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ABSTRACT

Substitutional defects, either intentionally introduced as dopants or unintentionally
as contaminants, are often primary determiners of the performance, efficiency, and
versatility of semiconductors. However, the high computational cost of density
functional theory (DFT) calculations limits the efficiency of large-scale screening.
Machine learning interatomic potentials (MLIP) offer a promising alternative, as
they can achieve high accuracy when trained on computational datasets, while
being significantly faster than DFT calculations. In this work, we assess the
generalization of the MACE-MP potential on a newly developed dataset (Perovs-
Dopants) for perovskites with neutral substitutional defects. To disentangle the
impact of computational settings from compositional novelty, we performed single-
point DFT calculations on a subset of the MPtrj dataset using CP2K, and analyzed
the distribution of force discrepancies between different DFT softwares. Our results
indicate that both differences in DFT settings and out-of-distribution chemical
compositions contribute to the prediction error when using MACE-MP. We then
systematically compared standard finetuning and multihead finetuning approaches,
demonstrating that multihead finetuning better preserves knowledge from the
original training dataset while adapting to the new defect dataset.

1 INTRODUCTION

Among the various families of semiconductors, perovskites have garnered significant attention due to
their diverse chemical compositions that create a large design space to work in (Zhang et al., 2017;
Green et al., 2014; Fergus, 2007). Perovskites are a class of material with a general chemical formula
of ABX3, and which share the same crystal structure as CaTiO3. Perovskites can exhibit remarkable
properties, such as high carrier mobility, tunable band gaps, and strong light absorption, making them
ideal for a wide range of applications, including photovoltaics, light-emitting diodes, and sensors
(Abdelhady et al., 2016; Colella et al., 2013; Pan et al., 2017; Zhou et al., 2016).

The development of dopants is pivotal for advancing semiconductor technologies, as they enable
precise tuning of electronic, optical, and thermal properties to meet the needs of devices. By
introducing carefully chosen dopants, materials can be engineered with functionalities tailored for a
wide variety of applications. Doping in perovskite materials has been extensively studied. For instance,
dopants have been used to improve the operational stability of perovskites in photovoltaic applications
(Chan et al., 2017; Ding et al., 2024; Li & Zhang, 2022), reduce nonradiative recombination losses in
light-emitting diodes (Luo et al., 2020), and enhance carrier mobility to enable faster operation (Lee
et al., 2017; Reo et al., 2022). Dopants are one type of substitutional point defect – specifically, one
intentionally engineered to introduce additional free carriers (holes or electrons), enhancing electronic
conductivity and related properties of materials. At the atomistic scale, defects can be studied through
computational chemistry methods like Density Functional Theory (DFT) calculations, which provide
insights into effects on systems’ stability, carrier mobility, to name a few (Wang et al., 2012; Hu
et al., 2019; Liu et al., 2019). Such calculations are crucial in understanding the mechanisms by
which defects alter material behavior, and therefore in designing engineered defects such as dopants.
However, these simulations are computationally intensive, especially when evaluating a large number
of defect and host material combinations. The vast compositional landscape of perovskites and
substituents remains largely unexplored, presenting significant opportunities for discovering materials
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with unprecedented performance. Previous work explored how dopants have been difficult to model
for current machine learning interatomic potentials (MLIPs) due to distribution shifts in forces and
energies (Wang et al., 2024). In this work, we provide further analysis into the challenges of machine
learning methods to model substitutional defects.

