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ABSTRACT

We introduce Social Bayesian Optimization (SBO), a query-efficient algorithm for
consensus-building in collective decision-making. In contrast to single-agent sce-
narios, collective decision-making encompasses group dynamics that may distort
agents’ preference feedback, thereby impeding their capacity to achieve a social-
influence-free consensus—the most preferable decision based on the aggregated
latent agent utilities. We demonstrate that under standard rationality assumptions,
reaching social-influence-free consensus using noisy feedback alone is impossi-
ble. To address this, SBO employs a dual voting system: cheap but noisy public
votes (e.g., show of hands in a meeting), and more accurate, though expensive,
private votes (e.g., one-to-one interview). We model social influence using an un-
known social graph and leverage the dual voting system to efficiently learn this
graph. Our findings show that social graph estimation converges faster than the
black-box estimation of agents’ utilities, allowing us to reduce reliance on costly
private votes early in the process. This enables efficient consensus-building pri-
marily through noisy public votes, which are debiased based on the estimated
social graph to infer social-influence-free feedback. We validate the effectiveness
of SBO across multiple real-world applications, including thermal comfort opti-
mization, team building, travel destination discussion, and strategic collaboration
in energy trading.

1 INTRODUCTION

This paper presents a sample-efficient algorithm to achieve consensus z* in an online setting, within
a social group of agents, by solving the following optimization problem:

x* € argmax Alu(z,:)], u(x,:) ={u(z,i)}icv, (1
x€EX

where V represents a social group of n agents, i.e., |V| = n, X is a set of options that is a bounded
subset of R, and A is an aggregation function that produces the social utility. For each agenti € V
and option x € X, u(x, ) represents the utility of option « for agent 4, and u(z,:) = {u(x,?) biey
represents the set of utilities for all agents given option z. We assume throughout thatu : X xV — R
is a black-box utility function that rationalizes the collective preferences of the social group V. We
iteratively collect votes from agents to minimize regret to reach z* within the given budget.

Efficient consensus-building is essential for collective decision-making but is notoriously difficult,
underpinned by various theoretical impossibility results (Patty & Pennl 2019; Muandet, [2023)).
Three key challenges contribute to this difficulty. First, modeling human preferences is inherently
complex. Although utility theory (Fishburn, [1968) offers a framework, individuals often struggle
to introspect and report their preferences accurately (Kahneman & Tverskyl, |1979), so preferences
are inferred from feedback, such as pairwise comparisons and rankings (Fiirnkranz & Hiillermeier,
2010). Second, even with access to each agent’s utility, constructing a social utility that fairly repre-
sents all agents is impossible under mild rationality constraints (Arrow, [1950). Third and most im-
portantly for our settings, social dynamics, i.e. interactions between agents, can distort preference
feedback. For instance, the bandwagon effect (Simon), [1954; [Farjam, [2021)) occurs when agents’
preferences are swayed by influential individuals, resulting in biased or influenced feedback, i.e.,
feedback that does not reflect their actual underlying utilities. This can result in groupthink, a failure
mode in collective decision-making where the group reaches a influenced consensus, and Section E]
introduces four real-world examples.
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Preferential Bayesian optimization (PBO; |Gonzalez et al.|[2017) provides a potentially sample-
efficient framework for solving (I). However, their approach fails to address the second and third
challenges mentioned above. Their framework focuses on single-agent scenarios or assumes homo-
geneity among agents, averaging preferences without addressing individual differences and social
dynamics (Xu et al.,|2024b)). The influence of social factors is non-trivial, as it distorts agents’ opin-
ions, resulting in influenced votes. Ideally, the consensus-building procedure should be robust to
social influence. However, under mild rationality constraints, we demonstrate that it is impossible to
design a social aggregation method that consistently produces a consensus robust to social dynam-
ics—a phenomenon we term the impossibility of groupthink-proof consensus. To circumvent this
issue, we propose a dual voting system consisting of a cheap but noisy public vote (e.g., show of
hands in a meeting) and a private vote (e.g., one-to-one interview) that is free from social influence
but costly to obtain. We formalize the social influence effect through an unknown social graph and
utilize the dual feedback mechanism to perform graph learning (Dong et al.,|2019). Our results show
that the social graph estimation converges faster than black-box utility estimations, allowing us to
reduce reliance on private feedback early in the process (Theorem [3.12). This approach facilitates
efficient consensus-building, primarily relying on noisy public feedback while accounting for social
dynamics (see Figure|[I]for an illustration of our procedure).

