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ABSTRACT

The out-of-domain (OOD) generalization ability is essential for AI systems in
real-world applications. Recent works proposed to utilize prior knowledge like
unlabeled data or descriptions to improve the OOD performance. However, the
assumption that the domain of each test data is known in advance is unrealistic
in practice, which limits the generalization of AI system to various domains and
prevents the wide deployment. In this paper, we introduce WIDIn, which Words
the Images to learn Domain-Invariant features being robust to complex domain
biases. Different from visual embeddings, the language embeddings of class de-
scriptions are domain-invariant, and they can be connected via vision-language
alignment. Thus, we propose to project images into language space by represent-
ing each image as a word token, which is attached with hand-crafted prompt and
fed into language encoder. Then, the difference between the extracted embed-
ding and the language embedding of its class description is used to estimate the
domain-specific counterpart, which facilitates the domain-invariant representation
learning. Notably, our WIDIn can be applied to both pretrained vision-language
models like CLIP, and separately trained uni-modal models like MoCo and BERT.
Experimental studies on two domain generalization benchmark datasets and two
long-tail benchmark datasets demonstrate the effectiveness of our approach.

1 INTRODUCTION

Recent years have witnessed the great success of large-scale pre-trained models for the application in
various downstream tasks (He et al., 2016; 2020; Radford et al., 2021). Nevertheless, when adapting
the pre-trained models via learning upon the train set of a new domain, the performance can meet
the expectations still only when the test data also comes from the source domain seen in training.
To mitigate the performance drop on the out-of-distribution data (Wang & Deng, 2018), domain
adaptation (DA) has been investigated to transfer the representation learnt from source domain to
the new target domains. However, traditional DA methods require the prior knowledge of target
domain like unlabeled data, which could be unrealistic in data-sparse situation such as rare disease.

To reduce the dependence on knowledge from target domains, one-shot DA (Yang & Lim, 2020) is
proposed to request additional one example per target domain to update the model, while language-
guided DA (Dunlap et al., 2023) uses domain descriptions. In contrast, there is lack of studies in
the scenario where the adaptation without any prior, i.e., domain generalization (Zhou et al., 2021),
in particular, when the train set is only from a single source domain. After all, the language-guided
DA still needs the description before training while it is implausible to exhaust all possibility with
precise depiction, e.g., “quickdraw” in DomainNet (Peng et al., 2019). Furthermore, as the data can
be of diverse domains at test time, annotating each test data with domain label is expensive.

To overcome the limitation caused by the requirement of knowledge in target domains, a desired
system should be 1) robust to unseen domains and 2) independent from any prior & assumption of the
test data. However, as the train set is from a single domain, the learned models may inevitably show
strong domain bias which is invariant to classification (e.g., airplane is almost gray in natural images
but dogs can also be gray in drawing) and may also contain instance-specific information such as
background. Thus, to improve the generalization, it is essential to unravel the domain-invariant
representation being robust across domains (e.g., the shape is essential for recognizing airplane) and
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Figure 1: For domain generalization without prior (i.e., domain description, visual example), we
propose to learn domain-invariant visual embedding on the joint vision-language embedding space.
During training, we estimate domain-invariant representation guided by language embeddings. For
test instances of mixed domains (color-coded), we directly predict the domain-invariant part from
visual embeddings, and compare it with prototypes learned in source domain for classification.

remove the domain-specific counterpart from the original visual embedding. Notably, as the class
description is discriminative, the language embedding of class is naturally domain-invariant.

In this paper, as shown in Fig. 1, we proposed to use language embeddings to guide the learning of
domain-invariant representation for each visual embedding. For each class, we treat its language em-
bedding as a domain-invariant anchor. For each image, following the idea of textural inversion (Gal
et al., 2022), we propose to Word the Image, i.e., projecting its visual embedding to the token feature
of a pseudo word, with the same prompt as the class description to extract pseudo language embed-
ding. Then, the difference with anchor is used to indicate the domain-specific information. As a
“global direction” can be aligned across visual and language embeddings in the joint embedding
space (Dunlap et al., 2023), we can disentangle the Domain-Invariant visual embedding.

Through experimental validation, our WIDIn is generalizable to vision-language embedding space
obtained by either 1) joint large-scale pre-training such as CLIP (Radford et al., 2021) or 2) learning
to align two uni-modal models, e.g., MoCo (He et al., 2020) and BERT (Devlin et al., 2018), on
data from the single domain. In this way, our approach provides a general solution and can be
intuitively extended to optimize the vision and language encoders pre-trained from different datasets
and objectives individually. Furthermore, we note the domain-specific information can also be bias
caused by the imbalance of training data distribution. Specifically, in long-tail image classification,
the pre-trained model may always favor the major classes with a lot of training data, leading to
less acceptable accuracy on minor classes. Thus, our approach can be naturally applied on long-tail
benchmark datasets to demonstrate its benefits. Our contributions are summarized as follows:

• We propose a domain-invariant representation learning strategy, to extend the systems trained on
a single domain to target domains without any prior such as language description and visual data.

• We design WIDIn to first model the domain-specific counterpart as the difference between lan-
guage embeddings extracted from the class description and the worded images, which is then used
to disentangle domain-invariant visual embedding. Meanwhile, our WIDIn can be built on top of
vision encoders & language encoders which are trained either jointly or separately.

• We experimentally demonstrate the benefit of our approach on two datasets for domain general-
ization. We also extend our method to challenging long tail problem and prove the effectivenss
on two datasets with high imbalance ratios.

2 RELATED WORK

Debiased Feature Learning has been critical to learn a robust algorithm (Torralba & Efros, 2011)
across different scenarios. In long-tail classification, the bias is caused by imbalance of data dis-
tribution and the accuracy on minor classes with limited training data is unacceptable. To mitigate
the accuracy gap between minor classes and the major classes counterpart, the approaches based on
data re-sampling (Geirhos et al., 2019), training curriculum design Zemel et al. (2013), loss adjust-
ment (Kang et al., 2021; Menon et al., 2020; Lin et al., 2017) are investigated. Besides, the bias can
also be caused by the absence of diverse domains (Wang & Deng, 2018) and environments (Creager
et al., 2021). Then, to remove such class-irrelevant features which contain domain and instance-
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specific information, recent approaches has applied feature disentanglement (Misra et al., 2016),
adversarial training (Hoffman et al., 2018), and invariant regularizer (Arjovsky et al., 2019).

Multimodal Representation aims to combine the semantic meaning from different modalities, e.g.,
text and image. With the success of self-attention (Vaswani et al., 2017) and self-supervision such as
masked modelling (Devlin et al., 2018; He et al., 2022), the joint encoders (Sun et al., 2019; Tan &
Bansal, 2019) are proposed, which take the concatenation of text and images as input and model their
correlation automatically. Recently, CLIP (Radford et al., 2021) proposes to set encoders for each
modality individually and optimize the networks through contrastive learning (Chen et al., 2020; He
et al., 2020). In this way, all extracted representation reside in the common space to be compared
directly and used for down-stream application. Recently, Zhai et al. (2022) proposes to transform the
pre-trained visual embedding space into the multi-modal embedding space by aligning the language
embeddings with the image embeddings extracted by the pre-trained encoder. However, the visual
representation is still biased (Dunlap et al., 2022; Yang et al., 2023), and additional update via
finetuning (Gao et al., 2021) or prompting (Zhou et al., 2022) is required.

