
Synthesizing Adversarial Visual Scenarios for

Model-Based Robotic Control

Shubhankar Agarwal
?

and Sandeep P. Chinchali
⇤

Abstract: Today’s robots usually interface data-driven perception and planning
models with classical model-predictive controllers (MPC). Often, such learned
perception/planning models produce erroneous waypoint predictions on out-of-
distribution (OoD) or even adversarial visual inputs, which increase control cost.
However, today’s methods to train robust perception models are largely task-
agnostic – they augment a dataset using random image transformations or ad-
versarial examples targeted at the vision model in isolation. As such, they may
introduce pixel perturbations that are ultimately benign for control. In contrast
to prior work that synthesizes adversarial examples for single-step vision tasks,
our key contribution is to synthesize adversarial scenarios tailored to multi-step,
model-based control. To do so, we use differentiable MPC methods to calcu-
late the sensitivity of a model-based controller to errors in state estimation. We
show that re-training vision models on these adversarial datasets improves control
performance on OoD test scenarios by up to 36.2% compared to standard task-
agnostic data augmentation. We demonstrate our method on examples of robotic
navigation, manipulation in RoboSuite, and control of an autonomous air vehicle.

1 Introduction

Imagine a drone that must safely navigate using its camera and a learned perception module, such as
a deep neural network (DNN). The drone’s perception DNN and planning module output a sequence
of waypoints that are tracked by MPC to achieve a low-cost trajectory [1, 2]. However, the drone will
often observe weather and terrain conditions that are far from its original image training distribution.
In this paper, we ask whether we can automatically synthesize adversarial visual scenarios for multi-
step, model-based control tasks in order to re-train more robust robotic perception models.

Today’s robust training methods include data augmentation [3, 4], domain randomization [5, 6], and
adversarial training [7–9]. These methods add synthetic visual examples by randomly cropping,
rotating, or adversarially altering targeted pixels in a training distribution. However, such augmen-
tation methods aim to improve the vision model in isolation and hence are largely task-agnostic.
While some methods [10–12] perform data augmentation for the ultimate end-to-end control task,
the data-augmentation techniques are still task-agnostic, such as using random crops, blur, etc. As
such, they often synthesize visual examples that do not adequately affect control-relevant states.

Our work bridges advances in generative models [13, 14], differentiable rendering [15, 16], and
differentiable MPC [17]. These advances enable us to synthesize realistic visual scenes from a set
of latent, often-interpretable, parameters and calculate their impact on control cost. Our principal
contribution is a training procedure (Fig. 1) that efficiently perturbs the latent representation of an
image so that we render scenarios that are poor for control, but consistent with naturally-occurring
data. Moreover, we can visualize the latent representations of scenes to see how task-driven data
augmentation improves the diversity of training examples, resulting in more robust models.

Literature Review: Many perception models are susceptible to adversarial examples [7–9, 18].
For example, the Fast Gradient Sign Method (FGSM) calculates the sensitivity of a pre-trained
classifier to distortions in the image input, which guides how we synthesize human-imperceptible
pixel changes that cause mis-classifications. However, to the best of our knowledge, there is no work
describing how such image perturbations ultimately affect multi-step, model-based control.
⇤Department of Electrical and Computer Engineering (ECE), The University of Texas at Austin, Austin, TX

{somi.agarwal,sandeepc}@utexas.edu

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

Figure 1: Differentiable Robot Learning Archi-

tecture: A robot observes an image s, which it maps
through an encoder to yield scene embedding z. Given
a history of waypoints wp, a task module (planner) out-
puts a future set of waypoints wF to track. Finally,
these waypoints are tracked using differentiable MPC
that outputs a task cost J. We assume scenes s are ren-
dered by a generative model, such as a differentiable
renderer (blue), that maps latent parameters describing
a scene n to an image s. Our key contribution is to
train an adversary (orange) to generate synthetic, but
realistic, images s̄ that are poor for the current plan-
ner and controller. Re-training the planning module on
these scenes improves robust performance on OoD data.

Our work is distinct from robust adversarial re-
inforcement learning (RARL) [19–22]. First,
these methods aim to improve a control policy,
either by perturbing an agent’s dynamics or in-
troducing an adversarial RL agent that physi-
cally impedes progress. In contrast, we focus
on fixed, model-based controllers (often repre-
sented by a convex program), and instead focus
on re-training perception models whose state
estimates serve as input parameters for con-
vex MPC. To do so, we use differentiable MPC
methods [17, 23, 24] to compute the sensitiv-
ity of the control cost to erroneous perceptual
inputs. As such, we leverage the structure of
MPC to efficiently synthesize adversarial inputs
as opposed to model-free RARL methods.

As noted earlier, today’s visual data augmenta-
tion [4] is largely task-agnostic – random image
crops or rotations might alter perception way-
points, but barely affect control cost. Instead,
our method leverages the MPC task’s struc-
ture to targetedly perturb pixels that are most
salient for control. Finally, our work differs
from gradient-free Bayesian Optimization [25]
methods (e.g., for safety assurances for self-
driving cars [26, 27]) since we explicitly lever-
age the gradient of MPC’s task cost. In light of
this prior work, our contributions are as follows:

1. We develop a novel loss function that flexibly trades-off the realism of adversarial examples and
their impact on control cost by learning perturbations in a latent visual space.

