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ABSTRACT

Recent work in language modeling has raised the possibility of self-improvement,
where a language models evaluates and refines its own generations to achieve higher
performance without external feedback. It is impossible for this self-improvement
to create information that is not already in the model, so why should we expect that
this will lead to improved capabilities?

We offer a new perspective on the capabilities of self-improvement through a lens
we refer to as sharpening. Motivated by the observation that language models
are often better at verifying response quality than they are at generating correct
responses, we formalize self-improvement as using the model itself as a verifier
during post-training in order to “sharpen” the model to one placing large mass
on high-quality sequences, thereby amortizing the expensive inference-time
computation of generating good sequences. We begin by introducing a new
statistical framework for sharpening in which the learner aims to sharpen a
pre-trained base policy via sample access, and establish fundamental limits. Then,
we analyze two natural families of self-improvement algorithms based on SFT
and RLHF. We find that (i) the SFT-based approach is minimax optimal whenever
the initial model has sufficient coverage, but (ii) the RLHF-based approach can
improve over SFT-based self-improvement by leveraging online exploration,
bypassing the need for coverage. Finally, we empirically validate the sharpening
mechanism via inference-time and amortization experiments. We view these
findings as a starting point toward a foundational understanding that can guide
the design and evaluation of self-improvement algorithms.

1 INTRODUCTION

Contemporary language models are remarkably proficient on a wide range of natural language tasks
(Brown et al., 2020; Ouyang et al., 2022; Touvron et al., 2023; OpenAI, 2023; Google, 2023), but
inherit shortcomings of the data on which they were trained. A fundamental challenge is to achieve
better performance than what is directly induced by the distribution of available, human-generated
training data. To this end, recent work (Huang et al., 2022; Wang et al., 2022; Bai et al., 2022b;
Pang et al., 2023; Yuan et al., 2024) has raised the possibility of “self-improvement,” where a
model—typically through forms of self-play or self-training in which the model critiques its own
generations—learns to improve on its own, without external feedback. This phenomenon is somewhat
counterintuitive; at first glance it would seem to disagree with the well-known data-processing
inequality (Cover, 1999), which implies that no form of self-training should be able to create
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Figure 1: Validation of maximum-likelihood sharpening, via Best-of-N (BoN) sampling, at inference
time. (a) Percent accuracy improvement over greedy decoding for BoN sharpening with N = 50 on
6 tasks and 7 models, colored by performance. (b) Percent accuracy improvement over greedy for
BoN sharpening as a function of N for 7 different models on the MATH dataset. (c) Distribution of
sequence-level log probabilities for responses sampled from Phi3.5-Mini (N = 1) on the MATH
dataset, conditioned on correctness. Correct completions have noticeably higher likelihood than
incorrect completions, demonstrating the utility of inference-time sharpening.

information not already in the model. This motivates the question of why we should expect such
supervision-free interventions will lead to stronger reasoning and planning capabilities.

A dominant hypothesis for why improvement without external feedback might be possible is that
models contain “hidden knowledge” (Hinton et al., 2015) that is difficult to access. Self-improvement,
rather than creating knowledge from nothing, is a means of extracting and distilling this knowledge
into a more accessible form, and thus is a computational phenomenon rather than a statistical one.
While there is a growing body of empirical evidence for this hidden-knowledge hypothesis (Furlanello
et al., 2018; Gotmare et al., 2019; Dong et al., 2019; Abnar et al., 2020; Allen-Zhu & Li, 2020), particu-
larly in the context of self-distillation, a fundamental understanding of self-improvement remains miss-
ing. Concretely, where in the model is this hidden knowledge, and when and how can it be extracted?

1.1 OUR PERSPECTIVE: THE SHARPENING MECHANISM

In this paper we posit a source of hidden knowledge, and offer a formal perspective on how to extract
it. Our starting point is the widely observed phenomenon that language models are often better at ver-
ifying whether responses are correct than they are at generating correct responses (Huang et al., 2022;
Wang et al., 2022; Bai et al., 2022b; Pang et al., 2023; Yuan et al., 2024). This gap may be explained
by the theory of computational complexity, which suggests that generating high-quality responses can
be less computationally tractable than verification (Cook, 1971; Levin, 1973; Karp, 1972). In autore-
gressive language modeling, computing the most likely response for a given prompt is NP-hard in the
worst case (Appendix E), whereas the model’s likelihood for a given response can be easily evaluated.

We view self-improvement as any attempt to narrow this gap, i.e., use the model as its own verifier
to improve generation and sharpen the model toward high-quality responses. Formally, consider
a learner with access to a base model πbase : X → ∆(Y) representing a conditional distribution that
maps a prompt x ∈ X to a distribution over responses (i.e., πbase(y | x) is the probability that the
model generates the response y given the prompt x).1 We posit that πbase has already been trained
in some manner (e.g., through next-token prediction or additional post-training steps such as SFT
or RLHF), with the key feature being that πbase is a good verifier, as measured by some self-reward
function rself(y | x;πbase) measuring model certainty. The self-reward function is derived purely
from the base model πbase, without external supervision or feedback. Examples include normalized
and/or regularized sequence likelihood (Meister et al., 2020), models-as-judges (Zheng et al., 2024;
Yuan et al., 2024; Wu et al., 2024a; Wang et al., 2024), and model confidence (Wang & Zhou, 2024).

1Our general results are agnostic to the structure of X , Y , and πbase, but an important special case for language
modeling is the autoregressive setting where Y = VH for a vocabulary space V and sequence length H , and
where πbase has the autoregressive structure πbase(y1:H | x) =

∏H
h=1 πbase,h(yh | y1:h−1, x) for y = y1:H ∈ Y .
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Sharpening
We refer to sharpening as any process that tilts πbase toward responses that are more certain
in the sense that they enjoy greater self-reward rself. That is, a sharpened model π̂ is one
that (approximately) maximizes the self-reward:

π̂(x) ≈ argmax
y∈Y

rself(y | x;πbase). (1)

An important special case for sharpening is in language/autoregressive modeling. Here, we have
Y = VH for a vocabulary space V and sequence length H , and πbase has the autoregressive structure
πbase(y1:H | x) =

∏H
h=1 πbase,h(yh | y1:h−1, x) for y = y1:H ∈ Y . Sharpening in this setting

pertains to entire responses, i.e., the optimization over responses in Eq. (1) is at the sequence
level. In contrast, popular decoding strategies such as greedy, low-temperature sampling, and beam
search operate at the token-level; nevertheless, they can be viewed as heuristics for inference-time
sharpening.2 The combinatorial response space can make sharpening computationally demanding
and so, an appealing alternative to inference-time sharpening is amortization via self-training
(Section 2). The latter captures many existing self-training schemes (Huang et al., 2022; Wang et al.,
2022; Bai et al., 2022b; Pang et al., 2023; Yuan et al., 2024), and is the main focus of this paper;
we use the term sharpening without further qualification to refer to the latter.

We refer to the sharpening mechanism as the phenomenon where responses from a model with the
highest certainty (in the sense of large self-reward rself) exhibit the greatest performance on a task
of interest. Though it is unclear a-priori whether there are self-rewards related to task performance,
the successes of self-improvement in prior works (Huang et al., 2022; Wang et al., 2022; Bai et al.,
2022b; Pang et al., 2023; Yuan et al., 2024) give strong positive evidence. These works suggest that,
in many settings, models do have hidden knowledge: the model’s own self-reward correlates with
response quality, but it is computationally challenging to generate high self-rewarding—and thus
high quality—responses. It is the role of (algorithmic) sharpening to leverage these verifications
to improve the quality of generations, despite computational difficulty.

1.2 CONTRIBUTIONS

We initiate the theoretical study of self-improvement via the sharpening mechanism. We disentangle
the choice of self-reward from the algorithms used to optimize it, and aim to understand: (i) When and
how does self-training achieve sharpening? (ii) What are the fundamental limits for such algorithms?

Algorithms for sharpening (Section 2). The starting point for our work is to consider two natural
families of self-improvement algorithms based on supervised fine-tuning (SFT) and reinforcement
learning (RL/RLHF), respectively, SFT-Sharpening and RLHF-Sharpening. Both algorithms amor-
tize the sharpening objective (1) into a dedicated post-training/fine-tuning phase:

• SFT-Sharpening filters responses where the self-reward rself(y | x;πbase) is large and fine-tunes
on the resulting dataset, invoking common SFT pipelines (Amini et al., 2024; Sessa et al., 2024).

• RLHF-Sharpening directly applies reinforcement learning techniques (e.g., PPO (Schulman et al.,
2017) or DPO (Rafailov et al., 2023)) to optimize the self-reward function rself(y | x;πbase).

In the remainder of the paper, we introduce a theoretical framework to analyze the performance of
these algorithms. Our main contributions are as follows.

Maximum-likelihood sharpening objective (Section 3.1). As a concrete proposal for one source of
hidden knowledge, we focus on self-rewards defined by the model’s sequence-level log-probabilities:

rself(y | x;πbase) := log πbase(y | x) (2)

This is a stylized self-reward function, which offers perhaps the simplest objective for self-
improvement in the absence of external feedback (i.e., purely supervision-free), yet also connects
self-improvement to a rich body of theoretical computer science literature on computational
trade-offs for optimization (inference) versus sampling (Appendix B). Despite its simplicity,
maximum-likelihood sharpening is already sufficient to achieve non-trivial performance gains over

2More sophisticated decoding strategies like normalized/regularized sequence likelihood (Meister et al., 2020)
or chain-of-thought decoding (Wang & Zhou, 2024) also admit an interpretation as sharpening; see Appendix B.
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greedy decoding on a range of reasoning tasks with several language models; (Figure 1). We believe
it can serve as a starting point toward understanding forms of self-improvement that use more
sophisticated self-rewards (Huang et al., 2022; Wang et al., 2022; Pang et al., 2023; Yuan et al., 2024).

A statistical framework for sharpening (Sections 3.2 and 3.3). Though the goal of sharpening
is computational in nature, we recast self-training according to the maximum-likelihood sharpening
objective Eq. (2) as a statistical problem where we aim to produce a model approximating (1) using
a polynomial number of (i) sample prompts x ∼ µ, (ii) sampling queries of the form y ∼ πbase(x),
and (iii) likelihood evaluations of the form πbase(y | x). Evaluating the efficiency of the algorithm
through the number of such queries, this abstraction offers a natural way to evaluate the performance
of self-improvement/sharpening algorithms and establish fundamental limits; we use our framework
to prove new lower bounds that highlight the importance of the base model’s coverage.

Analysis of sharpening algorithms (Section 4). Within our statistical framework for sharpening,
we show that SFT-Sharpening and RLHF-Sharpening provably converge to sharpened models,
establishing several results: (i) SFT-Sharpening is minimax optimal, and learns a sharpened model
whenever πbase has sufficient coverage (we also show that a novel variant based on adaptive sampling
can sidestep the minimax lower bound); (ii) RLHF-Sharpening benefits from on-policy exploration,
and can bypass the need for coverage—improving over SFT-Sharpening.

Empirical investigation (Appendix A). We explore empirically the extent to which our theoretical
framework and methods improve language model performance in a variety of tasks. We consider
three choices of self-reward on an extensive list of model-dataset pairs and conclude that sharpening
can often improve performance. We then implement one of our algorithms, SFT-Sharpening, on
a subset of these model-dataset pairs and observe a significant positive effect on performance. A
summary of our inference-time experiments can be found in Figure 1.

1.3 RELATED WORK

Our work is most directly related to a growing body of empirical research that studies self-training
for language models in a supervision-free setting with no external feedback (Huang et al., 2022;
Wang et al., 2022; Bai et al., 2022b; Pang et al., 2023; Yuan et al., 2024). The specific algorithms
for self-improvement/sharpening we study can be viewed as applications of standard alignment
algorithms (Amini et al., 2024; Sessa et al., 2024; Christiano et al., 2017; Bai et al., 2022a; Ouyang
et al., 2022; Rafailov et al., 2023) with a specific choice of reward function. However, the maximum
likelihood sharpening objective (2) used for our theoretical results has been relatively unexplored
within the alignment and self-improvement literature.

Theoretical understanding of self-training is currently limited. One line of work analyzes the
convergence of self-training for classification and regression with the self-distillation objective,
but is limited to stylized setups such as linear models (Mobahi et al., 2020; Frei et al., 2022; Das
& Sanghavi, 2023; Das et al., 2024; Pareek et al., 2024), feedforward neural networks (Allen-Zhu
& Li, 2020), and a general PAC-style framework (Boix-Adsera, 2024). To the best of our knowledge,
our work is the first to study self-training in a general framework that subsumes language modeling.
See Appendix B for a more extensive discussion of related work.

2 SHARPENING ALGORITHMS FOR SELF-IMPROVEMENT

This section introduces the two families of self-improvement algorithms for sharpening that we study.
Going forward, we omit the dependence of rself on πbase when it is clear from context. We use the
notation argmaxπ∈Π or argminπ∈Π to denote exact optimization over a user-specified model class
Π for theoretical results (Agarwal et al., 2019; Foster & Rakhlin, 2023); empirically, these operations
can be implemented by training a neural network to low loss.

2.1 SELF-IMPROVEMENT THROUGH SFT: SFT-Sharpening

SFT-Sharpening filters responses for which the self-reward rself(y | x) is large, and applies
standard supervised fine-tuning on the resulting dataset (Amini et al., 2024; Sessa et al., 2024;
Gui et al., 2024; Pace et al., 2024). This can be viewed as amortizing inference-time sharpening
via the effective-but-costly best-of-N sampling approach (Brown et al., 2024; Snell et al., 2024;
Wu et al., 2024b). Concretely, suppose we have a collection of prompts x1, . . . , xn. For each
prompt, we sample N responses yi,1, . . . , yi,N ∼ πbase(· | xi), then compute the best-of-N response
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yBoNi = argmaxj∈[N ]{rself(yi,j | xi)}, scoring via the model’s self-reward function. We compute
the sharpened model via supervised fine-tuning on the best-of-N responses:

π̂BoN = argmax
π∈Π

n∑
i=1

log π(yBoNi | xi).

This is a simple, flexible self-training scheme, and converges to a sharpened model as n,N →∞.

2.2 SELF-IMPROVEMENT THROUGH RLHF: RLHF-Sharpening
A drawback of the SFT-Sharpening algorithm is that it may ignore useful information contained
in the self-reward function rself(y | x). Fixing a regularization parameter β > 0 throughout, our
second class of algorithms solve a KL-regularized reinforcement learning problem in the spirit
of RLHF and other alignment methods (Christiano et al., 2017; Rafailov et al., 2023). Defining
Eπ[·] = Ex∼µ,y∼π(·|x)[·] and DKL(π ∥πbase) = Eπ

[
log π(y|x)

πbase(y|x)
]
, we choose

π̂ ≈ argmax
π∈Π

{Eπ[rself(y | x)]− βDKL(π ∥πbase)}. (3)

The exact optimizer π⋆
β = argmaxπ∈Π{Eπ[rself(y | x)]− βDKL(π ∥πbase)} for this objective has

the form π⋆
β(y | x) ∝ πbase(y | x) · exp

(
β−1rself(y | x)

)
, which converges to the solution to the

sharpening objective in Eq. (1) as β → 0. Thus, Eq. (3) can be seen to encourage sharpening.

There are many choices for what RLHF/alignment algorithm one might use to solve (3). For our
theoretical results, we implement Eq. (3) using an approach inspired by DPO and its reward-based
variants (Rafailov et al., 2023; Gao et al., 2024). Given a dataset D = {(x, y, y′)} of n examples
sampled via x ∼ µ and y, y′ ∼ πbase(y | x), we consider the algorithm that solves

π̂ ∈ argmin
π∈Π

∑
(x,y,y′)∈D

(
β log

π(y | x)
πbase(y | x) − β log

π(y′ | x)
πbase(y′ | x) −

(
rself(y | x)− rself(y

′ | x)
))2

. (4)

In Section 4, we show that this approach achieves guarantees similar to SFT-Sharpening, while a
more sophisticated DPO variant with online exploration (Xie et al., 2024) provides provable benefits.

3 A STATISTICAL FRAMEWORK FOR SHARPENING

This section introduces the theoretical framework within which we will analyze the SFT-Sharpening
and RLHF-Sharpening algorithms. We first introduce the maximum-likelihood sharpening objective
as a stylized self-reward function, then introduce our statistical framework for sharpening. We write
f = Õ(g) to denote f = O(g · max{1,polylog(g)}) and a ≲ b as shorthand for a = O(b).

3.1 MAXIMUM-LIKELIHOOD SHARPENING

Our theoretical results focus on the maximum-likelihood sharpening objective given by

rself(y | x) := log πbase(y | x),
which we aim to maximize using conditional samples y ∼ πbase(· | x) from the base model. This is
a simple and stylized self-reward function, but we will show that it enjoys a rich theory. In particular,
we can restate the problem of sharpening with this self-reward through the lens of amortization.

Can we efficiently amortize maximum likelihood inference (optimization) for a conditional
distribution πbase(y | x) given access to a sampling oracle that can sample y ∼ πbase(· | x)?

The tacit assumption in this framing is that the maximum-likelihood response constitutes a useful
form of hidden knowledge. Maximum-likelihood sharpening connects the study of self-improvement
to a large body of research in theoretical computer science demonstrating computational reductions
between optimization (inference) and sampling (generation) (Kirkpatrick et al., 1983; Lovász & Vem-
pala, 2006; Singh & Vishnoi, 2014; Ma et al., 2019; Talwar, 2019). Our sharpening framework offers
a new learning-theoretic perspective by focusing on the problem of amortizing this type of reduction.

We evaluate the quality of an approximately sharpened model as follows. Let

y⋆(x) := argmax
y∈Y

log πbase(y | x);
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we interpret y⋆(x) ⊂ Y as a set to accommodate non-unique maximizers, and will write y⋆(x) to
indicate a unique maximizer when it exists (i.e., when y⋆(x) = {y⋆(x)}).
Definition 3.1 (Sharpened model). We say that a model π̂ is (ϵ, δ)-sharpened relative to πbase if

Px∼µ[π̂(y
⋆(x) | x) ≥ 1− δ] ≥ 1− ϵ.

That is, an (ϵ, δ)-sharpened model places at least 1 − δ mass on arg-max responses on all but an
ϵ-fraction of prompts under µ. For small δ and ϵ, we are guaranteed that π̂ is a high-quality generator:
sampling from the model will produce an arg-max response with high probability for most prompts.

Maximum-likelihood sharpening for autoregressive models. Though our most general results
are agnostic to the structure of X , Y , and πbase, our primary motivation is the autoregressive
setting in which Y = VH for a vocabulary space V and sequence length H , and where πbase has
the autoregressive structure πbase(y1:H | x) =

∏H
h=1 πbase,h(yh | y1:h−1, x) for y = y1:H ∈ Y .

We observe that when the response y = (y1, . . . , yH) ∈ Y = VH is a sequence of tokens, the
maximum-likelihood sharpening objective (2) sharpens toward the sequence-level arg-max response:

argmax
y1:H

log πbase(y1:H | x). (5)

Although somewhat stylized, Eq. (5) is a non-trivial (in general, computationally intractable; see
Appendix E) solution concept. We view the sequence-level arg-max as a form of hidden knowledge
that cannot necessarily be uncovered through naive sampling or greedy decoding.