Domain Adaptation & Generalization aims to mitigate the performance gap caused by domain
shift. To reduce the dependence on label annotation in the supervised adaptation (Motiian et al.,
2017), the semi- and weakly-supervised setup are studied (Saito et al., 2019; Baek et al., 2020)
while the self-supervision is also useful (Xu et al., 2019). However, all of them depends on addi-
tional training data of target domains, instead, we focus on domain generalization (Zhou et al., 2021)
where only the data from source domain is used for training. Then, with the assistance of language
description, the generative approaches (Wang et al., 2020a; Dunlap et al., 2022) synthesize fea-
tures across domains. However, the priors of new domains are still needed. Recently, multi-modal
prompting, e.g., CoCoOp (Zhou et al., 2022), is generalizable to unseen domains by predicting clas-
sifier weights for each test image dynamically. However, it is computational expensive at test time
and does not improve the quality of visual embedding. In contrast, our framework is trained one
single domain without any other prior and aims to disentangle the domain-invariant representation
which is cheap at inference and robust to different domains.

3 BACKGROUND

3.1 DOMAIN GENERALIZATION

Domain generalization applied a model learned on the source domain to the target domains without
any prior. Specifically, the train set Ds = {(c,x)} is from one single domain where c ∈ C is the
class name for image x. At inference, the model is directly evaluated on the test data from various
domains. Formally, the test set is Dt =

(
∪Ni=1 Dt(i)

)
∪ Dv

s where Dt(i) and Dv
s are the test data

from target domain i and source domain respectively. For the convenience of description, we set
Dv

s = Dt(0) and then Dt = ∪Ni=0Dt(i). We note that no prior such as domain label/split is provided
for test data. For fair comparison, we calculate the accuracy for each domain Dt(i).

As shown in Fig. 2, for each class c, we only use the class name and refer to the default template
in CLIP (Radford et al., 2021), i.e., [The image of a/an], to build the general description lc
for all of its images (e.g., the image of an airplane). Then, we extract the language embedding tc =
FT (lc) ∈ Rd where FT is the language encoder and d the feature dimension. For the convenience
of description, we use x ∈ Rd to indicate the visual embedding extracted by the vision encoder FV .

3.2 ANALYSIS: DOMAIN SHIFT AS DESCRIPTION-DEPENDENT GLOBAL DIRECTION

LADS (Dunlap et al., 2023) proposes to use domain knowledge in CLIP to synthesis visual embed-
dings for target domains. However, the domain names are required to build description, such as “the
clipart of a dog”. Without loss of generality, we assume the target domain t and, for each class c, the
language embeddings of class description in source and target domains are t(s)c and t

(t)
c respectively.

Then, LADS assumes a “global direction” of the domain shift in the joint vision-language embed-
ding space. In other words, for each class c, the shift direction between visual embeddings of two
domains can be indicated by the difference of related language embeddings, i.e.,

x− x̂ = k(t(s)c − t(t)c ) (1)
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Figure 2: (a) For visual embedding x, we project it to token <V> and extract the pseudo language
embedding tx. We also extract the language embedding tc of class c as domain-invariant anchor.
At test time, only the modules in dashed box are used. (b) During training, we estimate the domain-
specific component as tx−tc so that the domain-invariant visual embedding xe can be disentangled.
We apply alignment of tx with embeddings (x, tc) at instance- (Lia) and class-level (Lca) respec-
tively, and use residual learning to obtain xe by predicting tx − tc. Only modules in red is trained.

where k is a scalar, and the visual embedding x̂ corresponds to x in domain s but comes from
domain t. Based on this assumption, LADS proposes to train a feature augmentation network to
synthesize x̂ in target domain from x ∈ Ds under the assumption of global direction. However, we
found a baseline with k = 1 fixed has already provided non-trivial gain (detailed in Supp.) and the
gain introduced by the learnable feature augmentation is not significant. Furthermore, even though
the augmented feature extends the ability of model across domains, the global direction still ignores
the variability across instances where the mapping between x and x̂ is not always optimal.

Instead, we propose to adaptively model the domain-specific information for each instance, i.e.,
the gap between visual embedding and domain-invariant visual embedding, instructed by language
description. As shown by the textual inversion in image generation (Gal et al., 2022), the word to-
ken projected from the image still contains both domain-specific and domain-invariant information.
Since language embeddings of classes {tc}c∈C can be used as domain-invariant anchors (Radford
et al., 2021), for each (x, c), we propose to compare the pseudo language embedding extracted
from the projected token with tc to estimate the domain-specific counterpart such that the domain-
invariant component can be disentangled via “global direction”and is robust to various domains.

Notably, though we build the framework upon the “global direction” in joint vision-language em-
bedding space, the space can be learned via either large-scale multi-modal pre-training (e.g., CLIP)
or aligning two uni-modal models (e.g., BERT and MoCo) on data in Ds under contrastive learning.
Below we first explain our framework in Sec. 4 and then detail the experimental studies in Sec. 5.

4 WORDING IMAGE FOR DOMAIN-INVARIANT REPRESENTATION LEARNING

We explain the network architecture in Sec. 4.1, and detail the network training in Sec. 4.2.

4.1 ARCHITECTURE

As shown in Fig. 2(a), we obtain the domain-invariant representation guided by language embed-
dings, i.e., comparing the language embeddings extracted from the descriptions with class name and
the projected word token <V>. Specifically, we define a two-layer MLP (LeCun et al., 2015) as the
projector FP to project the visual embedding to the token embedding. Then, we build the input to
FT with the prompt [The image of an <V>] and extract pseudo language embedding tx, i.e.,

tx = FT

(
Concatenate[T(The image of an),FP (x)]

)
(2)

where T denotes the function to tokenize the input sentence and retrieve token embeddings of di-
mension d, FP (x) ∈ Rd is the embedding indicated by <V>. As tx is extracted from the visual
embedding x, we assume tx still exhibits both domain-invariant and domain-specific information.

For each x of class c, we use the same prompt and language encoder to extract both tx and tc. As we
treat tc as the domain-invariant anchor, we use their comparison, i.e., tx−tc, to estimate the domain-
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specific information. Based on the observation where the shift between language embeddings can be
generalizable to the visual embeddings in the joint vision-language embedding space, we can then
obtain the domain-invariant visual embedding xe of x, i.e.,

xe = x− (tx − tc). (3)

and input it to classifier FC for recognition. Meanwhile, we learn a module FD to predict domain-
invariant feature x′e for each visual embedding at testing. To stabilize the network training, all three
embeddings (x, tc, tx) are pre-processed by l2-normalization, and we follow the idea of residual
learning (He et al., 2016) to train FD as a disentangler to predict the feature tc− tx. The weights in
classifier FC are l2-normalized and, without loss of generality, are referred as class prototypes.

We note our framework is different from conventional prompting algorithm (Jia et al., 2022) where
the images are used to provide context for down-stream task application. Instead, for each image, by
mapping the global visual embedding to the word token embedding, we aim to extract the embedding
which can facilitate the domain-invariant representation learning. As a result, it should be both 1)
aligned with the original visual embedding x and 2) associated the domain-invariant anchor tc.