2 METHOD

For this study, we employed the MACE-MP0B3 model, which was pretrained on the MPtrj dataset that
contains 1.5M atomic configurations and DFT calculated properties (Deng et al., 2023; Batatia et al.,
2023). To test the model performance on the Perovs-Dopants dataset that includes diverse perovskite
relaxation trajectories. (Wang et al., 2024). First, we split it into an 8:1:1 ratio for training, validation
and testing. The training set also included 89 isolated atoms to adjust the atomic energies when
training the MACE models and account for the variation in the atomic energies between CP2K (Kühne
et al., 2020) and VASP (Kresse & Furthmüller, 1996a; Kresse, 1995; Kresse & Hafner, 1994; Kresse &
Furthmüller, 1996b; Kresse & Joubert, 1999) DFT codes (Bosoni et al., 2023). To evaluate the impact
of using different DFT software on prediction accuracy, we performed single-point calculations
using CP2K on a randomly selected subset of the MPtrj test set. The computed forces were then
compared to those provided in the original MPtrj dataset. This comparison enabled us to quantify
the distribution shift in force predictions arising from the differences in DFT settings, including the
pseudopotential, basis sets, and other numerical settings, including the plane-wave cutoffs, k-point
density, and smearing. Understanding this shift is crucial for evaluating the generalization of machine
learning models trained on data generated with one DFT code but applied to systems evaluated with
another.

The pretrained model serves as a starting point for testing on the Perovs-Dopants dataset. Given the
differences between these structures and the majority of chemical systems in the MPtrj dataset, we
expect some level of fine-tuning to be necessary to adapt the pretrained model to the new data. To test
the effectiveness of different finetuning strategies for the MACE-MP model, we compared vanilla
finetuning and multihead finetuning approaches. In the vanilla finetuning strategy, the defective
perovskite dataset was used to retrain the model, with a single output head predicting energy and
forces. The multihead finetuning strategy involves a pretrained output head for retaining knowledge
from the original MPtrj training dataset and a finetuned output head tailored to the Perovs-Dopants
dataset. Additionally, 10,000 data points were selected from the original MPtrj training set using the
farthest point selection algorithm (Li et al., 2022; Han et al., 2023), and these points were combined
with the defective perovskite training data for finetuning. Both finetuning strategies were trained
with identical hyperparameters, a learning rate of 10−5, and 20 epochs of training. Additionally, we
randomly selected 2,000 DFT data points from the MPtrj test set to create a small evaluation dataset
to measure the finetuned model’s performance on the pretraining dataset.

3 RESULTS

3.1 DISTRIBUTION SHIFT FROM VASP TO CP2K

We describe the details of the Perovs-Dopants dataset in Appendix A.1. First, we aim to understand the
distribution shift between different DFT codes. From the CP2K single-point calculations performed
on the MPtrj test set, we observed a substantial distribution shift in the calculated forces compared to
the original MPtrj dataset, which was generated using VASP. This discrepancy, illustrated in Figure 1,
highlights the impact of differences in DFT software, including the use of distinct basis sets and other
numerical settings, even though all calculations were performed with the PBE exchange-correlation
functional (Perdew et al., 1996). Additionally, we evaluated the performance of the MACE-MP
model by comparing its predictions on the MPtrj test set against CP2K-calculated forces for the
same structures. Interestingly, the difference between MACE-MP predictions and CP2K forces was
comparable to the observed discrepancy between VASP and CP2K forces. These results suggest that
both the out-of-domain nature of defective structures and the methodological differences between
DFT codes (e.g., plane-wave basis sets in VASP versus Gaussian-type orbitals in CP2K) contribute
significantly to the distribution shift. Several studies have specifically examined the impact of
different DFT software, pseudopotentials, and basis sets, demonstrating that these factors can lead
to significant variations in calculated results (Lejaeghere et al., 2016; Bosoni et al., 2023). This
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Figure 1: Density plot for the comparison of forces calculated using CP2K and VASP for the
MPtrj test set. The distributions include: MACE-MP model predictions on the MPtrj test set, and
CP2K-calculated forces for the MPtrj test set, compared to the original VASP calculated forces. The
VASP-calculated force distribution is shown in the top panel. The forces predicted with MACE-MP
show similar distribution with VASP, while the forces calculated with CP2K show significant shift in
distribution.

underscores the dual challenge of adapting ML models to out-of-distribution data and reconciling
inconsistencies introduced by computational methods when integrating datasets from diverse sources.