2. We present a method to automatically synthesize adversarial examples for vision-based MPC.
3. We show that re-training on these synthesized examples leads to better performance on unseen

test data than today’s standard task-agnostic data augmentation on diverse scenarios ranging from
aerial navigation to arm manipulation in the photo-realistic RoboSuite simulator [28].

2 Problem Statement

We describe our problem using the information flow in our robot learning architecture (Fig. 1).

Differentiable Perception and Planning Modules: The robot’s perception module fperc. maps
a high-dimensional visual observation s into a low-dimensional scene embedding z, denoted by
z = fperc.(s;qperc.). Here, qperc. are parameters of the perception module, such as a DNN. Next, the
robot uses the scene embedding z to plan a collision-free trajectory to achieve its task. Often, we
can represent a robot’s trajectory by a sequence of waypoints, such as a set of landmark poses in
the xy plane for a 2-D planar robot. Then, the differentiable planning module maps scene embed-
ding z and a vector of P past waypoints wp to a vector of F future waypoints to follow, denoted
by wF = fplan(z,wp;qplan). Here, qplan are parameters of the differentiable planner. Henceforth,
for brevity, we refer to the composition of the perception and planning modules as a task module
wF = ftask(s,wp;qperc.,qplan), such as the cascaded operation of two DNNs.

Differentiable MPC: Next, the robot must follow the waypoints wF with minimal control cost, while
incorporating physical constraints. Suppose the robot is at some initial state zt and has a planning
horizon of F steps. Then, its controller p should map the initial state zt and future waypoints wF

into a sequence of controls from t to t +F , denoted by ut:t+F = p(zt ,wF ;qMPC). Here, qMPC could
represent feedback gains for MPC. Crucially, we define a task (control) cost J(wF ;qperc.,qplan,qMPC)
which depends on the final waypoints the robot tracks wF . Since the waypoints wF depend on the
previous perception and planning modules, the cost J depends on their parameters too. The MPC
task cost J could balance actuation effort and state deviations from a reference trajectory.

2

Differentiable Rendering Module: This paper analyzes how the ultimate MPC task cost J would
increase if the robot observes an adversarial visual input s̄ instead of original image s. To do so,
we need a process to generate, or render, realistic adversarial scenes s̄. Fortunately, recent progress
in generative models and differentiable graphics renderers makes this possible [15, 29]. A differ-
entiable renderer s = yrender(n ;qrender) generates the robot’s scene s from latent parameters n that
describe the scene and internal parameters qrender of the rendering model. Often, the latent represen-
tation n of scene s could be interpretable and controllable, such as the pose, lighting, and texture of
different objects. Without loss of generality, the renderer in our pipeline could also be the decoder
in a Varational Autoencoder (VAE) [30] or a Generative Adversarial Network (GAN) [31]. All we
require is a differentiable mapping that generates new scenes s̄ from latent parameters n̄ .

End-to-End Differentiable Architecture: Since every block in Fig. 1 is differentiable, we have an
end-to-end differentiable mapping from scene parameters n to ultimate task cost J. Henceforth, we
slightly re-define our notation for the task cost to be J(n ;qperc.,qplan,qMPC) to make it explicit that
the cost depends on the latent scene representation n . This is because n generates scene s, which is
mapped to MPC waypoints wF through the task module. Thus, we can back-propagate the gradient
of the MPC task cost J with respect to scene parameters n to efficiently search for adversarial n̄ .

Train/Test Datasets: We must first formalize our dataset notation. A dataset contains N tuples of in-
puts x and ground-truth labels y denoted by D = {x,y}N

i=1. Specifically, each example x = (s,n ,wP)
represents the robot’s scene input s, corresponding latent representation n from the renderer, and
waypoint history wP. From these, the task model predicts a ground-truth target vector y = wF of
future robot waypoints, which can come from an oracle planner or human demonstrations.

Henceforth, the subscript b in the dataset notation Da

b
will represent the type of dataset, such

as whether it is an original image, from data augmentation, or adversarial training. Likewise,
the superscript a will represent if the dataset is from the train or test distribution. For exam-
ple, the original training and test datasets are given by D train

orig and D test
orig. The training function

TRAIN uses supervised learning to estimate correct waypoints wF given the scene s. The notation
q 0

perc.,q 0
plan TRAIN(D train

orig) indicates we train the nominal task model parameters on the original
training dataset.

For a focused contribution, we consider a scenario where the robot has an MPC controller with
fixed parameters qMPC. Moreover, we have already pre-trained a nominal task model {q 0

perc.,q 0
plan}

on original images in D train
orig . Given these inputs, our problem is to generate an additional dataset

Dnew = {x,y}M

i=1 of M datapoints such that re-training the task model on combined dataset D train
orig [

Dnew will minimize task cost J on a held-out original D test
orig and OoD test dataset D test

OoD. We only
consider adding M extra examples to limit training costs. Formally, our problem becomes:

Problem 1 (Data Augmentation for Control) Given fixed MPC parameters qMPC, original train-

ing dataset D train
orig , and a priori unknown test datasets, D test = D test

orig [D test
OoD, find a new dataset

Dnew = {x,y}M

i=1 of size M such that:

D⇤new = argmin
Dnew

E(s0,n 0,wp,w0F)⇠D test J(n 0;q⇤perc.,q⇤plan,qMPC),

where q⇤plan,q
⇤
perc. TRAIN(D train

orig [Dnew).

It is hard to analytically find the best dataset of M points to minimize task cost on OoD data, since
this requires re-training non-convex DNNs. We now describe our adversarial training approach.