4.2 TRAINING OBJECTIVE AND SCHEDULE

As shown in Fig. 2(b), for each visual instance, the pseudo language embedding should both 1) be
comparable with the language embeddings of classes and 2) contains the information of original
visual embedding. As such, we consider both the class-level alignment with the language embed-
dings {tc}c∈C and the instance-level alignment with the original visual embeddings. We refer to the
conceptually simple contrastive learning for the alignment constraint and explain it below.

Contrastive learning (CT) aims to group the samples with high correlation in a self-supervised
manner, and treats different views of the same instance as correlated (positive). Then, the negative
pairs are built by sampling views from other instances. Formally, given a instance x with its paired
view x′, the views from other instances, i.e., Bn, are used to build negative pairs. Then, the training
objective is to minimize the InfoNCE loss (Oord et al., 2018),

LCT (x,x′,Bn) = − log
exp(x · x′/τ)

exp(x · x′/τ) +
∑

m∈Bn
exp(x ·m/τ)

. (4)

where (x, x′, m) are pre-processed by l2-normalization and τ is a hyperparameter to rescale the
affinity scores. In this way, CT is performing pair-wise comparison. Then, the supervised contrastive
learning (SupCT) is instead introducing the class labels where the images of the same class are
treated as positive while the rest are used to build negative pairs.

Alignment of pseudo language embedding. For class-level alignment, we follow SupCT to con-
trast each pseudo language embedding with all language embeddings of classes {tc}c∈C , which
is equivalent to cross-entropy (CE) loss in fully-supervision (LeCun et al., 2015), i.e., Lca =
LCT (tx, tc, {tc′}c′ 6=c). Then, at the instance-level, visual embedding x and its pseudo language
embedding tx serve as two different views to build a positive pair where the other embeddings are
negative samples, i.e., Lia = LCT (tx,x, {xn}) where {xn} are embeddings of other instances.
Then, given tc − tx as the groundtruth, we train FD to predict it and directly set the Mean Squared
Error (MSE) as the loss Lfeat. In addition, we use CE loss to train the classifier FC .

Implementation. To avoid training collapse, we schedule the entire training framework into two
steps. Firstly, we only train the projector FP under alignment losses Lia + Lca. Then, we fix the
pre-learned FP , and train the feature disentangler FD and the classifier FC . We set batch size as 64
and the experiments can be realized on one TiTAN RTX GPU. More details can be found in Supp.

5 EXPERIMENT

Here the experiment setup is first explained, to validate the effect of WIDIn in joint vision-language
embedding space learned by 1) large-scale pre-training and 2) finetuning uni-modal models.

Dataset. 1) CUB-Painting consists of 200 finegrained classes of bird species from two domains
constructed upon CUB-200-2011 (Wah et al., 2011) and CUB-200-Paintings (Wang et al., 2020b).
The former one (source) contains the pictures taken from natural world, while the latter one (target)
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Table 1: Performance comparison of domain generalization.

Approach CUB-Painting DomainNetMini
Src. Tar. Avg. Src. Tar. Avg.

Zero-Shot (Radford et al., 2021) 60.34 52.84 56.59 93.49 95.94 94.72
Zero-Shot* (Radford et al., 2021) 61.93 54.38 58.16 93.24 96.01 94.62
WiSE-LD (Wortsman et al., 2022) 81.74 64.80 73.27 95.19 93.68 94.44

VQGAN+CLIP (Crowson et al., 2022) - - - 95.54 93.83 95.27
LADS (Dunlap et al., 2022) 86.14 66.18 76.16 95.33 95.21 95.27

Linear Clf. 85.91 64.33 75.12 95.03 93.75 94.39
MLP Clf. 86.06 62.32 74.19 96.33 92.47 94.40

WIDIn (Ours) 87.47 68.76 78.12 97.08 96.01 96.75
*: include domain name in extracting language embedding for each class.

is in the painting style. 2) DomainNetMini (Tan et al., 2020) is a subset of DomainNet (Peng et al.,
2019) and contains 40 classes from four different domains, i.e., sketch, real, clipart and painting. We
follow the commonly used evaluation setup (Dunlap et al., 2023) where the model is only trained on
“sketch” domain (source) and the rest three domains (target) are unseen during training.

Evaluation Metric. We report the classification accuracy on the source (Src.) and target (Tar.)
domains respectively, and use the average (Avg.) to measure the performance on all domains.

Generalization on large-scale pre-trained embedding space. Following Dunlap et al. (2023),
we learn the domain-invariant representation from visual embeddings in the space learned by
CLIP (Radford et al., 2021), i.e., we use the CLIP vision encoder to extract visual embeddings and
then use CLIP language encoder for feature disentanglement. For fair comparison, as summarized
in Table 1, we use the ViT-L14 as the backbone and more details can be found in the Supp.

CLIP has shown remarkable ability to generalize across different tasks. However, on CUB-Painting,
using language embeddings of classes as centers (i.e., Zero-Shot) cannot clearly identify the se-
mantic details for fine-grained objects while learning a linear classifier (Linear Clf.) can improve
the performance significantly on the source domain. [Stronger classifier results in larger perfor-
mance gap] However, the simple Linear Clf. on the CLIP embedding space has resulted in clear
performance gap between Src. and Tar. On DomainNetMini, it even underperforms the zero-shot
counterparts on Tar. In addition, by employing a stronger classifier, MLP Clf., which includes more
parametes in the classifier but is only trained by minimizing cross-entropy loss, the performance gap
is enlarged and the accuracy on Tar drops further. [Domain-invariant representation improves the
accuracy consistently] Instead, though both LADS and our WIDIn are built upon the Linear Clf.
baseline, our WIDIn clearly model the domain-invariant representation and can outperform LADS
and all other baselines consistently on all cases but does not require domain prior.

Table 2: Performance comparison of domain generalization on space learned by aligning.

(a) Full-Supervision (LeCun et al., 2015)
CUB-Painting DomainNetMini
Src. Tar. Src. Tar.

Linear Clf. 83.28 57.47 86.94 56.41
CLIP-Text 88.33 59.42 91.99 63.35

BERT 90.97 59.81 93.64 64.75

(b) MoCo (He et al., 2020)
CUB-Painting DomainNetMini
Src. Tar. Src. Tar.

Linear Clf. 78.10 54.41 83.79 46.07
CLIP-Text 88.44 59.18 91.55 61.44

BERT 85.12 57.85 90.81 59.51

Generalization on aligned uni-modal models. From Eq. 3, the property of “global direction” ex-
hibited in the joint vision-language embedding space is essential for transferring the domain-specific
information estimated by language embeddings to the visual parts. Thus, to apply our approach on
uni-modal models trained on irrelevant datasets, e.g., MoCo (He et al., 2020) and BERT (Devlin
et al., 2018) that are pre-trained on ImageNet Deng et al. (2009) and Engligh Wikipedia (Zhu et al.,
2015) individually, additional training is needed to align the embedding space.