Contributions. (1) Novel setting: We formulate 1, select the hotel [ o "
a new class of optimization problems to facilitate for group retreat. {- R, L }
collective decision-making under social influence ini
among heterogeneous agents. (2) Algorithm: We
introduce a Social Bayesian Optimization (SBO) al- Yes @ - 1mean, Yes
gorithm that enables vote-efficient consensus-build- [ ) §'JL.

ing robust to social influence. (3) Theoretical: We J
prove an impossibility result highlighting the ne- Public Voting Private Voting
cessity of a dual voting system. We also estab-
lish two sublinear convergence rates for SBO: one
for cumulative regret, ensuring SBO achieves group-
think-proofness and no-regret property, and one for
social-influence-free votes, allowing the algorithm
to reduce reliance on costly private votes as the
model gains sufficient confidence. (4) Real-world contributions: We demonstrate SBO’s fast con-
vergence than baselines in four practical scenarios.

Actually no

Figure 1: A dual voting: the difference in pub-
lic and private votes can identify the social influ-
ence. Once identified, social-influence-free con-
sensus can be estimated only from noisy public
votes, thereby reducing the total cost.

2  SOCIAL BAYESIAN OPTIMIZATION

Unlike standard Bayesian optimization (BO), where direct evaluation of the black-box objective is
possible, some objectives—Ilike human utility—are latent and difficult to introspect. To solve (1)),
we rely on preference feedback, or votes, where each agent expresses preferences between pairs of
options [z, z']. Following standard preference modeling, agent ¢ prefers option x over x5, denoted
Ty =y 2, if and only if u(z1,i) > u(wz,i), where =, . ;) represents agent i’s preference
relation. Our optimization procedure thus involves estimating n utility functions {u(-,%)};cv from
their votes. When the context is clear, this set also denotes the vector of utilities queried at x.
Pairwise comparisons are widely used in human-in-the-loop systems (Koyama et al.| |2020; [Li et al.,
2021)), as people tend to evaluate relative differences better than absolute magnitudes (Kahneman &
Tverskyl 2013)). In our setting, we make two key assumptions.

Assumption 2.1 (Facilitator). There exists a single facilitator (or social planner) who facilitates
the decision-making process, and decides the aggregation rule A.

Assumption 2.2 (Pairwise feedback). Given a pair of options (x, x}) at time step t, there exists an
oracle that returns a preference signal 1 ;21, from the i-th agent where 1 5;21, := 1 if x is preferred
and zero if x' is preferred. The feedback 1 S;w, from the oracle follows the Bernoulli distribution

with ]P’(Iglz/ =1)= p;(viiw/ = o(u(x,i) — u(a’,i)), where o(z) = (1 + exp(—2)) %
Assumption [2.2]is widely accepted Bradly-Terry model (Bradley & Terry] [T952).
2.1 AGGREGATION FUNCTIONS

The crucial part of problem (1) is A that aggregates agents’ utilities into a social utility.
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Definition 2.3 (Aggregation function). The aggregation function A (also known as a social choice
function or social welfare function) combines individual utilities into a single utility via a positive
linear combination, i.e., S(z) = Alu(z,:)] = w'u(z,:), where S(x) represents the social utility
andw € RY, depends on u(z,:). Ais provided a priori by the facilitator and is independent of both

the option x and the time step t, meaning it is homogeneous and stationary.

