Arouter(p, q, rk, {di}Ni=1)
18: if w ∈ {0, · · · , len(p)− 1} then
19: l = w − 1
20: else if w = Add Step then
21: l = k
22: end if
23: p← {p0, · · · , pl}
24: pl+1 = Aplanner(p, q, rk, {di}Ni=1)
25: p← {p0, · · · , pl, pl+1}
26: sk+1 = Acoder(p, q, sk, {di}Ni=1)
27: rk+1 = exec(sk+1)
28: end if
29: end for
30: Output: Final solution s
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B BENCHMARK

Table 5: Statistics of benchmark. For the DA-Code benchmark (Huang et al., 2024), we report the
average of number of data files required for each tasks in each domain.

Benchmark Domain # Tasks # Hard Tasks # Data files

DABStep (Martin Iglesias, 2025) 450 378 7

KramaBench (Lai et al., 2025)

Archeology 12 6 5
Astronomy 12 6 1556
Biomedical 9 6 7
Environment 20 14 37
Legal 30 16 136
Wildfire 21 15 23

DA-Code (Huang et al., 2024)

Data Insight 79 5 3.7
Data Manipulation 73 23 5.8
Data Wrangling 100 16 6.2
Machine Learning 100 34 3.9
Statistical Analysis 70 10 4.5
Visualization 78 14 4.5

We evaluate DS-STAR against several alternatives using two challenging benchmarks: DABStep (Mar-
tin Iglesias, 2025) and KramaBench (Lai et al., 2025).

• DABStep is composed of 450 tasks (72 easy and 378 hard) that require analyzing a shared set of
seven data files. The ground-truth labels for these tasks are hidden, and evaluation is performed by
submitting results to an official server, ensuring a blind assessment.

• KramaBench tests an agent’s ability to perform autonomous data discovery. It contains tasks
across six distinct domains, where each domain includes up to 1,556 data files. This setup requires
the agent to automatically identify and select the relevant data files for given task.

• DA-Code is structured into three main categories: data wrangling, machine learning, and ex-
ploratory data analysis (EDA), with the EDA category further divided into data manipulation, data
insights, visualization, and statistical analysis. See Appendix E for the example tasks.

Table 5 provides detailed statistics for both benchmarks.

C COST ANALYSIS

Table 6: Cost analysis on DABStep. We report the average cost when using Gemini-2.5-Pro.

Method # LLM calls # Input tokens # Output tokens Cost ($)

ReAct (Yao et al., 2023) 7.1 44691 2928 0.09
DA-Agent (Huang et al., 2024) 8.8 39999 4123 0.09
DS-STAR (Ours) 12.7 154669 3373 0.23

In this section, we quantitatively analyze the LLM usage cost. We evaluate DS-STAR on 10
development tasks from the DABStep benchmark (Martin Iglesias, 2025), reporting the average
number of LLM calls, input tokens, and output tokens.

We acknowledge that DS-STAR incurs higher cost due to its increased token usage. As shown in
Table 6, DS-STAR requires 3.5 times more input tokens than the ReAct baseline. This increase is
primarily because our method utilizes comprehensive analytic descriptions of each data file, which
inherently necessitates more input tokens. Nevertheless, this translates to a modest practical cost;
using Gemini-2.5-Pro (priced at $1.25/$10.00 per 1M input/output tokens3), the expense for DS-
STAR averages only $0.23 per data science task. We argue this higher cost is a justifiable trade-off,
as DS-STAR consistently and significantly achieves better results than ReAct.

3https://ai.google.dev/gemini-api/docs/pricing
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D QUALITATIVE RESULTS ON THE ANALYZER AGENT

D.1 CODE GENERATED BY THE ANALYZER AGENT

import json

def describe_json_data(file_path):
"""
Loads a JSON file, prints its full content, and then describes its structure
and essential information, including column names (keys) and example data.
"""
# Load the JSON data from the file
# Using utf-8 encoding is a good practice for JSON.
with open(file_path, 'r', encoding='utf-8') as f:

data = json.load(f)

print(f"--- Describing content of: {file_path} ---")
print("\n")

# 1. Print the full loaded content as per requirement
# "The Python code should print out the content of data/merchant_data.json."
print("--- Full Loaded Content ---")
# Using json.dumps for a pretty-printed representation of the loaded Python object.
# ensure_ascii=False allows for proper display of unicode characters.
print(json.dumps(data, indent=4, ensure_ascii=False))
print("-" * 50)
print("\n")

# 2. Print Essential Information
print("--- Essential Information ---")
data_type = type(data)
print(f"Overall Data Type: {data_type.__name__}")

if isinstance(data, dict):
print("The data is a single JSON object (dictionary).")
keys = list(data.keys())
print(f"Number of top-level keys: {len(keys)}")

if not keys:
print("The dictionary is empty.")

else:
# Requirement: "print out all the column names."
print("Top-level keys (can be considered as 'column names' for the main object):")
for key in keys:

print(f" - {key}")

# Requirement: "If there are too many structured data, print out just few examples."
print("\n--- Example Key-Value Pairs (first 5 if more exist) ---")
count = 0
for key, value in data.items():

if count < 5:
value_str = str(value)
# Truncate long values for a concise preview
preview = (value_str[:70] + '...') if len(value_str) > 70 else value_str
print(f" {key}: {preview}")
count += 1

else:
print(" ... (more key-value pairs exist)")
break

if count == 0 and not keys: # Should be caught by 'if not keys:' earlier
print(" (Dictionary is empty - no key-value pairs to show)")

elif isinstance(data, list):
print("The data is a JSON array (list).")
num_items = len(data)
print(f"Number of items in the list: {num_items}")

if num_items == 0:
print("The list is empty.")

else:
first_item = data[0]
print(f"Type of the first item in the list: {type(first_item).__name__}")

# Check if it's a list of dictionaries (common for structured data records)
if isinstance(first_item, dict):

print("The list appears to contain JSON objects (dictionaries), suggesting structured
data.")↪→

# Requirement: "print out all the column names."
# For a list of objects, column names are typically the keys of these objects.
# We'll use the keys from the first object as representative column names.
first_item_keys = list(first_item.keys())
if not first_item_keys:

print("The first object in the list is an empty dictionary (no column names to infer).")
else:

print("Keys of the first object (assumed to be common 'column names' for the items):")
for key in first_item_keys:

print(f" - {key}")

# Requirement: "If there are too many structured data, print out just few examples."
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num_examples_to_show = min(3, num_items) # Show up to 3 examples
print(f"\n--- Example Items (first {num_examples_to_show} of {num_items}) ---")
for i in range(num_examples_to_show):

print(f"Item {i+1}:")
# Pretty print each example item. Truncate if an individual item is very large.
example_item_str = json.dumps(data[i], indent=2, ensure_ascii=False)
lines = example_item_str.split('\n')
if len(lines) > 15: # Arbitrary limit: max 15 lines per example item summary

print('\n'.join(lines[:15]))
print(" ... (item content truncated for brevity in this summary)")

else:
print(example_item_str)

if num_items > num_examples_to_show:
print(f"\n... and {num_items - num_examples_to_show} more items in the list.")

# Else, it's a list of other types (e.g., strings, numbers - unstructured or semi-structured)
else:

print("The list contains non-object items (e.g., strings, numbers, booleans, or mixed
types).")↪→

print("This is often considered unstructured or semi-structured data.")
num_examples_to_show = min(5, num_items) # Show up to 5 examples
print(f"\n--- Example Items (first {num_examples_to_show} of {num_items}) ---")
for i in range(num_examples_to_show):

item_str = str(data[i])
# Truncate long string representations for a concise preview
preview = (item_str[:70] + '...') if len(item_str) > 70 else item_str
print(f"Item {i+1}: {preview}")

if num_items > num_examples_to_show:
print(f"\n... and {num_items - num_examples_to_show} more items in the list.")

elif isinstance(data, (str, int, float, bool)) or data is None:
# For simple scalar types, the "Full Loaded Content" print is the primary information.
# This section just confirms the nature of the data.
print(f"The data is a simple JSON scalar value (not an object or array).")
if data is None:

print("Specifically, the JSON content is 'null'.")
# The actual value was already printed in the "Full Loaded Content" section.

else:
# This case should ideally not be reached if json.load() was successful
# and returned a standard Python type corresponding to a valid JSON root element.
print("The data type is unusual for a root JSON element (e.g., a custom object if json.load was

hooked).")↪→
# The actual value was already printed in the "Full Loaded Content" section.

print("\n" + "-" * 50)
print("--- End of Description ---")

if __name__ == "__main__":
# The path to the JSON file.
# This script assumes 'data/merchant_data.json' exists relative to where the script is run.
# For example, if the script is in /home/user/scripts/, it expects

/home/user/scripts/data/merchant_data.json↪→
json_file_path = 'data/merchant_data.json'

# Call the function to load and describe the JSON data.
# As per requirements, no try-except blocks are used for error handling.
# If the file doesn't exist, a FileNotFoundError will be raised.
# If the file's content is not valid JSON, a json.JSONDecodeError will be raised.
# These errors will halt the program, and debugging can proceed from there.
describe_json_data(json_file_path)

Listing 1: Python code for generating the description of ‘merchant_data.json’ in DABStep.
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import pandas as pd
import numpy as np
import io
import os

# --- Configuration ---
# Define the path to the Excel file to be analyzed.
# This script assumes the file is located at 'data/1-s2.0-S0092867420301070-mmc4.xlsx'.
file_path = 'data/1-s2.0-S0092867420301070-mmc4.xlsx'

# --- Analyst's Report Generation ---

# Print a formatted header for the analysis report.
print("=====================================================")
print(f" Expert Data Analysis Report for: {file_path}")
print("=====================================================")

# Check for file existence to provide a clear startup message.
# The script will still raise an error if not found, as per requirements.
if not os.path.exists(file_path):

print(f"\n[STATUS] File not found at the specified path: '{file_path}'")
print("Please ensure the file exists and the path is correct before execution.")
# The script will exit here due to a FileNotFoundError from pandas,
# allowing for debugging as requested.

# --- 1. Loading Data and Sheet Information ---

print("\n--- 1. Loading & Sheet Information ---")
# Use pandas.ExcelFile to inspect the workbook without loading all data initially.
# This is efficient for understanding the structure of a multi-sheet Excel file.
excel_file = pd.ExcelFile(file_path)
sheet_names = excel_file.sheet_names
print(f"Found {len(sheet_names)} sheet(s) in the workbook: {sheet_names}")

# For this analysis, we will focus on the first sheet.
first_sheet_name = sheet_names[0]
print(f"Loading data from the first sheet: '{first_sheet_name}'")
df = pd.read_excel(excel_file, sheet_name=first_sheet_name)
print("Data loaded successfully.")

# --- 2. High-Level Overview ---

print("\n--- 2. Data Dimensions and Structure ---")
rows, cols = df.shape
print(f"The dataset contains {rows} rows and {cols} columns.")

# An analyst's initial assessment of data structure.
if cols == 1:

print("Observation: With only one column, the data might be unstructured (e.g., a list of texts or
IDs).")↪→

elif 1 < cols < 5:
print("Observation: With a few columns, the data appears to be structured but simple.")

else:
print("Observation: With multiple columns, the data appears to be well-structured.")