[Model selection & preparation] Without loss of generality, we fix the language encoder and finetune
the vision encoder by minimizing the multi-modal contrastive loss (Radford et al., 2021) on the
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train set Ds while a linear layer can be added on top of the vision encoder to align the embedding
dimension if necessary. Then, our approach WIDIn can be applied. As shown in Table 2, we select
the language encoder learned in CLIP (Radford et al., 2021) (CLIP-Text) and BERT (Devlin et al.,
2018). Both CLIP-Text and BERT are pre-trained in a self-supervised manner, where the former
one is trained by contrasting paired visual embeddings while the latter one is purely trained on web
text. For image encoder, we select ViT-B16 which is trained via full-supervision or self-supervision
(i.e., MoCo), on Imagenet. More experimental evaluation can be found in the Supp.

As a fair comparison, for the baseline Linear Clf., the backbone parameters are also updated jointly
with the classifier during the training. As Full-Supervision train the encoder for classification in the
pre-training, the extracted features are more discriminative, and the Linear Clf. by MoCo under-
performs the former one. However, by using either CLIP-Text or BERT as the text encoder in our
WIDIn framework, the performance on all datasets are improved consistently.

Meanwhile, we observed that accompanying BERT with encoders in Full-Supervision works better
while CLIP-Text can facilitates more on MoCo encoder. Our assumption is that the uni-modal
models whose training objectives are complementary to each other can achieve better performance.

• As the Full Supervision trains the vision encoder by minimizing cross-entropy loss, the embed-
dings may focus more on global semantic meaning. Then, as BERT is trained with multiple tasks
including word prediction that acquires local semantic modeling, it can better locate the domain-
specific component exhibited in the visual embedding to facilitate the feature disentanglement.

• On the other hand, MoCo is essentially performing pair-wise comparison across instance embed-
dings directly and can contain more local details in the extracted embeddings. Then, as CLIP-Text
is learned under the contrastive objective to cluster features with high semantic similarity, the
language embeddings of classes can serve as desired domain-invariant anchor so that the domain-
specific information for each instance can be better represented.

In sum, as learning a large-scale vision-language model is expensive in both data collection and
network training, and such a giant model does not always outperform a smaller one specifically
trained in one modality, e.g., the vision encoder in CLIP underperforms the backbone by MAE (He
et al., 2022) for object detection, we hope WIDIn provides more insights for aligning uni-modal
models for different downstream applications.

6 DISCUSSION

6.1 ABLATION STUDY

Table 3: Ablation study on embedding types for (a) object and (b) domain recognition.

(a) Object Recognition (↑)
CUB-Painting DomainNetMini
Src. Tar. Src. Tar.

Original 85.91 64.33 95.03 93.75
Domain-Specific 51.78 36.82 37.16 30.97
Domain-Invariant 87.47 68.76 97.08 96.01

(b) Domain Recognition (↓)

CUB-Painting DomainNetMini

Original 90.85 76.22
Domain-Specific 97.31 88.91
Domain-Invariant 75.30 48.14

Ablation study on domain-invariant representation. Under the guidance of language embedding,
the domain-invariant representation x′e is predicted from the visual embedding x in WIDIn and both
of them reside in the same embedding space. As the embedding is predicted via residual learning,
the output of feature disentangler, i.e., −FD(x), essentially contains domain-specific information.
Thus, we provide the ablation study on these three embedding types for object category recognition
and domain recognition.

For the domain recognition, we train on the embeddings from all domains to learn a linear domain
classifier, i.e., {natural and painting} for CUB-Painting and {sketch, real, clipart and painting} for
DomainNetMini. As the origin dataset split does not have training samples from target domains,
we use the union of train set Ds and half of test set per target domain to train the domain classifier
(necessary sub-sampling is applied to balance the train set per domain), and then report the average
of per-class accuracy on the rest test data.
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Table 4: Robustness to prompts.

Src. Tar.
Random 87.49 68.84

Aggregated 88.51 70.01
Misaligned 87.13 68.20

Table 5: Ablation on alignment.

Src. Tar.
None 86.42 67.12

SupCT 87.11 67.54
CT 87.47 68.76

Table 6: Accuracy of pseudo
language embedding

Dataset Src. Tar.
CUB-Painting 84.43 59.76

DomainNetMini 97.00 93.86

From Table. 3, as the domain-specific information mainly contains the clues of different domains, it
can be used to recognize the domain correctly but is less effective in recognizing the object classes.
In contrast, as the domain-invariant embedding is obtained by deducting the domain-specific coun-
terpart from the original embedding, it is more robust in object recognition across different domains.

Robustness to prompts. WIDIn can be applied to different prompts and training among a mix-
ture of prompts can improve the accuracy further. In addition to [The image of an <V>], we
consider other two prompts, [The photo of an <V>] and [<V> in the scene], and use CUB-Painting
for validation. Comparing Table 1 & 4, when randomly selecting prompts for each image during
training, the resulted score (Random) is similar. Then, we consider aggregating the embeddings ex-
tracted from multiple prompts. Formally, we gather outputs {t(i)c }Ni=1 and {t(i)x }Ni=1 where i indexes
the prompt and N = 3. In this way, we treat t̄c = 1

N

∑
i t

(i)
c and t̄x = 1

N

∑
i t

(i)
x as the domain-

invariant anchor and the pseudo language embedding for disentanglement. As more embeddings are
used to smooth the noise in each single prompts, the score is improved (Aggregated). Meanwhile, to
correctly estimate the domain-specific feature, we note the prompt used to extract language embed-
dings from class description and projected word token at each time should be the same. Otherwise,
the difference between prompts may introduce more noise (e.g., t(2)x − t

(1)
c ) and result in slight drop

(Misaligned).

Alignment between visual embedding and pseudo language embedding is achieved by mini-
mizing the CT. As an alternative, we apply SupCT. As shown in Table 5, since we study on the
pre-trained embedding space of CLIP, applying no alignment (None) x and tx can still achieve
reasonable gain while applying either SupCT or CT still helps. However, since SupCT includes
class-labels to determine the positive & negative samples and inevitably lose the instance-level de-
tails, the model cannot then properly estimate the domain-specific between language embedding of
class description and the pseudo language embedding, resulting in limited gain in Tar.

Generalization ability of pseudo language embedding. As the pseudo language embeddings is
trained under alignment constraint, it also be used for evaluation. However, as we fix the language
encoder during training, the performance is highly depends on quality of pre-learned language em-
beddings. As summarized in Table 6, by comparing with Table 1, though the accuracy is improved
against zero-shot baseline. the Tar. accuracy still under-performs the Linear Clf. baseline in fine-
grained classification. Instead, the pre-trained visual encoder can better preserve the tiny details. In
this way, our approach does not forget the essential details in visual inputs but just remove the unnec-
essary domain-specific component such as background and domain. Furthermore, the computational
complexity is much higher during inference as the text encoder is additionally required.

Estimation of domain-specific feature. As a naive baseline, we can ignore the pseudo language
embedding and directly represent the domain-specific information as the difference between visual
embedding and language embedding of its class, i.e., x − tc. However, the performance is sub-
optimal (CUB-Painting, Src. 63.77 and Tar. 48.98). After all, even though the CLIP has been
pre-trained to minimize the contrastive loss between the paired image and language description, the
embeddings extracted from the two modalities may still be distant from each other. In other words,
x − tc additionaly contains the instance-agnostic gap between embeddings of different modalities
and it is difficult to learn with limited data.