Role of δ for autoregressive models. As can be verified through simple examples, beam-search
and greedy tokenwise decoding do not return an exact (or even approximate) solution to (5) in
general. There is one notable exception: If the model has already been sharpened to δ < 1/2 and
the arg-max sequence is unique, then greedy decoding will succeed.

Proposition 3.1 (Greedy decoding succeeds for sharpened policies). Let π = π1:H be an au-
toregressive model defined over response space Y = VH . For a given prompt x ∈ X , if
y⋆(x) = {y⋆(x)} is a singleton and π(y⋆(x) | x) > 1/2, then the greedy decoding strategy that se-
lects ŷh = argmaxyh∈V πh(yh | ŷ1, . . . , ŷh−1, x) guarantees that ŷ = y⋆(x). This result is tight, in
the sense that there exist π with π(y⋆(x) | x) ≤ 1/2 for which greedy decoding fails to recover y⋆(x).

This means that if we start from an un-sharpened model, simply sharpening to δ < 1/2 may suffice.

3.2 SAMPLE COMPLEXITY FRAMEWORK

Sharpening, as described in Definition 3.1, is a purely computational problem, which makes it difficult
to evaluate the optimality of self-improvement algorithms. To address this, we introduce a novel
statistical framework for sharpening, inspired by the oracle complexity in optimization (Nemirovski
et al., 1983; Traub et al., 1988; Raginsky & Rakhlin, 2011; Agarwal et al., 2012) and statistical query
complexity in computational learning theory (Blum et al., 1994; Kearns, 1998; Feldman, 2012; 2017).

Definition 3.2 (Sample-and-evaluate framework). In the sample-and-evaluate framework, the al-
gorithm designer does not have explicit access to the base model πbase. Instead, they access πbase

only through sample-and-evaluate queries: The learner is allowed to sample n prompts x ∼ µ. For
each prompt x, they can sample N responses y1, y2, . . . yN ∼ πbase(· | x) and observe the likelihood
πbase(yi | x) for each such response. The efficiency, or sample complexity, of the algorithm is
measured through the total number of sample-and-evaluate queries m := n ·N .

This framework can be seen to capture algorithms like SFT-Sharpening and RLHF-Sharpening
(implemented with DPO), which only access the base model πbase through i) sampling responses
via y ∼ πbase(· | x) (generation), and ii) evaluating the likelihood πbase(y | x) (verification) for
these responses. We view the sample complexity m = n · N as a natural statistical abstraction
for the computational complexity of self-improvement (a clear parallel to oracle complexity for
optimization algorithms), one which is amenable to information-theoretic lower bounds.3 We will
aim to show that, under appropriate assumptions, SFT-Sharpening and RLHF-Sharpening can learn
an (ϵ, δ)-sharpened model with sample complexity

m = poly(ϵ−1, δ−1, Cprob)

where Cprob is a potentially problem-dependent constant.
3Concretely, the sample complexity m = n ·N is a lower bound on the running time of any algorithm that

operates in the sample-and-evaluate framework.
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3.3 FUNDAMENTAL LIMITS

Before diving into our analysis of SFT-Sharpening and RLHF-Sharpening in the sample-and-
evaluate framework, let us take a brief detour to give a sense for how sample complexity guarantees
for sharpening should scale. To this end, we will prove a lower bound or fundamental limit on the
sample complexity of any algorithm in the sample-and-evaluate framework.

Intuitively, the performance of any sampling-based sharpening algorithm should depend on well the
base model πbase covers the arg-max response y⋆(x). To capture this, we use the coverage coefficient4

Ccov = Ex∼µ

[
1

πbase(y⋆(x) | x)

]
, (6)

and, for a model π, we define yπ(x) = argmaxy∈Y π(y | x) and Ccov(π) = Ex∼µ

[
1

π(yπ(x)|x)

]
.

Our main lower bound shows that for a worst-case choice of Π, the coverage coefficient serves as a
lower bound on the sample complexity of any sharpening algorithm.

Theorem 3.1 (Lower bound for sharpening). Fix an integer d ≥ 1 and parameters ϵ ∈ (0, 1)
and C ≥ 1. There exists a class of models Π such that (i) log |Π| ≍ d(1 + log(Cϵ−1)), (ii)
supπ∈Π Ccov(π) ≲ C, and (iii) yπ(x) is a singleton for all π ∈ Π, x ∈ X . Any sharpening
algorithm π̂ that achieves E[Px∼µ[π̂(y

πbase(x) | x) > 1/2]] ≥ 1− ϵ for all πbase ∈ Π must collect
a total number of samples m = n ·N at least

m ≳
C log |Π|

ϵ2 · (1 + log(Cϵ−1))
.

This result shows that the complexity of any (ϵ, 1/2 − δ)-sharpening algorithm (for δ > 0) in the
sample-and-evaluate framework must depend polynomially on the coverage coefficient Ccov, as well
as the accuracy ϵ. The lower bound also depends on the expressivity of πbase, as captured by the
model class complexity term log|Π|. We will show in the sequel that it is possible to match this lower
bound. Note that this result also implies a lower bound for the general sharpening problem (i.e.,
general rself), since maximum-likelihood sharpening is a special case.

Remark 3.1 (Relaxed notions of sharpening and coverage). The notion of coverage in Eq. (6) is
somewhat stringent, since it requires that πbase place large mass on y⋆(x) on average. In Appendix F,
we introduce a more general and permissive notion of approximate sharpening (Definition F.1) which
leads to weaker coverage requirements, and use this to give generalized versions of our main results.

We close this section by noting that numerous recent works—focusing on inference-time
computation—show that standard language models exhibit favorable coverage with respect to desir-
able responses (Brown et al., 2024; Snell et al., 2024; Wu et al., 2024b). We replicate these findings
in our experimental setup in Appendix A. These works suggest that, despite the exponentially large
response space, the coverage coefficient Ccov may be small in standard language modeling tasks.

4 ANALYSIS OF SHARPENING ALGORITHMS

Equipped with the sample complexity framework from Section 3, we now prove that the
SFT-Sharpening and RLHF-Sharpening families of algorithms provably learn a sharpened model for
the maximum likelihood sharpening objective. We treat the model class Π as a fixed, user-specified
input. In the tradition of statistical learning theory, our results allow for general classes Π and are
agnostic to its structure beyond standard generalization arguments.

4.1 ANALYSIS OF SFT-Sharpening

Recall that when we specialize to the maximum-likelihood sharpening self-reward, the
SFT-Sharpening algorithm takes the form π̂BoN = argmaxπ∈Π

∑n
i=1 log πbase(y

BoN
i | xi), where

yBoNi = argmaxj∈[N ]{log πbase(yi,j | xi)} for yi,1, . . . , yi,N ∼ πbase(· | xi).

To analyze SFT-Sharpening, we first make a realizability assumption. Let πBoN
N (x) be the distribution

of the random variable yBoNN (x) ∼ argmax{log πbase(yi | x) | y1, . . . , yN ∼ πbase(x)}.
4This quantity can be interpreted as a special case of the L1-concentrability coefficient (Farahmand et al.,

2010; Xie & Jiang, 2020; Zanette et al., 2021; Amortila et al., 2024) studied in the theory of offline reinforcement
learning.
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Assumption 4.1. The model class Π satisfies πBoN
N ∈ Π.

Our main sample complexity guarantee for SFT-Sharpening is as follows.

Theorem 4.1 (Sample complexity of SFT-Sharpening). Let ϵ, δ, ρ ∈ (0, 1) be given, and sup-
pose we set n = c · log(|Π|ρ−1)

δϵ and N⋆ = c · Ccov log(2δ
−1)

ϵ for an appropriate constant c > 0.
Then with probability at least 1 − ρ, SFT-Sharpening produces a model π̂ such that that
Px∼µ[π̂(y

⋆(x) | x) ≤ 1− δ] ≤ ϵ, and has total sample complexity5

m = O

(
Ccov log(|Π|ρ−1) log(δ−1)

δϵ2

)
. (7)

This result shows that SFT-Sharpening is minimax optimal in the sample-and-evaluate framework
when δ is constant. In particular, the bound in Eq. (7) matches the lower bound in Theorem 3.1 up
to polynomial dependence on δ and logarithmic factors. Whether the 1/δ factor in Eq. (7) can be
removed is an interesting technical question, but may not be practically consequential because—as dis-
cussed in Section 3.2—the regime δ < 1/2 is most meaningful for autoregressive language modeling.

Remark 4.1 (On realizability and coverage). Realizability assumptions such as Assumption 4.1
(which asserts that the class Π is powerful enough to model the distribution of the best-of-N responses)
are standard in learning theory (Agarwal et al., 2019; Foster & Rakhlin, 2023), though certainly
non-trivial (see Appendix E for a natural example where they may not hold). The coverage assumption,
while also standard, when combined with the hypothesis that high-likelihood responses are desirable,
suggests that πbase generates high-quality responses with reasonable probability. In general, doing
so may require leveraging non-trivial serial computation at inference time via procedures such as
Chain-of-Thought (Wei et al., 2022). Although recent work shows that such serial computation
cannot be amortized (Li et al., 2024; Malach, 2023), SFT-Sharpening instead amortizes the parallel
computation of best-of-N sampling, and thus has different representational considerations.

Benefits of adaptive sampling. SFT-Sharpening is optimal in the sample-and-evaluate framework,
but we show in Appendix D that a variant which selects the number of responses adaptively based
on the prompt x can bypass this lower bound, improving the ϵ-dependence in Eq. (7) from 1

ϵ2 to 1
ϵ .

Empirical validation. In Appendix A, we empirically investigate the benefits of BoN on a variety
of model-dataset pairs. Our results, summarized in Table 1 and Figs. 7 and 8, broadly show that the
aforementioned benefits of inference-time sharpening, to an extent, amortized at training time.

4.2 ANALYSIS OF RLHF-Sharpening

We now turn our attention to theoretical guarantees for the RLHF-Sharpening algorithm family,
which uses tools from reinforcement learning to optimize the self-reward function. When specialized
to maximum-likelihood sharpening, the RL objective used by RLHF-Sharpening takes the form
π̂ ≈ argmaxπ∈Π{Eπ[log πbase(y | x)]− βDKL(π ∥πbase)} for β > 0. The exact optimizer
π⋆
β = argmaxπ∈Π{Eπ[log πbase(y | x)]− βDKL(π ∥πbase)} for this objective has the form

π⋆
β(y | x) ∝ π1+β−1

base (y | x), which converges to a sharpened model (per Definition 3.1) as β → 0.

The key challenge we encounter in this section is the mismatch between the RL reward log πbase(y |
x) and the sharpening desideratum π̂(y⋆(x) | x). For example, suppose a unique argmax—say,
y⋆(x)—and second-to-argmax—say, y′(x)—are nearly as likely under πbase. Then the RL reward
Eπ̂[log πbase(y | x)] must be optimized to extremely high precision before π̂ can be guaranteed to
distinguish the two. To quantify this effect, we introduce a margin condition.

Assumption 4.2 (Margin). For a margin parameter γmargin > 0, the base model πbase satisfies

max
y∈Y

πbase(y | x) ≥ (1 + γmargin) · πbase(y
′ | x) ∀y′ /∈ y⋆(x), ∀x ∈ supp(µ).

SFT-Sharpening does not suffer from the pathology in the example above, because once y⋆(x) and
y′(x) are drawn in a batch of N responses, we have yBoNi = y⋆(xi) regardless of margin. However, as
we shall show in Section 4.2.2, the RLHF-Sharpening algorithm is amenable to online exploration,
which may improve dependence on other problem parameters.

5We focus on finite classes for simplicity, following a convention in reinforcement learning theory (Agarwal
et al., 2019; Foster & Rakhlin, 2023), but our results extend to infinite classes through standard arguments.
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4.2.1 GUARANTEES FOR RLHF-Sharpening WITH DIRECT PREFERENCE OPTIMIZATION

The first of our theoretical results for RLHF-Sharpening takes an offline reinforcement learning
approach, whereby we implement Eq. (3) using a reward-based variant of Direct Preference Opti-
mization (DPO) (Rafailov et al., 2023; Gao et al., 2024). Let Dpref = {(x, y, y′)} be a dataset of n
examples sampled via x ∼ µ, y, y′ ∼ πbase(y | x). For a parameter β > 0, we solve π̂ ∈ argminπ∈Π∑

(x,y,y′)∈Dpref

(
β log

π(y | x)
πbase(y | x) − β log

π(y′ | x)
πbase(y′ | x) −

(
log πbase(y | x)− log πbase(y

′ | x)
))2

. (8)

Assumptions. Per Rafailov et al. (2023), the solution to Eq. (8) coincides with that of Eq. (2)
asymptotically. To provide finite-sample guarantees, we make a number of statistical assumptions.
First, we make a natural realizability assumption (e.g., Zhu et al. (2023); Xie et al. (2024)).

Assumption 4.3 (Realizability). The model class Π satisfies π⋆
β ∈ Π.6

Next, we define two concentrability coefficients for a model π:

Cπ = Eπ

[
π(y | x)

πbase(y | x)

]
, and Cπ/π′;β := Eπ

[(
π(y | x)
π′(y | x)

)β
]
. (9)

The following result shows that both coefficients are bounded for the KL-regularized model π⋆
β .

Lemma 4.1. The model π⋆
β satisfies Cπ⋆

β
≤ Ccov and Cπbase/π⋆

β ;β
≤ |Y|.

Motivated by this result, we assume the coefficients in Eq. (9) are bounded for all π ∈ Π.

Assumption 4.4 (Concentrability). All π ∈ Π satisfy Cπ ≤ Cconc for a parameter Cconc ≥ Ccov, and
Cπbase/π;β ≤ Closs for a parameter Closs ≥ |Y|.
By Lemma 4.1, this assumption is consistent with Assumption 4.3 for reasonable bounds on Cconc

and Closs; note that our sample complexity bounds will only incur logarithmic dependence on Closs.

Main result. Our sample complexity guarantee for RLHF-Sharpening (via Eq. (8)) is as follows.

Theorem 4.2. Let ϵ, δ, ρ ∈ (0, 1) be given. Set β ≲ γmarginδϵ, and suppose that Assumptions 4.2
to 4.4 hold with parameters Cconc, Closs, and γmargin > 0. For an appropriate choice for n, the DPO
algorithm (Eq. (8)) ensures that with probability at least 1 − ρ, Px∼µ[π̂(y

⋆(x) | x) ≤ 1− δ] ≤ ϵ,
and has sample complexity

m = Õ

(
Cconc log

3(Closs|Π|ρ−1)

γ2
marginδ

2ϵ2

)
.

Compared to the guarantee for SFT-Sharpening, RLHF-Sharpening learns a sharpened model
with the same dependence on the accuracy ϵ, but a worse dependence on δ; as we primarily
consider δ constant (cf. Proposition 3.1), we view this as relatively unimportant. We further remark
that RLHF-Sharpening uses N = 2 responses per prompt, while SFT-Sharpening uses many
(N ≈ Ccov/ϵ) responses but fewer prompts. Other differences include:

• RLHF-Sharpening requires the margin condition in Assumption 4.2, and has sample complexity
scaling with γ−1

margin. We believe this dependence is natural for algorithms based on reinforcement
learning, as it relates suboptimality with respect to the reward function rself(y | x) = log πbase(y |
x) (i.e., Ex∼µ

[
maxy∈Y log πbase(y | x)− Ey∼π̂(x)[log πbase(y | x)]

]
≤ ϵ, the objective minimized

by reinforcement learning) to approximate sharpening error Px∼µ[π̂(y
⋆(x) | x) ≤ 1− δ]. However,

it is not clear if the precise dependence we pay is necessary.

• RLHF-Sharpening requires a bound on the uniform coverage parameter Cconc, which is generally
larger than the parameter Ccov required by SFT-Sharpening. We expect that this assumption can be
removed by incorporating pessimism (Liu et al., 2024; Huang et al., 2024). Also, RLHF-Sharpening
requires a bound on the parameter Closs, which grants control over the (otherwise unbounded) range
of the reward function log πbase(y | x). Since the dependence on Closs is only logarithmic, we view
this as fairly mild. Overall, the guarantee in Theorem 4.2 may be somewhat pessimistic; it would
be interesting if the result can be improved to match the sample complexity of SFT-Sharpening.

6See Remark 4.1 for a discussion of this assumption.
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4.2.2 BENEFITS OF EXPLORATION

The guarantee in Theorem 4.2 scales with the coverage parameter Ccov = E[1/πbase(y
⋆(x)|x)],

which in general is unavoidable in the sample-and-evaluate framework via our lower bound, The-
orem 3.1. Although Ccov is a problem-dependent parameter, in the worst case it can be as large
as |Y| (which is exponential in sequence length for autoregressive models). Fortunately, unlike
SFT-Sharpening, the RLHF-Sharpening objective (3) is amenable to RL algorithms employing
active exploration, leading to improved sample complexity when the class Π has additional structure.

Our below guarantees for RLHF-Sharpening replace the assumption of bounded coverage with
boundedness of a structural parameter for the model class Π known as the “sequential extrapolation
coefficient” (SEC) (Xie et al., 2023; 2024), which we denote by SEC(Π). The formal definition is
deferred to Appendix J.2. Conceptually, SEC(Π) may thought of as a generalization of the eluder
dimension (Russo & Van Roy, 2013; Jin et al., 2021). It can always be bounded by the coverability
coefficient of the model class (Xie et al., 2024) and can be as large as Cconc in the worst case, so that
bounds based on the SEC reflect improvements that are possible in favorable instances.

Beyond boundedness of the SEC, we require a bound on the range of the log-probabilities of πbase.

Assumption 4.5 (Bounded log-probabilities). For all π ∈ Π, (x, y) ∈ X ×Y ,
∣∣log 1

πbase(y|x)
∣∣ ≤ Rmax.

We expect that the dependence on Rmax in our result can be replaced with log(Closs) (Assump-
tion 4.4), but we omit this extension to simplify presentation.

We appeal to (a slight modification of) XPO, an iterative language model alignment algorithm due to
Xie et al. (2024). XPO is based on the objective in Eq. (8), but unlike DPO, incorporates a bonus term
to encourage exploration to leverage online interaction. See Appendix J.2 for a detailed overview.

Theorem 4.3 (Informal version of Theorem J.2). Suppose that Assumptions 4.2 and 4.5 hold with
parameters γmargin, Rmax > 0, and that Assumption 4.3 holds with β = γmargin/(2 log(2|Y|/δ)).
For any m ∈ N and ρ ∈ (0, 1), XPO (Algorithm 1), when configured appropriately, produces an
(ϵ, δ)-sharpened model π̂ ∈ Π with probability at least 1− ρ, and uses sample complexity7

m = Õ

(
SEC(Π) · log(|Π|ρ−1)

γ2
marginδ

2ϵ2

)
.