# --- 3. Column Analysis ---

print("\n--- 3. Column Names ---")
print("The following columns are present in the dataset:")
# Using a list comprehension for clean printing of column names.
print(" | ".join([f"'{col}'" for col in df.columns]))

# --- 4. Data Types and Non-Null Counts ---

print("\n--- 4. Data Types & Memory Usage ---")
# Capture the output of df.info() to present it cleanly within the report.
buffer = io.StringIO()
df.info(buf=buffer)
info_str = buffer.getvalue()
print(info_str)

# --- 5. Missing Value Analysis ---

print("\n--- 5. Missing Values Summary ---")
missing_values = df.isnull().sum()
total_missing = missing_values.sum()
if total_missing == 0:

print("Excellent! No missing values were found in the dataset.")
else:

print(f"Found a total of {total_missing} missing values.")
# Display columns that have at least one missing value.
missing_per_column = missing_values[missing_values > 0].sort_values(ascending=False)
print("Columns with missing values:")
print(missing_per_column.to_string())

# --- 6. Descriptive Statistics for Numerical Data ---

print("\n--- 6. Descriptive Statistics (for Numerical Columns) ---")
# The describe() method provides a powerful summary of central tendency,
# dispersion, and shape of the distribution for numerical columns.
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# It automatically excludes non-numerical columns.
descriptive_stats = df.describe()
if descriptive_stats.empty:

print("No numerical columns found to generate statistics for.")
else:

print(descriptive_stats)

# --- 7. Data Preview ---

print("\n--- 7. Data Sample (First 5 Rows) ---")
# Displaying the head of the DataFrame is crucial for getting a feel
# for the actual content and format of the data.
print(df.head())

# --- 8. Analysis of Categorical / Object Data ---
print("\n--- 8. Unique Values in Categorical Columns ---")
# Select columns with 'object' dtype, which are often categorical.
object_cols = df.select_dtypes(include=['object']).columns

if len(object_cols) == 0:
print("No categorical (object type) columns found for value count analysis.")

else:
print(f"Analyzing {len(object_cols)} categorical column(s): {list(object_cols)}\n")
for col in object_cols:

unique_count = df[col].nunique()
print(f"-> Column '{col}' has {unique_count} unique values.")
# To avoid flooding the output, only show value counts for columns with few unique values.
if unique_count > 1 and unique_count <= 15:

print(" Value Counts:")
print(df[col].value_counts().to_string())
print("-" * 20)

# --- End of Report ---
print("\n=====================================================")
print(" End of Analysis Report")
print("=====================================================")

Listing 2: Python code for generating the description of ‘1-s2.0-S0092867420301070-mmc4.xlsx’ in
KramaBench.
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D.2 EXAMPLES OF GENERATED DATA DESCRIPTIONS

f'''
File: data/merchant_data.json (6857 bytes)
Top-level type: array
root: array with 30 items
Element types: object=30
Columns (5): ['account_type', 'acquirer', 'capture_delay', 'merchant',

'merchant_category_code']↪→
Sample rows (first 5):
[

{
"merchant": "Crossfit_Hanna",
"capture_delay": "manual",
"acquirer": [
"gringotts",
"the_savings_and_loan_bank",
"bank_of_springfield",
"dagoberts_vault"

],
"merchant_category_code": 7997,
"account_type": "F"

},
{
"merchant": "Martinis_Fine_Steakhouse",
"capture_delay": "immediate",
"acquirer": [
"dagoberts_geldpakhuis",
"bank_of_springfield"

],
"merchant_category_code": 5812,
"account_type": "H"

},
{
"merchant": "Belles_cookbook_store",
"capture_delay": "1",
"acquirer": [
"lehman_brothers"

],
"merchant_category_code": 5942,
"account_type": "R"

},
{
"merchant": "Golfclub_Baron_Friso",
"capture_delay": "2",
"acquirer": [
"medici"

],
"merchant_category_code": 7993,
"account_type": "F"

},
{
"merchant": "Rafa_AI",
"capture_delay": "7",
"acquirer": [
"tellsons_bank"

],
"merchant_category_code": 7372,
"account_type": "D"

}
]
'''

Listing 3: Description of ‘merchant_data.json’ in DABstep.
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f'''
=====================================================

Expert Data Analysis Report for:
data/1-s2.0-S0092867420301070-mmc4.xlsx↪→

=====================================================

--- 1. Loading & Sheet Information ---
Found 4 sheet(s) in the workbook: ['README', 'A-Variants', 'B-Novel

Splice Junctions', 'C-Alternate Splice Junctions']↪→
Loading data from the first sheet: 'README'
Data loaded successfully.

--- 2. Data Dimensions and Structure ---
The dataset contains 25 rows and 2 columns.
Observation: With a few columns, the data appears to be structured but

simple.↪→

--- 3. Column Names ---
The following columns are present in the dataset:
'IN THIS FILE: a list of variants and alternate splice junctions for

which we found peptide evidence. For more information, please see
STAR Methods' | 'Unnamed: 1'

↪→
↪→

--- 4. Data Types & Memory Usage ---
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 25 entries, 0 to 24
Data columns (total 2 columns):
# Column

Non-Null Count Dtype↪→
--- ------

-------------- -----↪→
0 IN THIS FILE: a list of variants and alternate splice junctions for

which we found peptide evidence. For more information, please see
STAR Methods 21 non-null object

↪→
↪→
1 Unnamed: 1

21 non-null object↪→
dtypes: object(2)
memory usage: 528.0+ bytes

--- 5. Missing Values Summary ---
Found a total of 8 missing values.
Columns with missing values:
IN THIS FILE: a list of variants and alternate splice junctions for

which we found peptide evidence. For more information, please see
STAR Methods 4

↪→
↪→
Unnamed: 1

4↪→

--- 6. Descriptive Statistics (for Numerical Columns) ---
IN THIS FILE: a list of variants and alternate splice junctions

for which we found peptide evidence. For more information, please
see STAR Methods Unnamed: 1

↪→
↪→
count 21

21↪→
unique 21

21↪→
top Sheet

Description↪→
freq 1

1↪→

--- 7. Data Sample (First 5 Rows) ---
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IN THIS FILE: a list of variants and alternate splice junctions for
which we found peptide evidence. For more information, please see
STAR Methods Unnamed: 1

↪→
↪→
0 NaN

NaN↪→
1 NaN

NaN↪→
2 Sheet

Description↪→
3 A-Variants

Both single amino acid variants (SAAVs) and in...↪→
4 B-Novel Splice Junctions

Splice junctions where neither boundary was at...↪→

--- 8. Unique Values in Categorical Columns ---
Analyzing 2 categorical column(s): ['IN THIS FILE: a list of variants

and alternate splice junctions for which we found peptide evidence.
For more information, please see STAR Methods', 'Unnamed: 1']

↪→
↪→

-> Column 'IN THIS FILE: a list of variants and alternate splice
junctions for which we found peptide evidence. For more information,
please see STAR Methods' has 21 unique values.

↪→
↪→
-> Column 'Unnamed: 1' has 21 unique values.

=====================================================
End of Analysis Report

=====================================================
'''

Listing 4: Description of ‘1-s2.0-S0092867420301070-mmc4.xlsx’ in KramaBench.
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E QUALITATIVE RESULTS FOR EACH TASK TYPE

This section provides qualitative results. It includes queries on DA-Code benchmark, solution code
generated by DS-STAR, output generated by DS-STAR, and ground-truth answer. Specifically, it
presents examples for each task, such as statistical analysis, data insights, data wrangling, machine
learning, and visualization tasks.

E.1 STATISTICAL ANALYSIS

f'''Could you analyze our Business Case dataset to perform a hypothesis
test comparing bike rentals across different weather conditions? I
need the results formatted and saved in a file named 'weather.csv'
following the requirement in tips.md.'''

↪→
↪→
↪→

Listing 5: User’s question.

import pandas as pd
from scipy.stats import kruskal
import os

# Define the file path for the input dataset
input_file_path = 'data/yulu_bike_sharing_dataset.csv'

# Load the dataset into a pandas DataFrame
yulu_df = pd.read_csv(input_file_path)

# The goal is to perform a Kruskal-Wallis H-test to compare the distribution of bike rentals ('count')
# across different weather conditions ('weather').

# The 'weather' column contains numerical codes for different weather conditions.
# First, we need to find the unique weather conditions in the dataset.
unique_weather_conditions = sorted(yulu_df['weather'].unique())

# Next, we create a list of data samples, where each sample is an array of 'count'
# values corresponding to a specific weather condition.
weather_groups = [yulu_df['count'][yulu_df['weather'] == weather] for weather in unique_weather_conditions]

# Perform the Kruskal-Wallis H-test. The * operator unpacks the list of groups
# into separate arguments for the function.
statistic, p_value = kruskal(*weather_groups)

# Define the significance level (alpha) as specified in the guidelines.
alpha = 0.05

# Based on the p-value, determine the hypothesis conclusion and the comment
# as per the format requirements in 'data/tips.md'.
if p_value < alpha:

hypothesis_conclusion = "Strong Evidence to Reject Null Hypothesis"
comment_on_results = "Different distributions"

else:
hypothesis_conclusion = "No Evidence to Reject Null Hypothesis"
comment_on_results = "No evidence of different distributions"

# Create a dictionary containing the results in the required format.
results_data = {

'Test Type': ["Non Parametric"],
'Kruskal Statistic': [statistic],
'P-Value': [p_value],
'Hypothesis': [hypothesis_conclusion],
'Comment': [comment_on_results]

}

# Create a new pandas DataFrame from the results dictionary.
weather_results_df = pd.DataFrame(results_data)

# Define the output directory and file path.
output_dir = 'final'
output_file_path = os.path.join(output_dir, 'weather.csv')

# Ensure the output directory exists.
os.makedirs(output_dir, exist_ok=True)

# Save the resulting DataFrame to the specified CSV file,
# ensuring the index is not written to the file.
weather_results_df.to_csv(output_file_path, index=False)

# print(f"Analysis complete. Results saved to {output_file_path}")
# print(weather_results_df.to_string())

Listing 6: Solution code.
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Table 7: Generated output by DS-STAR in csv format.
Test Type Kruskal Statistic P-Value Hypothesis Comment

Non Parametric 205.00216514479087 3.501611300708679e-44 Strong Evidence to Reject Null Hypothesis Different distributions

E.2 DATA INSIGHT

f'''Could you please analyze the matches between Argentina and Brazil?
Record the total number of matches, the number of wins for each
team, and the number of draws. Indicate if Brazil has won more
matches ("Yes" or "No"). Present your findings in the following
format:

↪→
↪→
↪→
↪→

"""
{

"Total Matches between Argentina and Brazil": [...],
"Arg Wins": [...],
"Brazil Wins": [...],
"Draws": [...],
"Result": [...]

