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Abstract
Two models are introduced to study the problem
of matching two correlated graphs when some
of the nodes are corrupt. In the weak model, a
random subset of nodes in one or both graphs
can interact randomly with their network. For
this model, it is shown that no estimator can cor-
rectly recover a positive fraction of the corrupt
nodes. Necessary conditions for any estimator
to correctly identify and match all the uncorrupt
nodes are derived, and it is shown that these con-
ditions are also sufficient for the k-core estimator.
In the strong model, an adversarially selected sub-
set of nodes in one or both graphs can interact
arbitrarily with their network. For this model, de-
tection of corrupt nodes is impossible. Even so,
we show that if only one of the networks is com-
promised, then under appropriate conditions, the
maximum overlap estimator can correctly match a
positive fraction of nodes albeit without explicitly
identifying them.

1. Introduction
Graph matching is the problem of finding the latent corre-
spondence between two edge-correlated networks, i.e recov-
ering (unknown) node identities in a graph by matching to a
correlated graph with (known) node identities. It is a ubiqui-
tous problem in machine learning with applications to social
networks (Narayanan & Shmatikov, 2009; 2008), biological
networks (Singh et al., 2008; Kazemi et al., 2016), computer
vision (Schellewald & Schnörr, 2005), natural language pro-
cessing (Haghighi et al., 2005), and graph neural network
based machine translation (Xu et al., 2019). Over a decade
of progress has led to a sound understanding of the funda-
mental limits of graph matching in the case of correlated
Erdős-Rényi graphs; an overview is provided in Section 1.1.
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Graph matching can be viewed as a noisy version of the
graph isomorphism problem, and is motivated by real-world
networks often being correlated but non-identical. For in-
stance, the interaction graphs of two social networks (such
as Twitter and Flickr) are correlated because users are likely
to connect with the same people in both networks. Indeed,
it was shown in (Narayanan & Shmatikov, 2009) that the
identities of some nodes in the Twitter graph, despite be-
ing anonymized, could be recovered simply by matching
to the Flickr network. Another example is protein-protein
interaction (PPI), where the interactome of an organism is
constructed by connecting two interacting proteins with an
edge. The interactomes of two closely related species are
then correlated through a latent correspondence. Matching
these interactomes allows the identification of conserved
functional components between the two species (Singh et al.,
2008; Bandyopadhyay et al., 2006).

All these networks are more complicated than correlated
Erdős-Rényi graphs, and so designing robust algorithms
is paramount in practice. In a sense, algorithms for graph
matching may themselves be viewed as robust algorithms
for graph isomorphism, with the extent of robustness quan-
tified through tolerance to edge-corruptions. In the present
work, it is argued that robustness towards node-corruptions
is also an important factor to consider when designing al-
gorithms. For instance, a user’s Twitter account may get
hacked, causing them to connect and disconnect arbitrar-
ily with other users. Similarly, a protein in a PPI network
may interact randomly with other proteins due to a vari-
ety of factors. For example, the popular Yeast two-hybrid
method constructs a PPI network by pairwise examining
the interaction between two proteins by fusing them both
to a transcription binding domain in the yeast cell (Fionda,
2019). However, if one of the proteins is itself an unknown
transcription factor, then false positive interactions may be
recorded. Conversely, if it is toxic to the cell, or requires
post-translational modifications that do not take place in
yeast cells, then false negatives can occur (Koh et al., 2012).

These phenomena are better captured by node corruptions
than edge corruptions. Here, the number of corrupted node
pairs may even be quadratic in the size of the graph, but
there is a spatial clustering of the noise: each corrupted edge
has at least one end point in a subset of corrupted nodes.
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Contributions To our knowledge, this is the first work to
consider fundamental limits of graph matching with node-
corruptions. Two models are studied:

1. Weak adversary: The adversary selects a random set
of nodes in each network and resamples all the edges
adjacent to the set without observing the graphs. This
models random behavior of unknown proteins in a PPI
network.

2. Strong adversary: The adversary selects an arbitrary
set of nodes in each network and rewires all the edges
adjacent to the set after observing the graphs. This
models malicious behavior of hacked users in social
networks.

In the setting of the weak adversary, we show that no esti-
mator correctly matches any positive fraction of corrupted
nodes. Conversely, under appropriate conditions, the k-core
estimator correctly matches almost all of the uncorrupted
nodes and none of the corrupted nodes. Under a further
condition that is also necessary, it identifies the corrupted
nodes and correctly matches all the uncorrupted nodes. Our
simulations suggest that there is a gap between these fun-
damental limits and the performance of commonly used
computationally feasible algorithms: Section 5 provides
details.

In the setting of the strong adversary, we show that an anal-
ogous detection of corrupted nodes is impossible. Even so,
when only one of the networks is corrupted, the maximum
overlap estimator outputs a matching that correctly matches
a positive fraction of the uncorrupted nodes. An explicit
lower bound on the fraction of correctly matched nodes as a
function of the fraction of corrupted nodes is also derived.

These results can be contextualized through their practical
implications to social and biological networks. A good
understanding of these networks is useful to appropriately
process and augment data for downstream machine learning
tasks. For example, our impossibility result for the strong
adversary provides an algorithm to sanitize social network
data such that precise de-anonymization of any positive
fraction of the users through matching to another network
is impossible. Further, our achievability result for the weak
adversary provides a framework to detect proteins in PPI
networks that register random interactions. This is discussed
in Section 5.

1.1. Related work

The problem of finding necessary and sufficient conditions
for matching correlated random graphs was considered
in (Pedarsani & Grossglauser, 2011). Ever since, a grow-
ing line of work has improved these results for exact re-
covery (Cullina & Kiyavash, 2016; 2017), almost-exact

recovery (Cullina et al., 2019; Wu et al., 2022) and partial
recovery (Hall & Massoulié, 2023; Ganassali et al., 2021;
Ding & Du, 2022). In parallel, other works have inves-
tigated computationally feasible algorithms (Barak et al.,
2019; Ding et al., 2021; Fan et al., 2022; Mao et al., 2021),
culminating in algorithms that run provably well in polyno-
mial time when the graphs are far from isomorphic (Mao
et al., 2023a;b; Ding & Li, 2023).

All these works study correlated Erdős-Rényi graphs, for
which the fundamental limits of matching are now well
understood. Subsequently, an emerging line of work is
expanding the scope of the problem. For instance, (Rácz
& Sridhar, 2021) and (Gaudio et al., 2022) study the graph
matching problem in correlated stochastic block models,
while (Rácz & Sridhar, 2023) and (Ding et al., 2023) study
graph matching in inhomogeneous random graphs, focusing
respectively on fundamental limits and efficient algorithms.

Recently, there is growing interest in studying robust vari-
ants of estimation problems in graphs when a positive frac-
tion of nodes interact adversarially with their network. For
example, (Acharya et al., 2022) studies the problem of esti-
mating the parameter p of an Erdős-Rényi graph, whereas
recently, (Liu & Moitra, 2022) and (Hua et al., 2023) study
the community detection problem in this setting. Finally,
the model in (Mitzenmacher & Morgan, 2018) allows for a
simpler version of node corruptions, where only a sublinear
fraction of nodes to be corrupt. All these works provide in-
sight into developing robust algorithms that are better suited
for real-world networks.

2. Preliminaries
Notation Let [n] denote the set {1, 2, · · · , n} and let(
[n]
2

)
denote the set of unordered pairs {{u, v} : u, v ∈

[n] and u ̸= v}. For a graph G on n nodes, assume that its
node set V (G) is [n], and so its edge set E(G) is a subset of(
[n]
2

)
. In this work, graphs are undirected and unweighted.

For a node pair {i, j}, denote its edge status by G{i, j},
where G{i, j} = 1 if {i, j} ∈ E(G) and G{i, j} = 0 oth-
erwise. The graph G is sampled from the Erdős-Rényi (ER)
distribution, denoted G ∼ ER(n, p), if G has n nodes and
each edge in G exists with probability p. Let π be a per-
mutation on [n] and denote by Gπ the graph obtained by
relabeling nodes in G according to π, so that

G{i, j} = Gπ {π(i), π(j)} ∀ {i, j} ∈
(
[n]

2

)
.

Standard asymptotic notation (O(·), o(·),Θ(·), · · · ) is used
throughout, and it is implicit that n → ∞.

In this work, Bern(p) and Bin(n, p) denote respectively the
Bernoulli and binomial distribution. The hypergeometric
distribution is denoted by HypGeom(n, k,m). A random
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variable with this distribution counts the number of suc-
cesses in a sample of k elements drawn without replacement
from a population of n individuals, of which m elements
are considered successes.

2.1. Correlated graphs and corruption models

In all definitions below, n is a positive integer and p, s are
in [0, 1]. Further, G1 and G2 are graphs with V (G) = [n]
and π∗ is a permutation on [n].

Definition 2.1 (Correlated Erdős-Rényi graphs). A pair
of graphs G1 and G2 are said to be correlated ER graphs
with parameters p and s, if they are obtained as follows:
Two graphs G1 and G′

2 are obtained by independently sub-
sampling each edge of a parent graph G ∼ ER(n, p) with
probability s. Independently, a permutation π∗ is sampled
uniformly at random, and G2 is obtained as G2 = G′π∗

2 .

Marginally, G1 and G2 each follow the ER(n, ps) distribu-
tion. However, the two graphs are edge-wise correlated ac-
cording to an underlying permutation π∗. Next, two corrup-
tion models are presented, motivated respectively by protein-
protein interaction and social network de-anonymization.

Definition 2.2 (Adversaries). For any set B ⊆ [n], define
by EB the set of all node pairs adjacent to B, i.e.

EB =

{
{i, j} ∈

(
[n]

2

)
: i ∈ B or j ∈ B

}
.

Let G1 and G2 be two graphs and let γ and λ be in [0, 1].
The weak and strong adversaries are defined as:

• Weak adversary: Let q ∈ [0, 1]. The weak adversary
with parameters (γ, λ, q) acts on G1 and G2 as fol-
lows: It selects sets B1 ⊆ V (G1) and B2 ⊆ V (G2) of
nodes such that |B1| = λγn and |B2| = (1 − λ)γn,
independently and uniformly at random. It then as-
signs the edge status of each node pair in EB1

and EB2

independently from the Bern(q) distribution.

• Strong adversary: A strong adversary A is a possibly
random rule that given (G1, G2, γ, λ) determines sets
B1 ⊆ V (G1) and B2 ⊆ V (G2) such that |B1| = γλn
and |B2| = (1 − λ)γn, and it determines the edge
status of all node pairs in EB1

and EB2
.

The output of the adversary is denoted (B1,B2, G̃1, G̃2),
where G̃1 and G̃2 are the corrupted graphs.

In words, the adversary corrupts a total of γn nodes, of
which a fraction λ are in G1 and the rest are in G2. It
then modifies the edge status of each node pair with at
least one corrupted end point. Note that if (G1, G2) are
correlated ER graphs with underlying correspondence π∗,
then for any q, the weak adversary defines a joint distribution

on (B1,B2, G̃1, G̃2, π
∗). Similarly, any strong adversary A

defines a distribution on (B1,B2, G̃1, G̃2, π
∗).

2.2. Matchings and estimators

Definition 2.3. A matching µ is an injective function with
domain dom(µ) ⊆ [n] and codomain [n].

Note that permutations are matchings with domain equal to
[n]. An estimator E is a mapping that takes in a pair of cor-
rupted graphs (G̃1, G̃2) and outputs a matching µ. In doing
so, it attempts to recover the latent permutation π∗ between
the uncorrupted graphs G1 and G2. Two estimators that
have been studied in the absence of any adversary are the
maximum overlap estimator EMO and the k-core estimator
Ek. They are presented next using the following definition.

Definition 2.4 (Intersection Graph). Let H1 and H2 be two
graphs and let µ be a matching. The intersection graph
H1 ∧µ H2 is a graph with node set dom(µ), such that for
any two nodes i, j ∈ dom(µ), the pair {i, j} is an edge
in H1 ∧µ H2 if and only if {i, j} is an edge in H1 and
{µ(i), µ(j)} is an edge in H2.

Maximum overlap estimator For two graphs H1 and H2,
the maximum overlap estimator EMO(H1, H2) outputs a
complete matching, i.e. a permutation µ̂MO that maximizes
the number of edges in the corresponding intersection graph:

µ̂MO ∈ argmax
µ

|E(H1 ∧µ H2)|.

For correlated ER graphs, the maximum overlap matching
is the maximum likelihood estimator for exact recovery in
the absence of the adversary, and therefore maximizes the
probability of exact recovery.

k-core estimator The k-core of a graph G, denoted
corek(G) is the largest set of vertices A of G such that
the induced subgraph on A has minimum degree at least k.
For any two graphs H1 and H2 and non-negative integer k,
a matching µ is said to be a k-core matching of H1 and H2

if the minimum degree in H1 ∧µ H2 is at least k.

The k-core estimator Ek(H1, H2) selects a k-core matching
µ̂k such that |dom(µ̂k)| ≥ |dom(µk)|, for any other k-core
matching µk.