3 Adversarial Scenario Generation Algorithm

We aim to generate a dataset of adversarial scenarios Dadv where the original task model performs
poorly. Then, by re-training the task model on the joint dataset D train

orig [Dadv, we hope to improve its
robust generalization. To do so, we introduce a differentiable adversary to generate the new dataset
Dadv, shown in orange in Fig. 1. The adversary maps the original latent scene representation n to a
perturbed representation n̄ = fadv(n ;qadv), where qadv are trainable parameters.

Adversary Loss Function: We now introduce a novel loss function to train the adversary fadv. Intu-
itively, the adversary’s loss function must perturb the latent scene representation n to n̄ such that the

3

task cost increases. At the same time, it must ensure that the new rendered scene from n̄ is realistic
enough to plausibly encounter during real-world testing. Therefore, the following adversarial loss
function delicately balances the task cost and distance loss between n̄ and n .

1 Input: q 0
perc.,q 0

plan,qMPC,D train
orig

2 Initialize empty new adversarial dataset Dadv = {}
3 for (xi = {si,ni,wP},yi)⇠ D train

orig , 0 iM do

4 Init. Adv. fadv(ni;q 0
adv) with random q 0

adv
5 Init. Adv. latent rep. n̄0 = ni

6 Best Task Loss J
? =�•

7 Init. Adv. tuple (x̄, ȳ) = (xi,yi)
8 for k 1 to K do

9 Get Adv. latent params
n̄k = fadv(n̄k�1;q k�1

adv)

10 Render scene s̄
k = yrender(n̄k;qrender)

11 Calculate task cost J(n̄k;q k�1
adv)

12 Calc. Loss L = L (ni, n̄k;q k�1
adv)

13 q k

adv BACKPROP(q k�1
adv ,L)

14 if J(n̄k,q k�1
adv)� J

?
then

15 Update most adv. scene
x̄

k = {s̄
k, n̄k,wP}

16 Update adv. example (x̄, ȳ) = (x̄k,yi)a

17 J
? J

18 end

19 end

20 Append adv. example (x̄, ȳ) to Dadv
21 end

22 Return: q 0perc.,q 0plan TRAIN(D train
orig [Dadv)

Algorithm 1: Adversary Training

aAs described later in Sec. 5.7, our method is gen-
eral, and we can either set the label for an adversar-
ial image to be the same label as the original image or
an altogether new label. This choice depends on how
much the difference between the adversarial scene and
the original scene affects task completion and seman-
tic meaning. For example, if an adversarial trajectory
changes the original path significantly in motion plan-
ning, we can generate new waypoint labels by invoking
an offline oracle planner. Suppose we aim to slightly
distort an image to emulate different weather and back-
ground scenarios, but the target prediction remains the
same. In that case, we can use the same label as the
original image.

Adversarial Task Cost: Given an origi-
nal latent scene representation n , the adver-
sary generates an adversarial representation by
n̄ = fadv(n ;qadv). Then, we simply invoke the
end-to-end differentiable modules in Fig. 1.
Importantly, we use the pre-trained task module
parameters {q 0

perc.,q 0
plan} since they will only

be re-trained after the adversarial dataset gen-
eration procedure. We then calculate the new
task cost J(n̄ ;q 0

perc.,q 0
plan,qMPC,qadv). Impor-

tantly, the task cost J depends on the adver-
sary parameters qadv since they generate per-
turbed scene representation n̄ . For a con-
cise notation, we will represent the task cost
J(n̄ ;q 0

perc.,q 0
plan,qMPC,qadv) as J(n̄ ;qadv), since

the parameters q 0
perc.,q 0

plan,qMPC are fixed.

Consistency (Distance) Loss: To promote gen-
eration of plausible adversarial images, we in-
troduce a consistency loss I(n , n̄) 2 R. Calcu-
lating the distance loss in the latent space is a
novelty of our loss function based on the ob-
servation that similar scenes s and s̄ might be
very far in the high-dimensional image space
due to task-irrelevant pixel variation but might
be close in the task-relevant latent space of the
renderer yrender. In our experiments, we use the
L2 norm distance between n̄ and n , although
our method can accomodate any differentiable
distance metric.

Overall Adversarial Loss Function: Finally,
our adversarial loss function trades off extra
control cost while incentivizing scene realism.
During adversarial training, only the adver-
sary’s parameters qadv are trained while the ini-
tial task module parameters are fixed. The dis-
tance loss is weighted by k , which can be flexi-
bly set by a roboticist depending on how adver-
sarial they prefer rendered scenarios to be. The
loss to minimize is:

L (n , n̄ ;qadv) =�J(n̄ ;qadv)+kI(n , n̄). (1)

Adversary Training: Algorithm 1 shows our complete training procedure. The inputs are an orig-
inal training dataset D train

orig , fixed MPC parameters qMPC, and pre-trained task module parameters
q 0

perc.,q 0
plan. We randomly sample M datapoints from the training distribution and generate their cor-

responding adversary by performing gradient descent on our loss function (Eq. 1). Then, we save
the most adversarial synthetic examples for subsequent data augmentation. To do so, we use a new
adversary for each datapoint rather than training a common adversary for the whole dataset.