}
"""'''

Listing 7: User’s question.

import pandas as pd
import numpy as np
import json
import os

# Ensure the 'final' directory exists for the output file
output_dir = 'final'
os.makedirs(output_dir, exist_ok=True)

# Load the results.csv file into a pandas DataFrame
results_df = pd.read_csv('data/results.csv')

# Filter for matches where the home team is Argentina and the away team is Brazil
arg_vs_bra = results_df[

(results_df['home_team'] == 'Argentina') & (results_df['away_team'] == 'Brazil')
]

# Filter for matches where the home team is Brazil and the away team is Argentina
bra_vs_arg = results_df[

(results_df['home_team'] == 'Brazil') & (results_df['away_team'] == 'Argentina')
]

# Concatenate the two DataFrames to get all matches between Argentina and Brazil
argentina_brazil_matches = pd.concat([arg_vs_bra, bra_vs_arg])

# Sort the combined DataFrame by date for a chronological view
argentina_brazil_matches = argentina_brazil_matches.sort_values(by='date').copy()

# Define the conditions for determining the winner based on scores
# A draw in regular/extra time is considered a draw, regardless of a penalty shootout outcome.
conditions = [

argentina_brazil_matches['home_score'] > argentina_brazil_matches['away_score'],
argentina_brazil_matches['away_score'] > argentina_brazil_matches['home_score']

]

# Define the corresponding outcomes (the winning team's name)
choices = [

argentina_brazil_matches['home_team'],
argentina_brazil_matches['away_team']

]

# Create the 'winner' column using np.select, with 'Draw' as the default
argentina_brazil_matches['winner'] = np.select(conditions, choices, default='Draw')

# Count the total wins for each team and the number of draws
win_counts = argentina_brazil_matches['winner'].value_counts()

# Calculate the total number of matches, wins for each team, and draws from the win_counts Series
total_matches = int(win_counts.sum())
argentina_wins = int(win_counts.get('Argentina', 0))
brazil_wins = int(win_counts.get('Brazil', 0))
draws = int(win_counts.get('Draw', 0))

# Determine the 'Result' value. 'Yes' if Brazil has more wins, otherwise 'No'.
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result_value = 'Yes' if brazil_wins > argentina_wins else 'No'

# Construct the dictionary to store the analysis results with the specified keys
analysis_results = {

"Total Matches between Argentina and Brazil": total_matches,
"Arg Wins": argentina_wins,
"Brazil Wins": brazil_wins,
"Draws": draws,
"Result": result_value

}

# Define the output file path
output_path = os.path.join(output_dir, 'result.json')

# Save the final results dictionary to a JSON file in the 'final' directory
with open(output_path, 'w') as f:

json.dump(analysis_results, f, indent=4)

Listing 8: Solution code.

f'''{
"Total Matches between Argentina and Brazil": [109],
"Arg Wins": [40],
"Brazil Wins": [43],
"Draws": [26],
"Result": ["Yes"]

}'''

Listing 9: Generated output by DS-STAR, in json format.

E.3 DATA MANIPULATION

f'''Calculate the total quantity sold and total sales revenue for each
bike category from 2016 to 2018. Ensure that total sales revenue
accounts for any discounts applied to each order. Write the results
into result.csv, following the exact structure and formatting of
sample_result.csv.'''

↪→
↪→
↪→
↪→

Listing 10: User’s question.

import pandas as pd
import os

# Ensure the output directory exists
os.makedirs('final', exist_ok=True)

# Load the required data files into pandas DataFrames
order_items_df = pd.read_csv('data/order_items.csv')
products_df = pd.read_csv('data/products.csv')
categories_df = pd.read_csv('data/categories.csv')
sample_result_df = pd.read_csv('data/sample_result.csv')

# Calculate the sales revenue for each item, accounting for discounts.
# sales_revenue = quantity * list_price * (1 - discount)
order_items_df['sales_revenue'] = order_items_df['quantity'] * order_items_df['list_price'] * (1 -

order_items_df['discount'])↪→

# Merge the order items with product information to get model_year and category_id
merged_df = pd.merge(order_items_df, products_df, on='product_id')

# Merge with category information to get category_name
merged_df = pd.merge(merged_df, categories_df, on='category_id')

# Filter the DataFrame to include only products with model years from 2016 to 2018
filtered_df = merged_df[(merged_df['model_year'] >= 2016) & (merged_df['model_year'] <= 2018)]

# Group the filtered data by 'category_name' and aggregate the total quantity and total sales revenue.
category_summary = filtered_df.groupby('category_name').agg(

total_quantity=('quantity', 'sum'),
total_price=('sales_revenue', 'sum')

).reset_index()

# Use the sample_result.csv to define the structure and order of the final output.
# Perform a left merge to ensure all categories from the sample are present in the final result, in the

correct order.↪→
final_df = pd.merge(sample_result_df[['category_name']], category_summary, on='category_name', how='left')

# Fill any potential NaN values with 0 for categories that had no sales in the filtered period.
final_df[['total_quantity', 'total_price']] = final_df[['total_quantity', 'total_price']].fillna(0)
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# Ensure the column order matches the sample_result.csv file: ['total_quantity', 'total_price',
'category_name']↪→

final_df = final_df[['total_quantity', 'total_price', 'category_name']]

# Convert the 'total_quantity' column to integer type as it represents a count of items.
final_df['total_quantity'] = final_df['total_quantity'].astype(int)

# Define the output path
output_path = 'final/result.csv'

# Save the final DataFrame to the specified path, without the index.
final_df.to_csv(output_path, index=False)

print(f"Successfully generated '{output_path}'")
print("Content of the generated file:")
print(final_df)

Listing 11: Solution code.

Table 8: Generated output by DS-STAR in csv format.

total_quantity total_price category_name

1755 2715079.53 Mountain Bikes
559 1665098.49 Road Bikes

2063 995032.62 Cruisers Bicycles
315 916684.78 Electric Bikes
394 711011.84 Cyclocross Bicycles
813 394020.10 Comfort Bicycles

1179 292189.20 Children Bicycles

E.4 DATA WRANGLING

f'''Manage missing data in the NYC_Open_Data_Parking_Violations dataset
by either dropping or replacing it. Drop rows if necessary, and drop
columns only if most entries are empty. Replace missing values with
the mean, mode, or other appropriate methods. Save the cleaned data
to 'cleaned_data.csv'.'''

↪→
↪→
↪→
↪→

Listing 12: User’s question.

import pandas as pd
import numpy as np
import os

# The user prompt mentions cleaning the 'NYC_Open_Data_Parking_Violations' dataset,
# however, the provided data file is 'data/data.csv', which contains automobile data.
# This script will proceed with cleaning the provided 'data/data.csv' file based on the
# general data cleaning guidelines in the prompt.

# Define file paths
input_file = 'data/data.csv'
output_dir = 'final'
output_file = os.path.join(output_dir, 'cleaned_data.csv')

# Create the output directory if it does not exist
if not os.path.exists(output_dir):

os.makedirs(output_dir)

# Load the data, interpreting '?' as Not a Number (NaN)
df = pd.read_csv(input_file, na_values='?')

# --- Data Cleaning Steps ---

# Guideline: "Drop rows if necessary"
# The 'price' column is crucial for most analyses. Rows with a missing price are dropped.
df.dropna(subset=['price'], inplace=True)

# Guideline: "Replace missing values with the mean, mode, or other appropriate methods"

# Identify columns for mean and mode imputation
# Numerical columns with missing values to be imputed with the mean
numeric_cols_to_impute_mean = ['normalized-losses', 'bore', 'stroke', 'horsepower', 'peak-rpm']

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

# Categorical columns with missing values to be imputed with the mode
categorical_cols_to_impute_mode = ['num-of-doors']

# Impute numerical columns with the mean
for col in numeric_cols_to_impute_mean:

# Convert column to numeric type. This is necessary because the '?'
# values caused pandas to read them as 'object' type.
df[col] = pd.to_numeric(df[col])
# Calculate the mean of the column (NaNs are automatically excluded)
mean_val = df[col].mean()
# Fill the missing (NaN) values with the calculated mean
df[col].fillna(mean_val, inplace=True)

# Impute categorical columns with the mode
for col in categorical_cols_to_impute_mode:

# Calculate the mode (most frequent value) of the column.
# .mode() returns a Series, so we take the first element.
mode_val = df[col].mode()[0]
# Fill the missing (NaN) values with the calculated mode
df[col].fillna(mode_val, inplace=True)

# Guideline: After handling missing values, ensure data types are correct.
# The 'price' column was loaded as 'object' and needs to be converted to a numeric type.
df['price'] = df['price'].astype(float)

# --- Save the Cleaned Data ---

# Save the final cleaned DataFrame to 'final/cleaned_data.csv'
# The index is not saved as it's not part of the original data.
df.to_csv(output_file, index=False)

# --- Verification ---
# This part confirms that the cleaning was successful and the file was created.
print(f"Successfully cleaned the dataset and saved it to '{output_file}'")

# Load the cleaned data to verify its integrity
cleaned_df = pd.read_csv(output_file)

print("\n--- Verification of Cleaned Data ---")
print(f"Shape of the cleaned data: {cleaned_df.shape}")

# Check for any remaining missing values
missing_values_summary = cleaned_df.isnull().sum()
total_missing = missing_values_summary.sum()

print("\nMissing values per column in the cleaned file:")
print(missing_values_summary)
print(f"\nTotal remaining missing values: {total_missing}")

if total_missing == 0:
print("\nVerification successful: The cleaned dataset has no missing values.")

else:
print("\nVerification failed: The cleaned dataset still contains missing values.")

Listing 13: Solution code.

Table 9: Generated output by DS-STAR in csv format.
symboling normalized-losses make fuel-type aspiration num-of-doors body-style drive-wheels engine-location wheel-base length width height curb-weight engine-type num-of-cylinders engine-size fuel-system bore stroke compression-ratio horsepower peak-rpm city-mpg highway-mpg price

3 122.0 alfa-romero gas std two convertible rwd front 88.6 168.8 64.1 48.8 2548 dohc four 130 mpfi 3.47 2.68 9.0 111 5000 21 27 13495
3 122.0 alfa-romero gas std two convertible rwd front 88.6 168.8 64.1 48.8 2548 dohc four 130 mpfi 3.47 2.68 9.0 111 5000 21 27 16500
1 122.0 alfa-romero gas std two hatchback rwd front 94.5 171.2 65.5 52.4 2823 ohcv six 152 mpfi 2.68 3.47 9.0 154 5000 19 26 16500
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

E.5 MACHINE LEARNING

f'''As a contestant in the Bank customer data churn prediction
competition, you need to predict the data in test.csv according to
the competition requirements. Write the results into submission.csv
following the format specified in sample_submission.csv.'''

↪→
↪→
↪→

Listing 14: User’s question.

import pandas as pd
import numpy as np
from sklearn.model_selection import StratifiedKFold
import lightgbm as lgb
from sklearn.metrics import roc_auc_score
import optuna
import os

# Create the 'final' directory if it doesn't already exist to store the output.
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os.makedirs('final', exist_ok=True)

# Suppress Optuna's logging to keep the output clean during the study.
optuna.logging.set_verbosity(optuna.logging.WARNING)

# 1. Load All Data
# Load data from the 'data/' directory.
original_train_df = pd.read_csv('data/train.csv')
test_df = pd.read_csv('data/test.csv')
additional_data_df = pd.read_csv('data/Churn_Modelling.csv')

# The provided test.csv uses 'CustomerId' as the unique identifier.
# We will use 'CustomerId' for the submission file's 'id' column as required by the competition format.
test_ids = test_df['CustomerId']

# 2. Preprocess Data: Augment and Clean
# Select a consistent set of feature columns and the target variable ('Exited') to ensure uniformity across

datasets.↪→
feature_cols = ['CreditScore', 'Geography', 'Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts',

'HasCrCard', 'IsActiveMember', 'EstimatedSalary', 'Exited']↪→

# Augment the training data by combining the original training set with the additional 'Churn_Modelling.csv'
dataset.↪→

train_df = pd.concat([original_train_df[feature_cols], additional_data_df[feature_cols]], ignore_index=True)

# --- START: Feature Engineering ---
def feature_engineer(df):

"""Creates new features based on domain knowledge and interactions between existing features."""
# A small epsilon is added to denominators to prevent division by zero errors.
epsilon = 1e-6
df['BalanceSalaryRatio'] = df['Balance'] / (df['EstimatedSalary'] + epsilon)
df['TenureByAge'] = df['Tenure'] / (df['Age'] + epsilon)
df['CreditScoreGivenAge'] = df['CreditScore'] / (df['Age'] + epsilon)
df['Loyalty'] = df['Tenure'] * df['IsActiveMember']
df['ProductsPerTenure'] = df['NumOfProducts'] / (df['Tenure'] + epsilon)
return df

print("Applying feature engineering to training and test data...")
train_df = feature_engineer(train_df)
test_df = feature_engineer(test_df)
# --- END: Feature Engineering ---