6.2 EXTENSION TO LONG-TAIL IMAGE RECOGNITION

Besides the domain defined by background and environment in the images, the domain can also be
generalized to the statistical distribution of training data where the domain bias can be caused by
distribution imbalance. In detail, for long-tail learning where the frequency of training data per class
varies from each other significantly, the model may favor the major classes with sufficient training
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Table 7: Performance comparison of long-tail classification.

Approach Backbone ImageNet-LT iNaturalist
Few Med Many Overall Overall

LWS (Kang et al., 2020) RN50∗ 29.30 45.20 57.10 47.70 65.90
LogitAdj (Menon et al., 2020) RN50∗ 49.94 52.32 50.06 51.13 68.44

TSC (Li et al., 2022) RN50∗ 30.40 49.70 63.50 52.40 69.70
NCM (Kang et al., 2020) RN50∧ 31.10 46.60 58.90 49.20 65.30
cRT (Kang et al., 2020) RN50∧ 27.80 47.20 63.30 50.80 69.90

τ -normalized (Kang et al., 2020) RN50∧ 33.80 48.40 60.90 51.20 71.20
LWS (Kang et al., 2020) RN50∧ 31.80 48.60 62.20 51.50 71.00

Zero-Shot RN50† 52.92 57.78 58.13 56.61 3.41
Baseline RN50† 53.05 60.24 59.17 58.85 71.85

WIDIn (Ours) RN50† 55.12 61.26 60.56 60.55 73.20
Zero-Shot ViT-B16† 63.63 66.43 66.86 66.71 4.16
Baseline ViT-B16† 67.84 67.72 68.23 67.95 73.72

WIDIn (Ours) ViT-B16† 68.91 71.69 72.07 71.93 75.45
∧: Initialized with CLIP (Radford et al., 2021) and jointly trained. Results reported by Tian et al. (2022).
∗: Trained from scratch. †: Fixed and initialized with CLIP (Radford et al., 2021). More details can be found in Supp.

data and the accuracy on minor classes with limited data is less acceptable. Thus, how to balance
the classification accuracy on all classes is also important.

As shown in Table 7, we evaluate our approach on two benchmark datasets, ImageNet-LT (Liu et al.,
2019) and iNaturalist (iNatrualist, 2018), where the number of training samples per class ranges in
[5,1280] and [2,1000] respectively. According to the number of training data of each class, we
split the classes into three groups, Many (≥ 100 samples), Medium (Med, 20∼100 samples) and
Few (≤ 20 samples). Then, for evaluation, we report the performance on all classes as well as the
accuracy over the groups. Meanwhile, for our approach, we report the performance with both RN50
and ViT-B16 as the backbone and use pre-trained CLIP model as initialization for fair comparison.

Though CLIP shows strong zero-shot accuracy on ImageNet-LT, it does not perform well on fine-
grained classes in iNaturalist. We note that most approaches compared below requires to update the
vision encoder parameter during training to achieve high score, which is computational expensive.
Instead, for the efficiency of experiments, we fix the encoders but add class-specific margins (Menon
et al., 2020) in the calculation of cross-entropy loss (Baseline) and WIDIn can still achieve consistent
performance gain. We believe that our approach can further improve the performance when the
vision encoder is also jointly trained with the projector.

Limitations and societal impacts. As introduced in Sec. 4, we estimate the domain-specific infor-
mation by comparing embeddings extracted from the language encoder. Therefore, the estimation
relies on the quality of the language model. Also, WIDIn takes the output corresponding to <CLS>
token as the language embeddings, which does not intuitively apply to autoregressive language mod-
els where no <CLS> token is learned. We will leave it for future work. To the best of our knowledge,
as our work is purely an algorithm for learning domain-invariant features, we haven not found any
negative societal impact.

7 CONCLUSION

In this paper, we investigate the problem of domain generalization, and propose the WIDIn that is
free from any prior on target domains. For each image, we first word the image by projecting the
visual embedding to a word token embedding. We then use the difference between language em-
beddings extracted from worded image and class description to estimate domain-specific feature.
Based on the “global direction” property in multi-modal embedding space, we can disentangle the
domain-invariant representation from the original visual embeddings, which is robust to different
domains. The experimental study demonstrates the effect of WIDIn on domain generalization as
well as long-tail learning and can be intuitively applied to aggregate the knowledge from visual en-
coders and language encoders which are learned on irrelevant datasets separately. Detailed ablation
studies are used to justify components of our approach design.
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A BASELINE BY GLOBAL DIRECTION

A.1 BASELINE DETAILS IN DOMAIN GENERALIZATION

As discussed in Sec. 3.2, LADS (Dunlap et al., 2023) assumes a global direction of domain shift ex-
hibited in both language embeddings and visual embeddings. To this end, they propose the direction
loss to train a feature augmentation network and synthesize the features of target domains. Though
significant gain (from 64.33 to 66.18 on CUB-Painting) is reached on target domains, one important
baseline is missed to highlight the importance of the global direction and justify the importance of
training a neural network.

Instead of training a feature augmentation network under the constraint of direction loss, a baseline
can directly set k = 1 and use the language embeddings to obtain new features x̂, i.e., x̂ = x +

t
(t)
c − t

(s)
c . However, as the extracted embeddings are of different norms, the direction obtained

from the language embeddings, i.e., t(t)c − t
(s)
c , is not theoretically guaranteed to be consistent with

the ground truth global direction. As such, to maintain the stability of the network training, we
pre-process all of the embeddings (x, t(t)c , t(s)c ) by l2-normalization.

Then, we directly use x and x̂ after normalization to train a linear classifier where the weights in
the classifier are also normalized. In this way, we essentially use cosine similarity as the logits. For
this baseline approach on CUB-Painting, we obtain the performance 85.93 (Src.) and 65.21 (Tar.),
where the performance gain on the target domain is non-trivial. In other words, by comparing with
this baseline, training an additional feature augmentation network is still useful but the introduced
gain is then less than 1%. Nevertheless, both this baseline and LADS demonstrate the knowledge of
domain exhibited in multi-modal embedding space and the importance of global direction.

In addition, following the normalization step to pre-process the visual embeddings and language
embeddings, for our approach WIDIn, in Eq. 3, all of the embeddings (x, tc, tx) are also normalized
to ensure the stability and proper estimation of the domain-specific information.

A.2 MOTIVATION & CLARIFICATION OF WIDIN

Based on the observation above, we think the global direction exhibited in the joint vision-language
embedding space that is learned through multi-modal contrastive learning is beneficial for domain
generalization. Then, to obtain the joint multi-modal embedding space, we consider two cases,
1) CLIP embedding space which is obtained through multi-modal contrastive learning on LAION
400M, and 2) finetuning from two uni-modal models which are trained on irrelevant large-scale
uni-modal datasets through multi-modal contrastive learning on the training set in source domain.

Clarification of large-scale pretrained models. The large-scale model refers to the models pre-
trained on any large-scale datasets such as LAION and ImageNet. For domain generalization, using
ImageNet-Pretrained model as initialization has been a common practice. However, the performance
on target domains is stil less acceptable. Meanwhile, for the vision encoder in CLIP pretrained on
LAION, there is still unignorable performance gap between the source domain and target domains.
As such, we propose WIDIn, a general framework that can be applied on both cases to learn domain-
invariant representation and improve the domain generalization ability. Meanwhile, our experimen-
tal validation also shows using a language model such as BERT which is irrelevant with the image
model at all can still be helpful for feature disentanglement.
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Visual embedding Pseudo language embedding
Class-equivariant visual embedding language embedding of class

Figure 3: Visualization of embedding of two examples, the embedding types are color coded.