On line 3, we iterate through M random samples of the original dataset D train
orig . Each datapoint xi

is a tuple of input scene si, corresponding latent representation ni, and past waypoints wP. Lines
4-7 describe how we initialize a new trainable adversary for each datapoint. In line 4, we initialize
a new adversary fadv with random weights q 0

adv, which will be specific to the datapoint xi. Since
we train the adversary parameters for K gradient descent steps, we use superscript k to indicate the

4

adversary’s parameters at training step k. Likewise, we index the new adversarially-generated latent
representation at each step k by n̄k. Finally, in lines 5-7, we initialize a tuple (x̄, ȳ), which will
indicate the adversarially generated datapoint and label, with the original training dataset’s values.

The crux of our algorithm is in lines 8-18, where we perform K gradient update steps to train the
adversary fadv. In each gradient step k, we update the adversary parameters to q k

adv using loss func-
tion L and back-propagation (lines 9-13). In lines 15-19, we store the adversarial tuple (x̄k,yi) if it
has higher task cost J than the previous best task cost J

?. Finally, after K gradient steps, we append
the best adversarial datapoint (x̄, ȳ) to dataset Dadv in line 20. Crucially, we only train the adversary
parameters qadv during dataset generation. At the end, we have generated a new adversarial dataset,
which is augmented with the original dataset to re-train the task model parameters q 0perc.,q

0
plan on

line 22. Our method’s runtime is linear with the size of the dataset but is completely parallelizable
since we can train a new adversary for each datapoint in parallel during the for loop in line 3.

4 Experimental Results

We now evaluate our method (Alg. 1) on three diverse tasks. The first task is a toy example of 2-D
robotic motion planning. The second task concerns manipulation in the RoboSuite [28] environment.
Finally, in the third experiment, we make an autonomous aircraft taxi by tracking a runway center-
line based on visual inputs in challenging weather conditions.

Adversary Model: We use a linear model for our adversary fadv(n ;qadv) = qadvn , where qadv 2Rn⇥n

and n 2 Rn, which was expressive enough to generate realistic scenarios that are poor for control.
Our system can easily use more complex DNN adversary models since it is fully differentiable.

Distance Loss and Regularization: We use the L2-norm as the consistency loss I(n , n̄) = ||n� n̄ ||22
in Eq. (1). As shown in the experiments, the consistency loss weight k can be flexibly set by the
user based on how adversarial they want synthetic examples to be.

Variational Autoencoder (VAE): We use a VAE [30] as the differentiable renderer yrender from Sec.
2, because of their stable training procedures compared to GANs. Notably, we only use the VAE
Decoder as the rendering module, which takes parameters n as input and outputs the image s of the
scene. We keep the Decoder frozen after training it on the training datasets.

Differentiable MPC: All tasks use the task cost J(wF) for an MPC problem with quadratic costs
and linearized dynamics constraints, as shown in Appendix 5.3. Our key step is to calculate the
sensitivity of the task cost J to adversarial perturbations in the image s in order to train the adversary.
To do so, we use the PyTorch CVXPYLAYERS library [32] to calculate the gradient of MPC’s
solution and task cost (a convex program) with respect to its problem parameters (i.e., waypoint
predictions wF). Then, we back-propagate through the differentiable pipeline in Fig. 1 to compute
the gradient of MPC’s task cost with respect to the adversary’s parameters.

Architectures: All experiments use DNNs for all modules in Fig. 1 except model-based control and
the adversary. The perception module fperc. is a convolutional VAE Encoder that maps image s to
an embedding z used by the planner. For the planner, we achieved success with simple multi-layer
perceptrons (MLPs) that output waypoints, such as locations for the arm to reach in manipulation or
desired poses for the aircraft. Our algorithm is agnostic to the type of deep network since it aims to
improve any general, differentiable task model. Further training/model details are in Appendix 5.4.

Datasets and Benchmarks: We compare task models trained on the following datasets:

1. ORIGINAL: The task model (perception and planning model) is only trained on D train
orig .

2. DATA ADDED: We add more training examples from the same (or very similar) distribution as
the original training dataset, denoted by D train

add . This tests whether more examples are necessary
to achieve better performance. The task model is then trained on the union of the original and
added dataset, denoted by D train

add [D train
orig .

3. DATA AUGMENTATION: We apply standard task-agnostic data augmentation to the original train-
ing data. For image inputs s, we applied random contrast, random brightness, and random blur.
The augmented dataset is denoted by D train

aug and we re-train the task model on D train
aug [D train

orig .
4. CURL: CURL[33] uses contrastive learning and standard data augmentation techniques for tar-

geted feature extraction, leading to faster training and robust feature learning (Sec. 5.6).

5

Figure 2: Benefits of Task-Driven Data Augmentation for Simple 2D Motion Planning, Robot Manipu-

lation and X-Plane Dataset: We show the MPC task cost J (top) and MSE for waypoint predictions (bottom)
for all training schemes on held-out test environments. The x-axis shows different test conditions, and lower
task cost and waypoint MSE (y-axis) are better. Our TASK DRIVEN scheme (red) works on par with other
task models on the Original test data for both metrics and experiments. However, it significantly outperforms
other task models on challenging scenarios in the out-of-distribution (OoD) dataset (Night images for X-Plane),
and Synthetic Adversarial test datasets. We beat the baselines of task-agnostic data augmentation (green) and
CURL (purple), which often apply image augmentations that are ultimately benign for MPC. The DATA ADDED
training has high variance on OoD and Adversarial datasets since it overfits to the Original dataset.

5. TASK DRIVEN (Ours): We use Alg. 1 to synthesize adversarial dataset D train
adv and then re-train

the task model on D train
adv [D train

orig .