# Drop identifier columns ('CustomerId', 'Surname', 'id') that are not useful for the model.
# 'errors='ignore'' handles cases where a column might not exist in a dataframe.
drop_cols = ['CustomerId', 'Surname', 'id']
train_df = train_df.drop(columns=[col for col in drop_cols if col in train_df.columns and col != 'Exited'],

errors='ignore')↪→
test_df = test_df.drop(columns=[col for col in drop_cols if col in test_df.columns], errors='ignore')

# One-Hot Encode categorical features ('Geography', 'Gender') to convert them into a machine-readable
format.↪→

categorical_features = ['Geography', 'Gender']
train_df = pd.get_dummies(train_df, columns=categorical_features, drop_first=True)
test_df = pd.get_dummies(test_df, columns=categorical_features, drop_first=True)

# Separate the target variable ('Exited') from the training features.
train_labels = train_df['Exited']
train_df = train_df.drop(columns=['Exited'])

# Align the training and test dataframes to ensure they have the exact same feature columns in the same
order.↪→

# 'inner' join keeps only columns that are present in both dataframes.
train_df, test_df = train_df.align(test_df, join='inner', axis=1)

# Define the final feature set (X) and target (y).
X = train_df
y = train_labels

# 3. Define the Objective Function for Optuna Hyperparameter Tuning
def objective(trial):

"""Defines the hyperparameter search space and evaluation metric for Optuna to optimize."""
# Define the hyperparameter search space for the LightGBM model.
params = {

'objective': 'binary',
'metric': 'auc',
'boosting_type': 'gbdt',
'n_estimators': trial.suggest_int('n_estimators', 2000, 10000),
'learning_rate': trial.suggest_float('learning_rate', 0.01, 0.05),
'num_leaves': trial.suggest_int('num_leaves', 20, 100),
'max_depth': trial.suggest_int('max_depth', 5, 10),
'seed': 42,
'n_jobs': -1,
'verbose': -1,
'colsample_bytree': trial.suggest_float('colsample_bytree', 0.5, 0.9),
'subsample': trial.suggest_float('subsample', 0.5, 0.9),
'reg_alpha': trial.suggest_float('reg_alpha', 0.01, 0.5),
'reg_lambda': trial.suggest_float('reg_lambda', 0.01, 0.5),

}
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N_SPLITS = 5
skf = StratifiedKFold(n_splits=N_SPLITS, shuffle=True, random_state=42)
oof_auc_scores = []

# Perform cross-validation to get a robust estimate of the model's performance for a given set of
hyperparameters.↪→

for fold, (train_idx, val_idx) in enumerate(skf.split(X, y)):
X_train, y_train = X.iloc[train_idx], y.iloc[train_idx]
X_val, y_val = X.iloc[val_idx], y.iloc[val_idx]

model = lgb.LGBMClassifier(**params)
model.fit(X_train, y_train,

eval_set=[(X_val, y_val)],
eval_metric='auc',
callbacks=[lgb.early_stopping(100, verbose=False)])

val_preds = model.predict_proba(X_val)[:, 1]
auc = roc_auc_score(y_val, val_preds)
oof_auc_scores.append(auc)

# Return the mean AUC score, which Optuna will try to maximize.
return np.mean(oof_auc_scores)

# 4. Run the Optimization Study
print("Running hyperparameter optimization...")
study = optuna.create_study(direction='maximize')
# The number of trials can be adjusted; 50 provides a reasonable balance between search time and

performance.↪→
study.optimize(objective, n_trials=50)
best_params = study.best_params
print(f"\nBest trial parameters: {best_params}")
print(f"Best trial mean OOF AUC: {study.best_value}")

# 5. Train Final Model with Best Parameters and Create Submission
print("\nTraining final model with tuned parameters...")
N_SPLITS = 5
skf = StratifiedKFold(n_splits=N_SPLITS, shuffle=True, random_state=42)
test_preds = np.zeros(len(test_df))
oof_auc_scores = []

# Combine the best parameters found by Optuna with fixed model settings.
final_params = {

'objective': 'binary', 'metric': 'auc', 'boosting_type': 'gbdt',
'seed': 42, 'n_jobs': -1, 'verbose': -1, **best_params

}

for fold, (train_idx, val_idx) in enumerate(skf.split(X, y)):
print(f"===== Fold {fold+1} =====")
X_train, y_train = X.iloc[train_idx], y.iloc[train_idx]
X_val, y_val = X.iloc[val_idx], y.iloc[val_idx]

model = lgb.LGBMClassifier(**final_params)
model.fit(X_train, y_train,

eval_set=[(X_val, y_val)],
eval_metric='auc',
callbacks=[lgb.early_stopping(100, verbose=False)])

val_preds = model.predict_proba(X_val)[:, 1]
auc = roc_auc_score(y_val, val_preds)
oof_auc_scores.append(auc)
print(f"Fold {fold+1} AUC: {auc}")

# Accumulate predictions on the test set, averaging over the folds to improve robustness.
test_preds += model.predict_proba(test_df)[:, 1] / N_SPLITS

# Print the final average validation score from the cross-validation.
print(f"\nAverage OOF AUC with tuned parameters: {np.mean(oof_auc_scores)}")

# Create the submission DataFrame using the averaged test predictions.
submission_df = pd.DataFrame({'id': test_ids, 'Exited': test_preds})

# Save the DataFrame to a CSV file in the 'final' directory for submission.
submission_df.to_csv('final/submission.csv', index=False)

print("\nSubmission file created successfully at 'final/submission.csv'.")
print("First 5 rows of the submission file:")
print(submission_df.head())

Listing 15: Solution code and machine learning model.
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E.6 VISUALIZATION

f'''Draw a stacked bar chart that displays the percentage of restaurants
offering online ordering options versus those not offering online
ordering options across different rating levels. Save this chart as
'result.jpg'. The title of the image should be "Percentage of
Restaurants' Online Order Option by Rating", with the xlabel as
"Rating", and the ylabel as "Percentage of Online Orders".'''

↪→
↪→
↪→
↪→
↪→

Listing 16: User’s question.

import pandas as pd
import sqlite3
import zipfile
import os
import numpy as np
import matplotlib.pyplot as plt

def generate_chart():
"""
Loads data from the Zomato SQLite database, cleans the 'rate' column,
calculates the percentage of restaurants offering online ordering for each rating,
and generates a stacked bar chart of the results, saving it to the 'final' directory.
"""
# Define file paths
zip_path = 'data/zomato_rawdata.sqlite.zip'
db_name = 'zomato_rawdata.sqlite'
extract_path = '.' # Extract to the current directory
output_dir = 'final'
output_path = os.path.join(output_dir, 'result.jpg')

# --- Step 1: Create output directory if it doesn't exist ---
if not os.path.exists(output_dir):

os.makedirs(output_dir)

# --- Step 2: Extract the database from the zip file ---
db_path = os.path.join(extract_path, db_name)
with zipfile.ZipFile(zip_path, 'r') as zip_ref:

# Extract the database file, ensuring the correct member is chosen
for member in zip_ref.infolist():

if db_name in member.filename:
# To handle cases where the zip file has directory structures
member.filename = os.path.basename(member.filename)
zip_ref.extract(member, path=extract_path)
break

# --- Step 3: Load data from the SQLite database ---
conn = None
try:

conn = sqlite3.connect(db_path)
# Select only the columns needed for this analysis
query = "SELECT rate, online_order FROM Users"
df = pd.read_sql_query(query, conn)

finally:
if conn:

conn.close()

# --- Step 4: Clean the 'rate' column ---
# Make a copy to avoid SettingWithCopyWarning
df = df.copy()

# Replace special non-numeric strings 'NEW' and '-' with numpy.nan
df['rate'] = df['rate'].replace(['NEW', '-'], np.nan)

# Remove the '/5' suffix from the rating strings
df['rate'] = df['rate'].str.replace('/5', '').str.strip()

# Convert the cleaned column to a numeric (float) type
df['rate'] = pd.to_numeric(df['rate'], errors='coerce')

# Drop rows where 'rate' or 'online_order' is NaN as they are not useful for this analysis
df.dropna(subset=['rate', 'online_order'], inplace=True)

# --- Step 5: Aggregate the data for plotting ---
# Create a cross-tabulation to get counts of 'Yes' and 'No' for each rating
online_order_counts = pd.crosstab(df['rate'], df['online_order'])

# Calculate the percentage by dividing each row by its sum
rate_online_percentage_df = online_order_counts.div(online_order_counts.sum(axis=1), axis=0) * 100

# --- Step 6: Generate and save the stacked bar chart ---
# Create the plot figure and axes
fig, ax = plt.subplots(figsize=(14, 8))

# Generate the stacked bar chart
rate_online_percentage_df.plot(kind='bar', stacked=True, ax=ax)
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# Set the title and labels as required
ax.set_title("Percentage of Restaurants' Online Order Option by Rating", fontsize=16)
ax.set_xlabel("Rating", fontsize=12)
ax.set_ylabel("Percentage of Online Orders", fontsize=12)

# Improve aesthetics and readability
ax.tick_params(axis='x', rotation=90)
ax.legend(title='Online Order')
ax.grid(axis='y', linestyle='--', alpha=0.7)

# Adjust layout to prevent labels from being cut off
plt.tight_layout()

# Save the resulting chart to the final directory
plt.savefig(output_path)

# Close the plot to free up memory
plt.close(fig)

print(f"Chart has been generated and saved as '{output_path}'.")

# --- Step 7: Clean up the extracted file ---
if os.path.exists(db_path):

os.remove(db_path)

# Execute the function to generate the chart
generate_chart()

Listing 17: Solution code.

Figure 5: Generated bar chart.
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F FULL EXECUTION LOGS OF DS-STAR
In this section, we provide full logs of DS-STAR to better understand its behavior.

f'''In February 2023 what delta would Rafa_AI pay if the relative fee of
the fee with ID=17 changed to 99?'''↪→

Listing 18: User’s question.

# Step 1
f'''First, I will filter the `payments.csv` data to select only the

transactions for the merchant 'Rafa_AI' that occurred in February
2023. Since 2023 is not a leap year, February corresponds to the
days of the year from 32 to 59.'''

↪→
↪→
↪→

Listing 19: Round 0: Initial plan.

import pandas as pd

# Load the payments data
try:

payments_df = pd.read_csv('data/payments.csv')
except FileNotFoundError:

print("Error: 'data/payments.csv' not found. Please ensure the file is in the correct directory.")
exit()

# Define the filter for the merchant 'Rafa_AI'
merchant_filter = payments_df['merchant'] == 'Rafa_AI'

# Define the filter for February 2023.
# 2023 is not a leap year. January has 31 days.
# February runs from day 32 (31+1) to day 59 (31+28).
date_filter = (payments_df['day_of_year'] >= 32) & (payments_df['day_of_year'] <= 59)

# Apply both filters to the DataFrame
rafa_ai_feb_transactions = payments_df[merchant_filter & date_filter]

# Display the resulting filtered DataFrame
print(rafa_ai_feb_transactions)

Listing 20: Round 0: Initial implementation.

f'''Insufficient'''

Listing 21: Round 0: Validation.

f'''Add Step'''

Listing 22: Round 0: Routing. Add Step 2 to the initial plan.
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# Step 1
f'''First, I will filter the `payments.csv` data to select only the

transactions for the merchant 'Rafa_AI' that occurred in February
2023. Since 2023 is not a leap year, February corresponds to the
days of the year from 32 to 59.'''