2.3. Recovery objectives

For a matching µ and a permutation π∗ on [n], denote by
ov(µ, π∗) the overlap between µ and π∗, i.e. the number of
nodes on which µ and π∗ agree:

ov(µ, π∗) := |{i ∈ dom(µ) : µ(i) = π∗(i)}| .

Upon observing only the pair of corrupted graphs (G̃1, G̃2),
the objective is to find a matching µ̂ to maximize the overlap
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between µ̂ and the latent permutation π∗. Definition 2.5
captures this notion.

Definition 2.5 (α-recovery). Let α ∈ (0, 1]. An estimator
that outputs a matching µ̂ is said to achieve

(i) α-recovery, if P
(

ov(µ̂,π∗)
n ≥ α

)
= 1− o(1).

(ii) almost α-recovery, if for every ε > 0,

P
(
ov(µ̂, π∗)

n
≥ α− ε

)
= 1− o(1).

Graph matching is often a precursor to downstream tasks.
Consequentially, an estimator is often useful in practice
only if it correctly matches all the nodes in its domain. This
concept is captured through the notion of precision.

Definition 2.6 (Precision). The precision ρ of a matching µ̂
is the fraction of the matching that is correct, i.e.

ρ(µ̂) :=
ov(µ̂, π∗)

|dom(µ̂)|
.

For a sequence of graph-pairs (G̃1, G̃2)n on n vertices, an
estimator E(G̃1, G̃2) that outputs a matching π̂ is precise if
P (ρ(π̂) = 1) = 1 − o(1). For any ε > 0, it is said to be
ε-imprecise if P (ρ(π̂) ≤ 1− ε) = 1− o(1).

3. Main Results
Impossibility and achievability results are presented sepa-
rately for the weak and strong adversary. In all the results, n
is a positive integer and p, s, γ, λ are real numbers such that
p ∈ (0, 1), s ∈ (0, 1], and γ, λ ∈ [0, 1]. For a pair of graphs
G1 and G2 with underlying correspondence π∗, and the out-
put (B1,B2, G̃1, G̃2) of an adversary, denote by B′

2 the pre-
image of B2 under π∗, i.e. B′

2 := {i ∈ [n] : π∗(i) ∈ B2}.

3.1. Results on the weak adversary

Our first result is an impossibility result that holds for any
estimator.

Theorem 3.1. Let G1 and G2 be two correlated ER graphs
with parameters p and s, and let π∗ denote the underlying
correspondence between them. Let (B1,B2, G̃1, G̃2) be the
output of a weak adversary with parameters (γ, λ, ps). Let
E(G̃1, G̃2) be any estimator that returns a matching µ. Let
α∗ = 1− γ + λ(1− λ)γ2.

(i) If E is precise, then

P (dom(µ) ⊆ (B1 ∪ B′
2)

c)=1− o(1).

(ii) If E achieves almost α-recovery, then α ≤ α∗.

(iii) Let p = C log(n)/n and λ ∈ {0, 1}. If E is precise
and achieves α∗-recovery, then C ≥ 1/(s2α∗).

Part (i) of Theorem 3.1 states that no precise estimator can
correctly recover any of the corrupted nodes with high proba-
bility. Part (ii) precludes the possibility of almost 1-recovery
(and therefore also 1-recovery) when γ > 0, in stark contrast
to known achievability results in the absence of adversary.

Next, we show that when the average degrees of G1 and
G2 are logarithmic in the number of nodes n (i.e. p =
C log(n)/n for some positive constant C), the k-core es-
timator performs optimally for an appropriate choice of k.
Specifically, we prove that there is a threshold τ ≡ τ(s, γ, λ)
such that if C > τ , then the k-core estimator identifies and
matches all the uncorrupted nodes. Further, if C < τ , then
the estimator matches all but a vanishing fraction of the
uncorrupted nodes and none of the corrupted nodes.

Theorem 3.2. Let C be a positive constant and suppose
that p = C log(n)/n. Let G1 and G2 be two corre-
lated ER graphs with parameters p and s, and let π∗ de-
note the underlying correspondence between them. Let
(B1,B2, G̃1, G̃2) denote the output of a weak adversary
with parameters (γ, λ, ps), and let µ̂k be the matching out-
put by the k-core estimator Ek(G̃1, G̃2) with k =

√
log n.

Let α∗ = 1− γ + λ(1− λ)γ2.

(i) Ek is precise.

(ii) If C > 1/(s2α∗), then Ek(G̃1, G̃2) achieves α∗-
recovery if λ ∈ {0, 1}, and achieves almost α∗-
recovery if λ ∈ (0, 1). Further,

P (dom(µ̂k) = (B1 ∪ B′
2)

c) = 1− o(1).

(iii) If C < 1/(s2α∗), then Ek(G̃1, G̃2) achieves almost
α∗-recovery for all λ ∈ [0, 1]. Further,

P (|(B1 ∪ B′
2)

c \ dom(µ̂k)| = o(n)) = 1−o(1). (1)

3.2. Results on the strong adversary

First, we show that a strong adversary can modify two
graphs so that no estimator can output a precise matching.

Theorem 3.3. There exists a strong adversary A∗ such that
given any (G1, G2, γ, λ), its output (B1,B2, G̃1, G̃2) satis-
fies the following: If an estimator E(G̃1, G̃2) is invariant
with respect to reordering the node labels of both graphs
with the same permutation, and returns a matching µ with
|dom(µ)| = Θ(n), then E is ε∗-imprecise, where ε∗ is any
real number less than max(λ, 1− λ)γ.

Note that the estimator being invariant with respect to re-
ordering the labels of both graphs with the same permutation
is a natural requirement: it means the estimator uses only
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the graph structures to match them. Thus, Theorem 3.3
establishes that no such estimator can identify a set S ⊂ [n]
containing a positive fraction of nodes, such that all nodes in
S are correctly matched with high probability. Despite this,
we show that if the two graphs are correlated ER graphs and
only one of the networks is compromised, then imprecise
recovery of a positive fraction of nodes is possible under
appropriate conditions. We state two achievability results
below. Theorem 3.4 deals with the case when average de-
grees are logarithmic in n, whereas Theorem 3.5 deals with
the case when p is constant.
Theorem 3.4. Let λ ∈ {0, 1} and α ∈ [0, 1]. If

γ <
s
(
1− α2

)
4

, (2)

then there exists a constant C ′ ≡ C ′(α, γ) such that for all
C > C ′ and p = C log(n)/n, and for all strong adversaries
A(G1, G2, γ, λ) acting on two correlated ER graphs G1 and
G2 with parameters p and s, the maximum overlap estimator
achieves α-recovery.
Theorem 3.5. Suppose p is constant, λ ∈ {0, 1} and α ∈
[0, 1]. If

γ < 1−
√
1− s2p(1− p)(1− α2)

2
, (3)

then for all strong adversaries A(G1, G2, γ, λ) acting on
two correlated ER graphs G1 and G2 with parameters p
and s, the maximum overlap estimator achieves α-recovery.

4. Proof Outlines
Proofs for all results in Section 3 are outlined, with details
deferred to the supplementary material.

4.1. The weak adversary

The performance of the k-core estimator against the weak
adversary is analyzed. First, the impossibility result is
proved using an indistinguishability argument.

Proof of Theorem 3.1. (i) It suffices to show that no estimator
can correctly match any node i in B1 ∪ B′

2 with high proba-
bility. Fix such a node i and onsider the joint distribution
of the collection

{
G̃1{i, j}, G̃2{π∗(i), π∗(j)}

}
j∈[n],j ̸=i

.

These 2(n − 1) random variables are each distributed as
Bern(ps2) and mutually independent, since either G1{i, j}
or G2{π∗(i), π∗(j)} is resampled because either i ∈ B1 or
π∗(i) ∈ B2. Further, this joint distribution is the same for
all nodes i in the set B1 ∪ B′

2, and so the nodes within it are
statistically indistinguishable. Consequently, no estimator
can match any subset M of nodes in B1∪B′

2 better than ran-
dom guessing. Lemma A.2 shows that the random guessing
estimator is precise if and only if P

(
M = ϕ

)
= 1 − o(1),

and the desired result follows.

(ii) Lemma A.2 implies that any estimator can at best match
correctly the set (B1 ∪ B′

2)
c and at most a sublinear number

of nodes in (B1 ∪ B′
2). However, |B1 ∪ B′

2|/n converges in
probability to γ−λ(1−λ)γ2. This follows from Lemma A.3,
where it is shown that |B1 ∩ B′

2|/n converges in probability
to λ(1 − λ)γ. Since no more than a sublinear number of
nodes in B1 ∪ B′

2 are correctly matched, it follows that
the fraction of correctly matched nodes, α, is strictly upper
bounded by |(B1∪B′

2)
c|/n+ε for every ε > 0. We conclude

that α ≤ 1− γ + λ(1− λ)γ2, as desired.

(iii) Assume λ = 1 so that B′
2 = ϕ; a similar proof works

for λ = 0. With probability 1− o(1):

α∗n
(a)
≤ ov(µ, π∗) ≤ |dom(µ)|

(b)
≤ |Bc

1| = α∗n,

where (a) is true because E achieves α∗ recovery and (b)
uses (i) since E is a precise estimator. The above string
of inequalities are thus equalities. Thus, (i) yields that
dom(µ) = Bc

1 with probability 1− o(1). Since E achieves
α∗-recovery, it follows that µ has correctly matched all the
vertices in Bc

1. We show that this is only possible when C ≥
1/(s2α∗). For a graph G and vertex subset X ⊆ V (G), let
G|X denote the induced subgraph of G on X . Then, with
probability 1− o(1):

H1 := G̃1|dom(µ) = G̃1|Bc
1

(c)
= G1|Bc

1
,

H2 := G̃2|π∗(dom(µ)) = G̃2|π∗(Bc
1)

(d)
= G2|π∗(Bc

1)
,

where (c) is because no node pair in G̃1|Bc
1

is influenced by
the adversary, and (d) is because G2 = G̃2. Thus, H1 and
H2 are correlated ER graphs on α∗n nodes with parame-
ters p and s, and their underlying correspondence is given
by π∗ |dom(µ). Recovering π∗|dom(µ) is the exact graph
matching problem between H1 and H2, which is impossible
whenever α∗nps2 < 1, i.e. whenever C < 1/(s2α∗) (Cul-
lina & Kiyavash, 2017).

Next, a proof sketch for Theorem 3.2 is presented.

Proof of Theorem 3.2. (i) The proof is deferred to Ap-
pendix A.1 due to space constraints.

(ii) The union bound yields for any δ ≥ 0,

P
(
Ek achieves almost α∗-recovery

)
≥ 1−p1−p2−p3,

where

p1 = P
(
µ̂k ̸= π∗|corek(G̃1∧π∗ G̃2)

)
, (4)

p2 = P
(
corek(G̃1 ∧π∗ G̃2) ̸= (B1 ∪ B′

2)
c
)
, (5)

p3 = P
(
|(B1 ∪ B′

2)
c| < (1− δ)α∗n (6)

From Theorem A.9 and Lemma A.10 in the proof of (i), it
follows that p1 = o(1). The bulk of the analysis is to show
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that p2 = o(1) whenever C > 1/(s2α∗). This is shown
in Lemma A.11 in the supplementary material. Finally, for
any δ > 0, it follows from Lemma A.3 that p3 = o(1) for
all λ ∈ [0, 1].

When λ ∈ {0, 1}, it holds that p3 = 0 even when δ = 0.
This is because either B1 = ϕ or B′

2 = ϕ, and therefore
|B1 ∪ B′

2| = γn = α∗n in this setting. However, setting
δ = 0 corresponds to achieving α∗-recovery.

(iii) Let M∗ denote corek(G̃1 ∧π∗ G̃2). The union bound
yields for any δ ≥ 0,

P
(
Ek achieves almost α∗-recovery

)
≥ 1−p1−p4,

where p1 is defined in (4), and

p4 = P
(
|M∗| < (1− δ)α∗n

)
. (7)

Lemma A.12 shows that p4 = o(1) for any δ > 0. From
part (i) of this theorem, it follows that p1 = o(1). Therefore,
Ek achieves almost α∗-recovery. It remains to prove (1), i.e.
Ek recovers all but a vanishing fraction of the uncorrupted
nodes. Since p1 = o(1), it suffices to instead show that for
any δ′ > 0

p5 := P (|(B1 ∪ B′
2)

c \M∗| > δ′n) = 1− o(1).

Indeed, denoting B=B1∪B′
2, it follows that for any δ′ > 0,

and ε = δ/α∗ that

p5 ≤ P (M∗ ̸⊆ Bc)+P ({|Bc\M∗| > δn} ∩ {M∗⊆ Bc})
≤ o(1) + P (|Bc| − |M∗| > δn)

≤ o(1) + P (|Bc| > (1 + ε/2)α∗n)

+ P (|M∗| < (1− ε/2)α∗n)

(a)
= o(1) + o(1) + o(1),

where (a) uses both Lemma A.3 and Lemma A.12.