3.2 FINETUNING EXPERIMENTS

We extracted descriptors for the MPtrj dataset (Deng et al., 2023), the OMat24 dataset (Barroso-
Luque et al., 2024), and the Perovs-Dopants dataset (including all initial structures with different
perovskite/substituent element combinations) using three different MACE-MP model checkpoints:
the pretrained MACE-MP0B3, MACE-MP0B3 finetuned on Perovs-Dopants, and MACE-MP0B3
multihead-finetuned on Perovs-Dopants. We then performed both t-SNE (Van der Maaten & Hinton,
2008) and PHATE (Moon et al., 2019) analyses to visualize the resulting embeddings in a lower-
dimensional space. Both t-SNE and PHATE are dimensionality reduction techniques used to reveal
structure in high-dimensional data. While t-SNE primarily preserves local structure, PHATE preserves
both local (forming clusters) and global (meaningful intercluster distance) information. From the
results visualized in Figure 2, we observe that the embeddings generated from the pretrained MACE-
MP (left column) and the multihead-finetuned model (right column) are qualitatively more similar,
suggesting that multihead finetuning better preserves the original learned representation from the
MPtrj dataset. Additionally, in the PHATE plot for the multihead-finetuned model, the Perovs-
Dopants data shifts further away from the MPtrj distribution, indicating that the model recognizes
defective perovskites as a distinct class of materials. In contrast, the vanilla finetuning approach
(middle column) results in greater overlap between the Perovs-Dopants and MPtrj embeddings,
indicating that the model struggles to differentiate defective perovskite structures from the original
dataset, potentially leading to catastrophic forgetting.

In the PHATE plots, we used the color map to indicate the energy error from the finetuned and
multihead finetuned MACE models on the Perovs-Dopants data. Even after finetuning, we observe
that certain structures exhibit much higher energy errors, as indicated by the darker points in the figure.
Interestingly, these high-error structures correspond to the systems where Nd is the substituent. As an
f-block element, Nd is challenging to model accurately due to its complex electronic structure and
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Figure 2: t-SNE (top row) and PHATE (bottom row) visualizations of the learned embeddings for the
MPtrj dataset, OMat24 dataset, and Perovs-Dopants dataset using different MACE model checkpoints.
The first column represents the pretrained MACE-MP0B3 model, the middle column shows the model
finetuned on the Perovs-Dopants dataset, and the right column corresponds to the multihead-finetuned
model. The color map for the middle and right PHATE plots indicates the predicted energy error on
the defective perovskite structures.

localized 4f electrons. The difficulty in capturing the behavior of f-block elements accurately with the
standardized DFT settings in our high-throughput workflow could be a potential contributing factor
to the higher prediction errors in these cases. However, as can be seen in Figure A1, other f-block
elements do not exhibit significantly higher force errors. Some other factors might be contributing to
the high energy errors observed in Nd-containing structures such details of its oxidation state or spin
configuration.

Table 1 summarizes the performance of the MACE-MP model under different finetuning strategies
across various test datasets. The pretrained MACE-MP model performance on the MPtrj subset
is consistent with previously published results, with a force mean absolute error (MAE) of 0.03
eV/Å(Batatia et al., 2023). When the pretrained model was directly applied to the Perovs-Dopants
dataset, we observed a decline in performance as the model tends to overestimate the atomic forces.
This result is expected and consistent with our earlier analysis: as indicated by Figure 3b, the Perovs-
Dopants dataset represents an out-of-domain challenge. While standard finetuning significantly
improves accuracy on the Perovs-Dopants dataset, it comes at the cost of catastrophic forgetting,
leading to degraded performance on the original MPtrj dataset. In contrast, multihead finetuning,
combined with replaying a subset of MPtrj dataset, enables the model to maintain high accuracy on
both the MPtrj and Perovs-Dopants datasets.