B VISUALIZATION & DISCUSSION

B.1 COMPARISON BETWEEN VISION AND LANGUAGE EMBEDDINGS

From the ablation studies reported in Sec. 6.1, as pseudo language embeddings are learned un-
der both the class-level and instance-level alignment, they can thus be also used for evaluation by
comparing with the language embeddings extracted from the class descriptions. Even though the
performance is improved, we found that it is still significantly under-perform the linear evaluation
baseline trained on the visual embeddings.

As such, we think the distribution of language embeddings and the distribution of visual embeddings
may not be perfectly aligned and the visual embeddings are capable to capture tiny details which
are important for fine-grained classification but not captured by the language embeddings. Towards
this end, from the perspective of comparison, we believe it is unfair to only compare the zero-shot
performance with any approach trained on visual embeddings. Instead, the linear evaluation should
also be considered and accompanied with the zero-shot baseline for reference.

B.2 VISUALIZATION

As shown in Fig. 3 below, we provide two visualization examples of the embeddings. Within each
example, we plot the visual embeddings, pseudo language embeddings, and the domain-invariant
visual embeddings of two instances (the cycle shape denotes the instance from source domain and
the square shape denotes the instance from the target domain), as well as the language embeddings
of class description. In both examples, comparing with the visual embeddings of the two instances,
the domain-invariant visual embeddings are closer to each other. In this way, the classifier learned
on the instances of source domain can also perform well on the instances from target domains.

B.3 GENERALIZATION TO MULTI INSTANCES

Our approach can be naturally generalized to images containing multiple classes, as it leverages the
difference between pseudo language embedding and language embedding of caption to model the
class-invariant information. For example, given the caption “The image of a cat and a dog” and its
paired image, as the original visual embedding has encoded the information from both the cat and
the dog, the corresponding pseudo language embedding can still be compared with the language
embedding of paired caption to estimate the information of background and domain.

At the same time, to model the domain-invariant information for each object in the image, we can
extend the prompt for single concept to the prompt [The image of a <V1> and a <V2>].

Then, we can follow Carion et al. (2020) to design the projector where the visual embedding can
be mapped to different word tokens. As the classes mentioned in the caption is commutative, e.g.,
“The image of a cat and a dog” is equivalent to “The image of a dog and a cat”, and the projector
outputs are not ordered. We can also use Hungarian algorithm (Carion et al., 2020) to find the correct
matching between them and then facilitate the modeling of class-invariant feature. We will leave the
application for images containing multiple classes such as object detection for future work.
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Table 8: Ablation study on CUB-Painting for aligning pre-trained Image & Language Encoders

Fully-Supervised MoCo MAE DINO
(LeCun et al., 2015) (He et al., 2020) (He et al., 2022) (Caron et al., 2021)

Architecture ViT-B16 ViT-B16 ViT-B16 ViT-B16

Src. Tar. Src. Tar. Src. Tar. Src. Tar.
Linear Clf. 66.29 37.74 53.18 25.66 32.03 31.99 80.45 52.67
CLIP-Text 70.31 35.08 75.49 39.51 54.42 48.08 81.34 53.36

BERT 75.6 41.25 72.94 35.77 51.07 42.87 81.71 54.05

Architecture RN50 RN50 - ViT-B8

Src. Tar. Src. Tar. - - Src. Tar.
Linear Clf. 50.12 22.32 49.52 14.17 - - 80.98 49.66
CLIP-Text 51.85 21.6 53.4 19.4 - - 82.62 52.41

BERT 68.67 26.49 49.53 14.67 - - 82.62 52.84

C DISCUSSION OF WIDIN ON UNI-MODAL MODELS AFTER ALIGNMENT

Training a joint vision-language embedding space from scratch is computational expensive and how
to utilize existing uni-modal model is also important. After all, as demonstrated in Table 1, when
adapting a pre-trained model to a downstream tasks, though new knowledge are learned, training
a single linear classifier still results in knowledge forgetting. Thus, we hope to mitigate this issue
aligning uni-modal models from other modality in our WIDIn framework. However, fusing infor-
mation from two separately trained uni-modal models should also be of low cost while finetuning
the entire network is still computational expensive. As such, below we validate the effect of our ap-
proach WIDIn on the joint embedding space which are learned by only updating the feature space.

C.1 MODEL SELECTION

Comparison of Vision Encoders. As shown in Table 8, besides Full-Supervision and MoCo, we
also select additional self-supervised image encoders, DINO (He et al., 2022) and MAE (He et al.,
2022). Meanwhile, all of the four models are pre-trained on ImageNet (Deng et al., 2009).

• DINO is trained by minimizing the difference of logits by the student encoder and by the teacher
encoder in a self-supervised manner. The logits in DINO is obtained by projecting from the
features through a linear layer and the projecter layer consisting of 65536 weight vectors. The
weight vectors are jointly learned with the entire feature extractor. When we minimize the loss
of DINO, for each image instance, we are pushing the features towards the same weight vector.
As the number of instances in the train set is much larger than the number of weight vectors,
the features from different instances with high similarity will be pushed towards the same class
center. As such, the features learned from DINO can be properly clustered.

• Similarly, as the Full Supervision is essentially pushing the image features towards the same class
center, the features are clearly trained to be grouped according to the class label.

• MoCo is similar to SimCLR (Chen et al., 2020) and directly compares the features. It is also
studied in (Wang & Isola, 2020) that contrastive learning aims to learning a uniform distribution
across instances.

• MAE is only trained to reconstructed the masked area and does not directly learns to matching
instance features of high similarity.

Clarification of Language Encoders. Both CLIP-Text and BERT have different architectures in the
published versions. For the convenience of comparison, we only choose the model version whose
final the feature dimension is 768, which are the same as the language encoders used in Table. 2. For
the convenience of accommodation, we only select the model where a class token <CLS> (Devlin
et al., 2018) is learned.

Implementation Detail. Specifically, we use the pre-defined data pre-processing function to extract
the embeddings, and only train a simple linear layer on top of the pre-extracted embedding, i.e.,
no data augmentation on the raw images during training. In this way, we can learn a joint image-
language embedding space to hold the assumption of the “global direction”. Since we are treating
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the language embedding as the domain-invariant anchor to instruct the disentanglement of the vi-
sual embedding, while learning to map layers for language embeddings based on extremely limited
language training data may result in information loss, we only add one linear layer on top of the
vision encoders. In other words, we freeze the huge backbone and only apply our approach on the
pre-extracted embeddings with necessary pre-processing. We train the layer by aligning the vision
embedding with the language embeddings via minimizing contrastive loss (Radford et al., 2021) on
the train set from source domain Ds. In this way, we essentially treat the space that the language
embeddings reside as the joint vision-language embedding space.

C.2 EXPERIMENT DISCUSSION

Table 8 summarizes the results on CUB-Painting of WIDIn, along with the performance by learning
a simple linear classifier (Linear Clf.) as baseline for reference. For the fairness of comparison,
Linear Clf. only train on the pre-extracted embeddings to learn a linear classifier. However, for
MAE and MoCo, we observed that it is essential to apply the data augmentation function during the
training such that a more robust linear classifier can be learned. Furthermore, we found a batchnorm
layer is added, i.e., the extracted visual embeddings of the images first pass the batchnorm layer and
the outputs of the batch norm layer are then fed into the classifier, in their official github repos.