↪→
↪→
↪→

# Step 2
f'''I will calculate the original total fee paid by Rafa_AI in February

2023. This involves loading the `merchant_data.json` and `fees.json`
files, enriching the transaction data with all attributes required
for fee matching (including merchant details, monthly volume,
monthly fraud rate, and intracountry status), then applying the
corresponding fee rule to each transaction and summing the
calculated fees..'''

↪→
↪→
↪→
↪→
↪→
↪→

Listing 23: Round 1: Plan.

import pandas as pd
import json

# --- 1. Load All Necessary Data ---
try:

payments_df = pd.read_csv('data/payments.csv')
merchant_data_df = pd.read_json('data/merchant_data.json')
fees_df = pd.read_json('data/fees.json')
acquirer_countries_df = pd.read_csv('data/acquirer_countries.csv')

except FileNotFoundError as e:
print(f"Error loading data: {e}. Please ensure all data files are in the 'data/' directory.")
exit()

# --- 2. Filter Transactions (Based on Previous Plan) ---
# Define the filter for the merchant 'Rafa_AI'
merchant_filter = payments_df['merchant'] == 'Rafa_AI'

# Define the filter for February 2023.
# 2023 is not a leap year. January has 31 days.
# February runs from day 32 (31+1) to day 59 (31+28).
date_filter = (payments_df['day_of_year'] >= 32) & (payments_df['day_of_year'] <= 59)

# Apply both filters to the DataFrame and create a copy to avoid warnings
rafa_ai_feb_transactions = payments_df[merchant_filter & date_filter].copy()

# --- 3. Enrich Transaction Data with Merchant and Acquirer Information ---

# Get Rafa_AI's specific merchant data
rafa_ai_merchant_info = merchant_data_df[merchant_data_df['merchant'] == 'Rafa_AI'].iloc[0]

# Add merchant-specific attributes to the transaction DataFrame
rafa_ai_feb_transactions['account_type'] = rafa_ai_merchant_info['account_type']
rafa_ai_feb_transactions['capture_delay'] = str(rafa_ai_merchant_info['capture_delay']) # Ensure consistent

type↪→
rafa_ai_feb_transactions['merchant_category_code'] = rafa_ai_merchant_info['merchant_category_code']

# FIX: The original code failed on the next line.
# The error "ValueError: Length of values (1) does not match length of index (2126)"
# suggests that rafa_ai_merchant_info['acquirer'] is a list-like object with one element
# (e.g., ['gringotts']) instead of a scalar string. Assigning a list of length 1 to a
# column of a different length causes this error.
# The fix is to extract the scalar string from the list before assigning it.
acquirer_name = rafa_ai_merchant_info['acquirer']
if isinstance(acquirer_name, list):

# If it's a list, take the first element. If empty, it becomes None.
acquirer_name = acquirer_name[0] if acquirer_name else None

# Now assign the scalar acquirer name to the new column.
rafa_ai_feb_transactions['acquirer'] = acquirer_name

# Create a mapping from acquirer name to country code
acquirer_country_map = acquirer_countries_df.set_index('acquirer')['country_code']

# Add acquirer country to the transaction data
rafa_ai_feb_transactions['acquirer_country'] =

rafa_ai_feb_transactions['acquirer'].map(acquirer_country_map)↪→

# Determine if each transaction is intracountry
rafa_ai_feb_transactions['intracountry'] = rafa_ai_feb_transactions['issuing_country'] ==

rafa_ai_feb_transactions['acquirer_country']↪→

# --- 4. Calculate Monthly Aggregates for Fee Matching ---

# Calculate total transaction volume for Rafa_AI in February
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monthly_volume = rafa_ai_feb_transactions['eur_amount'].sum()

# Calculate fraudulent transaction volume for the same period
fraudulent_volume =

rafa_ai_feb_transactions[rafa_ai_feb_transactions['has_fraudulent_dispute']]['eur_amount'].sum()↪→

# Calculate the monthly fraud rate as a percentage
# Avoid division by zero if there's no volume
monthly_fraud_rate = (fraudulent_volume / monthly_volume) if monthly_volume > 0 else 0
monthly_fraud_percentage = monthly_fraud_rate * 100

# Add these aggregates to each transaction row for easy lookup during fee matching
rafa_ai_feb_transactions['monthly_volume'] = monthly_volume
rafa_ai_feb_transactions['monthly_fraud_percentage'] = monthly_fraud_percentage

# --- 5. Implement Fee Matching Logic ---

def parse_numeric_value(s):
"""Helper to parse strings like '100k' or '1m' into numbers."""
s = s.strip().lower()
if 'k' in s:

return float(s.replace('k', '')) * 1_000
if 'm' in s:

return float(s.replace('m', '')) * 1_000_000
return float(s)

def check_volume_rule(rule_str, value):
"""Checks if a value fits a volume rule string (e.g., '100k-1m')."""
if pd.isnull(rule_str): return True
rule_str = rule_str.replace(' ', '')
if '-' in rule_str:

low_str, high_str = rule_str.split('-')
return parse_numeric_value(low_str) <= value < parse_numeric_value(high_str)

if '>' in rule_str:
return value >= parse_numeric_value(rule_str.replace('>', ''))

if '<' in rule_str:
return value < parse_numeric_value(rule_str.replace('<', ''))

return False

def check_fraud_rule(rule_str, value):
"""Checks if a value fits a fraud rule string (e.g., '7.7%-8.3%')."""
if pd.isnull(rule_str): return True
rule_str = rule_str.replace('%', '')
if '-' in rule_str:

low_str, high_str = rule_str.split('-')
return float(low_str) <= value < float(high_str)

if '>' in rule_str:
return value >= float(rule_str.replace('>', ''))

if '<' in rule_str:
return value < float(rule_str.replace('<', ''))

return False

def find_matching_fee_rule(transaction, all_rules_df):
"""Iterates through fee rules to find the first one that matches the transaction."""
for _, rule in all_rules_df.iterrows():

# A rule with an empty list for a category applies to all values in that category
if rule['card_scheme'] != transaction['card_scheme']: continue
if rule['account_type'] and transaction['account_type'] not in rule['account_type']: continue
if rule['merchant_category_code'] and transaction['merchant_category_code'] not in

rule['merchant_category_code']: continue↪→
if rule['aci'] and transaction['aci'] not in rule['aci']: continue

# A rule with a null value for a category applies to all values
if pd.notnull(rule['is_credit']) and rule['is_credit'] != transaction['is_credit']: continue
if pd.notnull(rule['intracountry']) and rule['intracountry'] != transaction['intracountry']:

continue↪→
if pd.notnull(rule['capture_delay']) and rule['capture_delay'] != transaction['capture_delay']:

continue↪→

# Check complex range-based rules
if not check_volume_rule(rule['monthly_volume'], transaction['monthly_volume']): continue
if not check_fraud_rule(rule['monthly_fraud_level'], transaction['monthly_fraud_percentage']):

continue↪→

# If all checks pass, this is the correct rule
return rule['fixed_amount'], rule['rate']

# Return default/zero fees if no rule is found (should not happen with complete data)
return 0, 0

# --- 6. Calculate Fees and Final Sum ---

# Apply the matching function to each transaction to get its specific fee parameters
fee_params = rafa_ai_feb_transactions.apply(

lambda row: find_matching_fee_rule(row, fees_df),
axis=1

)

# Assign the found fee parameters back to the DataFrame
rafa_ai_feb_transactions[['fixed_amount', 'rate']] = pd.DataFrame(

fee_params.tolist(),
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index=rafa_ai_feb_transactions.index
)

# Calculate the fee for each transaction using the formula from the manual
# fee = fixed_amount + rate * transaction_value / 10000
rafa_ai_feb_transactions['fee'] = rafa_ai_feb_transactions['fixed_amount'] + \

(rafa_ai_feb_transactions['rate'] * rafa_ai_feb_transactions['eur_amount'] /
10000)↪→

# Calculate the total fee by summing up the fees for all transactions
total_original_fee = rafa_ai_feb_transactions['fee'].sum()

# Display the final result
print(f"The original total fee paid by Rafa_AI in February 2023 was: {total_original_fee:.2f} EUR")

Listing 24: Round 1: Implementation.

f'''Insufficient'''

Listing 25: Round 1: Validation.

f'''Add Step'''

Listing 26: Round 1: Routing. Add Step 3 to the current plan.

# Step 1
f'''First, I will filter the `payments.csv` data to select only the

transactions for the merchant 'Rafa_AI' that occurred in February
2023. Since 2023 is not a leap year, February corresponds to the
days of the year from 32 to 59.'''

↪→
↪→
↪→

# Step 2
f'''I will calculate the original total fee paid by Rafa_AI in February

2023. This involves loading the `merchant_data.json` and `fees.json`
files, enriching the transaction data with all attributes required
for fee matching (including merchant details, monthly volume,
monthly fraud rate, and intracountry status), then applying the
corresponding fee rule to each transaction and summing the
calculated fees..'''

↪→
↪→
↪→
↪→
↪→
↪→

# Step 3
f'''I will calculate the new total fee for Rafa_AI's February 2023

transactions using the modified fee structure where the fee rule
with ID=17 has its `rate` changed to 99. Then, I will subtract the
original total fee (778.52 EUR) from this new total fee to find the
requested delta.'''

↪→
↪→
↪→
↪→

Listing 27: Round 2: Plan.

import pandas as pd
import json

# --- 1. Load All Necessary Data ---
try:

payments_df = pd.read_csv('data/payments.csv')
merchant_data_df = pd.read_json('data/merchant_data.json')
fees_df = pd.read_json('data/fees.json')
acquirer_countries_df = pd.read_csv('data/acquirer_countries.csv')

except FileNotFoundError as e:
print(f"Error loading data: {e}. Please ensure all data files are in the 'data/' directory.")
exit()

# --- 2. Filter Transactions (Based on Previous Plan) ---
# Define the filter for the merchant 'Rafa_AI'
merchant_filter = payments_df['merchant'] == 'Rafa_AI'

# Define the filter for February 2023.
# 2023 is not a leap year. January has 31 days.
# February runs from day 32 (31+1) to day 59 (31+28).
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date_filter = (payments_df['day_of_year'] >= 32) & (payments_df['day_of_year'] <= 59)

# Apply both filters to the DataFrame and create a copy to avoid warnings
rafa_ai_feb_transactions = payments_df[merchant_filter & date_filter].copy()

# --- 3. Enrich Transaction Data with Merchant and Acquirer Information ---

# Get Rafa_AI's specific merchant data
rafa_ai_merchant_info = merchant_data_df[merchant_data_df['merchant'] == 'Rafa_AI'].iloc[0]

# Add merchant-specific attributes to the transaction DataFrame
rafa_ai_feb_transactions['account_type'] = rafa_ai_merchant_info['account_type']
rafa_ai_feb_transactions['capture_delay'] = str(rafa_ai_merchant_info['capture_delay']) # Ensure consistent

type↪→
rafa_ai_feb_transactions['merchant_category_code'] = rafa_ai_merchant_info['merchant_category_code']

# FIX: The original code failed on the next line.
# The error "ValueError: Length of values (1) does not match length of index (2126)"
# suggests that rafa_ai_merchant_info['acquirer'] is a list-like object with one element
# (e.g., ['gringotts']) instead of a scalar string. Assigning a list of length 1 to a
# column of a different length causes this error.
# The fix is to extract the scalar string from the list before assigning it.
acquirer_name = rafa_ai_merchant_info['acquirer']
if isinstance(acquirer_name, list):