Diverse Robotic Tasks: We visualize all model-based robotic tasks in Fig. 4. We use MPC with
quadratic costs and linearized robot dynamics in all the experiments. We use linear obstacle avoid-
ance constraints, calculated by drawing perpendicular hyperplanes from the obstacles, discussed
further in Appendix 5.3. Toy 2-D Planning: In this task, a robot must navigate around obstacles
(large ellipsoids) to reach a goal location (green star) using only images s of the 2-D workspace.
The planning module learns to output waypoints wF that mimic a Frenet Planner [34], which are
tracked by MPC. The renderer parameters n control the size and location of obstacles in image s.
The OoD test dataset consists of larger, more varied obstacles with a different distribution than those
in the training dataset. RoboSuite Manipulation: A Franka Emika Panda arm [35] needs to pick
up a blue ball while avoiding red boxes. The robot observes images s from an overhead camera, and
the planning module outputs a collision-free trajectory with waypoints wF . Then, MPC tracks the
trajectory in task-space using the RoboSuite joint controller [35]. The OoD test dataset consists of
larger red boxes randomly placed in the scenario compared to those in the training dataset. X-Plane

Aerial Navigation: This scenario is inspired by academic work for the DARPA Assured Autonomy
program [36–39]. An airplane passes images s from a wing-mounted camera into a perception model
that estimates its distance and heading angle relative to the center-line of a runway. Then, it uses
differentiable MPC to track waypoints wF that approach the runway center-line. We use a standard
benchmark dataset for robust perception [37–39] from the photo-realistic X-Plane simulator [40],
consisting of images from the plane’s camera in diverse weather conditions and aircraft poses. Im-
portantly, we test whether a perception model trained on only bright afternoon/morning conditions
generalizes to OoD night test scenarios. We also used the Frenet Planner [34] to generate ground
truth waypoints of the adversarially synthesized scenarios for Toy 2-D Planning and RoboSuite.

We first trained a VAE on all three domains on all the datasets. Next, we trained the task model
(perception and planning models) for a subset of training data defined in Sec. 4. Due to space limits,

6

we provide further implementation details in Appendix 5.4 and the MPC task cost in Eq. 2. We now
evaluate the performance of all training schemes on OoD test datasets. All the results presented are
run for 5 random seeds and between 2.5�10k test images per dataset (see Appendix).

Domain Dataset Avg MPC Cost
Difference (%)

Avg Waypoint Error
Difference (%)

Toy D test
OoD 33.6% 66.1%

D test
adv 49.9% 51.5%

Manipulation D test
OoD 29.1% 37.1%

D test
adv 36.2% 32.8%

X-plane D test
night 36.2% 89.2%

D test
adv 41.7% 69.1%

Figure 3: TASK-DRIVEN

vs DATA AUGMENTATION

schemes for MPC Costs and

Waypoint Error: We compare
the percentage improvement in
the Avg. MPC cost and Avg.
Waypoint Error for the test
OoD and synthetic adversarial
test datasets. On all domains,
our TASK-DRIVEN scheme
performs significantly better
than DATA AUGMENTATION.

Results: Our experiments show that training the task model with additional adversarial data using
Alg. 1 reduces the task cost J and the mean-squared error (MSE) for waypoint prediction compared
to all benchmarks. Finally, we visualize how our rendered scenarios are adversarial and realistic.

Quantitative Results: Fig. 2 (top) shows the MPC task cost for all training schemes on test datasets.
On the original test dataset, our TASK-DRIVEN scheme (red) performs on par with the ORIGINAL
(blue) scheme and slightly worse than the DATA-ADDED (orange), DATA AUGMENTATION (green)
and CURL (purple) schemes. The DATA-ADDED scheme’s performance is expected because it is
trained on more original data than our TASK-DRIVEN scheme, which allows it to perform slightly
better on the original test dataset. However, the key benefits of our approach are shown on the
synthetic adversarial test dataset and held-out OoD dataset (real X-Plane night images). We run Alg.
1 on the held-out original test dataset to generate unseen adversarial images which form the synthetic
adversarial test dataset. As shown in Fig. 2 (bottom), these benefits arise because our TASK-DRIVEN
scheme achieves lower waypoint prediction MSE than competing benchmarks. While all methods
perform similarly on the original test dataset, the key gains of our scheme are on the adversarial
test dataset and held-out OoD dataset (night images for X-Plane). We compare our TASK-DRIVEN
scheme (red) with DATA AUGMENTATION in Table 3, and Table 6 shows the cost differences are
statistically significant with a Wilcoxon p-value less than 10�4. Even though the CURL scheme
performs best on the original test dataset, it fails to generalize to the test OoD dataset. This is not
surprising even though it learns comparably better on the original training dataset; nothing is helping
CURL generalize better to the OoD dataset. Additionally, CURL’s performance is similar to DATA
AUGMENTATION, since both these methods are exposed to similar augmentation during training.