4.2. The strong adversary

Proof of Theorem 3.3. We may assume λ ≥ 1/2 (else
interchange λ and 1− λ in this proof). Consider the strong
adversary A∗ in Algorithm 1, which selects a random set
B1 of vertices in G1 and modifies the edge status of vertex
pairs in G1 so that the output graph is given by G̃1 = Gπ̃

1

for the permutation π̃ described in (8). Since π̃(i) = i for
all i /∈ B1, it follows that G̃1 can be obtained from G1 by
modifying the edge status of only the node pairs in EB1

.

Let (B1,B2, G̃1, G̃2) denote the output of the adversary
A∗. Let E be any estimator that is invariant with respect
to reordering the node labels of both graphs with the same
permutation. Let µ = E(G1, G2) and µ̃ = E(G̃1, G̃2),
and denote by M and M̃ respectively the domains of these

Algorithm 1 Adversary A∗

1: Inputs: G1, G2, γ, λ
2: Set G̃2 = G2

3: Select B1 ⊆ V (G1) uniformly at random from the set
of all subsets of V (G1) of size γλn

4: Select B2 ⊆ V (G2) arbitrarily from the set of all sub-
sets of V (G2) of size γ(1− λ)n

5: Select a permutation πB1 uniformly at random from the
set of all permutations on B1

6: Extend πB1 to a permutation π̃ on [n] by setting

π̃(i) =

{
πB1(i), i ∈ B1

i, i /∈ B1

(8)

7: Set G̃1 = Gπ̃
1

8: return B1, B2, G̃1, G̃2

matchings. Assume |M | = Θ(n). Since G̃2 = G2, the
above invariance property implies that

µ̃ = E(G̃1, G̃2) = E(Gπ̃
1 , G2) = µ ◦ π̃−1,

where µ ◦ π̃−1 is the matching on the domain

π̃(M) := {π̃(i) ∈ [n] : i ∈ M}

and “◦" denotes composition of functions. It follows that
M̃ = π(M), and that the precision ρ satisfies

ρ(µ̃) =
ov(µ̃, π∗)

|M̃ |
=

ov(µ ◦ π̃−1, π∗)

|M |
=

ov(µ, π∗ ◦ π̃)
|M |

.

Proceed by separately analyzing the overlap on B1 and Bc
1.

Consider the sets

X := {i ∈ M ∩ B1 : µ(i) = π∗(π̃(i))}
Y := {i ∈ M ∩ Bc

1 : µ(i) = π∗(π̃(i))} ,

so that ov(µ, π∗ ◦ π̃) = |X |+ |Y|. Let ε∗ be a real number
such that ε∗ < γλ. Then, for any δ > 0:

P (ρ(µ̃) > 1−ε∗)= P
(
|X |
|M |

+
|Y|
|M |

> 1− ε∗
)

≤ P
(
|X |
|M |

> δ

)
+ P

(
|Y|
|M |

> 1− ε∗ − δ

)
.

The event in the first term is that µ and π∗(π̃(i)) agree on
more than δ|M | nodes in B1.

Note that µ and π̃ are independent. Since π̃ permutes nodes
within B1 uniformly at random, it follows that

E
[
|X |

∣∣M,B1

]
= |M ∩ B1|/|B1| ≤ 1.
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By Markov’s inequality,

P
(
|X |
|M |

> δ

)
≤ 1

δ
· E
[
|X |
|M |

]
=

1

δ
· E

[
E
[
|X |
∣∣M,B1

]
|M |

]

≤ 1

δ
· E
[

1

|M |

]
= o(1),

Choose δ such that ε∗ + δ < γλ. Then, to bound the term
with Y , consider that

P
(

|Y|
|M |

>1− ε∗ − δ
∣∣∣M)

≤ P
(
|M ∩ Bc

1|
|M |

> 1− ε∗ − δ
∣∣∣M) (9)

However, M and B1 are independent, and the set M ∩Bc
1 is

obtained by sampling |Bc
1| nodes from [n] uniformly without

replacement, where each node is considered a success if and
only if it is in M . Thus, given M , it follows that |M∩Bc

1| ∼
HypGeom(n, |M |, |Bc

1|). Since |Bc
1| = (1− γλ)n:

E
[
|M ∩ Bc

1|
∣∣M] = |M ||Bc

1|
n

= (1− γλ)|M |,

Var(|M ∩ Bc
1|
∣∣M) =

|M ||Bc
1|

n
· n− |M |

n
· n− |Bc

1|
n− 1

= γλ · (1− γλ) · |M | · n− |M |
n− 1

By Chebyshev’s inequality,

(9) ≤ P
(∣∣∣∣ |M ∩ Bc

1,1|
|M |

− (1−γλ)

∣∣∣∣ > γλ− ε∗ − δ
∣∣M)

≤ γλ(1− γλ)

(γλ− ε∗ − δ)
2 · n− |M |

n− 1
· 1

|M |
= o(1), (10)

Taking the expectation with respect to M yields that
P (ρ(µ̃) > ε∗) = o(1). This concludes the proof.

Next, the proofs for Theorems 3.4 and 3.5 are presented
by analyzing the maximum overlap estimator when only
one network is compromised. Without loss of generality,
assume that λ = 1, so that G̃2 = G2.

For any matching µ, let X(µ) denote the number of edges in
G1 ∧µ G2. Similarly, let X̃(µ) denote the number of edges
in G̃1 ∧µ G̃2. Recall that the maximum overlap matching is
defined as µ̂MO ∈ argmaxµ X̃(µ).

We may assume without loss of generality, that the latent
correspondence π∗ is the identity permutation id. Recall
that a fixed point of a permutation π is an input i such
that π(i) = i. Let T α (resp. T ≤α) denote the set of all
permutations with exactly (resp. at most) αn fixed points.

It is shown below that µ̂MO /∈ T ≤α. It suffices to prove:

P
(
X̃(id) > X̃(π) for all π ∈ T ≤α

)
= 1− o(1). (11)

The following lemma is a useful ingredient for the proof of
both Theorem 3.4 and Theorem 3.5.

Lemma 4.1. For any permutation π, and output
(B1,B2, G̃1, G̃2) of the strong adversary A with λ = 1,
acting on two correlated ER graphs with parameters p and
s with underlying correspondence id:

X̃(id)− X̃(π) > X(id)−X(π)− Z,

where

Z := max
S,T⊆[n]

|S|,|T |≤γn

∑
i∈S∪T
j∈[n]

G2{i, j}. (12)

Proof. For any selection B1 of γn nodes in G1, recall that
EB1

:=
{
{i, j} ∈

(
[n]
2

)
: i ∈ B1 or j ∈ B1

}
.

The adversary selects B1 and sets the edge status of all node
pairs in EB1

to either 0 or 1. For any node pair e = {i, j}
and graph H , let H(e) be a shorthand for H{i, j}. For any
set B1 and any permutation π:(

X̃(π)− X̃(id)
)
−
(
X(π)−X(id)

)
(13)

=
∑

e∈EB1

(
G̃1(e)−G1(e)

)(
Gπ

2 (e)−G2(e)
)

(14)

(a)
≤
∑

e∈EB1

1{G1(e)=1} · 1{G2(e)=1} · 1{Gπ
2 (e)=0}

+
∑

e∈EB1

1{G1(e)=0} · 1{G2(e)=0} · 1{Gπ
2 (e)=1}

≤
∑

e∈EB1

(
1{G2(e) = 1}+ 1{Gπ

2 (e) = 1}
)
. (15)

Here, (a) is because each term of the sum in (14) is in the
set {−1, 0, 1}, and equals 1 if and only if the adversary
sets G̃1(e) = 1 − G1(e) whenever (G1(e), G2(e), G

π
2 (e))

is either (1, 1, 0) or (0, 0, 1). Note that (15) is maximized
when B1 and π are chosen to maximize |E(G2) ∩ EB1 | +
|E(Gπ

2 ) ∩ EB1 |. Therefore,

(13) ≤ max
B1,π(B1)

∑
e∈EB1

(G2(e) +Gπ
2 (e))

(b)
≤ max

S,T⊆[n]
|S|,|T |≤γn

∑
i∈S∪T
j∈[n]

G2{i, j},

as desired. Here, (b) follows from the fact that |B1| =
|π(B1)| ≤ γn. This concludes the proof.
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Proof of Theorem 3.4. Let Z be as in (12). Let ∆2 denote the
maximum node degree in the graph G2. Since |S|+ |T | ≤
2γn, it follows that Z ≤ 2γn∆2. Let E denote the event

E =
⋃

π∈T ≤α

{
X̃(id)− X̃(π) < 0

}
. (16)

Applying Lemma 4.1 yields for any ε > 0:

P (E)≤P

 ⋃
π∈T ≤α

{X(id)−X(π) < 2γn∆2}

≤
3∑

i=1

pi,

where

p1 = P
(
X(id) ≤ (1− ε)

(
n

2

)
ps2
)
, (17)

p2 = P (∆2 > (1 + ε)nps) , (18)

p3 = P

( ⋃
π∈T ≤α

{
X(π) ≥ (1− ε)

(
n

2

)
ps2

− 2γn (1 + ε)nps

})
(19)

Lemmas B.1 and B.2 show that p1 = o(1) and p2 =
o(1) for any ε > 0 and sufficiently large C. Further-
more, Lemma B.5 shows that p3 = o(1) for sufficiently
small ε > 0 and sufficiently large C > 0, whenever
γ < s(1 − α2)/4. This requires a Chernoff argument,
using bounds on the moment generating function of X(π)
obtained by analyzing the orbit decomposition of π. Thus,
it follows that P (E) = o(1), which concludes the proof.

Proof of Theorem 3.5. Let Z be as defined in Equation (12),
and let Γ denote the constant Γ =

(
γn
2

)
+γ(1−γ)n2. Since

for any choice of S and T :

|{{i, j} : i ∈ S ∪ T, j ∈ [n]}| ≤ 2Γ,

it follows that Z ≤ 2Γ. Let E denote the error event in (16).
Consequently, for any ε > 0,

P (E) ≤ P

 ⋃
π∈T ≤α

{X(id)−X(π) < 2Γ}

 ≤ p1 + p4,

where

p1=P
(
X(id) ≤ (1− ε)

(
n

2

)
ps2
)
, (20)

p4=P

( ⋃
π∈T ≤α

{
X(π) ≥ (1−ε)

(
n

2

)
ps2−2Γ

})
. (21)

Lemma B.1 shows that p1 = o(1) for any ε > 0. Fur-
thermore, Lemma B.7, shows that p4 = o(1) whenever the
condition (3) is satisfied. This uses similar techniques as
the proof of Lemma B.5, although the resulting sufficient
conditions for recovery are quite different. Combining, it
follows that P (E) = o(1) as desired.
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Figure 1. Weak adversary, (n, p, λ) = (103, 0.1, 1)

5. Discussion
Implications Theorem 3.2 provides a sufficient condition
for the k-core estimator to match all and only the uncor-
rupt nodes. This provides a framework to detect corruption:
for example, when matching PPI networks, the set of un-
matched nodes can be used to identify proteins that register
random interactions due to being an unknown transcription
factor or being toxic to the cell. Similarly, the proof of The-
orem 3.3 provides an algorithm to sanitize social networks
in order to prevent de-anonymization through matching.
Specifically, social network data can be modified by emulat-
ing the adversary A∗ in Algorithm 1. It is then impossible
for any matching algorithm to recover a positive fraction of
vertices with full precision. In practice, one must be wary
because theoretical analyses work with generative models
that do not fully capture real-world dynamics. Even so, al-
gorithms that perform well on such models and are further
robust, are expected to perform better in practical settings.

Feasible Algorithms The maximum overlap and k-core
estimators are useful to establish theoretical guarantees, but
they do not run in polynomial time. It is an open ques-
tion to analyze the performance of computationally feasi-
ble algorithms when an adversary corrupts nodes. Figure 1
compares the asymptotic guarantee of the k-core estimator
against simulation results for the following estimators.

1. GRAMPA (Fan et al., 2022) uses the spectrum of the
adjacency matrices to match the two graphs. The code
is available in (Fan et al., 2020).

2. DEGREE PROFILING (Ding et al., 2021) assigns a sig-
nature to each node based on the degrees of its neigh-
bors. It then matches nodes based on signature prox-
imity. The code is available in (Ding et al., 2020).

3. CANONICAL LABELING (Dai et al., 2019) first
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Algorithm 2 Adversary A2, λ = 1/2.
1: Inputs: G1, G2, γ, λ
2: Initialize G̃1 = G1 and G̃2 = G2

3: Set B1=
{
1, 2, · · · , γn

2

}
, B2=

{
γn
2 +1, · · · , γn

}
4: Set G1 = {i ∈ [n] : i > γn, i is odd} and G2 = {i ∈

[n] : i > γn, i is even}
5: for k in {1, 2} do
6: for {i, j} such that i ∈ Bk and j ∈ Gk do
7: Set G̃k{i, j} = 1
8: end for
9: end for

10: return B1, B2, G̃1, G̃2

matches nodes with outlier degrees, and uses them
as seeds to match the remaining nodes.