# If it's a list, take the first element. If empty, it becomes None.
acquirer_name = acquirer_name[0] if acquirer_name else None

# Now assign the scalar acquirer name to the new column.
rafa_ai_feb_transactions['acquirer'] = acquirer_name

# Create a mapping from acquirer name to country code
acquirer_country_map = acquirer_countries_df.set_index('acquirer')['country_code']

# Add acquirer country to the transaction data
rafa_ai_feb_transactions['acquirer_country'] =

rafa_ai_feb_transactions['acquirer'].map(acquirer_country_map)↪→

# Determine if each transaction is intracountry
rafa_ai_feb_transactions['intracountry'] = rafa_ai_feb_transactions['issuing_country'] ==

rafa_ai_feb_transactions['acquirer_country']↪→

# --- 4. Calculate Monthly Aggregates for Fee Matching ---

# Calculate total transaction volume for Rafa_AI in February
monthly_volume = rafa_ai_feb_transactions['eur_amount'].sum()

# Calculate fraudulent transaction volume for the same period
fraudulent_volume =

rafa_ai_feb_transactions[rafa_ai_feb_transactions['has_fraudulent_dispute']]['eur_amount'].sum()↪→

# Calculate the monthly fraud rate as a percentage
# Avoid division by zero if there's no volume
monthly_fraud_rate = (fraudulent_volume / monthly_volume) if monthly_volume > 0 else 0
monthly_fraud_percentage = monthly_fraud_rate * 100

# Add these aggregates to each transaction row for easy lookup during fee matching
rafa_ai_feb_transactions['monthly_volume'] = monthly_volume
rafa_ai_feb_transactions['monthly_fraud_percentage'] = monthly_fraud_percentage

# --- 5. Implement Fee Matching Logic ---

def parse_numeric_value(s):
"""Helper to parse strings like '100k' or '1m' into numbers."""
s = s.strip().lower()
if 'k' in s:

return float(s.replace('k', '')) * 1_000
if 'm' in s:

return float(s.replace('m', '')) * 1_000_000
return float(s)

def check_volume_rule(rule_str, value):
"""Checks if a value fits a volume rule string (e.g., '100k-1m')."""
if pd.isnull(rule_str): return True
rule_str = rule_str.replace(' ', '')
if '-' in rule_str:

low_str, high_str = rule_str.split('-')
return parse_numeric_value(low_str) <= value < parse_numeric_value(high_str)

if '>' in rule_str:
return value >= parse_numeric_value(rule_str.replace('>', ''))

if '<' in rule_str:
return value < parse_numeric_value(rule_str.replace('<', ''))

return False

def check_fraud_rule(rule_str, value):
"""Checks if a value fits a fraud rule string (e.g., '7.7%-8.3%')."""
if pd.isnull(rule_str): return True
rule_str = rule_str.replace('%', '')
if '-' in rule_str:

low_str, high_str = rule_str.split('-')
return float(low_str) <= value < float(high_str)
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if '>' in rule_str:
return value >= float(rule_str.replace('>', ''))

if '<' in rule_str:
return value < float(rule_str.replace('<', ''))

return False

def find_matching_fee_rule(transaction, all_rules_df):
"""Iterates through fee rules to find the first one that matches the transaction."""
for _, rule in all_rules_df.iterrows():

# A rule with an empty list for a category applies to all values in that category
if rule['card_scheme'] != transaction['card_scheme']: continue
if rule['account_type'] and transaction['account_type'] not in rule['account_type']: continue
if rule['merchant_category_code'] and transaction['merchant_category_code'] not in

rule['merchant_category_code']: continue↪→
if rule['aci'] and transaction['aci'] not in rule['aci']: continue

# A rule with a null value for a category applies to all values
if pd.notnull(rule['is_credit']) and rule['is_credit'] != transaction['is_credit']: continue
if pd.notnull(rule['intracountry']) and rule['intracountry'] != transaction['intracountry']:

continue↪→
if pd.notnull(rule['capture_delay']) and rule['capture_delay'] != transaction['capture_delay']:

continue↪→

# Check complex range-based rules
if not check_volume_rule(rule['monthly_volume'], transaction['monthly_volume']): continue
if not check_fraud_rule(rule['monthly_fraud_level'], transaction['monthly_fraud_percentage']):

continue↪→

# If all checks pass, this is the correct rule
return rule['fixed_amount'], rule['rate']

# Return default/zero fees if no rule is found (should not happen with complete data)
return 0, 0

# --- 6. Calculate Fees and Final Sum ---

# Apply the matching function to each transaction to get its specific fee parameters
fee_params = rafa_ai_feb_transactions.apply(

lambda row: find_matching_fee_rule(row, fees_df),
axis=1

)

# Assign the found fee parameters back to the DataFrame
rafa_ai_feb_transactions[['fixed_amount', 'rate']] = pd.DataFrame(

fee_params.tolist(),
index=rafa_ai_feb_transactions.index

)

# Calculate the fee for each transaction using the formula from the manual
# fee = fixed_amount + rate * transaction_value / 10000
rafa_ai_feb_transactions['fee'] = rafa_ai_feb_transactions['fixed_amount'] + \

(rafa_ai_feb_transactions['rate'] * rafa_ai_feb_transactions['eur_amount'] /
10000)↪→

# Calculate the total fee by summing up the fees for all transactions
total_original_fee = rafa_ai_feb_transactions['fee'].sum()

# Display the final result from the previous step
print(f"The original total fee paid by Rafa_AI in February 2023 was: {total_original_fee:.2f} EUR")

# --- 7. Calculate New Fee with Modified Rule ---

# Create a copy of the fees dataframe to avoid altering the original
fees_df_modified = fees_df.copy()

# Implement the plan: change the rate for the rule with ID=17 to 99
fees_df_modified.loc[fees_df_modified['ID'] == 17, 'rate'] = 99

# Apply the matching function again, this time with the modified fee rules
new_fee_params = rafa_ai_feb_transactions.apply(

lambda row: find_matching_fee_rule(row, fees_df_modified),
axis=1

)

# Assign the new fee parameters to new columns in the DataFrame
rafa_ai_feb_transactions[['new_fixed_amount', 'new_rate']] = pd.DataFrame(

new_fee_params.tolist(),
index=rafa_ai_feb_transactions.index

)

# Calculate the new fee for each transaction using the new rate
rafa_ai_feb_transactions['new_fee'] = rafa_ai_feb_transactions['new_fixed_amount'] + \

(rafa_ai_feb_transactions['new_rate'] *
rafa_ai_feb_transactions['eur_amount'] / 10000)↪→

# Calculate the new total fee by summing up the individual new fees
new_total_fee = rafa_ai_feb_transactions['new_fee'].sum()

# Calculate the difference (delta) between the new total fee and the original total fee
fee_delta = new_total_fee - total_original_fee
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# --- 8. Display the Final Delta ---
print(f"The new total fee with the modified rule would be: {new_total_fee:.2f} EUR")
print(f"The requested delta (New Fee - Original Fee) is: {fee_delta:.2f} EUR")

Listing 28: Round 2: Implementation.

f'''Insufficient'''

Listing 29: Round 2: Validation.

f'''Step 3 is wrong'''

Listing 30: Round 2: Routing. Remove Step 3 from the current plan and add Step 3 again.

# Step 1
f'''First, I will filter the `payments.csv` data to select only the

transactions for the merchant 'Rafa_AI' that occurred in February
2023. Since 2023 is not a leap year, February corresponds to the
days of the year from 32 to 59.'''

↪→
↪→
↪→

# Step 2
f'''I will calculate the original total fee paid by Rafa_AI in February

2023. This involves loading the `merchant_data.json` and `fees.json`
files, enriching the transaction data with all attributes required
for fee matching (including merchant details, monthly volume,
monthly fraud rate, and intracountry status), then applying the
corresponding fee rule to each transaction and summing the
calculated fees..'''

↪→
↪→
↪→
↪→
↪→
↪→

# Step 3
f'''I will filter the transactions for 'Rafa_AI' in February 2023

(day_of_year from 32 to 59) that meet all the conditions of fee rule
ID=17: `card_scheme` must be 'SwiftCharge', `is_credit` must be
True, and `aci` must be 'A'. Then, for these matching transactions,
I will calculate the total fee difference using the formula: (99 -
60) * SUM(eur_amount) / 10000.'''

↪→
↪→
↪→
↪→
↪→

Listing 31: Round 3: Plan.

import pandas as pd
import json

# --- 1. Load All Necessary Data ---
# This part is based on the loading logic from the base code.
try:

payments_df = pd.read_csv('data/payments.csv')
merchant_data_df = pd.read_json('data/merchant_data.json')
fees_df = pd.read_json('data/fees.json')

except FileNotFoundError as e:
print(f"Error loading data: {e}. Please ensure all data files are in the 'data/' directory.")
exit()

# --- Implementation of the Current Plan ---
# I will filter the transactions for 'Rafa_AI' in February 2023 (day_of_year from 32 to 59)
# that meet all the conditions of fee rule ID=17: `card_scheme` must be 'SwiftCharge',
# `is_credit` must be True, and `aci` must be 'A'. Then, for these matching transactions,
# I will calculate the total fee difference using the formula:
# (99 - 60) * SUM(eur_amount) / 10000.

print("--- Calculating fee difference for 'Rafa_AI' in Feb 2023 under specific conditions ---")

# Step 1: Define the conditions for filtering based on the plan.
# February 2023 corresponds to day_of_year 32 to 59 (2023 is not a leap year).
feb_start_day = 32
feb_end_day = 59
merchant_name = 'Rafa_AI'
required_card_scheme = 'SwiftCharge'
required_is_credit = True
required_aci = 'A'
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# Step 2: Filter the payments DataFrame to find transactions matching all conditions.
matching_transactions = payments_df[

(payments_df['merchant'] == merchant_name) &
(payments_df['day_of_year'] >= feb_start_day) &
(payments_df['day_of_year'] <= feb_end_day) &
(payments_df['card_scheme'] == required_card_scheme) &
(payments_df['is_credit'] == required_is_credit) &
(payments_df['aci'] == required_aci)

]

print(f"\n[INFO] Found {len(matching_transactions)} transactions for '{merchant_name}' in February 2023
matching all specified conditions.")↪→

# Step 3: Calculate the total fee difference for these matching transactions.
if not matching_transactions.empty:

# Sum the 'eur_amount' for all matching transactions.
total_matching_volume = matching_transactions['eur_amount'].sum()
print(f"[INFO] Total volume of these transactions: {total_matching_volume:.2f} EUR")

# Apply the fee difference formula provided in the plan.
# Formula: (new_rate - old_rate) * SUM(eur_amount) / 10000
rate_difference = 99 - 60
total_fee_difference = (rate_difference * total_matching_volume) / 10000

# --- Final Conclusion ---
print("\n----------------------CONCLUSION----------------------")
print(f"The total fee difference for the matching transactions is: {total_fee_difference:.4f} EUR.")

else:
# --- Final Conclusion ---
print("\n----------------------CONCLUSION----------------------")
print("No transactions were found that match all the specified criteria.")
print("Therefore, the total fee difference is 0.00 EUR.")

Listing 32: Round 3: Implementation.

f'''Insufficient'''

Listing 33: Round 3: Validation.

f'''Step 3 is wrong'''

Listing 34: Round 3: Routing. Remove Step 3 from the current plan and add Step 3 again.