Qualitative Results: Fig. 4 (bottom row) shows a challenging adversarial scenario that is automat-
ically synthesized by our method in dataset D train

adv for the corresponding original training example
from D train

orig (top row). For the toy planning scenario and manipulation task, our training scheme
brings obstacles closer to the robot’s originally intended waypoints and path, making it harder to
find a collision-free path. Naturally, this increases the task cost since the robot has to make wider
turns and swerves. Specifically, for the manipulation task, the adversary moves red obstacles around
the blue target to make it harder to reach and decreases the target size. For the X-Plane scenario,
our training scheme learns to blur the runway center-line to emulate a foggy condition, leading to
higher waypoint prediction error and task cost. Therefore, rather than augmenting our dataset with
well-understood training scenarios, our scheme targetedly adds challenging scenarios that make the
model more robust. Finally, Fig. 5 shows the relative distance between different test datasets’ latent
representation in the X-Plane renderer when projected in a 2D space using the t-SNE method [41].
Interestingly, our task-driven scheme can add synthetic data points (yellow) that emulate and antic-
ipate the OoD night distribution. However, points added by standard data augmentation (pink) do
not overlap much with the night data (green), explaining why the benchmark generalizes poorly.

Limitations: We note that (only for the X-Plane experiment), the original VAE ren-
derer was trained on the whole training dataset. For example, the renderer for the X-
Plane experiment was trained on night training images so that the VAE could render a
night scene in the first place. However, the initial perception and planning models were
never exposed to a single night (OoD) image and were strictly trained on only the orig-
inal afternoon training data. This scenario is practically motivated. Consider a state-of-
the-art differentiable renderer that can map a continuum of scene parameters n to scenes s.

7

Figure 4: Synthesized Adversarial Scenarios: The top row contains images from the original dataset with
the corresponding MPC task cost if the predicted waypoints were correctly followed. The bottom row shows
the corresponding adversarial scenario generated by our method. As expected, they lead to higher MPC costs
by introducing obstacles near a goal or obfuscating the runway center-line. Figs. 11-13 show more examples.

Figure 5: X-Plane VAE Latent Space Visual-

ization: We visualize the latent representation z =
fperc.(s;qperc.) for each test dataset of scenes s after
performing dimensionality reduction using t-SNE [41].
The scenes generated by our task-driven method (yel-
low) are very close to the OoD test night dataset (green),
which explains why it generalizes so well. However, the
scenes from standard data augmentation (pink) are far
from the OoD night scenes, thus explaining why it does
not yield generalizable models for control.

An infinite number of possible images can be
generated from the continuous latent space.
However, due to compute limits, we can only
train the task model on a finite set of scenes n
from a specific training distribution. Thus, we
can use our method to automatically and effi-
ciently find new scenes to maximally improve
the perception model. Crucially, we must be
able to render these new scenes, which is pos-
sible with a differentiable renderer. Since we
did not have a differentiable renderer for the X-
Plane experiment, we used a VAE and ensured
it could generate an OoD night image via pre-
training for the night class. Additionally, for the
cases where the same labels as training cannot
be used (Toy Example and Manipulation), our
method relies on an offline planner to label the
adversarial scenarios. We discuss the labeling
procedure further in Sec. 5.7.

Conclusion: This paper presents a principled
method to automatically synthesize adversarial
scenarios tailored to model-based robotic con-
trol. Our key contribution is to compute the
sensitivity of MPC to perception errors, which
in turn guides better synthesis of adversarial scenarios and robust generalization in state-of-the-art
robotic simulators. Our method can benefit applications like self-driving cars by automatically syn-
thesizing rare, OoD scenarios before costly testing and data collection on physical platforms. In
future work, we plan to provide theoretical guarantees for an illustrative example with a linear ad-
versary, simple linear renderer/scene generator, and linear MPC control problem. Finally, we plan
to test the generalization ability of our approach on a real robot operating in OoD lighting, weather,
and terrain conditions.

8

Acknowledgements: This material is based upon work supported in part by the Office of Naval
Research (ONR) under Grant No. N000142212254. We also gratefully acknowledge the support
of the Lockheed Martin AI Center for this research under contract number RPP015-MRA16-005.
Any opinions, findings, conclusions, or recommendations expressed in this material are those of the
author(s). They do not necessarily reflect the views of ONR or the Lockheed Martin AI Center.

References

[1] F. Borrelli, A. Bemporad, and M. Morari. Predictive control for linear and hybrid systems.
Cambridge University Press, 2017.

[2] E. F. Camacho and C. B. Alba. Model predictive control. Springer Science & Business Media,
2013.

[3] A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin, and A. A. Kalinin.
Albumentations: Fast and flexible image augmentations. Information, 11(2), 2020. ISSN
2078-2489. doi:10.3390/info11020125. URL https://www.mdpi.com/2078-2489/
11/2/125.

[4] R. Volpi, H. Namkoong, O. Sener, J. C. Duchi, V. Murino, and S. Savarese. Gen-
eralizing to unseen domains via adversarial data augmentation. In S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Ad-

vances in Neural Information Processing Systems, volume 31. Curran Associates,
Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
1d94108e907bb8311d8802b48fd54b4a-Paper.pdf.

[5] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization
for transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ

international conference on intelligent robots and systems (IROS), pages 23–30. IEEE, 2017.

[6] J. Tobin, L. Biewald, R. Duan, M. Andrychowicz, A. Handa, V. Kumar, B. McGrew, A. Ray,
J. Schneider, P. Welinder, et al. Domain randomization and generative models for robotic grasp-
ing. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 3482–3489. IEEE, 2018.

[7] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014.

[8] D. Hendrycks, K. Zhao, S. Basart, J. Steinhardt, and D. Song. Natural adversarial examples. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
15262–15271, 2021.