There is large gap between the performance of these algo-
rithms and the asymptotic guarantees of the k-core estimator.
These algorithms are not robust to the random noise in the
setting without the adversary, since they require s → 1 for
good performance. Perhaps unsurprisingly, they are also not
robust to the spatial noise induced by node corruption.

The strong adversary The maximum overlap estimator
is not robust against the strong adversary when λ /∈ {0, 1}.
For simplicity, assume that λ = 1/2, and let p = C log n/n

for some positive constant C. Let (B1,B2, G̃1, G̃2) be the
output of the strong adversary A2 acting on correlated ER
graphs with parameters p and s. We show that there is a
choice of A2 (described in Algorithm 2) that can cause the
maximum overlap estimator to recover none of the nodes
correctly. Following Algorithm 2, the adversary selects
disjoint sets B1 and B2 and forces nodes to interact such
that the overlap is maximized when each node is wrongly
matched (see Appendix C). It is an interesting problem to
study robustness of other estimators when both graphs are
corrupted.

6. Conclusion
This work studied two models for graph matching when
nodes interact adversarially with their network: the frame-
work with the strong adversary models the malicious be-
havior of hacked users in a social network, whereas the
framework with the weak adversary models the random
behavior of stochastic interactors in PPI networks.

For the weak adversary, our impossibility result states that
no positive fraction of the corrupted nodes may be correctly
matched. Conversely, under appropriate conditions, the
k-core estimator correctly matches almost all of the uncor-
rupted nodes and none of the corrupted nodes. Under a
further condition which is necessary, the k-core estimator

also identifies and recovers all the uncorrupted nodes. In
contrast, even the simpler problem of detecting corrupted
nodes is impossible to solve in the setting of the strong ad-
versary. Even so, the maximum overlap estimator success-
fully matches a positive fraction of nodes under appropriate
conditions.
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A. Proofs for the weak adversary
This section presents the proofs pertaining to the weak adversary. First, a standard concentration inequality on binomial
random variables is presented. This is used heavily in the remainder of the section, often to bound vertex degrees in various
graphs of interest.

Lemma A.1. Let X ∼ Bin(n, p). Then,

1. For any δ > 0,

P (X ≥ (1 + δ)np) ≤
(

eδ

(1 + δ)1+δ

)np

2. For any δ ∈ (0, 1),

P (X ≤ (1− δ)np) ≤
(

e−δ

(1− δ)1−δ

)np

Proof. The proof follows from the Chernoff bound and can be found, for example, in Theorems 4.4 and 4.5 of (Mitzenmacher
& Upfal, 2017).

Next, the lemmas used in the proof of the impossibility result, Theorem 3.1 are presented. Lemma A.2 bounds the
performance of the estimator that matches vertices in B1 ∪ B′

2 by random guessing, and Lemma A.3 uses a simple
concentration argument to bound the size of B1 ∪ B′

2. Armed with these, we proceed to establish that the k-core estimator
is precise in Appendix A.1. It is followed by Appendix A.2, where supporting lemmas for Theorem 3.2(ii) and (iii) are
respectively presented.

Lemma A.2. Let n be a positive integer, and let p, s, γ, λ be in [0, 1]. Let (B1,B2, G̃1, G̃2) be the output of the weak
adversary with parameters (γ, λ, ps) acting on two correlated ER graphs G1 and G2 with parameters p and s, and
underlying correspondence π∗. Let B′

2 denote the pre-image of B2 under π∗. Let µ be a matching output by an estimator E
such that its domain dom(µ) ⊆ B1 ∪B′

2 and its codomain is the set π∗(B1 ∪B′
2). Conditioned on the domain and codomain,

suppose that E matches nodes in its domain by random guessing. Let δ > 0.

(i) If E is precise, then
P (dom(µ) = ϕ) = 1− o(1).

(ii) If E is δ-imprecise, then for any ε > 0:

P (ov(µ, π∗) > εn) = o(1) (22)

Proof. (i) Note that dom(µ) ⊆ B1 ∪ B′
2 by definition. Since each element in dom(µ) is mapped randomly to an element

in π∗(B1 ∪ B′
2), and since the mapping is injective, it follows that the probability that all nodes in dom(µ) are correctly

matched is given by

P

 ⋂
i∈dom(µ)

{µ(i) = π∗(i)}

 =
1

|B1 ∪ B′
2|

× 1

|B1 ∪ B′
2| − 1

× · · · × 1

|B1 ∪ B′
2| − |dom(µ)|+ 1

=
(|B1 ∪ B′

2| − |dom(µ)|)!
|B1 ∪ B′

2|!
.
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Since |B1 ∪ B′
2| ≥ γmax (λ, 1− λ)n = Ω(n), it follows that the above probability is o(1) if |dom(µ)| ≥ 1, and equals 1

if and only if |dom(µ)| = 0. Since E achieves precise recovery, the above probability must be 1− o(1), which then implies
P (dom(µ) = ϕ) = 1− o(1).

(ii) For any node m ∈ dom(µ), let Xm denote the indicator event 1 {µ(m) = π∗(m)}. Notice that ov(µ, π∗) =∑
m∈dom(µ) Xm, and so it follows that

E [ov(µ, π∗)] =
∑

m∈dom(µ)

E [Xm] =
∑

m∈dom(µ)

P (µ(m) = π∗(m)) =
∑

m∈dom(µ)

1

|dom(µ)|
= 1,

Var(ov(µ, π∗)) = E
[
Y 2
]
− 1 =

 ∑
m1∈dom(µ)

∑
m2∈dom(µ)

E [Xm1
Xm2

]

− 1
(a)
= 1,

where (a) uses the fact that

E [Xm1Xm2 ] = P ({µ(m1) = π∗(m1)} ∩ {µ(m2) = π∗(m2)}) =

{
1

|dom(µ)| ×
1

|dom(µ)|−1 , if m1 ̸= m2

1
|dom(µ)| , if m1 = m2.

Thus, Chebyshev’s inequality yields

P (ov(µ, π∗) ≥ εn) ≤ P (|ov(µ, π∗)− 1| ≥ εn− 1) ≤ 1

(εn− 1)2
= o(1),

which concludes the proof.

Lemma A.3. Let n be a positive integer, and let p, s, γ, λ be in [0, 1]. Let (B1,B2, G̃1, G̃2) be the output of the weak
adversary with parameters (γ, λ, ps) acting on two correlated ER graphs G1 and G2 with parameters p and s, and
underlying correspondence π∗. Let B′

2 denote the pre-image of B2 under π∗. Then, for any ε > 0

P
(∣∣∣∣ |B1 ∩ B′

2|
n

− λ(1− λ)γ2

∣∣∣∣ > ε

)
= o(1).

Proof. Without loss of generality, assume that λ ≥ 1/2, and that B1 = {1, 2, · · · , γλn}, since the number of elements
in B1 ∩ B′

2 is independent of the elements in B1. Since π∗ is independent of the sets B1 and B2, selecting B2 uniformly
at random is equivalent to selecting B′

2 uniformly at random. View B′
2 as being constructed by sampling γ(1 − λ)n

nodes from [n] without replacement. A node i sampled this way is labeled a success if i ∈ B1 and a failure otherwise.
The number of successes after γ(1− λ)n trials is exactly |B1 ∩ B′

2|, and is described by the hypergeometric distribution
HypGeom(n, γ(1−λ)n, γλn). Using standard formulas for the mean and variance of the hypergeometric distribution yields

E [|B1 ∩ B′
2|] = λ(1− λ)γ2n,

Var (|B1 ∩ B′
2|) = λ(1− λ)γ2(1− λγ)(1− (1− λ)γ)× n2

n− 1
.

Therefore, applying Chebyshev’s inequality to |B1 ∩ B′
2|/n yields that for any constant ε > 0:

P
(∣∣∣∣ |B1 ∩ B′

2|
n

− λ(1− λ)γ

∣∣∣∣ ≥ ε

)
≤ λ(1− λ)γ2(1− λγ)(1− (1− λ)γ)× 1

ε2(n− 1)
= o(1),

as desired.

A.1. Proof of Theorem 3.2(i)

This subsection analyzes the k-core estimator. To show that the k-core estimator is precise, it suffices to establish that with
high probability, the output of the k-core estimator µ̂k is such that dom(µ̂k) is exactly the k-core of the true intersection
graph G̃1 ∧π∗ G̃2, and furthermore that the mapping µ̂k agrees with π∗ on its domain. Theorem A.9 and Lemma A.10
together establish this. A similar result is proved in (Cullina et al., 2019) for Erdős-Rényi graphs when no adversary is
present. The techniques introduced there were extended to analyze the k-core estimator for graph matching in correlated
stochastic block models (Gaudio et al., 2022) and inhomogeneous random graphs (Rácz & Sridhar, 2023). These techniques
are adapted to the setting of the weak adversary below.
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Definition A.4 (Weak k-core matching). Let H1 and H2 be two graphs, and let µ∗ and µ be matchings. We say that µ is a
weak k-core matching of H1 and H2 with respect to µ∗ if the average degree in H1 ∧µ H2 of all the nodes i ∈ M such that
µ(i) ̸= µ∗(i) is at least k, i.e.

f(µ;µ∗, H1, H2, k) :=
∑

i∈dom(µ) : µ(i)̸=µ∗(i)

degH1∧µH2
(i) ≥ k × |{i ∈ dom(µ) : µ(i) ̸= µ∗(i)}| .

When the context is clear, we omit the parameters from the notation and simply use f(µ).

Definition A.5 (Maximal matching). Let µ∗ and µ be matchings. A matching µ is a maximal matching with respect to µ∗

(or simply, a µ∗-maximal matching) if for every i ∈ dom(µ∗), either i ∈ dom(µ) or µ∗(i) ∈ range(µ).

Remark A.6. Every matching can be uniquely extended to a µ∗-maximal matching.

Denote by M(µ∗, d) the set of all matchings µ which are µ∗-maximal and such that there are exactly d nodes in M for
which the images under µ and µ∗ disagree. Let M(µ∗) :=

⋃n
d=0 M(µ∗, d).

Lemma A.7. Let µ∗ be a matching, and suppose that µ is a k-core matching of two graphs H1 and H2. Then, there exists a
matching µ′ ∈ M(µ∗) such that µ′ is a weak k-core matching.

Proof. Since µ is a k-core matching, it is also a weak k-core matching with respect to µ∗. Let µ′ denote the unique extension
of µ to a µ∗-maximal matching. Since the extension only involves adding elements from µ∗, it follows that

k |{i : µ′(i) ̸= µ∗(i)}| = k |{i : µ(i) ̸= µ∗(i)}|

≤
∑

j∈{i:µ(i)̸=µ∗(i)}

degH1∧µH2
(j)

≤
∑

j∈{i:µ′(i)̸=µ∗(i)}

degH1∧µ′H2
(j),

and so the average degree in H1 ∧µ′ H2 of all the nodes i ∈ dom(µ′) such that µ′(i) ̸= µ∗(i) it at least k. Since µ′ is a
µ∗-maximal matching by construction, the result follows.

Lemma A.7 establishes that if no weak k-core matchings exist in M(µ∗, d) for any d > 0, then any k-core matching must
agree with µ∗. The main advantage of restricting the search to M(µ∗) is that there are much fewer µ∗-maximal matchings
than matchings.

Lemma A.8. |M(µ∗, d)| ≤ n2d/(d!).

Proof. Any µ∗-maximal matching can be identified by the set {(i, µ(i)) : µ(i) ̸= µ∗(i)}. Since the cardinality of this set is
d, there are

(
n
d

)
choices of i and at most

(
n
d

)
choices of µ(i) that preserve the injectivity of µ. Further, there are at most d!

ways to match up the d nodes according to µ that preserve the injectivity of µ. It follows that

|M(µ∗, d)| ≤ d!

((
n

d

))2

≤ d!

(
nd

d!

)
=

n2d

d!
.

Theorem A.9. Let (B1,B2, G̃1, G̃2) be the output of the weak adversary with parameters (γ, λ, ps) acting on two correlated
ER graphs G1 and G2 with parameters p and s, and underlying correspondence π∗. Let µ̂k denote the matching output by
the k-core estimator Ek(G̃1, G̃2). Then,

P
(
dom(µ̂k) = corek

(
G̃1 ∧π∗ G̃2

)
and µ̂k = π∗ |dom(µ̂k)

)
≥ 2− exp

(
n2ξ
)
,

where

ξ := max
1≤d≤n

max
(M,µ)∈M(d)

P (f(µ) ≥ kd)
1/d

.
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Proof. Let K denote the set of all k-core matchings of G̃1 and G̃2, and let H denote the event

H :=
⋂
µ∈K

⋂
i∈dom(µ)

{µ(i) = π∗(i)}

First, since µ̂k itself is a k-core matching, the event H implies that µ̂k(i) = π∗(i) for all i ∈ dom(µ̂k). Let M∗ =

corek(G̃1 ∧π∗ G̃2). We now show the event H implies that dom(µ̂k) = M∗.