The takeaway from Theorem 4.3 is that there is no dependence on the coverage coefficient for πbase.
Instead, the rate depends on the complexity of exploration, as governed by the sequential extrapolation
coefficient SEC(Π). We expect similar guarantees can derived for other active exploration algorithms
and complexity measures (Jiang et al., 2017; Foster et al., 2021; Jin et al., 2021; Xie et al., 2023).

5 CONCLUSION

We view our theoretical framework for sharpening as a starting point toward a foundational under-
standing of self-improvement that can guide the design and evaluation of algorithms. To this end, we
raise several directions for future research.

• Representation learning. A conceptually appealing feature of our framework is that it is agnostic
to the structure of the model under consideration, but an important direction for future work is
to study the dynamics of self-improvement for specific models/architectures and understand the
representations that these models learn under self-training.

• Richer forms of self-reward. Our theoretical results study the dynamics of self-training in a stylized
framework where the model uses its own log-probabilities as a self-reward. Empirical research on
self-improvement leverages more sophisticated approaches (e.g., specific prompting techniques)
(Huang et al., 2022; Wang et al., 2022; Bai et al., 2022b; Pang et al., 2023; Yuan et al., 2024) and it
is important to understand when and how these forms of self-improvement are beneficial.

7Technically, Algorithm 1 operates in a slight generalization of the sample-and-evaluate framework (Defini-
tion 3.2), where the algorithm is allowed to query πbase(y | x) for arbitrary x, y. We expect that our lower bound
(Theorem 3.1) can be extended to this more general framework, in which case Algorithm 1 is fundamentally
using additional structure of Π (via the SEC) to avoid dependence on Ccov.
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Part I

Additional Discussion and Results

A ADDITIONAL EXPERIMENTS AND DETAILS

In this section we detail the precise setup required to replicate our empirical results. All of our experi-
ments were run either on 40G NVIDIA A100 GPUs, 192G AMD MI300X GPUs, or through the Ope-
nAI API. We considered the following models. All models, except for gpt-3.5-turbo-instruct,
are available on https://huggingface.co and we provide HuggingFace model identifiers below.

1. Phi models: We experiment with several models from the Phi family of models (Abdin et al.,
2024), specifically Phi3-Mini (“microsoft/Phi-3-mini-4k-instruct”), Phi3-Small (“microsoft/Phi-
3-small-8k-instruct”), Phi3-Medium (“microsoft/Phi-3-medium-4k-instruct”), and Phi3.5-Mini
(“microsoft/Phi-3.5-mini-instruct”).

2. Llama3.2-3B-Instruct (“meta-llama/Llama-3.2-3B-Instruct”) (Dubey et al., 2024)

3. Mistral-7B-Instruct-v0.3 (“mistralai/Mistral-7B-Instruct-v0.3”) (Jiang et al., 2023)

4. gpt-3.5-turbo-instruct (Brown et al., 2020): We access this model via the OpenAI API.

5. llama2-7b-game24-policy-hf (“OhCherryFire/llama2-7b-game24-policy-hf”): We use the
model of Wan et al. (2024), which is a Llama-2 model finetuned on the GameOf24 task (Yao
et al., 2024). We use this model only the GameOf24 task.

We consider the following tasks:

1. MATH: We use the above models to generate responses to prompts from the MATH (Hendrycks et al.,
2021), which consists of more difficult math questions. We consider “all” subsets and take the
first 256 examples of the test set where the solution matches the regular expression (\d*).8

2. GSM8k: We use the above models to generate responses to prompts from the GSM-8k dataset
(Cobbe et al., 2021) where the goal is to generate a correct answer to an elementary school math
question. We take the first 256 examples from the test set in the main subset.9

3. ProntoQA: We use the above models to generate responses to prompts from the ProntoQA dataset
(Saparov & He, 2023), which consists of chain-of-thought-style reasoning questions with boolean
answers. We take the first 256 examples from the training set.10

4. MMLU: We use the above models to generate responses to prompts from three subsets of the MMLU
dataset (Hendrycks et al., 2020), specifically college_biology (Bio),college_physics (Phys),
and college_chemistry (Chem) all of which consist of multiple choice questions11. We take the
first 256 examples of the test set.

5. GameOf24: We use only the model of Wan et al. (2024) (i.e., llama2-7b-game24-policy-hf),
on the GameOf24 task (Yao et al., 2024). The prompts are four numbers and the goal is to combine
the numbers with standard arithmetic operations to reach the number ‘24.’ Here we use both the
train and test splits of the dataset.12

A.1 INFERENCE-TIME VALIDATION EXPERIMENTS

To form the plots in Figure 1 and in Figures 3 and 4, for each (model, task) pair, we sampled N
generations per prompt with temperature 1 and returned the best of the N generations according to the
maximum-likelihood sharpening self-reward function rself(y | x) = log πbase(y | x); we compare
against greedy decoding as a baseline, whose accuracy is displayed in Figure 2(d).

8https://huggingface.co/datasets/lighteval/MATH.
9https://huggingface.co/datasets/openai/gsm8k.

10https://huggingface.co/datasets/longface/prontoqa-train.
11https://huggingface.co/datasets/cais/mmlu.
12https://github.com/princeton-nlp/tree-of-thought-llm/tree/master/src/tot/data/24
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Figure 2: Performance of alternative decoding schemes beyond BoN. Percent accuracy improvement
over greedy decoding for self-improvement with length-normalized log probability (a) and majority
voting (b), with both demonstrating efficacy on a range of model-task pairs. (c) Measure of coverage
of correct answer, demonstrating that most model-task pairs produce the correct answer most of
the time with at least one completion out of 50. (d) Accuracy of greedy decoding baseline on each
model-task pair.

Implementation details. For all models and datasets except for GameOf24, we used 1-shot prompt-
ing to ensure that models conform to the desired output format and to elicit chain of thought reasoning
(for GameOf24 we do not provide a demonstration in the prompt). We set the maximum length of
decoding to be 512 tokens. We used 10 seeds for all (model, task) pairs with a maximum value of
N = 50 in Best-of-N sampling. We simulated N responses for N < 50 by subsamplng the 50
generated samples. For Best-of-N sampling, we always use temperature 1.0. Since greedy decoding
is a deterministic strategy, we only use 1 seed for each (model, task) pair. In all experiments, we
collect both the responses and their log-likelihoods under the reference model (i.e., the original model
from which samples were generated).

Results. Results for most datasets are presented in Figures 3 and 4. Because we only consider
a single model for GameOf24, we separate this task into Figure 5 For all datasets, we visualize
both performance—measured as normalized improvement in accuracy over greedy decoding—and
log-likelihoods—under πbase—of the selected responses.

In all cases, Best-of-N sampling (using rself(y | x) = log πbase(y | x)) improves over the naïve
sampling strategy, wherein we simply sample a single generation with temperature 1.0. In all datasets,
we also see improvements over the standard greedy decoding strategy, at least for some models.
Analogously, for every model, there is at least one dataset for which Best-of-N sampling improves
over greedy decoding.

We further explore the relationship between sequence level log probabilities and generation quality in
Figure 6, where we plot the empirical distributions of responses sampled with temperature 1 from

20



Published as a conference paper at ICLR 2025

0 10 20 30 40 50N0
20
40
60
80

100
120
140

% Li
ft ov

er G
reed

y
MATH

Phi3 (Mini)Phi3.5 (Mini)Phi3 (Small)Phi3 (Medium)Mistral-7BLlama3.2-3BGPT-3.5

(a)

0 10 20 30 40 50N80
85
90
95

100
105
110
115

% Li
ft ov

er G
reed

y

GSM8K

(b)

0 10 20 30 40 50N85
90
95

100
105
110
115
120

% Li
ft ov

er G
reed

y

ProntoQA

(c)

0 10 20 30 40 50N300
250
200
150
100

50
0

50
Log 

Prob
abili

ty ov
er G

reed
y Bio

Phi3 (Mini)Phi3.5 (Mini)Phi3 (Small)Phi3 (Medium)Mistral-7BLlama3.2-3BGPT-3.5

(d)

0 10 20 30 40 50N75
100
125
150
175
200
225
250

% Li
ft ov

er G
reed

y

Phys

(e)

0 10 20 30 40 50N80859095100105110115120125

% Li
ft ov

er G
reed

y

Chem

(f)

Figure 3: Percent lift in accuracy of inference-time BoN-sharpening over greedy decoding in each
task as N is varied. For many task-model pairs, the accuracy improves as N increases, demonstrating
the efficacy of maximum likelihood sharpening.

21



Published as a conference paper at ICLR 2025

0 10 20 30 40 50N175
150
125
100

75
50
25

0
25

Log 
Prob

abili
ty ov

er G
reed

y MATH

Phi3 (Mini)Phi3.5 (Mini)Phi3 (Small)Phi3 (Medium)Mistral-7BLlama3.2-3BGPT-3.5

(a)

0 10 20 30 40 50N1751501251007550250
2550

Log 
Prob

abili
ty ov

er G
reed

y GSM8K

Phi3 (Mini)Phi3.5 (Mini)Phi3 (Small)Phi3 (Medium)Mistral-7BLlama3.2-3BGPT-3.5

(b)

0 10 20 30 40 50N140120100806040200
2040

Log 
Prob

abili
ty ov

er G
reed

y ProntoQA

Phi3 (Mini)Phi3.5 (Mini)Phi3 (Small)Phi3 (Medium)Mistral-7BLlama3.2-3BGPT-3.5

(c)

0 10 20 30 40 50N300
250
200
150
100

50
0

50
Log 

Prob
abili

ty ov
er G

reed
y Bio

Phi3 (Mini)Phi3.5 (Mini)Phi3 (Small)Phi3 (Medium)Mistral-7BLlama3.2-3BGPT-3.5

(d)

0 10 20 30 40 50N300
250
200
150
100

50
0

50

Log 
Prob

abili
ty ov

er G
reed

y Phys

Phi3 (Mini)Phi3.5 (Mini)Phi3 (Small)Phi3 (Medium)Mistral-7BLlama3.2-3BGPT-3.5

(e)

0 10 20 30 40 50N500
400
300
200
100

0
100

Log 
Prob

abili
ty ov

er G
reed

y Chem

Phi3 (Mini)Phi3.5 (Mini)Phi3 (Small)Phi3 (Medium)Mistral-7BLlama3.2-3BGPT-3.5

(f)

Figure 4: Effect of N on average sequence level log-probabilities for inference-time BoN-sharpening
on various model-task pairs, compared to greedy decoding baseline. As predicted by theory, the
likelihood of sequences sampled with BoN-sharpening increases with N .
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the base model for a variety of model-dataset pairs, conditioned on whether or not the response is
correct. It is clear from the figures that the distribution of log probabilities conditioned on correctness
stochastically dominates that conditioned on incorrectness in each case, which provides yet more
evidence that log likelihoods represent a reasonable sel-improvement target.

We mention several other observations from the experiments. First, in most cases, performance and
log-likelihood saturate at relatively small values of N , typically around 10 or 20. This suggests that
significant improvements can be obtained with relatively low computational overhead. Second, in
some cases, performance can degrade as N increases. We found that this happens for two reasons:
(1) the performance of the reference model is quite low and so rself provides a poor signal (e.g.,
with Llama3.2-3B-Instruct) and (2) the Best-of-N criteria selects for short responses, which have
higher log-likelihood but cannot leverage the computational/representational benefits of chain-of-
thought, and thus yield worse performance (e.g., with gpt-3.5-turbo-instruct on GSM8k).
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Figure 5: Effect of inference-time BoN-sharpening on GameOf24 with the finetuned
llama2-7b-game24-policy-hf from Wan et al. (2024).

A.2 EXPERIMENTS WITH OTHER SELF REWARD FUNCTIONS

Although we focus on rself(y | x) = log πbase(y | x) throughout the paper, the sharpening frame-
work is significantly more general. As such, we also ran experiments with other choices for rself,
specifically:

1. Length-normalized log-likelihood: rself(y | x) = log πbase(y | x)/|y| where |y| is the length, in
tokens, of the response.

2. Majority (self-consistency): All datasets except GameOf24 have multiple-choice, boolean, or
numerical answers. Although we allow responses to contain chain-of-thought tokens, we can
extract the answer from each response and use the most-frequently-occuring answer. This can
be seen as a sample-based approximation to the following self-reward function: rself(y | x) =∑

y′:y′
ans=yans

πbase(y
′ | x), where yans are the “answer” tokens in the full response y.

Finally, as a skyline we consider the coverage criterion (Brown et al., 2024), where we simply check
if any of the sampled responses corresponds to the correct answer. This criterion is a skyline and
does not fit into the self-improvement framework due to the fact that it uses knowledge of the ground
truth (external) task reward function.

Results are displayed in Figure 2. For length-normalized log-likelihood and majority, we see
qualitatively similar behavior to (unnormalized) log-likelihood in the sense that inference-time
sharpening via these self-reward functions offers improvements over both vanilla (temperature 1.0)
sampling and greedy decoding. In both cases, the improvements are generally much larger than those
obtained with log-likelihood. Finally, examining the coverage criteria, we see that with N = 50
samples, these models almost always produce a correct answer on these tasks, raising the possibility
of other self-reward functions that further improve performance.
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Figure 6: Distribution of sequence-level log-probabilities for responses sampled with tempera-
ture 1, conditioned on whether or not the response is correct. We consider four model-dataset
pairs: (a) (Phi3.5-Mini, MATH); (b) (Phi3.5-Mini, GSM8k); (c) (Phi3.5-Mini, ProntoQA); (d)
(Mistral-7B-Instruct-v0.3, MATH). In all cases except perhaps (c), conditioning on correctness of
the response leads to a noticeable increase in log-probabilities, further justifying the use of sequence-
level log-probabilities as a self-reward for self-improvement.
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Model Dataset % Lift over Greedy (Accuracy) Lift over Greedy (Likelihood)
Phi3.5-Mini MATH 19.24± 2.41 48.33± 0.17
Phi3.5-Mini GSM8k 1.82± 0.64 1.49± 0.55
Phi3.5-Mini ProntoQA 12.46± 1.08 5.64± 0.01
Mistral-7B MATH 8.88± 5.55 5.71± 3.00

Table 1: Experimental results for SFT-Sharpening

Model Dataset Weight Decay LoRA Rank
Phi3.5-Mini MATH 0.1 16
Phi3.5-Mini GSM8k 0.5 16
Phi3.5-Mini ProntoQA 0.0 16

Mistral-7B-Instruct-v0.3 MATH 1.0 8

Table 2: Hyperparameters for SFT-Sharpening

A.3 EFFECT OF SFT-Sharpening

In addition to inference-time experiments demonstrating the validity of the amortization objective
considered in our theory, we also demonstrate empirically that amortization can be effected with
SFT-Sharpening. Due to the realities of limited computational resources, we choose a strict subset of
the model-task pairs considered in Appendix A.1 that have particularly promising inference-time BoN
performance and apply SFT-Sharpening to amortize the inference time cost of multiple generations.

For each of the chosen model-dataset pairs (cf. Table 1), we sample N = 50 responses with
temperature 1 for each prompt in the dataset and select the most likely (according to the relevant
reference model). We then combine these likely responses with the prompts in order to form a training
corpus and train a Low Rank Adaptation (Hu et al., 2021) to the model, sweeping over LoRA rank,
learning rate scheduler, and weight decay in order to return the best optimized model.13 We report
the specific hyperparamters chosen in Table 2. On all models, we used a learning rate of 3× 10−4

with linear decay to zero and gradient clamping at 0.1.

Results. In Table 1 we report our results for the best model during training of each model-dataset
pair, averaged across 3 random seeds, where responses are sampled with temperature 1 from the
fine-tuned model. We report both the percent lift in accuracy on the dataset with respect to the
greedy generation of the reference model and the increase in average sequence level log likelihood
with respect to the same. In all cases, we see improvement on both metrics, demonstrating that
some amortization is possible with SFT-Sharpening. In Figures 7 and 8, we display the evolution
throughout training of these same metrics for each of the model-dataset pairs. While Phi3.5-Mini
is quite well-behaved on MATH and ProntoQA, there appears to be a fair amount of noise in the
training on GSM8k, with the log probability being a significantly less useful proxy for accuracy on
this dataset than the others, as has been previously found in Block et al. (2023). In the case of
Mistral-7B-Instruct-v0.3 on MATH, while we do see some improvement after sufficient training,
the optimization suffers an initial substantial drop and then spends ∼ 90% of the gradient steps recov-
ering; we speculate that this is a function of insufficient hyper-parameter tuning of the optimization
itself, rather than a fundamental barrier.

Finally, in Figure 9, we investigate the effect that the choice of N has on SFT-Sharpening for
Phi3.5-Mini on MATH. In particular, in forming our training set, we choose N ∈ {10, 25, 50} and
repeat the procedure described above, averaging our results over three seeds. We find that increasing
N leads to a modest increase in the sequence-level log-likelihood and a consequent increment in the
accuracy of the fine-tuned model, in accordance with our theory.

13In all experiments involving Phi3.5-Mini we use a batch size of 4; unfortunately, due to a known numerical
issue with LoRA on Mistral-7B-Instruct-v0.3 involving batch size > 1, we use a batch of 1 in this case. Be-
cause of this choice, instead of the 30 epochs we use to train our other models, for Mistral-7B-Instruct-v0.3,
we run only 10 epochs.
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Figure 7: Evolution of Phi3.5-Mini under SFT-Sharpening (N = 50) on different datasets, as
measured by (i) % lift over Greedy in accuracy; and (ii) difference in average sequence-level log-
probability of generated responses under the reference model. The fine-tuned model learns to produce
generations with high probability under the reference model, and consequently enjoys an increase in
accuracy compared to the base model. However, the model does not fully reach the performance of
inference-time BoN sharpening.

B DETAILED DISCUSSION OF RELATED WORK

In this section, we discuss related work in greater detail, including relevant works not already covered.
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Figure 8: Evolution of Mistral-7B-Instruct-v0.3 under SFT-Sharpening (N = 50) on MATH,
as measured by (i) % lift over Greedy in accuracy; and (ii) difference in average sequence-level
log-probability of generated responses under the reference model.
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Figure 9: Effect of N on SFT-Sharpening for Phi3.5-Mini on MATH. We report (a) % lift in accuracy
over greedy; and (b) lift in sequence-level log-likelihood (averaged over the dataset). In both cases,
we see that increasing N leads to greater lift, in accordance with theory.
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Self-improvement and self-training. Our work is most directly related to a growing body of
empirical research that studies self-improvement/self-training for language models in a supervision-
free setting in which there is no external feedback (Huang et al., 2022; Wang et al., 2022; Bai et al.,
2022b; Pang et al., 2023), and takes a first step toward providing a theoretical understanding for these
methods. There is also a closely related body of research on “LLM-as-a-Judge” techniques, which
investigates approaches to designing self-reward functions rself, often based on specific prompting
techniques (Zheng et al., 2024; Yuan et al., 2024; Wu et al., 2024a; Wang et al., 2024).

A somewhat complementary line of research develops algorithms based on self-training and self-play
(Zelikman et al., 2022; Chen et al., 2024; Wu et al., 2024c; Qu et al., 2024), but leverages various
forms of external feedback (e.g., positive examples for SFT or explicit reward signal). These methods
typically outperform feedback-free self-improvement methods (Zelikman et al., 2022). However, in
many scenarios, obtaining external feedback can be costly or laborious; it may require collecting
high-quality labeled/annotated data, rewriting examples in a formal language, etc. Thus, these two
approaches are not directly comparable.