[9] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille. Adversarial examples for semantic
segmentation and object detection. In Proceedings of the IEEE International Conference on

Computer Vision, pages 1369–1378, 2017.

[10] S. James, A. J. Davison, and E. Johns. Transferring end-to-end visuomotor control from sim-
ulation to real world for a multi-stage task. In S. Levine, V. Vanhoucke, and K. Goldberg,
editors, Proceedings of the 1st Annual Conference on Robot Learning, volume 78 of Pro-

ceedings of Machine Learning Research, pages 334–343. PMLR, 13–15 Nov 2017. URL
https://proceedings.mlr.press/v78/james17a.html.

[11] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly,
M. Kalakrishnan, V. Vanhoucke, and S. Levine. Scalable deep reinforcement learning for
vision-based robotic manipulation. In A. Billard, A. Dragan, J. Peters, and J. Morimoto,
editors, Proceedings of The 2nd Conference on Robot Learning, volume 87 of Proceedings

of Machine Learning Research, pages 651–673. PMLR, 29–31 Oct 2018. URL https:
//proceedings.mlr.press/v87/kalashnikov18a.html.

[12] J. Matas, S. James, and A. J. Davison. Sim-to-real reinforcement learning for deformable
object manipulation. In A. Billard, A. Dragan, J. Peters, and J. Morimoto, editors, Proceedings

of The 2nd Conference on Robot Learning, volume 87 of Proceedings of Machine Learning

9

http://dx.doi.org/10.3390/info11020125
https://www.mdpi.com/2078-2489/11/2/125
https://www.mdpi.com/2078-2489/11/2/125
https://proceedings.neurips.cc/paper/2018/file/1d94108e907bb8311d8802b48fd54b4a-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/1d94108e907bb8311d8802b48fd54b4a-Paper.pdf
https://proceedings.mlr.press/v78/james17a.html
https://proceedings.mlr.press/v87/kalashnikov18a.html
https://proceedings.mlr.press/v87/kalashnikov18a.html

Research, pages 734–743. PMLR, 29–31 Oct 2018. URL https://proceedings.mlr.
press/v87/matas18a.html.

[13] T. Daniel and A. Tamar. Soft-intro vae: Analyzing and improving the introspective variational
autoencoder. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 4391–4400, June 2021.

[14] O. Rybkin, K. Daniilidis, and S. Levine. Simple and effective vae training with calibrated
decoders, 2021.

[15] K. Park, A. Mousavian, Y. Xiang, and D. Fox. Latentfusion: End-to-end differentiable re-
construction and rendering for unseen object pose estimation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2020.

[16] H. Kato, D. Beker, M. Morariu, T. Ando, T. Matsuoka, W. Kehl, and A. Gaidon. Differentiable
rendering: A survey. arXiv preprint arXiv:2006.12057, 2020.

[17] A. Agrawal, S. Barratt, S. Boyd, and B. Stellato. Learning convex optimization control policies.
In Learning for Dynamics and Control, pages 361–373. PMLR, 2020.

[18] N. Akhtar and A. Mian. Threat of adversarial attacks on deep learning in computer vision: A
survey. Ieee Access, 6:14410–14430, 2018.

[19] M. Lutter, S. Mannor, J. Peters, D. Fox, and A. Garg. Robust value iteration for continuous
control tasks. arXiv preprint arXiv:2105.12189, 2021.

[20] A. Mandlekar, Y. Zhu, A. Garg, L. Fei-Fei, and S. Savarese. Adversarially robust policy learn-
ing: Active construction of physically-plausible perturbations. In 2017 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 3932–3939. IEEE, 2017.

[21] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta. Robust adversarial reinforcement learning.
In International Conference on Machine Learning, pages 2817–2826. PMLR, 2017.

[22] X. Pan, D. Seita, Y. Gao, and J. Canny. Risk averse robust adversarial reinforcement learn-
ing. In 2019 International Conference on Robotics and Automation (ICRA), pages 8522–8528.
IEEE, 2019.

[23] A. Agrawal, S. Barratt, and S. Boyd. Learning convex optimization models. arXiv preprint

arXiv:2006.04248, 2020.

[24] B. Amos, I. Jimenez, J. Sacks, B. Boots, and J. Z. Kolter. Differentiable mpc for end-to-end
planning and control. In Advances in Neural Information Processing Systems, pages 8289–
8300, 2018.

[25] Y. Abeysirigoonawardena, F. Shkurti, and G. Dudek. Generating adversarial driving scenarios
in high-fidelity simulators. In 2019 International Conference on Robotics and Automation

(ICRA), pages 8271–8277. IEEE, 2019.

[26] J. Wang, A. Pun, J. Tu, S. Manivasagam, A. Sadat, S. Casas, M. Ren, and R. Urtasun. Advsim:
Generating safety-critical scenarios for self-driving vehicles. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 9909–9918, 2021.

[27] S. Feng, X. Yan, H. Sun, Y. Feng, and H. X. Liu. Intelligent driving intelligence test for
autonomous vehicles with naturalistic and adversarial environment. Nature communications,
12(1):1–14, 2021.

[28] Y. Zhu, J. Wong, A. Mandlekar, and R. Martı́n-Martı́n. robosuite: A modular simulation
framework and benchmark for robot learning. In arXiv preprint arXiv:2009.12293, 2020.

[29] N. Ravi, J. Reizenstein, D. Novotný, T. Gordon, W. Lo, J. Johnson, and G. Gkioxari. Ac-
celerating 3d deep learning with pytorch3d. CoRR, abs/2007.08501, 2020. URL https:
//arxiv.org/abs/2007.08501.