# Step 1
f'''First, I will filter the `payments.csv` data to select only the

transactions for the merchant 'Rafa_AI' that occurred in February
2023. Since 2023 is not a leap year, February corresponds to the
days of the year from 32 to 59.'''

↪→
↪→
↪→

# Step 2
f'''I will calculate the original total fee paid by Rafa_AI in February

2023. This involves loading the `merchant_data.json` and `fees.json`
files, enriching the transaction data with all attributes required
for fee matching (including merchant details, monthly volume,
monthly fraud rate, and intracountry status), then applying the
corresponding fee rule to each transaction and summing the
calculated fees..'''

↪→
↪→
↪→
↪→
↪→
↪→

# Step 3
f'''Calculate the fee delta by subtracting the original `rate` of fee ID

17 from the new `rate` of 99, multiplying the result by the total
volume of the affected transactions (686.48 EUR), and then dividing
by 10000.'''

↪→
↪→
↪→

Listing 35: Round 4: Plan.

import pandas as pd
import json
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# --- 1. Load All Necessary Data ---
# This part is based on the loading logic from the base code.
try:

payments_df = pd.read_csv('data/payments.csv')
merchant_data_df = pd.read_json('data/merchant_data.json')
fees_df = pd.read_json('data/fees.json')

except FileNotFoundError as e:
print(f"Error loading data: {e}. Please ensure all data files are in the 'data/' directory.")
exit()

# --- Implementation of the Current Plan ---
# Calculate the fee delta by subtracting the original `rate` of fee ID 17 from the new `rate` of 99,
# multiplying the result by the total volume of the affected transactions (686.48 EUR),
# and then dividing by 10000.

print("--- Calculating fee delta for affected 'Rafa_AI' transactions ---")

# Step 1: Define the constants given in the plan.
new_rate = 99
total_affected_volume = 686.48 # EUR
fee_divisor = 10000

# Step 2: Find the original rate for fee ID 17 from the fees_df DataFrame.
fee_rule_17 = fees_df[fees_df['ID'] == 17]

if fee_rule_17.empty:
print("\n[ERROR] Fee rule with ID 17 was not found in fees.json.")
original_rate = None # Set to None to prevent further calculation

else:
# Extract the 'rate' value from the filtered DataFrame.
# .iloc[0] selects the first row of the result.
original_rate = fee_rule_17['rate'].iloc[0]
print(f"\n[INFO] Original rate for fee ID 17 is: {original_rate}")
print(f"[INFO] New rate to be applied is: {new_rate}")
print(f"[INFO] Total volume of affected transactions is: {total_affected_volume:.2f} EUR")

# Step 3: Calculate the fee delta using the specified formula.
if original_rate is not None:

# Calculate the difference in rates.
rate_difference = new_rate - original_rate

# Apply the formula: (rate_difference * total_volume) / 10000
fee_delta = (rate_difference * total_affected_volume) / fee_divisor

# --- Final Conclusion ---
print("\n----------------------CONCLUSION----------------------")
print(f"The calculated fee delta, by changing the rate from {original_rate} to {new_rate} for the

affected volume, is: {fee_delta:.4f} EUR.")↪→

else:
# --- Final Conclusion ---
print("\n----------------------CONCLUSION----------------------")
print("Could not perform calculation because the original fee rate for ID 17 was not found.")

Listing 36: Round 4: Implementation.

f'''Insufficient'''

Listing 37: Round 4: Validation.

f'''Add Step'''

Listing 38: Round 4: Routing. Add Step 4 to the current plan.

# Step 1
f'''First, I will filter the `payments.csv` data to select only the

transactions for the merchant 'Rafa_AI' that occurred in February
2023. Since 2023 is not a leap year, February corresponds to the
days of the year from 32 to 59.'''

↪→
↪→
↪→

# Step 2
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f'''I will calculate the original total fee paid by Rafa_AI in February
2023. This involves loading the `merchant_data.json` and `fees.json`
files, enriching the transaction data with all attributes required
for fee matching (including merchant details, monthly volume,
monthly fraud rate, and intracountry status), then applying the
corresponding fee rule to each transaction and summing the
calculated fees..'''

↪→
↪→
↪→
↪→
↪→
↪→

# Step 3
f'''Calculate the fee delta by subtracting the original `rate` of fee ID

17 from the new `rate` of 99, multiplying the result by the total
volume of the affected transactions (686.48 EUR), and then dividing
by 10000.'''

↪→
↪→
↪→

# Step 4
f'''Calculate the total original fee for Rafa_AI's transactions in

February 2023 that are affected by fee ID=17, and then calculate the
new total fee for the same transactions using the modified rate of
99. The delta is the difference between these two amounts.'''

↪→
↪→
↪→

Listing 39: Round 5: Plan.

import pandas as pd
import json

# --- 1. Load All Necessary Data ---
# This part is based on the loading logic from the base code.
try:

payments_df = pd.read_csv('data/payments.csv')
merchant_data_df = pd.read_json('data/merchant_data.json')
fees_df = pd.read_json('data/fees.json')

except FileNotFoundError as e:
print(f"Error loading data: {e}. Please ensure all data files are in the 'data/' directory.")
exit()

# --- Implementation of the Current Plan ---
# Calculate the total original fee for Rafa_AI's transactions in February 2023
# that are affected by fee ID=17, and then calculate the new total fee for the same
# transactions using the modified rate of 99. The delta is the difference.

print("--- Identifying transactions for 'Rafa_AI' in February 2023 affected by fee rule ID 17 ---")

# Step 1: Filter payments for 'Rafa_AI' in February 2023.
# February corresponds to days of the year from 32 to 59 (since 2023 is not a leap year).
feb_transactions_df = payments_df[

(payments_df['merchant'] == 'Rafa_AI') &
(payments_df['day_of_year'] >= 32) &
(payments_df['day_of_year'] <= 59)

].copy()

# Step 2: Enrich transaction data with merchant-specific information.
# Get the specific data for 'Rafa_AI' from the merchant data file.
rafa_ai_data = merchant_data_df[merchant_data_df['merchant'] == 'Rafa_AI']

# Merge the February transactions with the merchant's data.
if not rafa_ai_data.empty and not feb_transactions_df.empty:

# Use a left merge to add merchant details (like mcc, account_type) to each transaction.
full_transaction_data = feb_transactions_df.merge(rafa_ai_data, on='merchant', how='left')

else:
print("\n[ERROR] No transactions found for 'Rafa_AI' in February or 'Rafa_AI' data not found.")
exit()

# Step 3: Retrieve the specific conditions for the fee rule with ID=17.
fee_rule_17 = fees_df[fees_df['ID'] == 17]

if fee_rule_17.empty:
print("\n[ERROR] Fee rule with ID 17 was not found in fees.json.")
exit()

else:
# Use .iloc[0] to get the rule as a Series
fee_rule_17 = fee_rule_17.iloc[0]

# Step 4: Filter the transactions that match all conditions of the fee rule.
# The manual states that a null or empty list in a rule field means it applies to all values.
mask = pd.Series(True, index=full_transaction_data.index)

# Match card_scheme (string)
if fee_rule_17['card_scheme']:

mask &= (full_transaction_data['card_scheme'] == fee_rule_17['card_scheme'])

# Match account_type (list)
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if fee_rule_17['account_type']: # An empty list evaluates to False, correctly skipping the filter
mask &= full_transaction_data['account_type'].isin(fee_rule_17['account_type'])

# Match merchant_category_code (list)
if fee_rule_17['merchant_category_code']:

mask &= full_transaction_data['merchant_category_code'].isin(fee_rule_17['merchant_category_code'])

# Match aci (list)
if fee_rule_17['aci']:

mask &= full_transaction_data['aci'].isin(fee_rule_17['aci'])

# Match is_credit (boolean, but can be null)
if fee_rule_17['is_credit'] is not None:

mask &= (full_transaction_data['is_credit'] == fee_rule_17['is_credit'])

# Apply the combined mask to get the affected transactions
affected_transactions_df = full_transaction_data[mask]

# Step 5: Calculate the original and new fees for the affected transactions.
if affected_transactions_df.empty:

print("\n[INFO] No transactions for 'Rafa_AI' in February match the criteria for fee rule ID 17.")
total_original_fee = 0
total_new_fee = 0
fee_delta = 0

else:
total_affected_volume = affected_transactions_df['eur_amount'].sum()
num_affected_transactions = len(affected_transactions_df)

print(f"\n[INFO] Found {num_affected_transactions} transactions matching the fee rule.")
print(f"[INFO] Total volume of these transactions: {total_affected_volume:.2f} EUR")

# Get fee parameters from the rule
original_rate = fee_rule_17['rate']
fixed_amount = fee_rule_17['fixed_amount']
new_rate = 99
fee_divisor = 10000

# Calculate total original fee using the formula: fee = fixed_amount + rate * value / 10000
# Vectorized calculation for efficiency
total_fixed_component = fixed_amount * num_affected_transactions
total_original_rate_component = (original_rate * total_affected_volume) / fee_divisor
total_original_fee = total_fixed_component + total_original_rate_component

# Calculate total new fee with the modified rate
total_new_rate_component = (new_rate * total_affected_volume) / fee_divisor
total_new_fee = total_fixed_component + total_new_rate_component

# The delta is the difference between the new and original total fees
fee_delta = total_new_fee - total_original_fee

# --- Final Conclusion ---
print("\n----------------------CONCLUSION----------------------")
print(f"Total original fee for affected transactions: {total_original_fee:.4f} EUR")
print(f"Total new fee with rate={new_rate}: {total_new_fee:.4f} EUR")
print(f"The calculated fee delta is: {fee_delta:.4f} EUR.")
print("This represents the total increase in fees for Rafa_AI's affected February transactions due to the

rate change.")↪→

Listing 40: Round 5: Implementation.

f'''Sufficient'''

Listing 41: Round 4: Validation.

import pandas as pd
import json

# --- 1. Load All Necessary Data ---
# This part is based on the loading logic from the base code.
payments_df = pd.read_csv('data/payments.csv')
merchant_data_df = pd.read_json('data/merchant_data.json')
fees_df = pd.read_json('data/fees.json')

# --- Implementation of the Calculation ---
# Calculate the total original fee for Rafa_AI's transactions in February 2023
# that are affected by fee ID=17, and then calculate the new total fee for the same
# transactions using the modified rate of 99. The delta is the difference.