We also mention that the self-improvement problem we study is related to a classical line of research
on self-distillation (Buciluǎ et al., 2006; Hinton et al., 2015; Devlin, 2018; Pham et al., 2021; Rizve
et al., 2021), but this specific form of self-training has received limited investigation in the context of
language modeling.

Entropy minimization. Sharpening is also closely related to a line of work on entropy minimization
or minimum entropy regularization, where we seek models that have high predictive accuracy and low
entropy/uncertainty. This line of work originated in the semi-supervised learning literature (Grand-
valet & Bengio, 2004) and was popularized as a test-time adaptation method in computer vision (c.f.,
Wang et al., 2020; Press et al., 2024). Maximum-likelihood sharpening, especially via RL, is closely
related in that Eq. (3) with β → 0 and rself = log πbase maximizes Eπ[log πbase(y | x)] rather than
−H(π) = Eπ[log π(y | x)]. (It is important that the latter is optimized continuously with πbase as
an initialization, but when this is done it can be seen to sharpen πbase, at least heuristically.) Prior
work in this direction is largely empirical, focused on computer vision domains with small output
spaces Y , and hence studies statistical benefits of entropy minimization. In contrast, we initiate a
theoretical study of sharpening, are primarily motivated by applications to language modeling with
exponentially large output spaces, and view sharpening primarily as a computational phenomena.
However, it would be interesting to understand whether statistical benefits observed in computer
vision translate to the language modeling setting.

Alignment and RLHF. The specific algorithms for self-improvement/sharpening we study can
be viewed as special cases of standard alignment algorithms, including classical RLHF methods
(Christiano et al., 2017; Bai et al., 2022a; Ouyang et al., 2022), direct alignment (Rafailov et al.,
2023), and (inference-time or training-time) best-of-N methods (Amini et al., 2024; Sessa et al.,
2024; Gui et al., 2024; Pace et al., 2024). However, the maximum likelihood sharpening objective (2)
used for our theoretical results has been relatively unexplored within the alignment literature.

Inference-time decoding. Many inference-time decoding strategies such as greedy/low-temperature
decoding, beam-search (Meister et al., 2020), and chain-of-thought decoding (Wang & Zhou, 2024)
can be viewed as instances of inference-time sharpening for specific choices of the self-reward
function rself. More sophisticated inference-time search strategies such tree search and MCTS (Yao
et al., 2024; Wan et al., 2024; Mudgal et al., 2023; Zhao et al., 2024) are also related, though this
line of work frequently makes use of external reward signals or verification, which is somewhat
complementary to our work.

Theoretical guarantees for self-training. On the theoretical side, current understanding of self-
training is limited. One line of work, focusing on the self-distillation objective (Hinton et al., 2015)
for binary classification and regression, aims to provide convergence guarantees for self-training
in stylized setups such as linear models (Mobahi et al., 2020; Das & Sanghavi, 2023; Das et al.,
2024; Pareek et al., 2024), with Allen-Zhu & Li (2020) giving guarantees for feedforward neural
networks. Perhaps most closely related to our work is Frei et al. (2022), who show that self-training
on a model’s pseudo-labels can amplify the margin for linear logistic regression. However, to the best
of our knowledge, our work is the first to study self-training in a general framework that subsumes
language modeling.
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Our results for RLHF-Sharpening are related to a body of work that provides sample complexity
guarantees for alignment methods (Zhu et al., 2023; Xiong et al., 2023; Ye et al., 2024; Huang et al.,
2024; Liu et al., 2024; Song et al., 2024; Xie et al., 2024), but our results leverage the structure
of the maximum-likelihood sharpening self-reward function rself(y | x) = log πbase(y | x), and
provide guarantees for the sharpening objective in Definition 3.1 instead of the usual notion of reward
suboptimality used in reinforcement learning theory.

Lastly, we mention that our results—particularly our amortization perspective on self-improvement—
are related to work that studies representational advantages afforded by additional inference time
(Malach, 2023; Li et al., 2024). These work focus on truly sequential tasks, while our work focuses
on the complementary question of amortizing parallel computation. Thus the representational
implications are quite different.

Optimization versus sampling. The maximum-likelihood sharpening objective we introduce in
Section 3 connects the study of self-improvement to a large body of research in theoretical computer
science on computational tradeoffs (e.g., separations and equivalences) between optimization and
sampling (Barahona, 1982; Kirkpatrick et al., 1983; Lovász & Vempala, 2006; Singh & Vishnoi,
2014; Ma et al., 2019; Talwar, 2019; Eldan et al., 2022). On the one hand, this line of research
highlights that there exist natural classes of distributions for which sampling is tractable, yet maximum
likelihood optimization is intractable, and vice-versa. On the other hand, various works in this line of
research also demonstrate computational reductions between optimization and sampling, whereby
optimization can be reduced to sampling and vice-versa.

Our setting indeed includes natural model classes where one should not expect there to be a com-
putational reduction from optimization (argmaxy∈Y πbase(y | x)) to sampling (y ∼ πbase(· | x)),
and hence inference-time sharpening is computationally intractable (Proposition E.1). Of course,
coverage assumptions eliminate this intractability. For training-time sharpening (where the goal is to
amortize across prompts by training a sharpened model, as formulated in Section 3) the obstacle in
natural, concrete model classes is not just computational but in fact representational (Proposition E.2).
Regarding the latter point, we note that while amortized Bayesian inference has received extensive
investigation empirically (Beal, 2003; Gershman & Goodman, 2014; Swersky et al., 2020; Bengio
et al., 2021; Hu et al., 2023), we are unaware of theoretical guarantees outside of this work.

C GUARANTEES FOR INFERENCE-TIME SHARPENING

In this section, we give theoretical guarantees for the inference-time best-of-N sampling algorithm for
sharpening described in Section 3.1, under the maximum-likelihood sharpening self-reward function

rself(y | x;πbase) = log πbase(y | x).

Recall that given a prompt x ∈ X , the inference-time best-of-N sampling algorithm draws N
responses y1, . . . , yn ∼ πbase(· | x), then return the response ŷ = argmaxyi

log πbase(yi | x). We
show that this algorithm returns an approximate maximizer for the maximum-likelihood sharpening
objective whenever the base policy πbase has sufficient coverage. For a parameter γ ∈ [0, 1) we define

y⋆
γ(x) :=

{
y | πbase(y | x) ≥ (1− γ) ·max

y∈Y
πbase(y | x)

}
as the set of (1− γ)-approximate maximizers for log πbase(y | x) (see Appendix F.1 for background
on y⋆

γ(x)).

Proposition C.1. Let a prompt x ∈ X be given. For any ρ ∈ (0, 1) and γ ∈ [0, 1), as long as

N ≥ log(ρ−1)

πbase(y⋆
γ(x) | x)

,

inference-time best-of-N sampling produces a response ŷ ∈ y⋆
γ(x) with probability at least 1− ρ.

Proof of Proposition C.1. Fix a prompt x ∈ X , failure probability ρ ∈ (0, 1), and parameter
γ ∈ (0, 1). By definition of the set y⋆

γ(x), ŷ ∈ y⋆
γ(x) if and only if there exists i ∈ [N ] such that

yi ∈ y⋆
γ(x). The complement of this event, i.e., that yi /∈ y⋆

γ(x) for all i ∈ [N ], has probability

P
(
yi /∈ y⋆

γ(x),∀i ∈ [N ]
)
=
(
1− πbase(y

⋆
γ(x) | x)

)N
.
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Rearranging the right-hand side, we have(
1− πbase(y

⋆
γ | x)

)N
= exp

(
−N log

(
1

1− πbase(y⋆
γ | x)

))
≤ exp

(
−N · πbase(y

⋆
γ | x)

)
,

since log(x) ≥ 1 − 1
x for x > 0, which implies that log

(
1

1−πbase(y⋆
γ |x)

)
≥ πbase(y

⋆
γ | x). Thus, as

long as N ≥ log(ρ−1)
πbase(y⋆

γ |x)
, we have

P
(
yi /∈ y⋆

γ(x),∀i ∈ [N ]
)
≤ exp

(
−N · πbase(y

⋆
γ | x)

)
≤ exp(− log(ρ−1)) = ρ.

We conclude that with probability at least 1 − ρ, there exists i ∈ [N ] such that yi ∈ y⋆
γ(x), and

ŷ ∈ y⋆
γ(x) as a result.

D GUARANTEES FOR SFT-Sharpening WITH ADAPTIVE SAMPLING

SFT-Sharpening is a simple and natural self-training scheme, and converges to a sharpened policy
as n,N → ∞. However, using a fixed response sample size N may be wasteful for prompts
where the model is confident. To this end, in this section we introduce and analyze, a variant of
SFT-Sharpening based on adaptive sampling, which adjusts the number of sampled responses
adaptively.

Algorithm. We present the adaptive SFT-Sharpening algorithm only for the special case of the
maximum likelihood sharpening self-reward. Let a stopping parameter µ > 0 be given. For xi ∈ X ,
and yi,1, yi,2 . . . ∼ πbase(· | xi), define a stopping time (e.g., Benjamini & Hochberg (1995)) via:

Nµ(xi) := inf

{
k :

1

max1≤j≤k πbase(yi,j | xi)
≤ k

µ

}
. (10)

The adaptive SFT-Sharpening algorithm computes adaptively sampled responses yAdaBoNi via

yAdaBoNi ∼ argmax
{
log πbase(yi,j | xi) | yi,1, . . . , yi,Nµ(xi)

}
,

then trains the sharpened model through SFT:

π̂AdaBoN = argmax
π∈Π

n∑
i=1

log π(yAdaBoNi | xi).

Critically, by using scheme in Eq. (10), this algorithm can stop sampling responses for the prompt xi

if it becomes clear that the confidence is large.

Theoretical guarantee. We now show that adaptive SFT-Sharpening enjoys provable benefits
over its non-adaptive counterpart through the dependence on the accuracy parameter ϵ > 0.

Given x ∈ X , and y1, y2 . . . ∼ πbase(x), let Nµ(x) := inf{k : 1
max1≤i≤k πbase(yi|x) ≤ k/µ}, and

define a random variable yAdaBoN(x) ∼ argmax
{
log πbase(yi | x) | y1, . . . , yNµ

∼ πbase(x)
}

. Let
πAdaBoN
µ (x) denote the distribution over yAdaBoN(x). We make the following realizability assumption.

Assumption D.1. The model class Π satisfies πAdaBoN
µ ∈ Π.

Compared to SFT-Sharpening, we require a somewhat stronger coverage coefficient given by

Ccov = Ex∼µ

[
1

maxy∈Y πbase(y | x)

]
.

This definition coincides with Eq. (6) when the arg-max response is unique, but is larger in general.

Our main theoretical guarantee for adaptive SFT-Sharpening is as follows.

30



Published as a conference paper at ICLR 2025

Theorem D.1. Let δ, ρ ∈ (0, 1) be given. Set µ = ln(2δ−1), and assume Assumption D.1 holds.
Then with probability at least 1− ρ, the adaptive SFT-Sharpening algorithm has

Px∼µ[π̂(y
⋆(x) | x) ≤ 1− δ] ≲

log(|Π|ρ−1)

δn
,

and has sample complexity E[m] = n · Ccov log(δ
−1). Taking n ≳ log(|Π|ρ−1)

δϵ ensures that with
probability at least 1− ρ, Px∼µ[π̂(y

⋆(x) | x) ≤ 1− δ] ≤ ϵ, and gives total sample complexity

E[m] = O

(
Ccov log(|Π|ρ−1) log(δ−1)

δϵ

)
.

Compared to the result for SFT-Sharpening in Theorem 4.1, this shows that adaptive
SFT-Sharpening achieves sample complexity scaling with 1

ϵ instead of 1
ϵ2 . We believe the

dependence on Ccov for this algorithm is tight, as the adaptive stopping rule used in the algorithm
can be overly conservative when |y⋆(x)| is large.

A matching lower bound. We now prove a complementary lower bound, which shows that the
ϵ-dependence in Theorem D.1 is tight. To do so, we consider the following adaptive variant of the
sample-and-evaluate framework.

Definition D.1 (Adaptive sample-and-evaluate framework). In the Adaptive Sample-and-Evaluate
framework, the learner is allowed to sample n prompts x ∼ µ, and sample an arbitrary, adaptively
chosen number of samples y1, y2, · · · ∼ πbase(· | x) before sampling a new prompt x′ ∼ µ. In
this framework we define sample complexity m as the total number of pairs (x, y) sampled by the
algorithm, which is a random variable.

Our main lower bound is as follows.

Theorem D.2 (Lower bound for sharpening under adaptive sampling). Fix an integer d ≥ 1 and
parameters ϵ ∈ (0, 1) and C ≥ 1. There exists a class of models Π such that (i) log |Π| ≂
d(1 + log(Cϵ−1)), (ii) supπ∈Π Ccov(π) ≲ C, and (iii) yπ(x) is a singleton for all π ∈ Π, for
which any sharpening algorithm π̂ in the adaptive sample-and-evaluate framework that achieves
E[Px∼µ[π̂(y

πbase(x) | x) > 1/2]] ≥ 1− ϵ for all πbase ∈ Π must collect a total number of samples
m = n ·N at least

E[m] ≳
C log |Π|

ϵ · (1 + log(Cϵ−1))
.

Theorem D.2 is a special case of a more general theorem, Theorem 3.1′, which is stated and proven
in Appendix H.

E COMPUTATIONAL AND REPRESENTATIONAL CHALLENGES IN SHARPENING

In this section, we make several basic observations about the inherent computational and repre-
sentational challenges of maximum-likelihood sharpening. First, in Appendix E.1, we focus on
computational challenges, and show that computing a sharpened response for a given prompt x can
be computationally intractable in general, even when sampling y ∼ πbase(· | x) can be performed
efficiently. Then, in Appendix E.2, we shift our focus to representational challenges, and show that
even if πbase is an autoregressive model, the “sharpened” version of πbase may not be representable as
an autoregressive model with the same architecture. These results motivate the statistical assumptions
(coverage and realizability) made in our analysis of SFT-Sharpening and RLHF-Sharpening in
Section 4.

To make the results in this section precise, we work in perhaps the simplest special case of autore-
gressive language modelling, where the model class consists of multi-layer linear softmax models.
Formally, let X be the space of prompts, and let Y := VH be the space of responses, where V is
the vocabulary space and H is the horizon. For a collection of fixed/known d-dimensional feature
mappings ϕh : X × Vh → Rd and a norm parameter B, we define the model class Πϕ,B,H as the set
of models

πθ(y1:H | x) =
H∏

h=1

πθh(yh | x, y1:h−1) (11)
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where
πθ(yh | x, y1:h−1) ∝ exp(⟨ϕ(x, y1:h), θh⟩)

and θ = (θ1, . . . , θH) ∈ (Rd)H is any tuple with ∥θh∥2 ≤ B for all h ∈ [H].

E.1 COMPUTATIONAL CHALLENGES

Given query access to ϕ, for any given parameter vector θ and prompt x, sampling from a linear
softmax model πθ (Eq. (11)) is computationally tractable, since it only requires time poly(H, |V|, d).
Similarly, evaluating πθ(y1:H | x) for given prompt x and response y1:H is computationally
tractable. However, the following proposition shows that computing the sharpened response
argmaxy1:H∈VH πθ(y1:H | x) for a given parameter θ and response x is NP-hard. Hence, even
inference-time sharpening is computationally intractable in the worst case.

Proposition E.1. Set X = {⊥} and V = {−1, 1}. Set d = d(H) := H +H2 +H3. Identifying [d]
with [H] ⊔ [H]2 ⊔ [H]3, we define ϕh : X × Vh → Rd by ϕh(⊥, y1:h)i = yi and ϕh(⊥, y1:h)(i,j) =
yiyj and ϕh(⊥, y1:h)(i,j,k) = yiyjyk. There is a function B(H) ≤ poly(H) such that the following
problem is NP-hard: given θ = (θ1, . . . , θH) with maxh∈[H]∥θh∥2 ≤ B(H), compute any element
of argmaxy1:H∈VH πθ(y1:H | x).

Note that our results in Section 4 and Appendix C bypass this hardness through the assumption that
the coverage parameter Ccov is bounded.

Proof of Proposition E.1. Fix H and recall that d(H) = H + H2 + H3. We define three
collection of basis vectors: {eh}h∈[H] cover the first H coordinates,

{
e(h,h′)

}
h,h′∈[H]2

cover

the next H2 coordinates, and
{
e(h,h′,h′′)

}
h,h′,h′′∈[H]3

cover the last H3 coordinates. Suppose
we define θ1, . . . , θH−2 = 0, so that πθ(yh|x, y1:h−1) = 1/2 for all 1 ≤ h ≤ H − 2. Define
θH−1 =

∑
1≤i,j≤H−2 Jije(i,j,H−1) for a matrix J ∈ R(H−2)×(H−2) to be specified later, and define

θH = B
2 (e(H−1,H) + eH). Then 2H−2 · πθ(y1:H | ⊥) ≤ 1/2 for any y1:H with yH−1 = −1 or

yH = −1, since this implies that πθH (yH | ⊥, y1:H−1) ≤ 1/2. Meanwhile, for any y1:H with
yH−1 = yH = 1, we have

2H−2·πθ(y1:H | ⊥) =
exp
(∑

i,j≤H−2 Jijyiyj

)
exp
(∑

i,j≤H−2 Jijyiyj

)
+ exp

(
−
∑

i,j≤H−2 Jijyiyj

) · exp(B)

exp(B) + exp(−B)
.

Let G be any graph on vertex set [H − 2] and let J = −A(G) where A(G) is the adjacency
matrix of G. Then among y1:H with yH−1 = yH = 1, 2H−2 · πθ(y1:H | ⊥) is maximized when
y1:H−2 corresponds to a max-cut in G. If G has an odd number of edges, then some max-cut
removes strictly more than half of the edges, and for the corresponding sequence y1:H we have
2H−2 · πθ(y1:H | ⊥) ≥ (1/2 + Ω(1)) · (1 − exp(−Ω(B))), which is greater than 1/2 when we
take B := H and H is sufficiently large. Thus, computing argmaxy1:H∈VH πθ(y1:H | ⊥) yields a
max-cut of G. It is well-known that computing a max-cut in a graph is NP-hard, and the assumption
that G has an odd number of edges is without loss of generality.

E.2 REPRESENTATIONAL CHALLENGES

To give provable guarantees for our sharpening algorithms, we required certain realizability assump-
tions, which in particular posited that the model class actually contains a “sharpened” version of
πbase (Assumptions 4.1 and 4.3). In the simple example of a single-layer linear softmax model
classes (corresponding to H = 1 in the above definition), Assumption 4.3 is in fact satisfied, and the
sharpened model can be obtained by increasing the temperature of πbase. However, multi-layer linear
softmax models with H ≫ 1 are more realistic. The following proposition shows that as soon as
H ≥ 2, multi-layer linear softmax model classes may not be closed under sharpening. This illustrates
a potential drawback of training-time sharpening compared to inference-time sharpening, which
requires no realizability assumptions. It also provides a simple example where greedy decoding does
not yield a sequence-level arg-max response (since increasing temperature in a multi-layer softmax
model class exactly converges to the greedy decoding).