Another approach we explored was using CP2K to re-evaluate 2,000 randomly selected points from
the MPtrj dataset, and use the CP2K evaluated points as a finetuning set for the MACE-mp model.
By exposing the model to CP2K-calculated points, we aimed to provide it with some knowledge of
the distribution shift between CP2K and VASP. However, when tested on the Perovs-Dopants dataset,
the finetuned model still resulted in high force errors. This result provides some evidence that the
difference in DFT software may not be the primary factor contributing to the out-of-distribution
challenge compared to the novelty in the defective perovskite materials.

In addition to evaluating the MACE-MP model on the Perovs-Dopants dataset, we also tested its
performance on the OMat24 dataset, which, like MPtrj, is computed using VASP with similar
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Table 1: Performance comparison of the MACE-MP model.

Model Finetune Force MAE (eV/Å)
Dataset Method MPtrj Perovs-Dopants OMat24

MACE-MP0B3

N/A 0.027 0.119 0.418
Perovs-Dopants Standard 0.246 0.037
Perovs-Dopants Multihead 0.086 0.033
MPtrj (CP2K) Standard 0.096 0.118

OMat24 Multihead 0.063 0.118 0.271

DFT settings, with the only difference being the version of pseudopotentials and the electronic
minimization algorithm (Barroso-Luque et al., 2024). However, the MACE-MP performance on
the OMat24 dataset is worse than that on the Perovs-Dopants datasets (0.4 eV/Åv.s. 0.1 eV/Å).
Given the overlap in computational settings, we can attribute any performance issues primarily to
compositional differences between the two datasets, rather than discrepancies in the DFT software.
The OMat24 dataset contains non-equilibrium structures, despite these structural differences, the
embedding analysis revealed significant overlap between MPtrj and OMat24. This suggests that the
MACE-MP model’s learned representation may not fully capture the atomic interactions required for
generalization to other datasets.

4 CONCLUSION

In this work, we demonstrate our work towards the development of a neutral substitutional defect
dataset for perovskite materials. The current benchmark dataset consists of over 20,000 DFT data
points from the relaxation trajectories of 438 defective perovskite systems. We investigated the
challenges of applying foundation models to defective perovskite structures and tested different
finetuning strategies to improve their generalization. We demonstrated the potential of ML models,
specifically the MACE-MP0B3 model, to predict the properties of these defective systems efficiently.
The t-SNE analysis with the MACE-MP embeddings illustrates that the defective perovskite structures
are outside of the distribution of its training set. This emphasizes the importance of building new
computational datasets for advancing the development of foundation models and accelerating material
discovery. Our results highlight that while the pretrained MACE-MP model shows extraordinary
performance on its original MPtrj dataset, it struggles with the defects in perovskites. Finetuning
the model improved its accuracy on the Perovs-Dopants dataset, but also resulted in catastrophic
forgetting on the MPtrj dataset. Multihead finetuning, combined with the reintroduction of a subset
of MPtrj training data, better preserved the original model’s learned representations while adapting
to the new dataset. Embedding analysis using PHATE and tSNE further confirmed that multihead
finetuning maintains the distinction between different datasets.

This study aims to provide a valuable perovskite defect dataset for the materials science community
to fill a critical gap in the field of semiconductor research. In this study, all DFT calculations for
defective perovskites were performed with neutral systems. We note that to truly evaluate an element
as a dopant, it is necessary to perform charged defect calculations to assess its behavior as an effective
electron donor or acceptor. However, neutral calculations dramatically simplify the workflow, and
stability as a neutral substitutional defect is certainly a necessary (albeit not sufficient) criterion for
a dopant. Future extensions of the Perovs-Dopants dataset could incorporate charged systems to
explore these important properties in more detail, though we note that appropriate machine learning
interatomic potential (MLIP) architectures for such systems are less mature at present and are an area
of active development. Future efforts will focus on expanding the dataset to cover more chemical
spaces, and exploring other pretrained models’ performance on the Perovs-Dopants dataset based on
training frameworks for MLIPs training (Miret et al., 2023; Lee et al., 2023). Moving forward, there
is a need to improve fine-tuning strategies to maintain the generalization ability of MLIP models.
This can include broader integration of multi-head architectures to address the heterogeneity of DFT
settings across different datasets, as well as utilizing different pretraining strategies (Lee et al., 2023;
Barroso-Luque et al., 2024; Neumann et al., 2024).
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A APPENDIX