[30] D. P. Kingma and M. Welling. Auto-encoding variational bayes, 2014.

10

https://proceedings.mlr.press/v87/matas18a.html
https://proceedings.mlr.press/v87/matas18a.html
https://arxiv.org/abs/2007.08501
https://arxiv.org/abs/2007.08501

[31] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial networks, 2014.

[32] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter. Differentiable convex
optimization layers. In Advances in Neural Information Processing Systems, 2019.

[33] M. Laskin, A. Srinivas, and P. Abbeel. Curl: Contrastive unsupervised representations for re-
inforcement learning. Proceedings of the 37th International Conference on Machine Learning,

Vienna, Austria, PMLR 119, 2020. arXiv:2004.04136.

[34] M. Werling, J. Ziegler, S. Kammel, and S. Thrun. Optimal trajectory generation for dynamic
street scenarios in a frenet frame. In Proceedings - IEEE International Conference on Robotics

and Automation, pages 987 – 993, 06 2010. doi:10.1109/ROBOT.2010.5509799.

[35] S. Haddadin, S. Parusel, L. Johannsmeier, S. Golz, S. Gabl, F. Walch, M. Sabaghian, C. Jaehne,
L. Hausperger, and S. Haddadin. The franka emika robot: A reference platform for robotics
research and education. IEEE Robotics and Automation Magazine, pages 2–20, 2022. doi:
10.1109/MRA.2021.3138382.

[36] D. Cofer, I. Amundson, R. Sattigeri, A. Passi, C. Boggs, E. Smith, L. Gilham, T. Byun, and
S. Rayadurgam. Run-time assurance for learning-enabled systems. In NASA Formal Methods

Symposium, pages 361–368. Springer, 2020.

[37] S. M. Katz, A. Corso, S. Chinchali, A. Elhafsi, A. Sharma, M. Pavone, and M. J. Kochenderfer.
Nasa uli aircraft taxi dataset, 2021. Stanford Research Data, https://purl.stanford.
edu/zz143mb4347.

[38] S. M. Katz, A. L. Corso, C. A. Strong, and M. J. Kochenderfer. Verification of image-based
neural network controllers using generative models. arXiv preprint arXiv:2105.07091, 2021.

[39] A. Sharma, N. Azizan, and M. Pavone. Sketching curvature for efficient out-of-distribution
detection for deep neural networks. arXiv preprint arXiv:2102.12567, 2021.

[40] X-plane 11. https://www.x-plane.com/.

[41] G. E. Hinton and S. Roweis. Stochastic neighbor embedding. In S. Becker, S. Thrun,
and K. Obermayer, editors, Advances in Neural Information Processing Systems, volume 15.
MIT Press, 2003. URL https://proceedings.neurips.cc/paper/2002/file/
6150ccc6069bea6b5716254057a194ef-Paper.pdf.

[42] W.-C. S. Zhi-Song Liu, L.-W. Wang, C.-T. Li, M.-P. Cani, and Y.-L. Chan. Unsupervised real
image super-resolution via generative variational autoencoder. In IEEE International Confer-

ence on Computer Vision and Pattern Recognition Workshop(CVPRW), June 2020.

[43] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen. Hierarchical text-conditional image
generation with clip latents, 2022. URL https://arxiv.org/abs/2204.06125.

[44] P. Dhariwal and A. Nichol. Diffusion models beat gans on image synthesis. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances

in Neural Information Processing Systems, volume 34, pages 8780–8794. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf.

[45] S. Manivasagam, S. Wang, K. Wong, W. Zeng, M. Sazanovich, S. Tan, B. Yang, W.-C. Ma, and
R. Urtasun. Lidarsim: Realistic lidar simulation by leveraging the real world. In IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

[46] Z. Yang, Y. Chai, D. Anguelov, Y. Zhou, P. Sun, D. Erhan, S. Rafferty, and H. Kretzschmar.
Surfelgan: Synthesizing realistic sensor data for autonomous driving. In IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR), June 2020.

11

http://dx.doi.org/10.1109/ROBOT.2010.5509799
http://dx.doi.org/10.1109/MRA.2021.3138382
http://dx.doi.org/10.1109/MRA.2021.3138382
https://purl.stanford.edu/zz143mb4347
https://purl.stanford.edu/zz143mb4347
https://www.x-plane.com/
https://proceedings.neurips.cc/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf
https://proceedings.neurips.cc/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf
https://arxiv.org/abs/2204.06125
https://proceedings.neurips.cc/paper/2021/file/49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf

[47] E. Wong and Z. Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In J. Dy and A. Krause, editors, Proceedings of the 35th International

Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 5286–5295. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/
v80/wong18a.html.

[48] A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry. Adversarial examples
are not bugs, they are features. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.
cc/paper/2019/file/e2c420d928d4bf8ce0ff2ec19b371514-Paper.pdf.

[49] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning mod-
els resistant to adversarial attacks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJzIBfZAb.

12

https://proceedings.mlr.press/v80/wong18a.html
https://proceedings.mlr.press/v80/wong18a.html
https://proceedings.neurips.cc/paper/2019/file/e2c420d928d4bf8ce0ff2ec19b371514-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/e2c420d928d4bf8ce0ff2ec19b371514-Paper.pdf
https://openreview.net/forum?id=rJzIBfZAb