Proposition E.2. Let X = {⊥}, V = [n], and H = d = 2. For any n sufficiently large, there is
a multi-layer linear softmax policy class Πϕ,B,H and a policy πbase ∈ Πϕ,B,H such that y⋆1:H :=
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argmaxy1:H∈VH πθ(y1:H | ⊥) is unique, but for all B′ > B and π ∈ Πϕ,B′,H , it holds that
π(y⋆1:H | ⊥) ≤ 1/2.

Proof of Proposition E.2. Throughout, we omit the dependence on the prompt ⊥ for notational
clarity. Since H = 2, the model class consists of models πθ of the form

πθ(a) = πθ1(y1)πθ2(y2 | y1) =
exp(⟨ϕ1(y1), θ1⟩)

Zθ1

exp(⟨ϕ2(y1:2), θ2⟩)
Zθ2(y1)

(12)

for Zθ1 :=
∑

y1∈V exp(⟨ϕ1(y1), θ1⟩) and Zθ2(y1) :=
∑

y2∈V exp(⟨ϕ2(y1:2), θ2⟩).

Define ϕ1 by:

ϕ1(i) =


e1 if i = 1

e1 if i = 2

e2 if i ≥ 3

.

Define ϕ2 by:

ϕ2(i, j) =


e1 if i = 2, j = 1

e2 if i = 2, j ̸= 1

0 if i ̸= 2

.

Define πbase := πθ⋆ where θ⋆1 := θ⋆2 := B ·e1 for a parameter B ≥ log(n). Then πbase(1) = πbase(2)
and πbase(i) ≤ e−Bπbase(2) for all i ∈ {3, . . . , n}. Moreover, πbase(· | i) = Unif([n]) for all i ̸= 2,
and πbase(j | 2) ≤ e−Bπbase(1 | 2) for all j ̸= 1. Thus,

πbase(2, 1) = πbase(2)πbase(1 | 2) ≥
1

2 + (n− 2)e−B
· 1

1 + (n− 1)e−B
≥ Ω(1)

whereas πbase(i, j) = O(1/n) for all (i, j) ̸= (2, 1). Thus, (2, 1) is the sequence-level argmax for
sufficiently large n. However, for any πθ of the form described in Eq. (12), we have

πθ(2, 1) ≤ πθ(2) ≤
πθ(2)

πθ(1) + πθ(2)
=

1

2

since ϕ(1) = ϕ(2). This means that there is no B′ for which Πϕ,B′,H contains an (ϵ, δ)-sharpened
policy for πbase for any δ > 1/2.
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Part II

Proofs
F PRELIMINARIES

F.1 GUARANTEES FOR APPROXIMATE MAXIMIZERS

Recall that the theoretical guarantees for sharpening algorithms in Section 4 provide convergence
to the set y⋆(x) := argmaxy∈Y πbase(y | x) of (potentially non-unique) maximizers for the
maximum-likelihood sharpening self-reward function log πbase(y | x). These guarantees require that
the base model πbase places sufficient provability mass on y⋆(x), which may not always be realistic.
To address this, throughout this appendix we state and prove more general versions of our theoretical
results that allow for approximate maximizers, and consequently enjoy weaker coverage assumptions

For a parameter γ ∈ [0, 1) we define

y⋆
γ(x) :=

{
y | πbase(y | x) ≥ (1− γ) ·max

y∈Y
πbase(y | x)

}
as the set of (1 − γ)-approximate maximizers for log πbase(y | x). We quantify the quality of a
sharpened model as follows.

Definition F.1 (Sharpened model). We say that a model π̂ is (ϵ, δ, γ)-sharpened relative to πbase if

Px∼µ

[
π̂
(
y⋆
γ(x) | x

)
≥ 1− δ

]
≥ 1− ϵ.

That is, an (ϵ, δ, γ)-sharpened policy places at least 1 − δ mass on (1 − γ)-approximate arg-max
responses on all but an ϵ-fraction of prompts under µ.

Lastly, we will make use of the following generalized coverage coefficient

Ccov,γ = Ex∼µ

[
1

πbase(y⋆
γ(x) | x)

]
,

which has Ccov,γ ≤ Ccov.

F.2 TECHNICAL TOOLS

For a pair of probability measures P and Q with a common dominating measure ω, Hellinger distance
is defined via

D2
H(P,Q) =

∫ (√
dP
dω
−
√

dQ
dω

)2

dω.

Lemma F.1 (MLE for conditional density estimation (e.g., Wong & Shen (1995); van de Geer (2000);
Zhang (2006))). Consider a conditional density π⋆ : X → ∆(Y). Let D = {(xi, yi)}ni=1 be a
dataset in which (xi, yi) are drawn i.i.d. as xi ∼ µ ∈ ∆(X ) and yi ∼ π⋆(· | x). Suppose we have a
finite function class Π ⊂ (X → ∆(Y)) such that π⋆ ∈ Π. Define the maximum likelihood estimator

π̂ := argmax
π∈Π

∑
(x,y)∈D

log π(y | x).

Then with probability at least 1− ρ,

Ex∼µ

[
D2

H(π̂(· | x), π⋆(· | x))
]
≤ 2 log(|Π|ρ−1)

n
.

Lemma F.2 (Elliptic potential lemma). Let λ,K > 0, and let A1, . . . , AT ∈ Rd×d be positive
semi-definite matrices with Tr(At) ≤ K for all t ∈ [T ]. Fix Γ0 = λId and Γt = λId +

∑t
i=1 Ai for

t ∈ [T ]. Then
T∑

t=1

Tr(Γ−1
t−1At) ≤

dK log (T+1)K
λ

λ log(1 +K/λ)
.
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Proof of Lemma F.2. Fix t ∈ [T ]. Since Tr(At) ≤ 1, there is some pt ∈ ∆(Rd) such that
At = Ea∼pt

[aa⊤] and P[∥a∥2 ≤ 1] = 1. Now observe that
log det(Γt) = log det(Γt−1 +At)

= log det(Γt−1) + log det(Id + Γ
−1/2
t−1 AtΓ

−1/2
t−1 )

= log det(Γt−1) + log det
(
Ea∼pt

[
Id + Γ

−1/2
t−1 aa⊤Γ

−1/2
t−1

])
≥ log det(Γt−1) + Ea∼pt

log det(Id + Γ
−1/2
t−1 aa⊤Γ

−1/2
t−1 )

= log det(Γt−1) + Ea∼pt log(1 + a⊤Γ−1
t−1a).

Now a⊤Γ−1
t−1a ≤ 1/λ with probability 1, where λ = λmin(Γ0). We know that λx log(1 + 1/λ) ≤

log(1 + x) for all x ∈ [0, 1/λ]. Thus,
log det(Γt) ≥ log det(Γt−1) + λ log(1 + 1/λ)Ea∼pt

a⊤Γ−1
t−1a.

Summing over t ∈ [T ], we get

log det(ΓT ) ≥ log det(Γ0) + λ log(1 + 1/λ)

T∑
t=1

Tr(Γ−1
t−1At).

Finally note that λmax(ΓT ) ≤ T + 1 so log det(ΓT ) ≤ d log T , whereas log det(Γ0) ≥ d log λ.
Thus,

T∑
t=1

Tr(Γ−1
t−1At) ≤

d log T+1
λ

λ log(1 + 1/λ)

as claimed.

Lemma F.3 (Freedman’s inequality, e.g. Agarwal et al. (2014)). Let (Zt)
T
t=1 be a martingale

difference sequence adapted to filtration (Ft)
T−1
t=0 . Suppose that |Zt| ≤ R holds almost surely for all

t. For any δ ∈ (0, 1) and η ∈ (0, 1/R), it holds with probability at least 1− δ that
T∑

t=1

Zt ≤ η

T∑
t=1

E[Z2
t |Ft−1] +

log(1/δ)

η
.

Corollary F.1. Let (Zt)
T
t=1 be a sequence of random variables adapted to filtration (Ft)

T−1
t=0 .

Suppose that Zt ∈ [0, R] holds almost surely for all t. For any δ ∈ (0, 1), it holds with probability at
least 1− δ that

T∑
t=1

E[Zt|Ft−1] ≤ 2

T∑
t=1

Zt + 4R log(1/δ).

Proof of Corollary F.1. Observe that for any t ∈ [T ],
E[(Zt − E[Zt | Ft−1])

2 | Ft−1] ≤ E[Z2
t | Ft−1]

≤ R · E[Zt | Ft−1].

Applying Lemma F.3 to the sequence (E[Zt | Ft−1] − Zt)
T
t=1, which is a martingale difference

sequence with elements supported almost surely on [−R,R], we get for any η ∈ (0, 1/R) that with
probability at least 1− δ,

T∑
t=1

(E[Zt | Ft−1]− Zt) ≤ η

T∑
t=1

E[(Zt − E[Zt | Ft−1])
2 | Ft−1] +

log(1/δ)

η

≤ ηR

T∑
t=1

E[Zt | Ft−1] +
log(1/δ)

η
.

Set η = 1/(2R). Simplifying gives
T∑

t=1

E[Zt | Ft−1] ≤ 2

T∑
t=1

Zt + 4R log(1/δ).

as claimed.
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G PROOFS FROM SECTION 3.1
Proof of Proposition 3.1. We prove the result by induction. Fix x ∈ X , and let y⋆1 , . . . , y

⋆
H := y⋆(x).

Fix h ∈ [H], and assume by induction that ŷh′ = y⋆h′ for all h′ < h. We claim that in this case,

πh(y
⋆
h | ŷ1, . . . , ŷh−1, x) = πh(y

⋆
h | y⋆1 , . . . , y⋆h−1, x) > 1/2,

which implies that ŷh = y⋆h. To see this, we observe that by Bayes’ rule,

π(y⋆1 , . . . , y
⋆
H | x) ≤ π(y⋆1 , . . . , y

⋆
h | x)

=

h∏
h′=1

πh′(y⋆h′ | y⋆1 , . . . , y⋆h′−1, x) ≤ πh(y
⋆
h | y⋆1 , . . . , y⋆h−1, x).

If we were to have πh(y
⋆
h | ŷ1, . . . , ŷh−1, x) = πh(y

⋆
h | y⋆1 , . . . , y⋆h−1, x) ≤ 1/2, it would contradict

the assumption that π(y⋆1 , . . . , y
⋆
H | x) > 1/2. This proves the result.

H PROOFS FROM SECTION 3.3
Below, we state and prove a generalization of Theorems 3.1 and D.2 which allows for approximate
maximizers in the sense of Definition F.1, as well as a more general coverage coefficient.

To state the result, for a model π, we define

yπ
γ (x) =

{
y | π(y | x) ≥ (1− γ) ·max

y∈Y
π(y | x)

}
.

Next, for any integer p ∈ N, we define

Ccov,γ,p(π) =

(
E
[

1

(π(yπ
γ (x) | x))p

])1/p

,

with the convention that Ccov,γ,p = Ccov,γ,p(πbase). Our most general lower bound, Theorem 3.1′,
holds in the regime where γ = 1/2, and thus the best responsey has bounded margin away from
suboptimal responses.

Theorem 3.1′ (Lower bound for sharpening). Fix integers d ≥ 1 and p ≥ 1 and parameters
ϵ ∈ (0, 1) and C ≥ 1, and set γ = 1/2. There exists a class of models Π such that i) log |Π| ≍
d(1 + log(Cϵ−1/p)), ii) supπ∈Π Ccov,γ,p(π) ≲ C, and iii) yπ

γ (x) is a singleton for all π ∈ Π,
for which any sharpening algorithm π̂ that attains E

[
Px∼µ[π̂(y

πbase
γ (x)) > 1/2]

]
≥ 1 − ϵ for all

πbase ∈ Π must collect a total number of samples m = n ·N at least

m ≳

{
C log |Π|

ϵ1+1/p(1+log(Cϵ−1/p))
sample-and-evaluate oracle,

C log |Π|
ϵ1/p(1+log(Cϵ−1/p))

adaptive sample-and-evaluate oracle.

Proof of Theorem 3.1′. Let parameters d, p ∈ N and ϵ > 0 be given, and set γ = 1/2. Let M ∈ N
and ∆ > 0 be parameters to be chosen later. Let X = {x0, x1, . . . , xd} and Y = {y0, y1, . . . , yM}
be arbitrary discrete sets (with |X | = d+ 1 and |Y| = M + 1).

Construction of prompt distribution and model class. We use the same construction for the
non-adaptive and adaptive lower bounds in the theorem statement. We define the prompt distribution
µ via

µ := (1−∆)δx0 +
∆

d

d∑
i=1

δxi ,

where δx denotes the Dirac delta distribution on element x.

As the first step toward constructing the model class Π, we introduce a family of distributions
(P0, P1, . . . , PM ) on Y as follows

P0 = δy0 , ∀i ≥ 1, Pi =
1

(1− γ)M
δyi +

∑
j∈[M ]\{i}

1

M

(
1− γ

(M − 1)(1− γ)

)
δyj .
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Next, for or any index I = (j1, j2, . . . , jd) ∈ [M ]d, define a model

πI(xi) =

{
P0 i = 0

Pji i > 0
.

We define the model class as
Π := {πI : I ∈ [M ]d},

which we note has
log |Π| = d logM.

Preliminary technical results. Define
yI
γ (x) := {y : πI(y | x) ≥ (1− γ)max

y∈Y
πI(y | x)}.

The following property is immediate.

Lemma H.1. Let I = (j1, . . . , jd) ∈ [d]M . Then yI
γ (xi) = {yji} if i > 0, and yI

γ (x0) = {y0}.

In view of this result, we define yI(x) = argmaxy π
I(y | x) as the unique arg-max response for x.

Going forward, let us fix the algorithm under consideration. Let PI [·] denote the law over the dataset
used by the algorithm when the true instance is πI (including possible randomness and adaptivity
from the algorithm itself), and let EI [·] denote the corresponding expectation. The following lemma
is a basic technical result.

Lemma H.2 (Reduction to classification). Let π̂ be the model produced by an algorithm with access
to a (adaptive) sample-and-evaluate oracle for πI . Suppose that for some ϵ ≥ 0,

EI∼Unif EI Px∼µ[π̂(y
I
γ (x) | x) > 1/2] ≥ 1− ϵ.

Define Î = (ĵ1, . . . , ĵd) via ĵi = argmaxj π̂(yj | xi), and write I = (j⋆1 , . . . , j
⋆
d). Then,

1

d

d∑
i=1

EI∼Unif EI
[
I{ĵi ̸= j⋆i }

]
≤ ϵ/∆.

Proof of Lemma H.2. As established in Lemma H.1, under instance I, yI
γ (xi) = {yj⋆i } for any

i ∈ [d]. Thus, whenever π̂(yI
γ (xi)) > 1/2, j⋆i = argmaxj π̂(yj | xi) =: ĵi. The result follows by

noting that the event {∃i ∈ [d] : x = xi} occurs with probability at least ∆ under x ∼ µ.

Lower bound under sample-and-evaluate oracle. Recall that in the non-adaptive framework, the
sample complexity m is fixed. In light of Lemma H.2, it suffices to establishes the following claim.

Lemma H.3. There exists a universal constant c > 0 such that for all M ≥ 8, if m ≤ cdM/∆, then

EI∼Unif EI
[
I{ĵi ̸= j⋆i }

]
≥ 1/8 for all i.

With this, the result follows by selecting ∆ = 16ϵ, with which Lemma H.2 implies that any algorithm
with EI∼Unif EI Px∼µ[π̂(y

I
γ (x) | x) > 1/2] ≥ 1 − ϵ must have m ≳ dM/∆. To conclude, we

choose M ≍ 1 + Cϵ−1/p, which gives m ≍ dM/∆ ≍ dCϵ−(1+1/p) ≍ ϵ−(1+1/p) log Π/ log(1 +
Cϵ1/p). Finally, we check that with this choice, all π ∈ Π satisfy

Ccov,γ,p(π) = (Px∼µ[x = x0] + (M(1− γ))
pPx∼µ[x ̸= x0])

1/p

= ((1−∆) + (M(1− γ))
p
∆)

1/p

≲ ((1−∆) + (8C(1− γ))
p
)
1/p

≲ C.

Proof of Lemma H.3. Let i ∈ [d] be fixed. Of the m = n ·N tuples (x, y, log πbase(y | x)) that are
observed by the algorithm, let mi denote the (random) number of such examples for which x = xi.
From Markov’s inequality, we have

P[mi ≤ 2∆m/d] ≥ 1

2
(13)
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Going forward, let D = {(x, y, log πbase(y | x))} denote the dataset collected by the algorithm,
which has |D| = m. Let Ei denote the event that, for prompt x = xi, (i) there are at least two
distinct responses yj for which (xi, yj) /∈ D; and (ii) there are no pairs (xi, y) ∈ D for which
πbase(y | xi) >

1
M . Since Ei is a measurable function of D, we can write

EI∼Unif EI
[
I{ĵi ̸= j⋆i }

]
≥ EI∼Unif EI

[
I{ĵi ̸= j⋆i } · I {Ei}

]
= EI∼Unif EI

[
I{Ei}EI∼P[I=·|D]

[
I{ĵi ̸= j⋆i }

]]
, (14)

where I ∼ P[I = · | D] is sampled from the posterior distribution over I conditioned on the dataset
D. Observe that conditioned on Ei, the posterior distribution over j⋆i under I ∼ P[I = · | D] is
uniform over the set of indices j ∈ [M ] for which (xi, yj) /∈ D, and this set has size at least 2. Hence,

I{Ei}EI∼P[I=·|D]

[
I{ĵi ̸= j⋆i }

]
≥ 1

2 , and resuming from Eq. (14), we have

EI∼Unif EI
[
I{ĵi ̸= j⋆i }

]
≥ 1

2
EI∼Unif EI [I{Ei}] ≥

1

2
EI∼Unif PI [Ei ∩ {mi ≤ 2∆m/d}]

≥ 1

4
EI∼Unif PI [Ei | mi ≤ 2∆m/d] ,

where the last inequality is from Eq. (13). Finally, we can check that under the law PI , the probability
of the event Ei—conditioned on the value mi—is at least the probability that (xi, yj⋆i ), (xi, yj′) /∈ D
for an arbitrary fixed index j′ ̸= j⋆i , which on the event {mi ≤ 2∆m/d} is at least(

1− 3

M

)mi

≥
(
1− 3

M

)2∆m/d

,

where we have used that γ = 1/2. The value above is at least 1
4 whenever m ≤ c · dM/∆

for a sufficiently small absolute constant c > 0. For this value of m, we conclude that
EI∼Unif EI

[
I{ĵi ̸= j⋆i }

]
≥ 1

4 EI∼Unif PI [Ei | {mi ≤ 2∆m/d}] ≥ 1
8 .

Lower bound under adaptive sample-and-evaluate oracle. In the adaptive framework, we let mi

denote the (potentially random) number of tuples (x, y, log πbase(y | x)) observed by the algorithm
in which x = xi. Note that unlike the non-adaptive framework, the distribution over mi depends on
the underlying instance I with which the algorithm interacts.