# Step 1: Filter payments for 'Rafa_AI' in February 2023.
# February corresponds to days of the year from 32 to 59 (since 2023 is not a leap year).
feb_transactions_df = payments_df[

(payments_df['merchant'] == 'Rafa_AI') &
(payments_df['day_of_year'] >= 32) &
(payments_df['day_of_year'] <= 59)
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].copy()

# Step 2: Enrich transaction data with merchant-specific information.
# Get the specific data for 'Rafa_AI' from the merchant data file.
rafa_ai_data = merchant_data_df[merchant_data_df['merchant'] == 'Rafa_AI']

# Merge the February transactions with the merchant's data.
full_transaction_data = pd.DataFrame()
if not rafa_ai_data.empty and not feb_transactions_df.empty:

# Use a left merge to add merchant details (like mcc, account_type) to each transaction.
full_transaction_data = feb_transactions_df.merge(rafa_ai_data, on='merchant', how='left')

# Step 3: Retrieve the specific conditions for the fee rule with ID=17.
fee_delta = 0.0
if not full_transaction_data.empty:

fee_rule_17 = fees_df[fees_df['ID'] == 17]

if not fee_rule_17.empty:
# Use .iloc[0] to get the rule as a Series
fee_rule_17 = fee_rule_17.iloc[0]

# Step 4: Filter the transactions that match all conditions of the fee rule.
# The manual states that a null or empty list in a rule field means it applies to all values.
mask = pd.Series(True, index=full_transaction_data.index)

# Match card_scheme (string)
if fee_rule_17['card_scheme']:

mask &= (full_transaction_data['card_scheme'] == fee_rule_17['card_scheme'])

# Match account_type (list)
if fee_rule_17['account_type']: # An empty list evaluates to False, correctly skipping the filter

mask &= full_transaction_data['account_type'].isin(fee_rule_17['account_type'])

# Match merchant_category_code (list)
if fee_rule_17['merchant_category_code']:

mask &=
full_transaction_data['merchant_category_code'].isin(fee_rule_17['merchant_category_code'])↪→

# Match aci (list)
if fee_rule_17['aci']:

mask &= full_transaction_data['aci'].isin(fee_rule_17['aci'])

# Match is_credit (boolean, but can be null)
if fee_rule_17['is_credit'] is not None:

mask &= (full_transaction_data['is_credit'] == fee_rule_17['is_credit'])

# Apply the combined mask to get the affected transactions
affected_transactions_df = full_transaction_data[mask]

# Step 5: Calculate the original and new fees for the affected transactions.
if not affected_transactions_df.empty:

total_affected_volume = affected_transactions_df['eur_amount'].sum()
num_affected_transactions = len(affected_transactions_df)

# Get fee parameters from the rule
original_rate = fee_rule_17['rate']
fixed_amount = fee_rule_17['fixed_amount']
new_rate = 99
fee_divisor = 10000

# Calculate total original fee using the formula: fee = fixed_amount + rate * value / 10000
total_fixed_component = fixed_amount * num_affected_transactions
total_original_rate_component = (original_rate * total_affected_volume) / fee_divisor
total_original_fee = total_fixed_component + total_original_rate_component

# Calculate total new fee with the modified rate
total_new_rate_component = (new_rate * total_affected_volume) / fee_divisor
total_new_fee = total_fixed_component + total_new_rate_component

# The delta is the difference between the new and original total fees
fee_delta = total_new_fee - total_original_fee

# --- Final Output ---
print(f"{fee_delta:.14f}")

Listing 42: Final solution code.

f'''2.67727200000000'''

Listing 43: Generated answer by DS-STAR. Obtained by executing the above final solution code.
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G PROMPTS

G.1 ANALYZER AGENT

f'''You are an expert data analysist.
Generate a Python code that loads and describes the content of

{filename}.↪→

# Requirement
- The file can both unstructured or structured data.
- If there are too many structured data, print out just few examples.
- Print out essential informations. For example, print out all the

column names.↪→
- The Python code should print out the content of {filename}.
- The code should be a single-file Python program that is self-contained

and can be executed as-is.↪→
- Your response should only contain a single code block.
- Important: You should not include dummy contents since we will debug

if error occurs.↪→
- Do not use try: and except: to prevent error. I will debug it

later.'''↪→

Listing 44: Prompt used to generate Python scripts that describe data files.

DS-STAR begins by creating a description of each data file. Specifically, it utilizes an analyzer agent
Aanalyzer that takes a file name (e.g., ‘payment.csv’) as input to generate a Python script sdesc, using
the above prompt. The script is then executed to summarize the dataset’s core information. An
example of this process, including the generated script and its output, is provided in Appendix D.

G.2 PLANNER AGENT

f'''You are an expert data analysist.
In order to answer factoid questions based on the given data, you have

to first plan effectively.↪→

# Question
{question}

# Given data: {filenames}
{filenames #1}
{summaries #1}
...
{filenames #N}
{summaries #N}

# Your task
- Suggest your very first step to answer the question above.
- Your first step does not need to be sufficient to answer the question.
- Just propose a very simple initial step, which can act as a good

starting point to answer the question.↪→
- Your response should only contain an initial step.'''

Listing 45: Prompt used to generate an initial plan.

DS-STAR begins the solution generation process after generating analytic descriptions of N data
files. First, a planner agentAplanner generates an initial high-level executable step p0 using the above
prompt. Here, the query q and obtained data descriptions are used as inputs.

f'''You are an expert data analysist.
In order to answer factoid questions based on the given data, you have

to first plan effectively.↪→
Your task is to suggest next plan to do to answer the question.

# Question
{question}
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# Given data: {filenames}
{filenames #1}
{summaries #1}
...
{filenames #N}
{summaries #N}

# Current plans
1. {Step 1}
...
k. {Step k}

# Obtained results from the current plans:
{result}

# Your task
- Suggest your next step to answer the question above.
- Your next step does not need to be sufficient to answer the question,

but if it requires only final simple last step you may suggest it.↪→
- Just propose a very simple next step, which can act as a good

intermediate point to answer the question.↪→
- Of course your response can be a plan which could directly answer the

question.↪→
- Your response should only contain an next step without any

explanation.'''↪→

Listing 46: Prompt used to generate a plan after the initialization step.

After the initial plan is obtained, DS-STAR’s planner agent generates a subsequent step using
the above prompt. Unlike the initialization round, planner agent Aanalyzer additionally uses the
intermediate step-by-step plans, and the obtained results after execution of its implementation.

G.3 CODER AGENT

f'''# Given data: {filenames}
{filenames #1}
{summaries #1}
...
{filenames #N}
{summaries #N}

# Plan
{plan}

# Your task
- Implement the plan with the given data.
- Your response should be a single markdown Python code (wrapped in

```).↪→
- There should be no additional headings or text in your response.'''

Listing 47: Prompt used to generate a implementation of an initial plan in a Python code.

The initial step for the plan is implemented as a code script s0 by a coder agent Acoder, using the
above prompt. Here, analytic descriptions of data files are additionally used to provide some essential
information like column names.

f'''You are an expert data analysist.
Your task is to implement the next plan with the given data.

# Given data: {filenames}
{filenames #1}
{summaries #1}
...
{filenames #N}
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{summaries #N}

# Base code
```python
{base_code}
```

# Previous plans
1. {Step 1}
...
k. {Step k}

# Current plan to implement
{Step k+1}

# Your task
- Implement the current plan with the given data.
- The implementation should be done based on the base code.
- The base code is an implementation of the previous plans.
- Your response should be a single markdown Python code (wrapped in

```).↪→
- There should be no additional headings or text in your response.'''

Listing 48: Prompt used to generate a implementation of a plan after the initialization round.

For every round beyond the initial one, DS-STAR’s coder agent Acoder converts the current plan step
pk+1 into a Python script using the above prompt. Unlike the initial round, the agent is provided with
the intermediate solution code that implements all preceding step p0, · · · , pk. This allows the agent
to incrementally build upon the existing code, simplifying the implementation of each subsequent
step.

G.4 VERIFIER AGENT

f'''You are an expert data analysist.
Your task is to check whether the current plan and its code

implementation is enough to answer the question.↪→
# Plan
1. {Step 1}
...
k. {Step k}

# Code
```python
{code}
```

# Execution result of code
{result}

# Question
{question}

# Your task
- Verify whether the current plan and its code implementation is enough

to answer the question.↪→
- Your response should be one of 'Yes' or 'No'.
- If it is enough to answer the question, please answer 'Yes'.
- Otherwise, please answer 'No'.'''

Listing 49: Prompt used to verify the current plan.

We introduce a verifier agent Averifier. At any given round, this agent evaluates the state of the
solution, i.e., whether the plan in sufficient or insufficient to solve the problem. The evaluation is
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based on the cumulative plan, the user’s query, the solution code, which is an implementation of the
cumulative plan, and its execution result, using the above prompt.

G.5 ROUTER AGENT

f'''You are an expert data analysist.
Since current plan is insufficient to answer the question, your task is

to decide how to refine the plan to answer the question.↪→

# Question
{question}

# Given data: {filenames}
{filenames #1}
{summaries #1}
...
{filenames #N}
{summaries #N}

# Current plans
1. {Step 1}
...
k. {Step k}

# Obtained results from the current plans:
{result}

# Your task
- If you think one of the steps of current plans is wrong, answer among

the following options: Step 1, Step 2, ..., Step K.↪→
- If you think we should perform new NEXT step, answer as 'Add Step'.
- Your response should only be Step 1 - Step K or Add Step.'''

Listing 50: Prompt used for the router agent which determines how to refine the plan.

If the verifier agent Averifier determines that the current plan is insufficient to solve the user’s query,
DS-STAR must decide how to proceed. To this end, DS-STAR employs a router agent Arouter which
decides whether to append a new step or to correct an existing one, which leverages the above prompt.

G.6 FINALYZER AGENT

f'''You are an expert data analysist.
You will answer factoid question by loading and referencing the

files/documents listed below.↪→
You also have a reference code.
Your task is to make solution code to print out the answer of the

question following the given guideline.↪→

# Given data: {filenames}
{filenames #1}
{summaries #1}
...
{filenames #N}
{summaries #N}

# Reference code
```python{code}
```

# Execution result of reference code
{result}

# Question
{question}

# Guidelines
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{guidelines}

# Your task
- Modify the solution code to print out answer to follow the give

guidelines.↪→
- If the answer can be obtained from the execution result of the

reference code, just generate a Python code that prints out the
desired answer.

↪→
↪→
- The code should be a single-file Python program that is self-contained

and can be executed as-is.↪→
- Your response should only contain a single code block.
- Do not include dummy contents since we will debug if error occurs.
- Do not use try: and except: to prevent error. I will debug it later.
- All files/documents are in `data/` directory.'''

Listing 51: Prompt used to generate a final solution, which outputs the answer with the desired
format.

To ensure properly formatted output, DS-STAR employs a finalyzer agent Afinalyzer, which takes
formatting guidelines, if exist, and generates the final solution code.

G.7 DEBUGGING AGENT

f'''# Error report
{bug}

# Your task
- Remove all unnecessary parts of the above error report.
- We are now running {filename}.py. Do not remove where the error

occurred.'''↪→

Listing 52: Prompt used to summarize the traceback of the error.

When debugging, we first summarize the obtained traceback of error using the above prompt, since
the traceback may be too lengthy.

f'''# Code with an error:
```python
{code}
```

# Error:
{bug}

# Your task
- Please revise the code to fix the error.
- Provide the improved, self-contained Python script again.
- There should be no additional headings or text in your response.
- Do not include dummy contents since we will debug if error occurs.
- All files/documents are in `data/` directory.'''

Listing 53: Prompt used for debugging when analyzing data files.

When generating {di}Ni=1 using sdesc obtained fromAanalyzer, our debugging agent iteratively update
the script using only the summarized traceback, using the above prompt.

f'''# Given data: {filenames}
{filenames #1}
{summaries #1}
...
{filenames #N}
{summaries #N}

# Code with an error:
```python

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

{code}
```

# Error:
{bug}

# Your task
- Please revise the code to fix the error.
- Provide the improved, self-contained Python script again.
- Note that you only have {filenames} available.
- There should be no additional headings or text in your response.
- Do not include dummy contents since we will debug if error occurs.
- All files/documents are in `data/` directory.'''

Listing 54: Prompt used for debugging when generating a solution code.

Once DS-STAR obtains {di}Ni=1, our debugging agent utilizes such information with the above
prompt when generating a solution Python script.

H LARGE LANGUAGE MODEL USAGE FOR WRITING

In this paper, Gemini was utilized as a general-purpose writing tool. When draft text was provided to
Gemini, it improved the writing (e.g., by correcting grammatical errors). The generated text was then
manually revised by the authors.
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