First, note that π∗|M∗ is a k-core matching. Therefore, by the maximality property in the definition of the k-core estimator,
we have that |dom(µ̂k)| ≥ |M∗|. Therefore, to show that dom(µ̂k) = M∗, it suffices to simply show that dom(µ̂k) ⊆ M∗

whenever H occurs. Assume to the contrary that L := dom(µ̂k) \M∗ is non-empty. Then, on the event H, the subgraph
of G̃1 ∧π∗ G̃2 that is induced on M∗ ∪ L also has minimum degree k, contradicting the maximality of M∗. Therefore,
dom(µ̂k) = M∗ if H occurs. It follows that

P
(
dom(µ̂k) = corek

(
G̃1 ∧π∗ G̃2

)
and µ̂k = π∗ |dom(µ̂k)

)
≥ P (H) .

To prove the theorem, it suffices to show that P (Hc) ≤ exp
(
n2ξ
)
− 1. For any graph G, let dmin(G) denote its minimum

degree. Indeed,

P (Hc) = P

⋃
µ∈K

⋃
i∈dom(µ)

{µ(i) ̸= π∗(i)}



= P

 ⋃
µ such that

∃i∈dom(µ):µ(i)̸=π∗(i)

dmin(G̃1 ∧µ G̃2) ≥ k


(a)
≤

n∑
d=1

P

 ⋃
µ such that

|{i∈dom(µ):µ(i)̸=π∗(i)}|=d

f(µ) ≥ kd


(b)
≤

n∑
d=1

P

 ⋃
µ∈M(π∗,d)

f(µ) ≥ kd


(c)
≤

n∑
d=1

|M(d)|
(

max
1≤d≤n

max
µ∈M(π∗,d)

P (f(µ) ≥ kd)

)
(d)
≤

n∑
d=1

(n2ξ)d

d!

≤ exp
(
n2ξ
)
− 1.

where (a) partitions the set of all matchings based on the number of disagreements of the matching with π∗ and uses a union
bound, (b) follows from Lemma A.7, (c) follows from a union bound, and (d) is from the definition of ξ and an application
of Lemma A.8.

Next, we show that ξ decays rather quickly under appropriate conditions. The proof below follows (Gaudio et al., 2022)
and (Rácz & Sridhar, 2023), although their focus is the stochastic block model and the inhomogeneous random graph model
respectively. Below, we adapt the argument to the WCG model.
Lemma A.10. Let (B1,B2, G̃1, G̃2) be the output of the weak adversary with parameters (γ, λ, ps) acting on two correlated
ER graphs G1 and G2 with parameters p and s, and underlying correspondence π∗. Let M(π∗, d) be the set of all
π∗-maximal matchings µ such that |{i ∈ dom(µ) : µ(i) ̸= π∗(i)}| = d.

ξ = max
1≤d≤n

max
µ∈M(π∗,d)

P (f(µ) ≥ kd)
1/d

.

Suppose that p = C logn
n for some C > 0. If k ≥ 13, then ξ = o(n−2).
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Proof. For any matching µ ∈ M(π∗, d), define the following sets:

A(µ) := {(i, j) ∈ dom(µ)× dom(µ) : µ(i) ̸= π∗(i)} ,
T (µ) := {(i, j) ∈ A(µ) : µ(i) = π∗(j) and µ(j) = π∗(i)} ,
N (µ) := A(µ) \ T (µ).

For a graph G, let G(i, j) denote the (i, j)-th entry of its adjacency matrix. First, note that A(µ) ≤ d|dom(µ)| ≤ dn, and
that |T (µ)| ≤ d. This is because µ makes d errors by definition. It follows that

f(µ) =
∑

i∈dom(µ)
µ(i)̸=π∗(i)

degG̃1∧µG̃2
(i)

=
∑

(i,j)∈A(µ)

G̃1(i, j)G̃2(µ(i), µ(j))

= 2
∑

(i,j)∈T (µ)
i<j

G̃1(i, j)G̃2(µ(i), µ(j)) +
∑

(i,j)∈N (µ)

G̃1(i, j)G̃2(µ(i), µ(j))

=: 2XT +XN .

It is easy to see that XT and XN are independent, since they involve disjoint node pairs. Furthermore, for the same reason,
the individual terms in XT are also independent. More importantly,

G̃1(i, j)G̃2(µ(i), µ(j)) ∼

{
Bern(p2s2), i ∈ B1 ∪ B′

2 or j ∈ B1 ∪ B′
2

Bern(ps2), otherwise
.

Therefore, it follows that

XT ⪯ Bin(|T (µ)|, ps2) ⪯ Bin(d, ps2), (23)

where ⪯ denotes stochastic domination of the RHS. Next, the XN is analyzed, which is slightly more complicated because
the summands may be correlated. To circumvent this, partition N (µ) into N1(µ), N2(µ), and N3(µ) and define

XNj
:=

∑
(i,j)∈Nj(µ)

i<j

G̃1(i, j)G̃2(µ(i), µ(j)), j ∈ {1, 2, 3}.

It follows that XN ≤ 2(XN1
+XN2

+XN3
). Here, the factor of 2 accounts for the restriction that i < j. Furthermore, it is

possible to partition N in such a way that XN1
, XN2

and XN3
are mutually independent. To see this, consider two node

pairs (i, j) and (a, b) in
(
M
2

)
. The random variables G̃1(i, j)G̃2(µ(i), µ(j)) and G̃1(a, b)G̃2(µ(a), µ(b)) are dependent if

and only if one of the following two conditions hold:

{µ(i), µ(j)} = {π∗(a), π∗(b)} (24)
{µ(a), µ(b)} = {π∗(i), π∗(j)} . (25)

Consider then the dependency graph H on the node set V (H) := {{i, j} : (i, j) ∈ N (µ)} such that two nodes in this graph
{i, j} and {a, b} have an edge between them if and only if they satisfy (24) or (25). Since each node in H has at most 2
neighbors, it follows that H is 3-colorable. Letting N1, N2, and N3 be the partition corresponding to the 3 colors, it can be
seen that XN1 , XN2 and XN3 are independent sums of Binomial random variables. Specifically, for each (i, j) ∈ N (µ), we
have that G̃1(i, j)G̃2(µ(i), µ(j)) ∼ Bern(p2s2). It follows that for each m ∈ {1, 2, 3}:

XNm ⪯ Bin(|Nm(µ)|, p2s2) ⪯ Bin(dn, p2s2),

where we have used the fact that |Nm(µ)| ≤ |N (µ)| ≤ |A(µ)| ≤ dn. Finally,

P (f(µ) ≥ kd) ≤ P (2XT +XN ≥ kd)

≤ P (2 (XT +XN1 +XN2 +XN3) ≥ kd)

≤
3∑

m=1

P (2XT + 6XNm
≥ kd) .
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The Chernoff bound can then be applied to the binomial distribution. It follows that for any θ > 0:

P (f(µ) ≥ kd) ≤
3∑

m=1

e−θkdE[e2θXT ]E[e6θXNm ]

≤ 3e−θkd
(
1 + ps2(e2θ − 1)

)d (
1 + p2s2e6θ − 1

)dn
(a)

≤ 3 exp
(
−d
(
θk − e2θps2 − ne6θp2s2

))
,

where (a) follows from the fact that (1 + x)t ≤ etx. Finally, set θ = c′ log n, and observe that when c < 1/6:

e2θps2 = n2c′−1Cs2 log n = o(1),

ne6θp2s2 = n6c−1C2s2 (log n)
2
= o(1).

Finally, since k ≥ 13, it can be ensured that ck > 2 by choosing c = 1
6 − ε for sufficiently small ε. This yields

ξ ≤ P (f(µ) ≥ kd)
1/d ≤ (3 exp (−d(ck log n− o(1))))

1/d
= o(n−2),

as desired.

A.2. Supporting Lemmas for Theorem 3.2

Lemma A.11. Let n and k be positive integers, and let p, s, γ, λ be such that 0 ≤ p, s, γ, λ ≤ 1. Let (B1,B2, G̃1, G̃2)
be the output of the weak adversary with parameters (γ, λ, ps) acting on two correlated ER graphs G1 and G2 with
parameters p and s, and underlying correspondence π∗. Suppose that p = C log(n)/n for some positive constant C. Let
α∗ = 1− γ + λ(1− λ)γ2. If C > 1/

(
s2α∗), then the k-core M∗ of G̃1 ∧π∗ G̃2 with k =

√
log n satisfies

P (M∗ = (B1 ∪ B′
2)

c) = 1− o(1).

Proof. Let the matching π̃∗ with dom(π̃∗) = (B1 ∪ B′
2)

c, denote the restriction of the true permutation π∗ to the node set
(B1 ∪ B′

2)
c. Let H1 and H2 denote the events

H1 :
⋂

i∈B1∪B′
2

{
degG̃1∧π∗ G̃2

(i) < k
}

H2 :
⋂

j /∈B1∪B′
2

{
degG̃1∧π̃∗ G̃2

(j) > k
}
.

Note that the intersection graph in H1 is with respect to π∗ whereas the intersection graph in H2 is with respect to π̃∗. Let
H = H1 ∩ H2. It suffices to show that P (Hc) = o(1). This implies that with high probability, no node in B1 ∪ B′

2 has
degree greater than k in the intersection graph G̃1 ∧π∗ G̃2, and therefore cannot belong to its k-core. Furthermore, it also
implies that with high probability, the subgraph of G̃1 ∧π∗ G̃2 induced on the node set (B1 ∪ B′

2)
c has minimum degree at

least k. In turn, this implies that P (M∗ = (B1 ∪ B′
2)

c) = 1− o(1), as desired.

Bounding P (Hc
1) Since the sets B1 and B′

2 are selected independent of G1 and G2, it follows for any i ∈ B1 ∪ B′
2 that

degG̃1∧π∗ G̃2
(i) ∼ Bin(n− 1, p2s2). This is because for any i ∈ B1 ∪ B′

2 and j ∈ [n] such that j ̸= i, Therefore, G̃1(i, j)
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and G̃2(π
∗(i), π∗(j)) are independent Bernoulli random variables with mean ps. Therefore, for any δ > 0:

P (Hc
1) = P

 ⋃
i∈B1∪B′

2

{
degG̃1∧π∗ G̃2

(i) > (1+δ)np2s2)
}

≤ P (|B1 ∪ B′
2| > 1.01(1−α∗)n)+P

 ⋃
i∈B1∪B′

2

{
degG̃1∧π∗ G̃2

(i) > (1+δ)np2s2
}
∩ {|B1 ∪ B′

2| ≤ 1.01(1−α∗)n}


≤ P (|B1 ∪ B′

2| > 1.01(1− α∗)n) + 1.01(1− α∗)n× P
(
Bin(n− 1, p2s2) > (1 + δ)np2s2

)
(a)
≤ o(1) + 1.01(1− α∗)n× P

(
Bin(n− 1, p2s2) > (1 + δ)np2s2)

)
(b)
≤ o(1) + 2n× P

(
Bin(n, p2s2) > (1 + δ)np2s2)

)
(c)
≤ o(1) + 2n×

(
exp (δ)

(1 + δ)
1+δ

)np2s2

, (26)

where (a) follows from Lemma A.3 and (b) follows from α∗ ≥ 0 and the stochastic domination Bin(n− 1, q) ⪯ Bin(n, q)
for any q ∈ [0, 1]. Finally, (c) follows from Lemma A.1. Setting δ = n

(logn)2
and recalling that p = C logn

n , it follows that
(1 + δ)np2s2 = C2s2 + o(1). Therefore, Equation (26) can be written as

P (Hc
1) ≤ P

 ⋃
i∈B1∪B′

2

{
degG̃1∧π∗ G̃2

(i) > C2s2 + o(1)
}

≤ o(1) + 2n×

 exp
(

n
(logn)2

)
(
1 + n

(logn)2

)1+ n
(log n)2


C2s2

(log n)2

n

=

{
o(1), Cs > 1

ω(1), Cs < 1
.

Since C > 1/(s2α∗), it follows that Cs > 1
sα∗ ≥ 1. This is because sα∗ ≤ 1. Therefore, for any ε > 0 and any k′ such

that k′ > C2s2 + ε, it is true that

P (Hc
1) ≤ P

 ⋃
i∈B1∪B′

2

{
degG̃1∧π∗ G̃2

(i) > k′
} = o(1). (27)

Indeed, our choice of k =
√
log n satisfies k > C2s2 + ε for all sufficiently large n. Therefore, P (Hc

1) = o(1) as desired.

Bounding P (Hc
2) The probability that a node in G̃1 ∧π̃∗ G̃2 has degree lesser than k is computed. For any i ∈ (B1 ∪B′

2)
c,

degG̃1∧π̃∗ G̃2
(i) =

∑
j∈(B1∪B′

2)
c

j ̸=i

G̃1(i, j)G̃2 (π
∗(i), π∗(j)) .