To begin, from Lemma H.2 and Markov’s inequality, if π̂ satisfies the guarantee
EI∼Unif EI Px∼µ[π̂(y

I
γ (x)) > 1/2] ≥ 1− ϵ, then there exists a set of indices Sgood ⊂ [d] such that14

|Sgood| ≥ ⌊d/2⌋, ∀i ∈ Sgood, EI∼Unif EI
[
I{ĵi ̸= j⋆i }

]
≤ 2ϵ

∆
. (15)

We now appeal to the following lemma.

Lemma H.4. As long as M ≥ 6, it holds that for all i ∈ [d],

EI∼Unif EI
[
I{ĵi ̸= j⋆i }

]
≥ 1

4e
EI∼Unif EI [I{mi ≤M/3}] .

Combining Lemma H.4 with Eq. (15), it follows that there exist absolute constant c1, c2, c3 > 0 such
that if ∆ = c1 · ϵ, then for all i ∈ Sgood,

EI∼Unif PI [mi ≥ c2M ] ≥ c3.

Thus, with this choice for ∆, we have that i ∈ Sgood,

EI∼Unif EI [mi] ≳ M,

14We emphasize that the set Sgood is not a random variable, and depends only on the algorithm itself.
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and we can lower bound the algorithm’s expected sample complexity by summing over i ∈ Sgood:

EI∼Unif EI [m] ≥ EI∼Unif EI

 ∑
i∈Sgood

mi

 ≳ |Sgood|M ≳ dM.

The result now follows by tuning M ≍ 1 + Cϵ−1/p as in the proof of the lower bound for
non-adaptive sampling, which gives E[m] ≳ dM ≍ dCϵ−1/p ≍ ϵ−1/p log Π/ log(1 + Cϵ1/p) and
Ccov,γ,p(π) ≲ C for all π ∈ Π.

Proof of Lemma H.4. Let i ∈ [d] be fixed. Let D = {(x, y, log πbase(y | x))} denote the dataset
collected by the algorithm at termination, which has |D| = m. Let Ei denote the event that, for
prompt x = xi, (i) there are at least two distinct responses yj for which (xi, yj) /∈ D; and (ii) there
are no pairs (xi, y) ∈ D for which πbase(y | xi) >

1
M . Since Ei is a measurable function of D, we

can write

EI∼Unif EI
[
I{ĵi ̸= j⋆i }

]
≥ EI∼Unif EI

[
I{ĵi ̸= j⋆i } · I {Ei}

]
= EI∼Unif EI

[
I{Ei}EI∼P[I=·|D]

[
I{ĵi ̸= j⋆i }

]]
, (16)

where I ∼ P[I = · | D] is sampled from the posterior distribution over I conditioned on the dataset
D. Observe that conditioned on Ei, the posterior distribution over j⋆i under I ∼ P[I = · | D] is
uniform over the set of indices j ∈ [M ] for which (xi, yj) /∈ D, and this set has size at least 2. Hence,

I{Ei}EI∼P[I=·|D]

[
I{ĵi ̸= j⋆i }

]
≥ 1

2 , and resuming from Eq. (16), we have

EI∼Unif EI
[
I{ĵi ̸= j⋆i }

]
≥ 1

2
EI∼Unif EI [I{Ei}]

≥ 1

2
EI∼Unif PI [Ei ∩ {mi ≤M/3}]

=
1

2
EI∼Unif

[
PI [Ei | mi ≤M/3] · PI [mi ≤M/3]

]
.

The event Ei is a superset of the event Ei,j′ that (xi, yj⋆i ), (xi, yj′) /∈ D for an arbitrary fixed index
j′ ̸= j⋆i . Thus,

PI [Ei | mi ≤M/3] ≥ PI [Ei,j′ | mi ≤M/3]

Moreover, we can realize the law of PI considering an infinite tape, associated to index i, of
i.i.d. samples y ∼ πbase(· | xi), and taking the first mi elements on this tape to be the samples
(x, y, log πbase(y | x)) ∈ D with x = xi (see, e.g. Simchowitz et al. (2017) for an argument of this
form). On the event {mi ≤ M/3}, the mi samples in (x, y, log πbase(y | x)) ∈ D with x = xi are
a subset of the first M/3 samples from the index-i tape. Viewed in this way, we can lower bound
the probability of Ei,j by the probability of the event Ẽi,j′ that the first M/3 y’s on the index-i tape
contain neither j⋆i , nor the designated index j′. As these first M/3 y’s are not chosen adaptively, the
probability of Ẽi,j′ is at least (

1− 3

M

)mi

≥
(
1− 3

M

)M/3

≥ 1

2e
,

as long as M ≥ 6 and γ = 1/2. We conclude that

EI∼Unif EI
[
I{ĵi ̸= j⋆i }

]
≥ 1

4e
EI∼Unif EI [I{mi ≤M/3}] .

I PROOFS FROM SECTION 4.1 AND APPENDIX D
The following theorem is a generalization of Theorem 4.1 which allows for approximate maximizers
in the sense of Definition F.1.
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Theorem 4.1′. Let ρ, δ ∈ (0, 1) be given, and suppose we set N = N⋆ log(2δ−1) for a parameter
N⋆ ∈ N. Then for any n ∈ N, SFT-Sharpening ensures that with probability at least 1− ρ, for any
γ ∈ (0, 1), the output model π̂ satisfies

Px∼µ

[
π̂(y⋆

γ(x) | x) ≤ 1− 2δ
]
≲

1

δ
· log(|Π|ρ

−1)

n
+

Ccov,γ

N⋆
.

In particular, given (ϵ, δ, γ), by setting n = C4.1
log|Π|
δϵ and N⋆ = C4.1

Ccov,γ

ϵ for a sufficiently large
absolute constant C4.1 > 0, we are guaranteed that

Px∼µ

[
π̂(y⋆

γ(x) | x) ≤ 1− δ
]
≤ ϵ.

The total sample complexity is

m = O

(
Ccov,γ log(|Π|ρ−1) log(δ−1)

δϵ2

)
.

Proof of Theorem 4.1′. Under realizability of πBoN
N (Assumption 4.1), Lemma F.1 implies that the

output of SFT-Sharpening satisfies, with probability at least 1− ρ,

Ex∼µ

[
D2

H

(
π̂(· | x), πBoN

N (· | x)
)]
≤ ε2stat :=

2 log(|Π|/ρ)
n

. (17)

Henceforth we condition on the event that Eq. (17) holds. Let

Xgood :=

{
x ∈ X | N⋆ ≥ 1

πbase(y⋆
γ(x) | x)

}
denote the set of prompts for which πbase places sufficiently high mass on y⋆

γ(x). We can bound

Px∼µ

[
π̂(y⋆

γ(x) | x) ≤ 1− δ
]

≤ Px∼µ

[
π̂(y⋆

γ(x) | x) ≤ 1− δ, x ∈ Xgood

]
+ Px∼µ[x /∈ Xgood]. (18)

To bound the first term in Eq. (18), note that if x ∈ Xgood, then πBoN
N (y⋆

γ(x) | x) ≥ 1− δ/2. Indeed,
observe that y ∼ πBoN

N (· | x) /∈ y⋆
γ(x) if and only if y1, . . . , yN ∼ πbase(x) have yi /∈ y⋆

γ(x) for all i,
which happens with probability (1− πbase(y

⋆
γ(x) | x))N ≤ (1− 1/N⋆)N ≤ δ/2 since x ∈ Xgood. It

follows that for any such x, we can lower bound (using the data processing inequality)

D2
H

(
π̂(· | x), πBoN

N (· | x)
)
≥
(√

1− π̂(y⋆
γ(x) | x)−

√
1− πBoN

N (y⋆
γ(x) | x)

)2
≳ δ · I

{
π̂(y⋆

γ(x) | x) ≤ 1− δ
}
. (19)

By Eqs. (17) and (19), it follows that

Px∼µ

[
π̂(y⋆

γ(x) | x) ≤ 1− δ, x ∈ Xgood

]
≲

ε2stat
δ

.

For the second term in Eq. (18), we bound

Px∼µ[x /∈ Xgood] = Px∼µ

[
N⋆ <

1

πbase(y⋆
γ(x) | x)

]
= Px∼µ

[
1

N⋆πbase(y⋆
γ(x) | x)

> 1

]
≤ 1

N⋆
Ex∼µ

[
1

πbase(y⋆
γ(x) | x)

]
≤ Ccov,γ

N⋆

via Markov’s inequality and the definition of Ccov,γ . Substituting both bounds into Eq. (18) completes
the proof.
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Proof of Theorem D.1. The proof begins similarly to Theorem 4.1. By realizability of πNµ
,

Lemma F.1 implies that the output of SFT-Sharpening satisfies, with probability at least 1− ρ,

Ex∼µ

[
D2

H

(
π̂(· | x), πNµ

(· | x)
)]
≤ ε2stat :=

2 log(|Π|/ρ)
n

.

Condition on the event that this guarantee holds. We invoke the following lemma, proven in the
sequel.

Lemma I.1. Let P be a distribution on a discrete space Y . Let y⋆ = argmaxy∈Y P (y) and let
P ⋆ := maxy∈Y P (y). Let y1, y2, . . . ∼ P , and for any stopping time τ , define

ŷτ ∈ argmax {P (y) : y ∈ {y1, . . . , yτ}} .
Next, for a parameter µ > 0, define the stopping time

Nµ := inf

{
k :

1

max1≤i≤k P (yi)
≤ k/µ

}
.

Then

E[Nµ] ≤
µ+ (1/|y⋆|)

P ⋆
.

In addition, for any stopping time τ ≥ Nµ (including τ = Nµ itself), we have P[ŷτ /∈ y⋆] ≤ e−|y⋆|µ.

This lemma, with our choice of µ, ensures that for all x ∈ X ,

πNµ
(y⋆(x) | x) ≥ 1− e−µ = 1− δ/2.

Following the reasoning in Eq. (19), this implies that

D2
H

(
π̂(· | x), πNµ(· | x)

)
≳ δ · I{π̂(y⋆(x) | x) ≤ 1− δ},

so that

Px∼µ[π̂(y
⋆(x) | x) ≤ 1− δ] ≲

ε2stat
δ

as desired.

To bound the expected sample complexity, we observe that

E[m] = n · E[Nµ(x)]
(i)

≤ E
[

1 + µ

πbase(y⋆(x) | x)

]
= (1 + µ)Ccov,

where inequality (i) invokes Lemma I.1 once more.

Proof of Lemma I.1. Define N⋆ := µ/P ⋆. To bound the tails of Nµ, define

τ = inf{k | k ≥ N⋆ and y⋆ ∩ {y1, . . . , yk} ≠ ∅}.
It follows from the definition that Nµ ≤ τ , since for any k ≥ N⋆, if there exists i ≤ k such that
yi ∈ y⋆, then

1

P (yi)
=

1

P ⋆
=

N⋆

µ
≤ k

µ
.

Thus, for k ≥ N⋆, we can bound

P[Nµ > k] ≤ P[τ > k] = P[Y⋆ ∩ {y1, . . . , yk} = ∅] ≤ (1− |y⋆|P ⋆)k,

and consequently

E[Nµ] ≤ E[τ ] ≤ E[τI{τ ≤ N⋆}] + E[τI{τ > N⋆}]

≤ N⋆ +
∑

k>N⋆

(1− |y⋆|P ⋆)k

≤ N⋆ +
1

|y⋆|P (y⋆)
=

µ+ 1/|y⋆|
P (y⋆)

.
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To prove correctness, observe that Nµ ≥ N⋆, because for all y ∈ Y , 1
P (y) ≥ N⋆/µ. Hence,

any stopping time τ ≥ Nµ also satisfies τ ≥ N⋆, and moreover has ŷτ ∈ y⋆ whenever y⋆ ∩
{y1, y2, . . . , yτ} ≠ ∅. This fails to occur with probability no more than

(
1− |y

⋆|
P ⋆

)N⋆

=

(
1− |y

⋆|
P ⋆

)µ/P⋆

≤ e−|y⋆|µ.

J PROOFS FROM SECTION 4.2

J.1 PROOF OF THEOREM 4.2

We state and prove a generalized version of Theorem 4.2. In the assumptions below, we fix a
parameter γ ∈ [0, 1); the setting γ = 0 corresponds to Theorem 4.2.

Assumption J.1 (Coverage). All π ∈ Π satisfy Cπ ≤ Cconc for a parameter Cconc ≥ (1−γ)−1Ccov,γ ,
and Cπbase/π;β ≤ Closs for a parameter Closs ≥ |Y|.

By Lemma 4.1′, Assumption J.1 is consistent with the assumption that π⋆
β ∈ Π.

Assumption J.2 (Margin). For all x ∈ supp(µ), the initial model πbase satisfies

πbase(y
⋆
γ(x) | x) ≥ (1 + γmargin) · πbase(y | x) ∀y ̸∈ y⋆

γ(x)

for a parameter γmargin > 0.

Theorem 4.2′. Assume that π⋆
β ∈ Π (Assumption 4.3), and that Assumption 4.4 and Assumption 4.2

hold with respect to some γ ∈ [0, 1), with parameters Cconc, Closs, and γmargin > 0. For any
δ, ρ ∈ (0, 1), the DPO algorithm in Eq. (4) ensures that with probability at least 1− ρ,

Px∼µ

[
π̂(y⋆

γ(x) | x) ≤ 1− δ
]
≲

1

γmarginδ
· Õ

√Cconc log
3(Closs|Π|ρ−1)

n
+ β log(Cconc) + γ



where Õ(·) hides factors logarithmic in n and Cconc and doubly logarithmic in Π, Closs, and ρ−1.

We first state and prove some supporting technical lemmas, then proceed to the proof of Theorem 4.2′.

J.1.1 TECHNICAL LEMMAS

The following result is a generalization of Lemma 4.1.

Lemma 4.1′. For all γ ∈ (0, 1), the model π⋆
β satisfies Cπ⋆

β
≤ (1− γ)−1Ccov,γ and Cπbase/π⋆

β ;β
≤ |Y|.

42



Published as a conference paper at ICLR 2025

Proof of Lemma 4.1′. For any fixed x ∈ X , we have

Ey∼π⋆
β(·|x)

[
π⋆
β(y | x)

πbase(y | x)

]
= Ey∼π⋆

β(·|x)

[
π1+β−1

base (y | x)
πbase(y | x)

]
·

∑
y′∈Y

π1+β−1

base (y′ | x)

−1

≤ max
y∈Y

πβ−1

base(y | x) ·

∑
y′∈Y

π1+β−1

base (y′ | x)

−1

≤ (1− γ)−1πβ−1

base(y
⋆
γ(x) | x) ·

∑
y′∈Y

π1+β−1

base (y′ | x)

−1

= (1− γ)−1
π1+β−1

base (y⋆
γ(x) | x)

πbase(y⋆
γ(x) | x)

·

∑
y′∈Y

π1+β−1

base (y′ | x)

−1

= (1− γ)−1

∑
y∈y⋆

γ(x)
π1+β−1

base (y | x)
πbase(y⋆

γ(x) | x)
·

∑
y′∈Y

π1+β−1

base (y′ | x)

−1

≤ (1− γ)−1 1

πbase(y⋆
γ(x) | x)

.

It follows that Cπ⋆
β
≤ (1− γ)−1Ccov,γ as claimed.

For the second result, we have

Cπbase/π⋆
β ;β

= Eπbase

 1

πbase(y | x)
·

∑
y′∈Y

π1+β−1

base (y′ | x)

β
 ≤ Eπbase

[
1

πbase(y | x)

]
= |Y|.

The next lemmas provide bounds on the tails of the self-rewards used in the algorithm.

Lemma J.1. Suppose β ∈ [0, 1]. For any model π, with probability at least 1− δ over the draw of
x ∼ µ, y, y′ ∼ πbase(· | x), we have that for all s > 0,

P
[∣∣∣∣β log

(
π(y | x)

πbase(y | x)

)
− β log

(
π(y′ | x)

πbase(y′ | x)

)∣∣∣∣ > log(2Cπbase/π;β) + s

]
≤ exp(−s).

Proof of Lemma J.1. Define

X :=

∣∣∣∣β log

(
π(y | x)

πbase(y | x)

)
− β log

(
π(y′ | x)

πbase(y′ | x)

)∣∣∣∣.
By the Chernoff method, we have that with probability at least 1− δ,
X ≤ log(E[exp(X)]) + log(δ−1)

= log

(
Ex∼µ,y,y′∼πbase(x)

[
exp

(∣∣∣∣β log

(
π(y | x)

πbase(y | x)

)
− β log

(
π(y′ | x)

πbase(y′ | x)

)∣∣∣∣)])+ log(δ−1)

≤ log

(
Ex∼µ,y,y′∼πbase(x)

[
exp

(
β log

(
π(y | x)

πbase(y | x)

)
− β log

(
π(y′ | x)

πbase(y′ | x)

))]

+ Ex∼µ,y,y′∼πbase(x)

[
exp

(
β log

(
π(y′ | x)

πbase(y′ | x)

)
− β log

(
π(y | x)

πbase(y | x)

))])
+ log(δ−1)

= log

(
2Ex∼µ,y,y′∼πbase(x)

[
exp

(
β log

(
π(y | x)

πbase(y | x)

)
− β log

(
π(y′ | x)

πbase(y′ | x)

))])
+ log(δ−1)

= log

(
Ex∼µ,y,y′∼πbase(x)

[(
π(y | x)

πbase(y | x)
· πbase(y

′ | x)
π(y′ | x)

)β
])

+ log(2δ−1).
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As long as β ≤ 1, by Jensen’s inequality, we can bound

Ex∼µ,y,y′∼πbase(x)

[(
π(y | x)

πbase(y | x)
· πbase(y

′ | x)
π(y′ | x)

)β
]

≤ Ex∼µ,y′∼πbase(x)

[(
Ey∼πbase(x)

[
π(y | x)

πbase(y | x)

]
· πbase(y

′ | x)
π(y′ | x)

)β
]

= Ex∼µ,y′∼πbase(x)

[(
πbase(y

′ | x)
π(y′ | x)

)β
]

= Cπbase/π;β ,

which proves the result.

Lemma J.2. Let β ∈ [0, 1]. For all models π, we have

Ex∼µ,y,y′∼πbase(·|x)

[∣∣∣∣β log

(
π(y | x)

πbase(y | x)

)
− β log

(
π(y′ | x)

πbase(y′ | x)

)∣∣∣∣4
]
≤ O(log4(Cπbase/π;β) + 1).

Proof of Lemma J.2. Define

X :=

∣∣∣∣β log

(
π(y | x)

πbase(y | x)

)
− β log

(
π(y′ | x)

πbase(y′ | x)

)∣∣∣∣.
Set k = log(2Cπbase/π;β). We can bound

E
[
X4
]
= E

[∫ ∞

0

I
{
X4 > t

}
dt

]
= 4E

[∫ ∞

0

I{X > t}t3dt
]

= 4

∫ ∞

0

P[X > t]t3dt

≤ k4 + 4

∫ ∞

k

P[X > t]t3dt

≤ k4 + 4

∫ ∞

k

ek−tt3dt

= k4 + 4(k3 + 3k2 + 6k + 6)

= O(k4 + 1),

where the third-to-last line uses Lemma J.1.