A.1 PEROVS-DOPANT DATASET

To construct a broad dataset on substitutional defects in perovskites, we begin by selecting a diverse
set of perovskite materials and substituents to ensure extensive coverage of different chemical
environments and structural variations. The base perovskite materials were queried from the Materials
Project database (Jain et al., 2013), an oxide perovskite dataset (Castelli et al., 2012), and a halide
perovskite dataset (Muzzillo et al., 2024). Based on the structures contained in these datasets, we
randomly selected perovskites that are stable and have a DFT-calculated band gap ranging from 1
to 3 eV. For the substituent elements, we focused primarily on transition metals and nitrogen based
on prior work related to doped semiconductor materials (Zhang et al., 2023; Al-Naggar et al., 2023;
Rohib et al., 2023). These elements were chosen due to their diverse electronic configurations and
their potential to introduce significant property modifications to the host perovskite material. The
defective perovskite structures were then generated by substituting one atom in either the A or B site
of a perovskite supercell with the selected substituent. We also included cases with vacancies on the
A or B site.

The workflow for constructing the defect dataset was developed using Atomate2 (Ganose et al.,
2025). CP2K was employed as the DFT code for all calculations (Kühne et al., 2020), and we
used the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional (Perdew et al., 1996). The
calculations were conducted using the Orbital Transformations method from the Quickstep code in
CP2K (VandeVondele & Hutter, 2003), with the TZVP basis set and GTH pseudopotentials. The
number of multi-grids was set to 5, the planewave cutoff for the finest level of multi-grid was 500 Ry,
and the plane-wave cutoff of a reference grid was 80 Ry. Geometric relaxation was performed to
obtain the optimized structures for the defect systems. During these simulations, the atomic positions
were optimized with the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) to minimize the
forces acting on the atoms to ensure the structure reached a stable state. The relaxation process was
iterated until the forces on all atoms were reduced to below 0.02 eV/Å.

The Perovs-Dopants dataset contains 438 defective perovskite structures, and the element distribution
is shown in Figure 3a. We performed a t-distributed stochastic neighbor embedding (t-SNE) (Van der
Maaten & Hinton, 2008) analysis to help qualitatively analyze the difference in the chemical space
coverage between the MPtrj dataset and the defect dataset from the model’s perspective. The node
features for 10,000 randomly selected systems from MPtrj training dataset and the entire Perovs-
Dopants test set were extracted from the pretrained MACE-MP model. These 256-dimensional vector
features represent the atomic neighborhood of each atom in a chemical system. We averaged the
per-atom vectors within each system to obtain a system-level descriptor. t-SNE was then applied
to reduce the dimensionality and visualize the distribution of the systems. As shown in Figure 3b,
while there is some overlap suggesting shared features between the datasets, a significant portion
of the defect dataset lies in the areas that are not covered by MPtrj. This observation confirms that
the Perovs-Dopants dataset explores new chemical spaces, emphasizing the need for fine-tuning the
pretrained MACE model to better adapt to these out-of-distribution data points.
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Figure 3: (a) Distribution of elements in the defect dataset. A and B site elements, and X site elements
are shown in the left figure, and the substituent elements are shown in the right figure. (b) t-SNE plot
comparing the chemical space covered by the MPtrj and Perovs-Dopants datasets.

Figure A1: Average atomic force differences between CP2K and VASP for the MPtrj single-point
calculations. Elements are color-coded to indicate the magnitude of force discrepancies.
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