Since i and j are both in (B1 ∪ B′
2)

c, it follows that G̃1(i, j)G̃2 (π
∗(i), π∗(j)) = G1(i, j)G2 (π

∗(i), π∗(j)) ∼ Bern(ps2).
Further, for any j1, j2 ∈ (B1 ∪ B′

2)
c such that j1 ̸= j2 ̸= i, it follows by independence across edges that

G1 (i, j1)G2 (π
∗(i), π∗(j1)) and G1 (i, j2)G2 (π

∗(i), π∗(j2)) are independent random variables. Therefore, it follows that
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degG1∧π̃∗G2
(i) ∼ Bin((1− γ)n− 1, ps2). We have from a union bound that for any δ′ ∈ (0, 1):

P (Hc
2) = P

 ⋃
j∈(B1∪B′

2)
c

{
degG̃1∧π̃∗ G̃2

(i) < (1− δ′) (α∗n− 1) ps2
}

≤ P (|(B1 ∪ B′
2)| > 1.01(1− α∗)n)

+ P

 ⋃
j∈(B1∪B′

2)
c

{
degG̃1∧π̃∗ G̃2

(i) < (1− δ′) (α∗n− 1) ps2
}
∩ |(B1 ∪ B′

2)| ≤ 1.01(1− α∗)n


(d)
≤ o(1) + 2n× P

(
Bin

(
α∗n− 1, ps2

)
< (1− δ′) (α∗n− 1) ps2

)
(e)
≤ o(1) + 2n×

(
e−δ′

(1− δ′)
1−δ′

)ps2(α∗n−1)

(f)
= o(1) + 2n×

(
e−δ′

(1− δ′)
1−δ′

)(
Cs2α∗−Cs2

n

)
logn

(g)
=

{
o(1), Cs2α∗ > 1

ω(1), otherwise
. (28)

Here, in (d), Lemma A.3 is used along with the fact that α∗ ≥ 0. Further, in (e), Lemma A.1 is used, and in (f) we have set
p = C log(n)/n.

To see why (g) is true, consider the function
g(a, x, n) = nxa logn.

Notice that if a log(x) < −1, then limn→∞ g(a, x, n) = 0. Equivalently, this sufficient condition requires x < exp (−1/a).
Setting a = Cs2α∗ − Cs2

n , this condition reduces to

x < exp

(
− 1

Cs2α∗ − Cs2

n

)
. (29)

When Cs2α∗ > 1, there is a sufficiently small constant ε > 0 such that for all n sufficiently large, it is true that
Cs2α∗ − Cs2

n > 1 + ε. Therefore, (29) holds if x < exp
(
− 1

1+ε

)
. For our purpose, x is a function of δ′:

x(δ′) =
e−δ′

(1− δ′)1−δ′
.

Clearly, x(0) = 1 and the right-hand side above is continuous and decreasing on (0, 1). Therefore, there exists δ′′ > 0 such
that for all sufficiently small ε:

x(δ′′) = exp

(
− 1

1 + ε/2

)
< exp

(
− 1

1 + ε

)
,

which satisfies (29) and hence implies (g). Selecting δ′ = δ′′, it follows from (28) that for any k′ such that k′ <
(1− δ′)Cs2α∗ log(n)− o(1):

P (Hc
2) ≤ P

 ⋃
j∈(B1∪B′

2)
c

{
degG̃1∧π̃∗ G̃2

< k′
} = o(1). (30)

Indeed, our choice of k =
√
log n satisfies this condition for sufficiently large n. Combining Equation (27) and Equation (30)

via a union bound, it follows that P (Hc) = o(1) as desired. This concludes the proof.
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Lemma A.12. Let n and k be positive integers, and let p, s, γ, λ be real numbers such that 0 ≤ p, s, γ, λ ≤ 1. Let
(B1,B2, G̃1, G̃2) be the output of the weak adversary with parameters (γ, λ, ps) acting on two correlated ER graphs G1 and
G2 with parameters p and s, and underlying correspondence π∗. Let B′

2 denote the pre-image of B2 under π∗. Suppose that
p = C log(n)

n for some positive constant C. Let α∗ = 1− γ + λ(1− λ)γ2. If C < 1
s2α∗ , then the k-core M∗ of G̃1 ∧π∗ G̃2

with k =
√
log n satisfies

P (|(B1 ∪ B′
2)

c \M∗| = o(n)) = 1− o(1).

Proof. From Theorem 3.2 (i) and Theorem 3.1 (i), it follows that P (M∗ ⊆ (B1 ∪ B′
2)

c) = 1 − o(1). It remains to show
that all but a vanishing fraction of the nodes in (B1 ∪ B′

2)
c are also in M∗. Let π̃∗ with dom(π̃∗) = (B1 ∪ B′

2)
c denote

the restriction of the permutation π∗ to the node set (B1 ∪ B′
2)

c. Let corek(G) denote the k-core of a graph G. First, it is
shown that none of the nodes in B1 ∪ B′

2 belong to the k-core with high probability. Since for any i ∈ B1 ∪ B′
2, it holds

that degG̃1∧π∗ G̃2
(i) ∼ Bin(n− 1, p2s2) ⪯ Bin(n, p2s2), and since |B1 ∪ B′

2| ≤ |B1|+ |B′
2| ≤ γn, it follows by the union

bound that for any δ > 0

P

 ⋃
i∈B1∪B′

2

{
degG̃1∧π∗ G̃2

(i) ≥ (1 + δ)np2s2
} ≤ γn× P

(
Bin(n, p2s2) > (1 + δ)np2s2

)
≤ γn×

(
exp (δ)

(1 + δ)1+δ

)(n−1)p2s2

.

Setting p = C log(n)/n yields

P

 ⋃
i∈B1∪B′

2

{
degG̃1∧π∗ G̃2

(i) ≥ (1 + δ)C2s2
log(n)2

n

} ≤ γn×
(

eδ

(1 + δ)1+δ

)C2s2
log(n)2

n

.

Setting δ = n
C2s2 log(n)3/2

− 1 yields

P

 ⋃
i∈B1∪B′

2

{
degG̃1∧π∗ G̃2

(i) ≥
√
log(n)

} ≤ γn

 exp
(

n
C2s2 log(n)3/2

− 1
)

(
n

C2s2 log(n)3/2

) n

C2s2 log(n)3/2


C2s2

log(n)2

n

= o(1), (31)

whenever Cs > 0. Therefore, setting k =
√
log(n) yields P (E) = o(1), where E denotes the event that there exists a node

in B1 ∪ B′
2 with degree larger than k. Therefore, on the event Ec, it follows that no node in B1 ∪ B′

2 belongs to the k-core. It
remains to show that all but a vanishing fraction of nodes in (B1 ∪ B′

2)
c form the k-core. Consider then the trimmed graph

H := G̃1 ∧π̃∗ G̃2 on the node set (B1 ∪ B′
2)

c. Thus, on the event Ec, it is true that

corek(H) ⊆ M∗ ⊆ (B1 ∪ B′
2)

c. (32)

On the other hand, since B1 and B′
2 are selected independent of the graphs G1 and G2, it follows that the graph H itself

is an Erdős-Rényi graph on |(B1 ∪ B′
2)

c| nodes, where each edge is present with probability Cs logn
n . The k-core of an

Erdős-Rényi graph is a well studied problem. We invoke Theorem 2 of (Łuczak, 1991), restated below for convenience.

Proposition A.13. Let c(n) = (n − 1)p denote the average degree in an Erdős-Rényi graph G on n nodes with edge
probability p. For every ε > 0, there is a constant d, such that for c = c(n) > d and k = k(n) ≤ c− c0.5+ε, it is true that

P (|corek(G)| ≥ n (1− exp (−cε))) = 1− o(1).

First, some intuition is presented. Observe that the average degree c in H is given by (|(B1 ∪ B′
2)

c| − 1) × Cs log(n)
n =

Θ(log(n)) with high probability. Further, k =
√

log(n) ≤ c − c0.5+ε whenever ε < 0.5. Therefore, the graph H with
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k =
√
log n satisfies the conditions of Proposition A.13 with high probability, and so the k-core contains almost all the

nodes of H with high probability. Let α∗ = 1− γ + λ(1− λ)γ2. Formally, for any δ > 0:

P (|(B1 ∪ B′
2)

c \M∗| > δn) ≤ P (E) + P (|(B1 ∪ B′
2)

c| < (1− δ)(1− α∗)n)

+ P
(
|core√logn(H)| < (1− δ)(1− α∗)n

(
1− exp

(
−c0.1

)))
(33)

≤ o(1) + o(1) + o(1), (34)

where we have showed in (31) that the first term is o(1). The second term is o(1) due to Lemma A.3, and the third term is
o(1) due to Proposition A.13. It is emphasized that (33) holds because corek(H) ⊆ M∗ ⊆ (B1 ∪ B′

2)
c under the event Ec.

This concludes the proof.

B. Proofs for the strong adversary
This section analyzes the maximum overlap estimator in the context of the strong adversary. First, a simple concentration
inequality is shown for the number of edges in G1 ∧π∗ G2. Then, the moment generating function of the random variable
X(π) is bounded using techniques introduced in (Cullina & Kiyavash, 2017) and refined in (Wu et al., 2022), among others.

Lemma B.1. Let n be a positive integer and s be a real number such that s ∈ (0, 1]. Let C > 0 be constant and let
p ≥ C log(n)/n. Let G1 and G2 be two correlated ER graphs with parameters p and s, and underlying correspondence π∗.
Let X(id) denote the number of edges in the intersection graph G1 ∧π∗ G2. Then, for any ε ∈ (0, 1):

P
(
X(id) ≤ (1− ε)

(
n

2

)
ps2
)

= o(1).

Proof. First, notice that G1 ∧π∗ G2 is also an Erdős-Rényi graph on n nodes, where each edge is present with probability
ps2. It follows that the number of edges in the graph X(id) ∼ Bin

((
n
2

)
, ps2

)
. Thus,

P
(
X(id) ≤ (1− ε)

(
n

2

)
ps2
)

(a)
≤
(

e−ε

(1− ε)1−ε

)(n2)ps2
(b)
≤
(

e−ε

(1− ε)1−ε

)Cs2

2 (n−1) log(n)

= o(1),

where (a) follows from Lemma A.1 and (b) is true because e−ε < (1− ε)1−ε for all ε ∈ (0, 1).

Lemma B.2. Let s ∈ (0, 1] and ε > 0 be fixed, and C > 0 be constant. Let G1 and G2 denote two correlated ER graphs
with parameters p and s, where p = C log(n)/n. Let ∆2 denote the maximum node degree in G2. If C > 3/

(
sε2
)
, then

P (∆2 > (1 + ε)nps) = o(1).

Proof. Let vi ∈ [n] denote a node and let deg(vi) denote its degree in G2. By the union bound and the fact that
p = C log(n)/n,

P (∆2 > (1 + ε)nps) ≤
n∑

i=1

P (deg(vi) > (1 + ε) · Cs log(n))

= n× P (Bin(n− 1, C log(n)/n) > (1 + ε) · Cs log(n))

≤ n× P (Bin(n,C log(n)/n) > (1 + ε) · Cs log(n))

(a)
≤ n× exp

(
−ε2Cs log(n)

3

)
= n1− ε2Cs

3

(b)
= o(1),

where (a) uses Theorem 4.4 of (Mitzenmacher & Upfal, 2017), and (b) is because C > 3
sε2 .
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Lemma B.3. Let π be a permutation on [n], and let G1 and G2 denote two correlated ER graphs with parameters p and s,
and underlying correspondence π∗. Let X(π) denote the number of edges in G1 ∧π G2. The moment generating function of
X(π) is given by

E
[
etX(π)

]
=

(n2)∏
k=1

LNk

k

where Nk is the number of k-orbits in the edge decomposition of π and

Lk := Tr(Lk), (35)

where the 2× 2 matrix L is given as[
1− ps ps

1−ps

(
1− p+ p(1− s)2 + ps(1− s)et

)
1− ps ps (1− s+ set)

]
Moreover, Lk ≤ L

k/2
2 .

Proof. For a permutation π, Let Oπ =
⋃(n2)

k=1 Oπ
k denote the edge orbit decomposition of π, where Oπ

k is the set of all k
length edge orbits of π. By independence across edge orbits:

E [exp (tX(π))] = E

exp
t

∑
{i,j}∈([n]

2 )

G1 {i, j}G2 {π(i), π(j)}




= E

exp
t

∑
O∈Oπ

∑
(i,j)∈O

G1 {i, j}G2 {π(i), π(j)}


=
∏

O∈Oπ

E [exp (tXO(π))] ,

where XO(π) =
∑

i,j∈O G1 {i, j}G2 {π(i), π(j)}. Let (ai, bi)k+1
i=1 with (ak+1, bk+1) = (a1, b1) denote mutually indepen-

dent random variables so that ai, bi ∼ Bern(ps) and P (bi = 1 | ai = 1) = s. Let Lk := E
[
etXO

]
for any edge orbit O

such that |O| = k. Then,

Lk = E

exp
t

k∑
j=1

ajbj+1

 = E

 k∏
j=1

exp (t · ajbj+1)


= E

E
 k∏
j=1

exp (t · ajbj+1) | b1, · · · , bk


= E

E
 k∏
j=1

exp (t · ajbj+1) | bj , bj+1


(a)
= E

 k∏
j=1

E [exp (t · ajbj+1) | bj , bj+1]


=

∑
(θ1,··· ,θk)∈{0,1}k

θk+1=θ1

P ((b1, · · · , bk) = (θ1, · · · , θk))
k∏

j=1

E [exp (t · ajbj+1 | bj = θj , bj+1 = θj+1)] (36)

where (a) follows from conditional independence of edges in G1 given G2. On the other hand, Equation (36) is exactly
equal to

(36) = Tr(Lk),
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where the 2× 2 matrix L is given by

L(ℓ,m) = E [exp (t · a1b2) | b1 = ℓ, b2 = m]× P (b2 = m) , ℓ,m ∈ {0, 1} (37)

Computing the conditional expectations gives as desired,[
1− ps ps

1−ps

(
1− p+ p(1− s)2 + ps(1− s)et

)
1− ps ps (1− s+ set)

]
.