J.1.2 PROOF OF THEOREM 4.2′

Proof of Theorem 4.2′. For any model π ∈ Π, define J(π) := Eπ[log πbase(y | x)]. Let π̂ ∈ Π
denote the model returned by the DPO algorithm in Eq. (8). Let Eπ,π′ [·] denote shorthand for
Ex∼µ,y∼π(x),y′∼π′(x)[·], and for any r : X × Y → R define ∆r(x, y, y′) := r(x, y) − r(x, y′).
Define

r⋆(x, y) := log πbase(y | x) = β log

(
π⋆
β(y | x)

πbase(y | x)

)
+ Z(x),

and let r̂(x, y) := β log
(

π̂(y|x)
πbase(y|x)

)
. By a standard argument (Huang et al., 2024), we have

π̂ ∈ argmax
π:X→∆(Y)

Eπ[r̂(x, y)]− βDKL(π ∥πbase). (20)
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Therefore for any comparator model π⋆ : X → ∆(Y) (not necessarily in the model class Π), we have

J(π⋆)− J(π̂) = Eπ⋆ [r⋆(x, y)]− Eπ̂[r
⋆(x, y)]

= Eπ⋆ [r̂(x, y)]− βDKL(π
⋆ ∥πbase)− Eπ̂[r̂(x, y)] + βDKL(π̂ ∥πbase)

+ Eπ⋆ [r⋆(x, y)− r̂(x, y)] + βDKL(π
⋆ ∥πbase) + Eπ̂[r̂(x, y)− r⋆(x, y)]− βDKL(π̂ ∥πbase)

≤ Eπ⋆ [r⋆(x, y)− r̂(x, y)] + βDKL(π
⋆ ∥πbase) + Eπ̂[r̂(x, y)− r⋆(x, y)]− βDKL(π̂ ∥πbase)

= Eπ⋆,πbase

[
∆r⋆(x, y, y′)−∆r̂(x, y, y′)

]
+ Eπ̂,πbase

[
∆r̂(x, y, y′)−∆r⋆(x, y, y′)

]
+ βDKL(π

⋆ ∥πbase)− βDKL(π̂ ∥πbase) (21)

where the inequality uses Eq. (20). To bound the right-hand side above, we will use the following
lemma, which is proven in the sequel.

Lemma J.3. For any model π and any η > 0, we have that

Eπ,πbase

[∣∣∣∆r⋆(x, y, y′)−∆r̂(x, y, y′)
∣∣∣]

≲ C1/2π ·
(
Eπbase,πbase

[∣∣∣∆r⋆(x, y, y′)−∆r̂(x, y, y′)
∣∣∣2I{∣∣∆r⋆

∣∣ ≤ η,
∣∣∆r̂

∣∣ ≤ η
}])1/2

+ C1/2π (log(Cπbase/π̂;β) + log(Cπbase/π⋆
β ;β

)) ·
(
Pπbase,πbase

[∣∣∆r⋆
∣∣ > η

]
+ Pπbase,πbase

[∣∣∆r̂
∣∣ > η

])1/4
.

Using Lemma J.3 to bound the first two terms of Eq. (21), and using the fact that all π ∈ Π have
Cπ ≤ Cconc and Cπbase/π;β ≤ Closs, we have that

J(π⋆)− J(π̂)

≲ (Cπ⋆ + Cconc)
1/2 ·

(
Eπbase,πbase

[∣∣∣∆r⋆(x, y, y′)−∆r̂(x, y, y′)
∣∣∣2I{∣∣∆r⋆

∣∣ ≤ η,
∣∣∆r̂

∣∣ ≤ η
}])1/2

+ (Cπ⋆ + Cconc)
1/2 log(Closs) ·

(
Pπbase,πbase

[∣∣∆r⋆
∣∣ > η

]
+ Pπbase,πbase

[∣∣∆r̂
∣∣ > η

])1/4
+ βDKL(π

⋆ ∥πbase).

(22)

Let us overload notation and write ∆π(x, y, y′) = β log
(

π(y|x)
πbase(y|x)

)
− β log

(
π(y′|x)

πbase(y′|x)

)
, so that

∆π̂ = ∆r̂ and ∆π⋆
β = ∆r⋆ . Since π⋆

β ∈ Π, the definition of π̂ in Eq. (4) implies that∑
(x,y,y′)∈Dpref

(
∆π̂(x, y, y′)−∆π⋆

β (x, y, y′)
)2
≤ min

π∈Π

∑
(x,y,y′)∈Dpref

(
∆π(x, y, y′)−∆π⋆

β (x, y, y′)
)2

≤
∑

(x,y,y′)∈Dpref

(
∆π⋆

β (x, y, y′)−∆π⋆
β (x, y, y′)

)2
= 0.

Define Bn,ρ := log(2nCloss|Π|ρ−1). It is immediate that∑
(x,y,y′)∈Dpref

(
∆π̂(x, y, y′)−∆π⋆

β (x, y, y′)
)2

I
{∣∣∆π̂

∣∣ ≤ Bn,ρ,
∣∣∆π⋆

β

∣∣ ≤ Bn,ρ

}
≤ 0.

From here, Bernstein’s inequality and a union bound implies that with probability at least 1− ρ,

Eπbase,πbase

[∣∣∣∆π̂(x, y, y′)−∆π⋆
β (x, y, y′)

∣∣∣2I{∣∣∆π̂
∣∣ ≤ Bn,ρ,

∣∣∆π⋆
β

∣∣ ≤ Bn,ρ

}]
≲

B2
n,ρ log(|Π|ρ−1)

n
=: ε2stat.

In particular, if we combine this with Eq. (22) and set η = Bn,ρ, then Lemma J.1 implies that

J(π⋆)− J(π̂) ≲ (Cπ⋆ + Cconc)
1/2 · εstat + (Cπ⋆ + Cconc)

1/2 log(Closs) · ρ1/4 + βDKL(π
⋆ ∥πbase).

45



Published as a conference paper at ICLR 2025

Note that the above bound holds for any π⋆ : X → ∆(Y). We define π⋆ by

π⋆(y | x) :=
πbase(y | x)I[y ∈ y⋆

γ(x)]

πbase(y⋆
γ(x) | x)

,

which can be seen to satisfy Cπ⋆ ≤ Ccov,γ ≤ Cconc and DKL(π
⋆ ∥πbase) ≤ log(Cπ⋆) ≤ log(Cconc).

With this choice, we can further bound the expression above by

J(π⋆)− J(π̂) ≲ (Cconc)
1/2 · εstat + (Cconc)

1/2 log(Closs) · ρ1/4 + β log(Cconc)

Given a desired failure probability ρ, applying the bound above with ρ′ := ρ ∧ (εstat/ log(Closs))
4

then gives

J(π⋆)− J(π̂) ≲ (Cconc)
1/2 · εstat + β log(Cconc).

Finally, we observe that for our choice of π⋆, under the margin condition with parameter γ, we have

J(π⋆)− J(π̂) = Ex∼µ Ey,y′∼π⋆,π̂

[
log

(
πbase(y | x)
πbase(y′ | x)

)]
≳ γmargin · Ex∼µ Ey′∼π̂

[
I{y′ ̸∈ y⋆

γ(x)}
]
− γ

≳ γmarginδ · Ex∼µ

[
I{π̂(y⋆

γ(x) | x) ≤ 1− δ}
]
− γ

where the first inequality uses Assumption J.2 together with the fact that y ∈ y⋆
γ(x) with probability

1 over x ∼ µ and y ∼ π⋆(· | x). This proves the result.

Proof of Lemma J.3. For any η > 0, we can bound

Eπ,πbase

[∣∣∣∆r⋆(x, y, y′)−∆r̂(x, y, y′)
∣∣∣] ≤ Eπ,πbase

[∣∣∣∆r⋆(x, y, y′)−∆r̂(x, y, y′)
∣∣∣I{∣∣∆r⋆

∣∣ ≤ η,
∣∣∆r̂

∣∣ ≤ η
}]

+ Eπ,πbase

[∣∣∣∆r⋆(x, y, y′)−∆r̂(x, y, y′)
∣∣∣I{∣∣∆r⋆

∣∣ > η ∨
∣∣∆r̂

∣∣ > η
}]

.

For the second term above, we can use Cauchy-Schwarz to bound

Eπ,πbase

[∣∣∣∆r⋆(x, y, y′)−∆r̂(x, y, y′)
∣∣∣I{∣∣∆r⋆

∣∣ > η ∨
∣∣∆r̂

∣∣ > η
}]

≤ C1/2π ·
(
Eπbase,πbase

[∣∣∣∆r⋆(x, y, y′)−∆r̂(x, y, y′)
∣∣∣2I{∣∣∆r⋆

∣∣ > η ∨
∣∣∆r̂

∣∣ > η
}])1/2

≲ C1/2π ·
(
Pπbase,πbase

[∣∣∆r⋆
∣∣ > η

]
+ Pπbase,πbase

[∣∣∆r̂
∣∣ > η

])1/4
·
(
Eπbase,πbase

[∣∣∣∆r⋆(x, y, y′)
∣∣∣4]+ Eπbase,πbase

[∣∣∣∆r̂(x, y, y′)
∣∣∣4])1/4

≲ C1/2π ·
(
Pπbase,πbase

[∣∣∆r⋆
∣∣ > η

]
+ Pπbase,πbase

[∣∣∆r̂
∣∣ > η

])1/4
· (log(Cπbase/π̂;β) + log(Cπbase/π⋆

β ;β
)),

where the last inequality follows from Lemma J.2.

Meanwhile, for the first term, for any λ > 0 we can bound

Eπ,πbase

[∣∣∣∆r⋆(x, y, y′)−∆r̂(x, y, y′)
∣∣∣I{∣∣∆r⋆

∣∣ ≤ η,
∣∣∆r̂

∣∣ ≤ η
}]

≤ C1/2π

(
Eπbase,πbase

[∣∣∣∆r⋆(x, y, y′)−∆r̂(x, y, y′)
∣∣∣2I{∣∣∆r⋆

∣∣ ≤ η,
∣∣∆r̂

∣∣ ≤ η
}])1/2

.
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J.2 PROOF OF THEOREM 4.3 AND THEOREM J.3

In this section we prove Theorem 4.3 as well as Theorem J.3, the application to linear softmax models.
For the formal theorem statements, see Theorem J.2 and Theorem J.3 respectively. The section is
organized as follows.

• Appendix J.2.1 gives necessary background on KL-regularized policy optimization, as well as the
Sequential Extrapolation Coefficient.

• Appendix J.2.2 presents a generic guarantee for XPO under a general choice of reward function.

• Appendix J.2.3 instantiates the result above with the self-reward function r(x, y) := log πbase(y | x)
to prove Theorem 4.3.

• Finally, Appendix J.2.4 applies the preceding results to prove Theorem J.3.

J.2.1 BACKGROUND

To begin, we give background on KL-regularized policy optimization and the Sequential Extrapolation
Coefficient.

KL-regularized policy optimization. Let β > 0 be given, and let r : X ×Y → [−Rmax, Rmax] be
an unknown reward function on prompt/action pairs. Define a value function Jβ over model class Π
by:

Jβ(π) := Eπ[r(x, y)]− β ·DKL(Pπ ∥Pπbase).

We refer to this as a KL-regularized policy optimization objective (we use the term “policy” following
the reinforcement learning literature; for our setting, policies correspond to models). Given query
access to r, the goal is to find π̂ ∈ Π such that

Jβ(π
⋆
β)− Jβ(π̂) ≤ ϵ

where π⋆
β(y | x) ∝ πbase(y | x) exp(β−1r(x, y)) is the model that maximizes Jβ over all models

π : X → ∆(Y).

We make use of the following assumptions, as in Xie et al. (2024).

Assumption J.3 (Realizability). It holds that π⋆
β ∈ Π.

Assumption J.4 (Bounded density ratios). For all π ∈ Π, (x, y) ∈ X × Y ,
∣∣β log π(y|x)

πbase(y|x)
∣∣ ≤ Vmax.

Finally, we require two definitions.

Definition J.1 (Sequential Extrapolation Coefficient for RLHF, (Xie et al., 2024)). For a model class
Π, reward function r, reference model πbase, and parameters T ∈ N and β, λ > 0, the Sequential
Extrapolation Coefficient is defined as

SEC(Π, r, T, β, λ;πbase)

:= sup
π(1),...,π(T )∈Π


T∑

t=1

E(t)
[
β log π(t)(y|x)

πbase(y|x) − r(x, y)− β log π(t)(y′|x)
πbase(y′|x) + r(x, y′)

]2
λ ∨

∑t−1
i=1 E(i)

[(
β log π(t)(y|x)

πbase(y|x) − r(x, y)− β log π(t)(y′|x)
πbase(y′|x) + r(x, y′)

)2]


where E(t) denotes expectation over x ∼ µ, y ∼ π(t)(· | x), and y′ ∼ πbase(· | x).

Definition J.2. Let ϵ > 0. We say that Ψ ⊆ Π is a ϵ-net for model class Π if for every π ∈ Π there
exists π′ ∈ Ψ such that

max
x∈X

max
y∈Y

∣∣∣∣log π(y | x)
π′(y | x)

∣∣∣∣ ≤ ϵ.

We write N (Π, ϵ) to denote the size of the smallest ϵ-net for Π.
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Algorithm 1 Reward-based variant of Exploratory Preference Optimization (Xie et al., 2024)
input: Base model πbase : X → ∆(Y), reward function r : X × Y → R, number of iterations
T ∈ N, KL regularization coefficient β > 0, optimism coefficient α > 0.
Initialize: π(1) ← πbase, D(0) ← ∅.
for iteration t = 1, . . . , T do

Generate sample: (x(t), y(t), ỹ(t)) via x(t) ∼ µ, y(t) ∼ π(t)(· | x(t)), ỹ(t) ∼ πbase(· | x(t)).
Update dataset: D(t) ← D(t−1) ∪ {(x(t), y(t), ỹ(t))}.
Model optimization with global optimism:

π(t+1) ← argmin
π∈Π

{
α

∑
(x,y,y′)∈D(t)

log(π(y′ | x))

−
∑

(x,y,y′)∈D(t)

(
β log

π(y | x)
πbase(y | x)

− β log
π(y′ | x)

πbase(y′ | x)
− (r(x, y)− r(x, y′))

)2
}
.

return: π̂ ← argmaxt∈[T+1] Jβ(π
(t)). ▷ Can estimate Jβ(π

(t)) using validation data.

J.2.2 GUARANTEES FOR KL-REGULARIZED POLICY OPTIMIZATION WITH XPO

In this section, we give self-contained guarantees for the XPO algorithm (Algorithm 1). XPO was
introduced in Xie et al. (2024) for KL-regularized policy optimization in the related setting where the
learner only has indirect access to the reward function r through preference data (specifically, pairs of
actions labeled via a Bradley-Terry model). Standard offline algorithms for this problem, such as DPO,
require bounds on concentrability of the model class (see e.g. Eq. (9)). Xie et al. (2024) show that
the XPO algorithm avoids this dependence, and instead requires bounded Sequential Extrapolation
Coefficient.

Algorithm 1 is a variant of the XPO algorithm which is adapted to reward-based feedback (as opposed
to preference-based feedback), and Theorem J.1 shows that this algorithm enjoys guarantees similar
to those of Xie et al. (2024) for this setting. Note that this is not an immediate corollary of the results
in Xie et al. (2024), since the sample complexity in the preference-based setting scales with eO(Rmax),
and for our application to sharpening it is important to avoid this dependence. However, our algorithm
and analysis only diverge from Xie et al. (2024) in a few places.

Theorem J.1 (Variant of Xie et al. (2024, Theorem 3.1)). Suppose that Assumptions J.3 and J.4

hold. For any T ∈ N, ϵdisc, ρ ∈ (0, 1), by setting α := β
Rmax+Vmax

√
log(2N (Π,ϵdisc)T/ρ)

SEC(Π)T , Algorithm 1
produces a model π̂ ∈ Π such that with probability at least 1− ρ,

βDKL

(
π̂ ∥π⋆

β

)
= Jβ(π

⋆
β)− Jβ(π̂) ≲ (Rmax + Vmax)

√
SEC(Π) log(2N (Π, ϵdisc)T/ρ)

T

+ βϵdisc
√

SEC(Π)T

where SEC(Π) := SEC(Π, r, T, β, V 2
max;πbase).

Proof of Theorem J.1. For compactness, we abbreviate SEC(Π) := SEC(Π, r, T, β, V 2
max;πbase).

From Equation (37) of Xie et al. (2024), we have

1

T

T∑
t=1

Jβ(π
⋆
β)− Jβ(π

(t))

≲
α

β
(Rmax + Vmax)

2 · SEC(Π) +
β

αT
+

Vmax

T
+

1

T

T∑
t=2

E
(x,y)∼πbase

[β log π(t)(y | x)− β log π⋆
β(y | x)]

+
β

α(Rmax + Vmax)2T

T∑
t=2

E
x∼µ

y,y′∼π(t)|x

[(
β log

π(t)(y | x)
πbase(y | x)

− r(x, y)− β log
π(t)(y′ | x)
πbase(y′ | x)

+ r(x, y′)

)2
]

where π(t) := 1
t−1

∑
i<t π

(i)⊗πbase denotes the model that, given x ∈ X , samples i ∼ Unif([t− 1])

and then samples y ∼ π(i)(· | x) and y′ ∼ πbase(· | x). For any 2 ≤ t ≤ T , define L(t) : Π→ [0,∞)

48



Published as a conference paper at ICLR 2025

by

L(t)(π) := E
(x,y)∼πbase

[β log π(y | x)− β log π⋆
β(y | x)]

+
β

α(Vmax +Rmax)2
E

x∼µ

y,y′∼π(t)|x

[(
β log

π(y | x)
πbase(y | x)

− r(x, y)− β log
π(y′ | x)

πbase(y′ | x)
+ r(x, y′)

)2
]
.

Similarly, define

L̂(t)(π) :=
∑

(x,y,y′)∈D(t)

[β log π(y′ | x)− β log π⋆
β(y

′ | x)]

+
β

α(Vmax +Rmax)2

∑
(x,y,y′)∈D(t)

[(
β log

π(y | x)
πbase(y | x)

− r(x, y)− β log
π(y′ | x)

πbase(y′ | x)
+ r(x, y′)

)2
]

where D(t) is the dataset defined in iteration t of Algorithm 1. By Assumption J.3 we have π⋆
β ∈ Π,

so infπ∈Π L̂(t)(π) ≤ 0. Moreover by definition, π(t) ∈ argminπ∈Π L̂(t).

Let Ψ be an ϵdisc-net over Π, of size N (Π, ϵdisc). Fix any π ∈ Ψ and 2 ≤ t ≤ T , and define
increments Xi := L̂(i)(π) − L̂(i−1)(π) for 2 ≤ i ≤ t, with the notation L̂(1)(π) := 0 so that
L̂(t)(π) =

∑t
i=2 Xi. Let Fi be the filtration induced by D(i) and define γi := E[Xi | Fi−1].