Self-supervision shows less bias to source domain. Comparing with Linear Clf., WIDIn can con-
sistently improve the accuracy on both source and target domains in most cases. The only exception
is the Tar. accuracy using CLIP-Text and the vision encoder pre-trained in a supervised manner.
Since the training data of ImageNet is also captured in natural world, the vision encoder may overfit
to source domain such that the visual embeddings in target domain have already been distant from
those of natural images. As such, the classifier learned from the domain-invariant component in
the source domain cannot be generalized to the target domain. Furthermore, as CLIP-Text is trained
with contrastive loss while the BERT is pre-trained under multi-task learning, BERT is better in cap-
turing tiny details in the visual data. As such, with the vision encoder trained in a fully-supervised
manner, the CLIP-Text can only facilitate the generalization on the original domain.

Meanwhile, though the vision encoder in CLIP still achieve the best performance, we note the pre-
train set of CLIP is much larger than ImageNet. And we believe the performance can still be further
improved if a stronger pre-trained vision encoder is provided.

CLIP-Text Vs. BERT. Through comparison, BERT provides more gain for the vision encoder
pretrained by DINO and Full Supervision while CLIP-Text benefits more for the other pre-trained
models.

Generalization over Architectures: For each vision encoder, we consider both Transformer- and
ResNet-based architectures if applicable and available. As ViT-B is of more learnable parameters
than RN50 (86M Vs. 23M), ViT-B outperforms RN50 consistently. Meanwhile, we note the benefit
of our approach is better explored on larger models. For example, for MoCo (He et al., 2020), the
performance gain with ViT-B on Src. and Tar. are 21.03 and 11.98 respectively, while they are 1.95
and 2.86 with RN50. For Dino, from the Linear Clf., the model with larger patch size can facilitate
generalization on target domains but has slightly weaker score on source domain. However, WIDIn
can consistently improve the performance and minimize the gap between ViT-B16 and ViT-B8,

C.3 LEARNING VISION ENCODER FROM SCRATCH

In addition to use image encoder which is trained on an image-only dataset or a multi-modal dataset
as intialization, we can also train an image encoder from scratch for domain generalization. How-
ever, as the training data is very limited, training the image encoder from scratch is very easy to
overfit to the train set and the generalization of test data from the same domain is still poor.

In detail, on CUB-Painting, we train a ResNet18 from scratch via fully-supervised learning, the
test accuracy (Src. 22.45, Tar. 14.59). Then, we test our approach after performing multi-modal
contrastive learning between language embedding extracted by CLIP-Text and the image embedding
to update the image encoder from scratch, and get the results (Src. 24.85, Tar. 15.30). Though it is
still less acceptable, we can still see a slight gain by our approach.
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D EXPERIMENT IMPLEMENTATION

Availability of Datasets. All of the datasets used for experimental study in our approach are publicly
available.

D.1 TRAINING DETAILS

As mentioned before, our approach can be applied to the joint vision-language embedding space can
be learned via either [a] large-scale multi-modal pretraining such as CLIP or [b] finetuning from two
uni-modal models on the existing training data Ds where the uni-modal model indicates the model
which is only trained on dataset of one modality.

Thus, for fair comparison in [a], all approaches reported in Table 1 uses ViT-L14 for experiments.
However, for [b], as finetuning ViT-L is implausible given limited computational resources, we thus
choose ViT-B16 for validation. (ViT stands for Vision Transformer (Dosovitskiy et al., 2020) where
“L” and “B”, indicating the size of ViT, stand for large and base respectively. For ViT, each image is
first split into non-overlapping grids and each grid is called a patch. Then, the number at sub-index
means the size (i.e., height and width) of patch.)

During network training, we experimentally found that using SGD optimizer to minimize the align-
ment constraints based on contrastive learning is beneficial for the final performance. As such, even
though the CLIP model is pre-trained by using AdamW optimizer, when we train the projector FP

by minimizing the loss Lia +Lca, we still use SGD as the optimizer with 0.002 as the learning rate.
Then, when we minimize the feature prediction loss Lfeat and classification loss Lcls, we use the
AdamW as the optimizer with the learning rate 0.0001.

To balance the network optimization strength from different losses, we set the weight of Lfeat as
2.0 while keep the weights for all other losses as 1.0. The training is very efficient and the maximum
number of epochs we used for training is 60. Meanwhile, from Eq. 3, xe = x− (tx − tc) = xe =
x+ (tc− tx). Then following the definition of residual learning where xe = x+FD(x), the output
of disentangler FD(x) is trained to mimic tc − tx.

Besides, as in [b] for finetuning two pre-trained uni-modal models under contrastive learning, we
found using AdamW optimizer is more stable and we set the learning rate as 0.0001. Meanwhile,
since a larger batch size is needed to ensure the efficiency of contrastive learning, when finetuning
the two uni-modal models before applying our approach WIDIn, we train the network with a batch
size of 512 for 90 epoches on four V100 GPUs. After the finetuning is done, we then apply our
WIDIn for domain generalization.

D.2 PERFORMANCE DETAILS

DomainNetMini consists of one source domain and three targets domains during evaluation. In
Table 1, we report the average of performance on three domains under Tar. and we below details the
results on all three domains for reference (95.99, 95.81, 96.21).

Meanwhile, for our approach, the groundtruth of feature disentangler output is still in the same
vision-language embedding space. In other words, both ours and Linear Clf. learns a linear classifier
on the joint vision-language embedding space, while the only difference is that our approach first
introduce a feature disentangler to predict the domain-invariant representation from original visual
embedding but still reside in the same embedding space. Thus, the performance of Linear Clf.
naturally serves as an ablation study for the embedding type.

Then, the baseline MLP Clf. shares the same architecture as our WIDIn where both FD and FC

are learn for image classification. However, no loss is applied on the output of FD and the entire
network is only trained by minimizing the cross-entropy loss.

Then, for ablation study on three embedding types in Table 3, we note the discriminative information
for classification may also be useful in indicating the domains, for example, the eyes of bird is
natural images is smaller than that in painting/drawing. As such, the domain-specific discriminative
information in domain-invariant representation can also be useful for domain recognition. However,
the experiments for object class recognition can still clearly demonstrate the effect of our approach.
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D.3 MORE EVALUATION ON CLIP EMBEDDING SPACE

Besides the experimental validation on CUB-Painting and DomainNetMini where domain bias are
defined by the class-agnostic environment (e.g., both dogs and cats may appear in the natural envi-
ronment and part), we also evaluate our approach on Waterbirds (Sagawa et al., 2020), the domain
bias is defined by the connection between class and environment.

Waterbirds (Sagawa et al., 2020) consists of two classes, i.e., waterbirds and landbirds, but under
different environments. During training, the environmental context is always matched with the class
of birds (source), i.e., the landbirds are always on the land and the waterbirds are always on the water.
However, during testing, there are images with mismatched environments (target), i.e., landbirds on
the water and waterbirds on the land. For evaluation purpose, we calculate the accuracy for each
class at each environment. In this way, a domain is essentially determined by the class name and the
environment. In other words, the model has only seen two domains at train time but four domains at
test time. Ad such, we first detail the performance of zero-shot baseline and our approach below.