Finally, we show that Lk ≤ L
k/2
2 . Since the eigenvalues of L are given by T±

√
T 2−4D
2 , where T and D are the trace and

determinant of L respectively, it follows that

Lk = Tr(Lk) =

(
T +

√
T 2 − 4D

2

)k

+

(
T −

√
T 2 − 4D

2

)k

,

and it follows that Lk ≤ L
k/2
2 .

Corollary B.4. Evaluating the trace of L and L2,

L1 = 1− ps+ ps
(
1− s+ set

)
L2 = (1− ps)2 + 2ps

(
1− p+ p(1− s)2 + ps(1− s)et

)
+ (ps

(
1− s+ set

)
)2.

Proof. This follows from a direct computation using Equation (35).

Lemma B.5. Let n be a positive integer and s, γ, α be real numbers such that s ∈ (0, 1], and γ, α ∈ [0, 1]. Let
(B1,B2, G̃1, G̃2) be the output of a strong adversary A with λ = 1, acting on two correlated ER graphs G1 and G2 with
parameters p and s, and underlying correspondence π∗. Let p3 be the event defined in (19). If γ < s(1 − α2)/4, then
p3 = o(1).

Proof. By definition of p3 and the union bound,

p3 ≤
αn∑
k=0

P

 ⋃
π∈T k/n

{
X(π) ≥ (1− ε)

(
n

2

)
ps2 − 2γn (1 + ε)nps

} .

The Chernoff bound then yields for any t > 0:

P
(
X(π) ≥ (1−ε)

(
n

2

)
ps2−γn (1+ε)nps

)
≤ exp

(
−t

[
(1−ε)

(
n

2

)
ps2−2γn (1+ε)nps

])
· E
[
etX(π)

]
. (38)

For each π, let nπ
k (resp. Nπ

k ) denote the number of k-orbits in the node (resp. edge) decomposition of π. The MGF of
X(π) is handled using Lemma B.3:

E
[
etX(π)

]
=

(n2)∏
ℓ=1

L
Nπ

ℓ

ℓ ≤ L
(n

π
1
2 )+nπ

2

1 ·
(n2)∏
ℓ=2

L
ℓ/2
2

= L
(n

π
1
2 )+nπ

2

1 · L
1
2

(
(n2)−(

nπ
1
2 )−nπ

2

)
2 (39)

Substituting Equation (39) in Equation (38) yields

P
(
X(π) ≥ (1− ε)

(
n

2

)
ps2 − 2 (1 + ε) γn2ps

)
≤ exp (ζ(π)) ,

where

ζ(π) = −t

(
(1− ε)

(
n

2

)
ps2 − 2 (1 + ε) γn2ps

)
+

1

2

(
n

2

)
log(L2) +

1

2

((
nπ
1

2

)
+ nπ

2

)
log

(
L2
1

L2

)
(40)
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and

L1 = 1− ps+ ps
(
1− s+ set

)
L2 = (1− ps)2 + 2ps

(
1− p+ p(1− s)2 + ps(1− s)et

)
+ (ps

(
1− s+ set

)
)2.

It is easy to verify that for all p, s ∈ [0, 1] and t > 0, the quantity L2
1

L2
≥ 1, and so an upper bound on ζ(π) can be obtained

by using the bound nπ
2 ≤ n− nπ

1 . Let βπ denote the fraction of fixed points in the permutation π. By definition, nπ
1 = βπn.

Using p = C log(n)
n yields

L1 = 1 +
C · (et − 1)s2 log(n)

n
,

L2 = 1 +
C2 (et − 1) s2

(
2 + (et − 1)s2

)
(log n)

2

n2
.

Substituting these in Equation (40) yields

ζ(π) ≤ T1(π) + T2(π) + T3(π) + T4(π) + T5(π) + T6(π),

where

T1(π) = −t

(
(1− ε)s2

2
− 2(1 + ε)γs

)
× C log n

n
× n2 = Θ(n log n)

T2(π) =
β2
πn

2

2
log(L1) =

β2
πn

2

2
log

(
1 +

C · (et − 1)s2 log(n)

n

)
≤ β2

πn
2

2
× C(et − 1)s2 log n

n
= O(n log n)

T3(π) =
(1− β2

π)n
2

4
log(L2) =

(1− β2
π)n

2

4
log

(
1 +

C2 (et − 1) s2
(
2 + (et − 1)s2

)
(log n)

2

n2

)

≤ (1− β2
π)n

2

4
×

C2 (et − 1) s2
(
2 + (et − 1)s2

)
(log n)

2

n2
= O((log n)

2
)

T4(π) =
t(1− ε)ps2

2
× n =

C · t(1− ε)s2

2
log n = Θ(log n)

T5(π) =
(2− 3βπ)n

2
log(L1) =

(2− 3βπ)n

2
log

(
1+

C(et − 1)s2 log(n)

n

)
≤ (2− 3βπ)n

2
× C(et − 1)s2 log(n)

n
= O(log n)

T6(π) = −3(1− βπ)n

4
log (L2) = −3(1− βπ)n

4
log

(
1 +

C2 (et − 1) s2
(
2 + (et − 1)s2

)
(log n)

2

n2

)

≤ −3(1− βπ)n

4
×

C2 (et − 1) s2
(
2 + (et − 1)s2

)
(log n)

2

n2
= O

(
(log n)2

n

)
.

Since the dominant terms are T1(π) and T2(π), it follows that for sufficiently large n and any t > 0:

6∑
i=1

Ti(π) ≤ (1 + ε)

(
−t(1− ε)s2

2
+ 2t(1 + ε)γs+

β2
πs

2

2

(
et − 1

))
× Cn log n. (41)

Next, the condition in the hypothesis of the theorem is invoked, i.e. γ < s(1− α2)/4. Since βπ ≤ α < 1 for all π ∈ T ≤α,
it follows also that γ < s(1− β2

π)/4. Let

t∗ = log

(
1

β2
π

(
1− 4γ

s

))
. (42)
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Note that t∗ > 0. Also note that

− t∗s2

2
+ 2t∗γs+

β2
π

2
s2
(
et

∗
− 1
)
= −s

2

(
sβ2

π + 4γ − s+ (s− 4γ) log (s− 4γ)− (s− 4γ) log
(
sβ2

π

))
, (43)

and that the RHS of Equation (43) is strictly negative whenever the condition γ < s(1− β2
π)/4 is satisfied (see Lemma B.6).

Therefore, there exists a sufficient small ε > 0 and a sufficiently large C > 0 such that

6∑
i=1

Ti(π) ≤ (1 + ε)

(
−t∗(1− ε)s2

2
+ 2t∗(1 + ε)γs+

β2
πs

2

2

(
et

∗
− 1
))

× Cn log n < −βπ + 1

2
n log(n).

This yields that for sufficiently large n:

ζ(π) ≤ −βπ + 1

2
n log n.

Finally, this yields

p3 ≤
αn∑
k=0

∑
π∈T k/n

P
(
X(π) ≥ (1− ε)

(
n

2

)
ps2 − 2 (1 + ε) γn2ps

)

=

αn∑
k=0

nk exp

(
−1

2

(
k

n
+ 1

)
n log(n)

)

=

αn∑
k=0

exp

(
−1

2
(n− k) log n

)

=

n∑
k=(1−α)n

exp

(
−1

2
k log n

)

≤
exp

(
− 1−α

2 n log n
)

1− exp
(
− 1

2 log n
)

= o(1)

This concludes the proof.

Lemma B.6. Suppose βπ, γ are constants such that βπ > 0 and γ < s(1− β2
π)/4. Then,

sβ2
π + 4γ − s+ (s− 4γ) log (s− 4γ)− (s− 4γ) log

(
sβ2

π

)
> 0

Proof. Let x = sβ2
π and y = s− 4γ. Further, let z = y/x. Then,

sβ2
π + 4γ − s+ (s− 4γ) log (s− 4γ)− (s− 4γ) log

(
sβ2

π

)
= x(1− z + z log(z)).

First, note that x > 0. Furthermore, z > 1 since γ <
s(1−β2

π)
4 implies x < y. Finally, note that the function z 7→

1− z + z log z is convex and minimized at z = 1, where it equals 0. It follows that the desired quantity is positive whenever
z > 1.

Lemma B.7. Let n be a positive integer and p, s, γ, α be real numbers such that p ∈ (0, 1), s ∈ (0, 1], and γ, α ∈ [0, 1].
Let (B1,B2, G̃1, G̃2) be the output of a strong adversary A with λ = 1, acting on two correlated ER graphs G1 and G2 with
parameters p and s, and underlying correspondence π∗. Let ε ∈ (0, 1) and let p4 be the event defined in (21). If

γ < 1−
√
1− s2p(1− p)(1− α2)

2
,

then p4 = o(1).
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Proof. By definition of p4 and the union bound,

p4 = P

 αn⋃
k=0

⋃
π∈T k/n

{
X(π) ≥ (1− ε)

(
n

2

)
ps2 − 2

[(
γn

2

)
− γ(1− γ)n2

]}
≤

αn∑
k=0

P

 ⋃
π∈T k/n

{
X(π) ≥ (1− ε)

(
n

2

)
ps2 − 2

[(
γn

2

)
− γ(1− γ)n2

]}
The Chernoff bound is used below to bound these terms. It follows for any t > 0:

P
(
X(π) ≥ (1− ε)

(
n

2

)
ps2 − 2

[(
γn

2

)
− γ(1− γ)n2

])
≤ exp

(
−t

(
(1− ε)

(
n

2

)
ps2 − 2

[(
γn

2

)
− γ(1− γ)n2

]))
· E
[
etX(π)

]
(44)

For each π, let nπ
k (resp. Nπ

k ) denote the number of k-orbits in the node (resp. edge) decomposition of π. The MGF of
X(π) is handled using Lemma B.3:

E
[
etX(π)

]
=

(n2)∏
ℓ=1

L
Nπ

ℓ

ℓ ≤ L
(n

π
1
2 )+nπ

2

1 ·
(n2)∏
ℓ=2

L
ℓ/2
2 = L

(n
π
1
2 )+nπ

2

1 · L
1
2

(
(n2)−(

nπ
1
2 )−nπ

2

)
2 (45)

Substituting Equation (45) in Equation (44) yields

P
(
X(π) ≥ (1− ε)

(
n

2

)
ps2 − 2

[(
γn

2

)
− γ(1− γ)n2

])
≤ exp (ζ(π)) ,

where

ζ(π) = −t

(
(1− ε)

(
n

2

)
ps2 − 2

[(
γn

2

)
− γ(1− γ)n2

])
+

1

2

(
n

2

)
log(L2) +

1

2

((
nπ
1

2

)
+ nπ

2

)
log

(
L2
1

L2

)
Let βπ denote the fraction of fixed points in the permutation π. By definition, nπ

1 = βπn. Letting p̃ = p(1− ε) and using
the fact that nπ

2 ≤ n− nπ
1 , it follows that

ζ(π) ≤
(
− t

2

(
p̃s2 + 2γ2 − 4γ

)
+

1

4
log(L2) +

β2
π

4
log

(
L2
1

L2

))
n2 (46)

+

(
− t

2

(
2γ − p̃s2

)
− 1

4
log(L2) +

2− 3βπ

4
log

(
L2
1

L2

))
n (47)

Next, it is shown that if (3) is satisfied, then there exists δ > 0 such that coefficient of the n2 term in (46) is less than or
equal to −δ. To that end, notice that this coefficient is strictly negative when

p̃s2 + 2γ2 − 4γ > inf
t>0

{
1

t

(
1

2
log(L2) +

β2
π

2
log

(
L2
1

L2

))}
= inf

t>0

{
log

(
L

β2
π
t

1 · L
1−β2

π
2t

2

)}
(48)

Therefore, (48) holds if

exp
(
p̃s2 + 2γ2 − 4γ

)
> exp

(
inf
t>0

log

(
L

β2
π
t

1 · L
1−β2

π
2t

2

))
(49)

= inf
t>0

L
β2
π
t

1 · L
1−β2

π
2t

2 (50)

since L1, L2 ≥ 1 and therefore the objective function being infimized in Equation (49) is always non-negative. Observing
that the objective function for the infimization in (50) is monotonically increasing in t, and substituting for L1 and L2
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from Corollary B.4, it follows that

(50) = lim
t→0

{(
1−ps+ps(1−s+set)

) β2
π
t

(
(1−ps)2+2ps

(
1−p+p(1−s)2 + ps(1−s)et

)
+
(
ps(1−s+set)

)2) 1−β2
π

2t

}
= exp

(
ps2

(
p+ β2

π − pβ2
π

))
,

i.e. the condition (48) holds if exp
(
p̃s2 + 2γ2 − 4γ

)
> exp

(
ps2

(
p+ β2

π − pβ2
π

))
. Rewriting this as a condition on γ

yields that Equation (48) holds whenever

γ < 1−
√
1− ps2 ((1− p)(1− β2

π)− ε)

2
. (51)

Indeed, since βπ ≤ α for all π ∈ T ≤α, it follows that whenever (3) holds, ε can be chosen sufficiently small so that (51) is
satisfied for all π ∈ T ≤α. It follows that there exists δ > 0 such that the coefficient of the n2 term in (46) is less than or
equal to −δ. Therefore, for sufficiently large n:

ζ(π) ≤ −δ

2
n2 ≤ −1

2
(βπ + 1)n log(n).