Observe that (t− 1)L(t)(π) =
∑t

i=2 γi. For any i, note that we can write Xi = Yi + Zi where Yi ∈
[−Vmax, Vmax] and Zi ∈ [0, β/α]. By Corollary F.1, it holds with probability at least 1− ρ/(2|Π|T )

t∑
i=2

E[Zi | Fi−1] ≲
β

α
log(2|Ψ|T/ρ) +

t∑
i=2

Zi.

By Azuma-Hoeffding, it holds with probability at least 1− ρ/(2|Π|T ) that
t∑

i=2

E[Yi | Fi−1] ≲ Vmax

√
T log(2|Ψ|T/ρ) +

t∑
i=2

Yi.

Hence, with probability at least 1− ρ/(|Ψ|T ) we have

(t− 1)L(t)(π) ≲
β

α
log(2|Ψ|T/ρ) + Vmax

√
T log(2|Ψ|T/ρ) + L̂(t)(π).

With probability at least 1− ρ this bound holds for all π ∈ Ψ and 2 ≤ t ≤ T . Henceforth condition
on this event. Fix any π ∈ Π and 2 ≤ t ≤ T . Since Ψ is an ϵ-net for Π, we see by definition of L(t)

that there is some π′ ∈ Ψ such that

|L(t)(π)−L(t)(π′)| ≲ βϵdisc+
β

α(Vmax +Rmax)2
·βϵdisc(Vmax+Rmax) ≤ βϵdisc

(
1 +

β

α(Vmax +Rmax)

)
and similarly

|L̂(t)(π)− L̂(t)(π′)| ≲ (t− 1)βϵdisc

(
1 +

β

α(Vmax +Rmax)

)
.

It follows that, for all 2 ≤ t ≤ T , since L̂(t)(π(t)) ≤ 0, we get

(t−1)L(t)(π(t)) ≲
β

α
log(2|Ψ|T/ρ)+Vmax

√
T log(2|Ψ|T/ρ)+βϵdiscT

(
1 +

β

α(Vmax +Rmax)

)
.

Hence,

1

T

T∑
t=1

Jβ(π
⋆
β)− Jβ(π

(t))

≲
α

β
(Rmax + Vmax)

2 · SEC(Π) +
β

αT
+

Vmax

T
+

1

T

T∑
t=2

L(t)(π(t))

≲ (Rmax + Vmax)

√
SEC(Π) log(2|Ψ|T/ρ)

T
+ βϵdisc

√
SEC(Π)T
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by taking

α :=
β

Rmax + Vmax

√
log(2|Ψ|T/ρ)
SEC(Π)T

.

Since the output π̂ of Algorithm 1 satisfies π̂ ∈ argmaxt∈[T ] Jβ(π
(t)), the claimed bound on

Jβ(π
⋆
β)− Jβ(π̂) is immediate. Finally, observe that by definition of π⋆

β ,

Jβ(π
⋆
β)− Jβ(π̂) = E

(x,y)∼π⋆
β

[
r(x, y)− β log

π⋆
β(y | x)

πbase(y | x)

]
− E

(x,y)∼π̂

[
r(x, y)− β log

π̂(y | x)
πbase(y | x)

]
= E

(x,y)∼π⋆
β

[
r(x, y)− β log

π⋆
β(y | x)

πbase(y | x)

]
− E

(x,y)∼π̂

[
r(x, y)− β log

π⋆
β(y | x)

πbase(y | x)

]

+ E
(x,y)∼π̂

[
β log

π̂(y | x)
π⋆
β(y | x)

]
= β log E

(x,y)∼πbase

[exp(r(x, y))]− β log E
(x,y)∼πbase

[exp(r(x, y))] + βDKL

(
π̂ ∥π⋆

β

)
= βDKL

(
π̂ ∥π⋆

β

)
.

This completes the proof.

J.2.3 APPLYING XPO TO MAXIMUM-LIKELIHOOD SHARPENING

We now prove Theorem J.2, the formal statement of Theorem 4.3, which applies XPO to
maximum-likelihood sharpening. This result is a straightforward corollary of Theorem J.1 with
the reward function rself(x, y) := log πbase(y | x), together with the observation that low KL-
regularized regret implies sharpness (under Assumption 4.2).

Theorem J.2 (Sharpening via active exploration). There are absolute constants cJ.2, CJ.2 > 0 so
that the following holds. Let ϵ, δ, γmargin, ρ, β ∈ (0, 1) and T ∈ N be given. For base model πbase,
define reward function r(x, y) := log πbase(y | x). Let Rmax ≥ 1 + maxx,y log

1
πbase(y|x) . Suppose

that πbase satisfies Assumption 4.2 with parameter γmargin, that β−1 ≥ 2γ−1
margin log(2|Y|/δ), and that

there is ϵdisc ∈ (0, 1) so that

T ≥ CJ.2
R2

maxSEC(Π) log(2N (Π, ϵdisc)T/ρ)

ϵ2δ2β2

and

ϵdisc ≤ cJ.2
ϵδ√

SEC(Π)T

where SEC(Π) := SEC(Π, r, T, β,R2
max;πbase). Also suppose that π⋆

β ∈ Π where π⋆
β(y | x) ∝

π1+β−1

base (y | x).

Then applying Algorithm 1 with base model πbase, reward function r, iteration count T , regularization

β, and optimism parameter α := β
Rmax

√
log(2N (Π,ϵdisc)T/δ)

SEC(Π)T yields a model π̂ ∈ Π such that with
probability at least 1− ρ,

Px∼µ[π̂(y
⋆(x) | x) < 1− δ] ≤ ϵ.

The total sample complexity is

m = Õ

(
R2

maxSEC(Π) log(N (Π, ϵdisc)/ρ) log
2(|Y|δ−1)

γ2
marginϵ

2δ2

)
.

Proof of Theorem J.2. By definition of r, we have |r(x, y)| ≤ Rmax for all x, y. By assumption,
Assumption J.3 is satisfied, and by definition of Rmax, Assumption 4.5 is satisfied with parameter
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Vmax := βRmax ≤ Rmax. It follows from Theorem J.1 that with probability at least 1− ρ, the output
π̂ of Algorithm 1 satisfies

βDKL

(
π̂ ∥π⋆

β

)
≲ (Rmax + Vmax)

√
SEC(Π) log(2N (Π, ϵdisc)T/ρ)

T

+ βϵdisc
√
SEC(Π)T .

By choice of T and ϵdisc, so long as CJ.2 > 0 is chosen to be a sufficiently large constant and
cJ.2 > 0 is chosen to be a sufficiently small constant, we have βDKL

(
π̂ ∥π⋆

β

)
≤ 1

12βϵδ, so by e.g.

Equation (16) of Sason & Verdú (2016), D2
H

(
π̂, π⋆

β

)
≤ ϵδ/(12).

For any x ∈ X and y′ ∈ Y \ y⋆(x), by Assumption 4.2 and definition of π⋆
β we have

1

π⋆
β(y

′ | x)
≥

maxy∈Y π⋆
β(y | x)

π⋆
β(y

′ | x)
=

(
maxy∈Y πbase(y | x)

πbase(y′ | x)

)1+β−1

≥ (1 + γmargin)
1+β−1

≥ eγmargin/(2β) ≥ 2|Y|
δ

where the final inequality is by the assumption on β in the theorem statement. Therefore

π⋆
β(y

⋆(x) | x) ≥ 1−
∑

y′∈Y\y⋆(x)

π⋆
β(y

′ | x) ≥ 1− δ

2
.

Now for any x, we can lower bound

D2
H

(
π̂(· | x), π⋆

β(· | x)
)
≥
(√

1− π̂(y⋆(x) | x)−
√

1− π⋆
β(y

⋆(x) | x)
)2

≥ δ

12
· I{π̂(y⋆(x) | x) ≤ 1− δ}.

Hence,

Px∼µ[π̂(y
⋆(x) | x) < 1− δ] ≤ 12

δ
Ex∼µD

2
H

(
π̂(· | x), π⋆

β(· | x)
)

=
12

δ
D2

H

(
π̂, π⋆

β

)
≤ ϵ.

as claimed.

J.2.4 APPLICATION: LINEAR SOFTMAX MODELS

In this section we apply Theorem 4.3 to the class of linear softmax models, proving Theorem J.3.
This demonstrates that Algorithm 1 can achieve an exponential improvement in sample complexity
compared to SFT-Sharpening.

Definition J.3 (Linear softmax model). Let d ∈ N be given, and let ϕ : X×Y → Rd be a feature map
with ∥ϕ(x, y)∥2 ≤ 1 for all x, y. Let πzero : X → ∆(Y) be the uniform model πzero(y | x) := 1

|Y| ,
and let B ≥ 1.15 We consider the linear softmax model class Πϕ,B := {πθ : θ ∈ Rd, ∥θ∥2 ≤ B}
where πθ : X → ∆(Y) is defined by

πθ(y | x) ∝ πzero(y | x) exp(⟨ϕ(x, y), θ⟩).

Theorem J.3. Let ϵ, δ, γmargin, ρ ∈ (0, 1) be given. Suppose that πbase = πθ⋆ ∈ Πϕ,B for
some θ⋆ ∈ Rd with ∥θ⋆∥2 ≤ γmarginB

3 log(2|Y|/δ) . Also, suppose that πbase satisfies Assumption 4.2
with parameter γmargin. Then Algorithm 1 with base model πbase, reward function r(x, y) :=
log πbase(x, y), regularization parameter β := γmargin/(2 log(2|Y|/δ)), and optimism parameter

α(T ) ∝ β
B+log(|Y|)

√
d log(BdT/(ϵδ))+log(T/ρ)

dT log(T ) returns an (ϵ, δ)-sharpened model with probability at
least 1− ρ, and has sample complexity

m = poly(ϵ−1, δ−1, γ−1
margin, d, B, log(|Y|/ρ)).

15We use the notation πzero to highlight the fact that πzero = πθ for θ = 0.
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Before proving the result, we unpack the conditions. Theorem J.3 requires the base model πbase to lie
in the model class and also satisfy the margin condition (Assumption 4.2). For any constant ϵ, δ > 0,
the sharpening algorithm then succeeds with sample complexity poly(d, γ−1

margin, B, log(|Y|)). These
conditions are non-vacuous; in fact, there are fairly natural examples for which non-exploratory
algorithm such as SFT-Sharpening require sample complexity exp(Ω(d)), whereas all of the above
parameters are poly(d). The following is one such example.

Example J.1 (Separation between RLHF-Sharpening and SFT-Sharpening). Set X = {x} and let
Y ⊂ Rd be a 1/4-packing of the unit sphere in Rd of cardinality exp(Θ(d)). Define ϕ : X ×Y → Rd

by ϕ(x, y) := y, and let B = Cd log d for an absolute constant C > 0. Fix any y⋆ ∈ Y and define
πbase := πθ⋆ ∈ Πϕ,B by θ⋆ := y⋆. Then for any y ̸= y⋆, we have ⟨y, y⋆⟩ ≤ 1− Ω(1), so

πbase(y
⋆ | x)

πbase(y | x)
= exp(⟨y⋆ − y, y⋆⟩) = exp(Ω(1)) = 1 + Ω(1).

Thus, πbase satisfies Assumption 4.2 with γmargin = Ω(1). Moreover, ∥θ⋆∥2 = 1 ≤ γmarginB
3 log(2|Y|/δ)

for any δ = 1/poly(d), so long as C is a sufficiently large constant. It follows from Theorem J.3
that Algorithm 1 computes an (ϵ, δ)-sharpened model with sample complexity poly(ϵ−1, δ−1, d).
However, since πbase(y

⋆ | x) ≤ πbase(y | x) · exp(2) for all y ∈ Y , it is clear that

Ccov = E
[

1

πbase(y⋆(x) | x)

]
=

1

πbase(y⋆ | x)
= Ω(|Y|) = exp(Ω(d)).

Thus, the sample complexity guarantee for SFT-Sharpening in Theorem 4.1 will incur exponential
dependence on d in the sample complexity. It is straightforward to check that this dependence is real
for SFT-Sharpening, and not just an artifact of the analysis, since the model that SFT-Sharpening
is trying to learn (via MLE) will itself not be sharp in this example, unless exp(Ω(d)) samples are
drawn per prompt. ◁

We now proceed to the proof of Theorem J.3, which requires the following bounds on the covering
number and the Sequential Extrapolation Coefficient of Πϕ,B .

Lemma J.4. Let ϵdisc > 0. Then Πϕ,B has an ϵdisc-net of size (6B/ϵdisc)
d.

Proof of Lemma J.4. By a standard packing argument, there is a set {θ1, . . . , θN} of size (6B/ϵdisc)
d

such that for every θ ∈ Rd with ∥θ∥2 ≤ B there is some i ∈ [N ] with ∥θi − θ∥2 ≤ ϵdisc/2. Now for
any x ∈ X and y ∈ Y ,

log
πθ(y | x)
πθi(y | x)

= log
exp(⟨ϕ(x, y), θ⟩)
exp(⟨ϕ(x, y), θi⟩)

+ log
E(x′,y′)∼πzero

exp(⟨ϕ(x′, y′), θi⟩)
E(x′,y′)∼πzero

exp(⟨ϕ(x′, y′), θ⟩)

= ⟨ϕ(x, y), θ − θi⟩+ log
E(x′,y′)∼πzero

[exp(⟨ϕ(x′, y′), θ⟩) exp(⟨ϕ(x′, y′), θi − θ⟩)]
E(x′,y′)∼πzero

exp(⟨ϕ(x′, y′), θ⟩)
.

The first term is bounded by ϵdisc/2 in magnitude. In the second term, we have
exp(⟨ϕ(x′, y′), θi − θ⟩) ∈ [exp(−ϵdisc/2), exp(ϵdisc/2)], so the ratio of expectations lies in
[exp(−ϵdisc/2), exp(ϵdisc/2)] as well, and so the log-ratio lies in [−ϵdisc/2, ϵdisc/2]. In all, we get∣∣∣log πθ(y|x)

πθi
(y|x)

∣∣∣ ≤ ϵdisc. Thus, {πθ1 , . . . , πθN } is an ϵdisc-net for Π.

Lemma J.5. Let r : X × Y → [−Rmax, Rmax] be a reward function and let T ∈ N and β > 0. If
λ ≥ 4β2B2 +R2

max then for any π⋆ ∈ Πϕ,B ,

SEC(Πϕ,B , r, T, β, λ;π
⋆) ≲ d log(T + 1).

Proof of Lemma J.5. Fix π(1), . . . , π(T ) ∈ Πϕ,B . By definition, there are some θ(1), . . . , θ(T ) ∈ Rd

with ∥θ(t)∥2 ≤ B and

π(t)(y | x) ∝ πzero(y | x) exp(⟨ϕ(x, y), θ(t)⟩)

for all t ∈ [T ] and (x, y) ∈ X × Y . Similarly, there is some θ⋆ ∈ Rd with ∥θ⋆∥2 ≤ B and
π⋆(y | x) ∝ πzero(y | x) exp(⟨ϕ(x, y), θ⋆⟩).
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Define ϕ̃ : X ×Y → Rd+1 by ϕ̃(x, y) := [ϕ(x, y), r(x,y)
Rmax

] and define θ̃(t) := [β(θ(t) − θ⋆),−Rmax].
Then for any t ∈ [T ] we have

E(t)
[
β log π(t)(y|x)

π⋆(y|x) − r(x, y)− β log π(t)(y′|x)
π⋆(y′|x) + r(x, y′)

]2
λ ∨

∑t−1
i=1 E(i)

[(
β log π(t)(y|x)

π⋆(y|x) − r(x, y)− β log π(t)(y′|x)
π⋆(y′|x) + r(x, y′)

)2]

=
E(t)

[
⟨ϕ̃(x, y)− ϕ̃(x, y′), θ̃(t)⟩

]2
λ ∨

∑t−1
i=1 E(i)

[(
⟨ϕ̃(x, y)− ϕ̃(x, y′), θ̃(t)⟩

)2]
≤ (θ̃(t))⊤Σ(t)θ̃(t)

λ ∨
∑t−1

i=1(θ̃
(t))⊤Σ(i)θ̃(t)

where for each i ∈ [T ] we have defined Σ(i) := E(i)
[
(ϕ̃(x, y)− ϕ̃(x, y′))(ϕ̃(x, y)− ϕ̃(x, y′))⊤

]
.

Observe that ∥θ̃(t)∥22 ≤ 4β2B2 +R2
max ≤ λ by assumption on λ. Therefore,

(θ̃(t))⊤Σ(t)θ̃(t)

λ ∨
∑t−1

i=1(θ̃
(t))⊤Σ(i)θ̃(t)

≲
(θ̃(t))⊤Σ(t)θ̃(t)

λ+
∑t−1

i=1(θ̃
(t))⊤Σ(i)θ̃(t)

≤ (θ̃(t))⊤Σ(t)θ̃(t)

(θ̃(t))⊤
(
Id +

∑t−1
i=1 Σ

(i)
)
θ̃(t)

≤ λmax

(Id + t−1∑
i=1

Σ(i)

)−1/2

Σ(t)

(
Id +

t−1∑
i=1

Σ(i)

)−1/2


≤ Tr

(Id + t−1∑
i=1

Σ(i)

)−1/2

Σ(t)

(
Id +

t−1∑
i=1

Σ(i)

)−1/2


= Tr

(Id + t−1∑
i=1

Σ(i)

)−1

Σ(t)

 .

Observe that Tr(Σ(t)) ≤ maxx,y∥ϕ̃(x, y)∥22 ≲ 1. Hence by Lemma F.2, we have

T∑
t=1

E(t)
[
β log π(t)(y|x)

π⋆(y|x) − r(x, y)− β log π(t)(y′|x)
π⋆(y′|x) + r(x, y′)

]2
λ ∨

∑t−1
i=1 E(i)

[(
β log π(t)(y|x)

π⋆(y|x) − r(x, y)− β log π(t)(y′|x)
π⋆(y′|x) + r(x, y′)

)2]

≲
T∑

t=1

Tr

(Id + t−1∑
i=1

Σ(i)

)−1

Σ(t)


≲ d log(T + 1).

Since π(1), . . . , π(T ) ∈ Π were arbitrary, this completes the proof.

The proof is now immediate from Theorem J.2 and the above lemmas.

Proof of Theorem J.3. By the assumption on θ⋆ and choice of β, the model π⋆
β defined by

π⋆
β(y | x) ∝ πbase(y | x)1+β−1

satisfies π⋆
β = π(1+β−1)θ⋆ ∈ Πϕ,B . By Lemma J.4, we have

N (Πϕ,B , ϵdisc) ≤ (6B/ϵdisc)
d. Take Rmax :=

√
4β2B2 + (2B + log |Y|)2. We know that

r(x, y) := log πbase(y | x) satisfies |r(x, y)| ≤ 2B + log |Y| for all x, y. By Lemma J.5, we
therefore get that SEC(Πϕ,B , r, T, β,R

2
max;πbase) ≲ d log(T + 1). Substituting these bounds into

Theorem J.2 yields the claimed result.
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