Table 9: Detailed results on WaterBirds.

Approach Zero-Shot WIDIn(Ours)
landbirds on land 99.45 99.31

waterbirds on water 97.64 98.70
landbirds on water 48.87 52.84
waterbirds on land 66.51 92.81

Table 10: Comparison with Baseline.

Approach Src. Tar.
Zero-Shot 98.55 57.69
Zero-Shot* 98.55 58.77
Linear Clf. 92.75 72.80

WIDIn 99.00 72.83

In Table 10, the approach “Zero-Shot∗” means adding domain description when extracting the lan-
guage embedding for zero-shot classification. For example, in Table 1, on DomainNetMini, we use
“the photo/image of an airplane” for the approach “Zero-Shot” but use “the clipart of an airplane”
for the approach “Zero-Shot∗”. On Waterbirds, the domain is determined by the class and the envi-
ronment. Since the classification task is still to differentiate waterbirds from landbirds, we choose
to fuse the language embeddings of descriptions of the same class, e.g., averaging the language em-
beddings extracted from “The photo of a landbird in the forest” and “The photo of a landbird on
the water” as the center of class “landbird”. However, from Table 10, the performance gain is not
significant.

Further, as the class names are defined by the environment, we think the CLIP language embedding,
e.g., extracted from “The image of a landbird”, may naturally include the environment information
of land (water) to the class name landbird (waterbird). As such, the effect of domain-invariant visual
embedding by WIDIn is not significantly shown comparing with visual embedding. Thus, we think
our WIDIn can still be further improved by using other description to represent these two classes,
e.g., the description of attributes of the objects such as size and shape, which is not explicitly defined
by the environment but can still be used to distinguish these two bird classes. Then, our framework
can still be naturally generalized to these. We would like to leave it for future work.

D.4 EXPERIMENTAL DETAILS OF LONG-TAIL CLASSIFICATION

Dataset. 1)ImageNet-LT (Liu et al., 2019) is a long-tailed subset of the ImageNet (Deng et al.,
2009). There are in total 115.8K images from 1000 categories and the number of training instances
ranges from 5 to 1280. 2) iNaturalist (iNatrualist, 2018) contains around 437.5K images from 8142
categories and the number of training instances per class ranges from 2 to 1000. For both ImageNet-
LT and iNaturalist datasets, the distribution of test sets is uniform where the numbers of test data per
class are 50 and 3 respectively.

Evaluation Metric. We directly report the performance on all classes. Meanwhile, according to
the size of train set, we split the classes into three groups, Many (≥ 100 samples), Medium (Med,
20∼100 samples) and Few (≤ 20 samples). We break up the accuracy over the groups and the
standard deviation of accuracy over all groups (STD) are reported.

In long-tail classification, a model may show bias towards the major classes with sufficient number
of training data and thus ignore the minor class with limited number of training data. By removing
the domain-specific information from the features, we expect the model could be robust to the bias
caused by the data distribution. Meanwhile, as we fix the CLIP vision encoder during the entire
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Table 11: Comparison on long-tail learning.

Approach Few Med Many STD
Zero-Shot 63.63 66.43 66.86 1.75

VL-LTR (Tian et al., 2022) 59.30 (↓ 4.33) 74.6 84.5 12.70
Ours 68.91 (↑ 5.28) 71.69 72.07 1.72

training process, as mentioned before, we follow LogitAdj (Menon et al., 2020) to add class-based
margins to the loss during training ans also add one linear layer with the same input-output dimen-
sion to project & adjust features. The class margins are calculated based on the data distribution and
first theoretically studied in LogitAdj (Menon et al., 2020).

Meanwhile, as listed in Table 11, comparing with VL-LTR (Tian et al., 2022) which update the
backbone and use extra dataset for training, we fix the vision encoder after being initilized with the
CLIP-pretrained model and do not need access to any extra instance-specific description, instead, we
just build description for each class. Additionally, VL-LTR (Tian et al., 2022) achieves significant
performance on the Many group at the expense of sacrificing accuracy on Few group, comparing
with zero-shot baseline. In contrast, our approach is capable of achieving consistent performance
gain across all class groups and also reducing the accuracy variance across these three groups.

iNaturalist is released for a long-tail learning challenge every year starting from the year of 2017.
We follow the most common evaluation setup and use the iNaturalist dataset released on 2018 for
the experiments. Due to the limitation of table resize, we report the detailed performance at each
class group here.

Table M1: Detailed results on iNaturalist.

Approach Backbone Few Medium Many Overall
LWS (Kang et al., 2020) RN50∗ 65.50 66.30 65.00 65.90

LogitAdj (Menon et al., 2020) RN50∗ 66.27 66.34 66.79 68.44
TSC (Li et al., 2022) RN50∗ 67.80 70.60 72.60 69.70

Zero-Shot (Radford et al., 2021) RN50† 2.91 3.43 3.48 3.41
Baseline RN50† 69.90 71.81 73.51 72.60

WIDIn(Ours) RN50† 71.68 73.03 73.56 73.20
Zero-Shot (Radford et al., 2021) ViT-B†16 3.66 4.35 4.16 4.16

Baseline ViT-B†16 72.11 73.77 73.97 73.72
WIDIn(Ours) ViT-B†16 75.01 75.00 75.75 75.45

∗: Trained from scratch. †: Fixed and initialized with CLIP (Radford et al., 2021).

For the results by LogitAdj (Menon et al., 2020) on iNaturalist in Table 2 in the main paper, it is
realized by additionally including adaptive loss, serving as an ablation study, but it is not the main
technical contribution from LogitAdj. As such, we use the performance by only using the loss
designed in LogitAdj for comparison.

D.5 ABLATION STUDY ON TRAINING SCHEDULE

For our WIDIn, we first only learn the projector under the alignment constraint. Then, we learn the
feature disentangler and classifier separately, i.e., the embedding x′e predicted from FD is not used
to train FC . We represent the schedule as (FP , FD, FC). We also provide ablation study on the
training schedule in Sec. 6.1.

As shown in Table 13, in practice, we found that separating the training of the three modules result in
the best performance. After all, at the early stage of the network training, the projector for predicting
token embeddings has not been properly learned. Then, using the xe at early stage to guide the
training of predictor (FP +FD, FC) will confuse the network training and result in model collapsing.
Similarly, if the classifier is jointly trained with the predictor (FP +FC , FD), the model may show
more bias to the source domain. Meanwhile, if we use both xe and x′e to train the classifier (FP ,
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Table 13: Ablation on Training Schedule

Strategy Src. Tar. Avg.
(FP +FC , FD) 87.21 67.25 76.98
(FP +FD, FC) 86.37 64.82 75.59
(FP , FD+FC) 86.76 66.10 76.43

FD+FC), the performance may drop slightly. As such, we only use the xe to train the classifier.
In this way, as we are separating xe and x′e for loss calculation, we can learn the FC and FD at
the same time. Meanwhile, when we train the FP , we use the direction loss in LADS (Dunlap
et al., 2022) as an alternative of MSE loss, and it underperforms our current design as Direction loss
(CUB-Painting, Src.: 86.81 and Tar.:66.42) ignores the consistency of vector length.
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