Combining all the above,

p4 ≤
αn∑
k=0

∑
π∈T k/n

P
(
X(π) ≥

(
n

2

)
p̃s2 − 2

[(
γn

2

)
− γ(1− γ)n2

])

≤
αn∑
k=0

nk exp

(
−1

2

(
k

n
+ 1

)
n log(n)

)

=

αn∑
k=0

exp

(
−1

2
(n− k) log n

)

=

n∑
k=(1−α)n

exp

(
−1

2
k log n

)

≤
exp

(
− 1−α

2 n log n
)

1− exp
(
− 1

2 log n
)

= o(1)

as desired. This concludes the proof.

C. The strong adversary when both networks are compromised
In this section, the maximum overlap estimator is analyzed for the case when the adversary corrupts the same number of
nodes in both graphs, i.e. λ = 1/2. The action of the adversary is described by Algorithm 2. A similar adversary can cause
the maximum overlap estimator to fail horribly when λ ∈ (0, 1) but λ ̸= 1/2. However, the setting of λ = 1/2 conveys the
main ideas without complicating notation and will be the focus of the analysis.

Theorem C.1. Let γ > 0 and let A be the strong adversary described in Algorithm 2. Let (B1,B2, G̃1, G̃2) be the
output of the A with λ = 1/2, acting on two correlated ER graphs G1 and G2 with parameters p and s, and underlying
correspondence id. Let π̂MO denote the matching output by the maximum overlap estimator EMO(G̃1, G̃2). Then, for any
ε > 0,

P (ov(π̂MO, id) ≥ εn) = o(1).

Proof. Assume without loss of generality that γ ≤ 1/2, since the same argument works by appropriately interchanging
the role of γ and 1− γ. For any permutation π, let X(π) denote the number of edges in the intersection graph G1 ∧π G2.
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Similarly, let X̃(π) denote the number of edges in the intersection graph G̃1 ∧π G̃2. For j ∈ {1, 2}, let E(G̃j) denote the
set of edges present in G̃j , and furthermore, let Ẽ(G̃j) ⊆ E(G̃j) denote the edges added by the adversary in Algorithm 2.

Let π̃ be a matching with dom(π̃) = [n] such that

π̃(i) ∈


B2, i ∈ B1

B1, i ∈ B2

G2, i ∈ G1

G1, i ∈ G2

,

where G1, G2 are as defined in Algorithm 2. Since |B1| = |B2| and |G1| = |G2|, such a matching exists. Note that
ov(π̃, id) = 0. First, a lower bound on X̃(π̃) is computed.

X̃(π̃) =
∣∣∣E (G̃1 ∧π̃ G̃2

)∣∣∣
≥
∣∣∣Ẽ (G̃1 ∧π̃ G̃2

)∣∣∣
(a)
= |B1| × |G1|

=
γn

2
× (1− γ)n

2

=
γ(1− γ)

4
× n2,

where (a) follows from the fact that each node in B1 connects to every node in G1 in the graph G̃1 ∧π̃ G̃2.

Thus, in order to complete the proof, it suffices to show that

P

 ⋃
ε∈(0,1]

⋃
π

ov(π,id)=εn

X̃(π) >
γ(1− γ)

4
× n2

 = o(1). (52)

A union bound argument is presented below to show (52). Before proceeding, let us collect some observations about the
degrees of nodes in G̃1 and G̃2.

Remark C.2. Let B1,B2,G1,G2 be as defined in Algorithm 2. Since the adversary only adds edges and does not remove any
edges,

degG̃1
(i) ≤


degG1

(i) + (1−γ)n
2 , i ∈ B1

degG1
(i) + γn

2 , i ∈ G1

degG1
(i), i ∈ B2 ∪ G2

and

degG̃2
(j) ≤


degG2

(j) + (1−γ)n
2 , j ∈ B2

degG2
(j) + γn

2 , j ∈ G2

degG2
(j), j ∈ B1 ∪ G1

(53)

Continuing, let ([n], π′) be a matching such that ov(π′, id) = εn. Then,

X̃(π′) =
1

2

∑
i∈[n]

degG̃1∧π′ G̃2
(i) ≤ 1

2

∑
i∈[n]

min
(
degG̃1

(i), degG̃2
(π′(i))

)
=

1

2
(Z1 + Z2) , (54)
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where

Z1 :=
∑
i∈[n]

π′(i)=i

min
(
degG̃1

(i), degG̃2
(i)
)
,

Z2 :=
∑
i∈[n]

π′(i)̸=i

min
(
degG̃1

(i), degG̃2
(π′(i))

)

First, the term Z1 is analyzed. Clearly, for any i ∈ [n], Remark C.2 yields

min
(
degG̃1

(i), degG̃2
(i)
)
≤ min

(
degG1

(i), degG2
(i)
)
,

and so it follows that

Z1 ≤ εn×max
i∈[n]

(
min

(
degG1

(i), degG2
(i)
))

≤ n×max
i∈[n]

degG1
(i). (55)

Next, the term Z2 is analyzed. Notice that it can be upper bounded as

Z2 ≤ Z2,1 + Z2,2 + Z2,3 + Z2,4, (56)

where each term is defined and then bounded using Remark C.2 as

Z2,1 :=
∑
i∈[n]

i∈B2∪G2

min
(
degG̃1

(i), degG̃2
(π′(i))

)
≤ |B2 ∪ G2|max

i∈[n]

(
degG1

(i)
)
≤ nmax

i∈[n]

(
degG1

(i)
)
, (57)

Z2,2 :=
∑
i∈[n]

π′(i)∈B1∪G1

min
(
degG̃1

(i), degG̃2
(π′(i))

)
≤ |B1 ∪ G1| max

π′(i)∈[n]

(
degG2

(π′(i))
)
≤ nmax

i∈[n]

(
degG2

(i)
)
, (58)

Z2,3 :=
∑
i∈[n]
i∈B1

π′(i)∈B2∪G2

min
(
degG̃1

(i), degG̃2
(π′(i))

)
≤ |{i : i ∈ B1, π

′(i) ∈ B2∪G2}|
[
(1−γ)n

2
+ max

i∈[n]

(
degG1

(i)
)]

, (59)

Z2,4 :=
∑
i∈[n]
i∈G1

π′(i)∈B2∪G2

min
(
degG̃1

(i), degG̃2
(π′(i))

)
≤ |{i : i ∈ G1, π

′(i) ∈ B2∪G2}|
[
γn

2
+ max

i∈[n]

(
degG1

(i)
)]

. (60)

Let ε1(π′) denote the fraction of nodes i in B1 such that π′(i) ∈ B2 ∪ G2. Similarly, let δ1(π′) denote the fraction of nodes
j in G1 such that π′(j) ∈ B2 ∪ G2. Therefore, (59) and (60) can be written as

Z2,3 ≤ ε1(π
′)|B1|

(
(1−γ)n

2
+ max

i∈[n]

(
degG1

(i)
))

≤ ε1(π
′)
γ(1− γ)

4
n2 + nmax

i∈[n]

(
degG1

(i)
)
, (61)

Z2,4 ≤ δ1(π
′)|G1|

(
γn

2
+ max

i∈[n]

(
degG1

(i)
))

≤ δ1(π
′)
γ(1− γ)

4
n2 + nmax

i∈[n]

(
degG2

(i)
)
. (62)

Therefore, combining (56)-(62) yields

Z2 ≤ 2nmax
i∈[n]

(
degG1

(i)
)
+ 2nmax

i∈[n]

(
degG2

(i)
)
+ (ε1(π

′) + δ1(π
′))

γ(1− γ)

4
× n2 (63)

Substituting (55) and (63) in (54),

X̃(π′) ≤ 1

2
(Z1 + Z2) ≤

1

2

(
3nmax

i∈[n]
degG1

(i) + 2nmax
i∈[n]

(
degG2

(i)
)
+ (ε1(π

′) + δ1(π
′))

γ(1− γ)

4
× n2

)
. (64)

The following claim is made next.
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Claim C.3. Let ε > 0 and π′ be any permutation such that ov(π′, id) ≥ εn. Let ε1 and δ1 be as defined above. Then,
ε1(π

′) + δ1(π
′) < 2.

Proof. The proof of the claim relies on a simple observation: If node i is not a fixed point of π′, then neither is the node
π′(i). Specifically, for each node i ∈ B1 ∪ G1 such that π′(i) ∈ B2 ∪ G2, there exists a unique node k = π′(i) in B2 ∪ G2

such that π′(k) ̸= k. This is true simply because π′ is a permutation and therefore bijective.

Assume to the contrary that ε1(π′) + δ1(π
′) = 2. Since ε1(π

′) and δ1(π
′) are fractions, our assumption also implies that

ε(π′) = 1 and δ1(π
′) = 1. Since the number of wrongly matched nodes in B1 (resp. G1) is at least as large as the number of

nodes in B1 (resp. G1) that are mapped to B2 ∪ G2, it follows that

|{i ∈ [n] : π′(i) ̸= i}|
(a)
≥ 2 (ε1(π

′)|B1|+ δ1(π
′)|G1|)

= 2 (|B1|+ |G1|)
= n,

which contradicts the fact that ov(π′, id) ≥ εn. Here, the factor of 2 in (a) is due to the aforementioned observation. It is
concluded that ε1(π′) + δ1(π

′) < 2.

Claim C.3 confirms the existence of a small positive constant ε′ such that ε1(π′)+δ1(π
′) ≤ 2−ε′. Combining this with (64)

and using the fact that 2n ≤ 3n for all n yields

X̃(π′) ≤ 3n

2

(
max
i∈[n]

degG1
(i) + max

i∈[n]
degG2

(i)

)
+ (1− ε′/2)×

(
γ(1− γ)

4
× n2

)
. (65)

Therefore,

P
(
X̃(π′) >

γ(1− γ)

4
× n2

)
≤ P

(
3n

2

(
max
i∈[n]

degG1
(i) + max

i∈[n]
degG2

(i)

)
>

ε′

2
× γ(1− γ)

4
× n2

)
= P

(
max
i∈[n]

degG1
(i) + max

i∈[n]
degG2

(i) >
γ(1− γ)

12
× ε′n

)
≤ P

(
max
i∈[n]

degG1
(i) >

γ(1− γ)

24
× ε′n

)
+ P

(
max
i∈[n]

degG2
(i) >

γ(1− γ)

24
× ε′n

)
(a)
≤ 2n× P

(
Bin(n, ps2) >

γ(1− γ)

24
× ε′n

)
,

(b)
≤ 2n× P

(
Bin(n, ps2) > n

)
where (a) uses a union bound, the stochastic dominance of Bin(n, ps2) over Bin(n − 1, ps2), and (b) uses the fact that
ε′γ(1− γ)/24 < 1. We use the tail bound on the Binomial distribution (Mitzenmacher & Upfal, 2017)

P
(
Bin(n, ps2) > (1 + δ)nps2

)
≤ exp

(
−nps2δ2/3

)
,

with δ = n
Cs2 log(n) − 1 to get

P
(
X̃(π′) >

γ(1− γ)

4
× n2

)
≤ 2n× P

(
Bin(n, ps2) > n

)
≤ 2n× exp

(
− n2

3Cs2 log(n)

)
.

It remains to perform a union bound over all π′ such that ov(π′, id) > εn. However, the number of such permutations is
trivially upper bounded by n! < exp

(
n1.1 log(n)

)
for all sufficiently large n. Therefore,

P

 ⋃
ε∈(0,1]

⋃
π

ov(π,id)=εn

X̃(π) >
γ(1− γ)

4
× n2

 ≤ 2n exp
(
n1.1 log(n)

)
× exp

(
− n2

3Cs2 log(n)

)
= o(1),

as desired. This completes the proof.
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