Harsanyi| (1955) demonstrated that a positive linear combination of individual utilities is the only
aggregation rule that satisfies both the von Neumann-Morgenstern (VNM) axioms (Von Neumann &
Morgenstern, [1947) and Bayes optimality (Brown, 1981)). Many popular aggregation function, such
as the utilitarian rule, i.e. Afu(z,:)] = 1/n ).\, u(w,7) and the egalitarian rule, i.e., Afu(z,:)] =
min;ey u(x, 1) are positive linear combinations (c.f. Appendix . Given the range of candidate
methods, we adopt the generalized Gini social-evaluation welfare function (GSF; [Weymark| (1981);
Sim et al.|(2021)) as it can interpolate between utilitarian and egalitarian approaches:

Alug(z,2)] = w' dlug(z,:)) st wi:=0""wT1, w; >0, 0<p<1, )

where w := (w;);cv is a weight vector, 1 is the one-vector, and ¢ is a sorting function that arranges
the elements of the input vector in ascending order and returns the sorted vector.

Proposition 2.4 (Proposition 1 in|Sim et al.| (2021)). GSF in Egq. satisfies monotonicity and the
Pigou-Dalton principle (PDP; |Pigou, (1912); Dalton|(1920)) on fairness. Moreover, when

(a) p =1, Ais utilitarian such that it satisfies the PDP in the weak sense;
(b) 0 < p < 1, A satisfies the PDP in the strong sense;
(c) p— 0, then w;/w; — 0fori=2,...,n, Aconverges to egalitarian.

See Appendix [C.4]for the proof and the details. The key result is that the GSF interpolates between
two popular aggregation rules through a single real parameter, p, while adhering to the fairness
principle of PDP and maintaining monotonicity for regret analysis. Although p must be defined a
priori, we assume the facilitator will make this definition (Assumption[2.1). We argue that selecting a
single parameter is far simpler than choosing an arbitrary aggregation function, and GSF is intuitive:
p controls the balance between prioritizing the group average and the worst-off agent. Nonetheless,
our algorithm, described later, is applicable to any aggregation function that is a positive linear
combination and monotonic, encompassing a wide range of popular aggregation rules.

2.2 MODELLING SOCIAL INFLUENCE

While various methods exist to model social interactions among agents, we chose a graph convolu-
tional approach. Let V represent the set of nodes (agents) and E the set of weighted directed edges,
forming the social influence graph G = (V, E) , with A as the corresponding adjacency matrix.
Definition 2.5 (Social influence). Given influence graph G, social-influence-free utility u, and agent
i € V, the corrupted utilities of agent i, v(-, i) can be expressed as h (u(-,i),{u(-,7) | 7 € Ng(i)}),
for some generic function h that specifies how the signals interact, and N¢ (i) is the (in)-neighbour
of i in G, defined as {j : A;; # 0}.

We make the following assumption on the utility functions u(-,:) and v(,:).

Assumption 2.6 (Bounded norm). For each i € V, let Hy, be a reproducing kernel Hilbert
space (RKHS) endowed with a symmetric, positive-semidefinite kernel function k; : R? x R — R.
We assume that v(-,i) € Hy, and ||v(-,1)||k, < Ly, where || - ||, is the norm induced by the inner
product in the corresponding RKHS Hy,,, ki(z,2') < 1, x,2’ € X, and k;(x, ') is continuous on
RY x RY. We denote the set BV := {0(-,i) € Hg, | |0(-,3)||x;< Ly}, and BY == [B, .- BUn].

This assumption also applies to u(-,:), of which bound is isotropic; L, Vi € V.

Assumption [2.6]require that the utility functions u, v are regular in the sense that they have bounded
norms in the corresponding RKHS. These assumptions are common in the BO literature. Under
Definition. it is natural to consider the graph convolution operation as the function h,

o' () =Au" (), stou(d) | = Auu (i) + Y Agul (4), D Aij =1, Ay >0, (3)
JENG (i) Jj=1
Lemma 2.7 (Graph properties). Under Eq. (3) and Assumption u,v € [—Ly, L,] have the
same bound (L, = L,,), thereby being comparable. Moreover, if A is invertible, the matrix A has
the Euclidean norm of inverse matrix bounded by 1 < ||A™Y|| < n, and A is identifiable from the
observed data pairs (v(zr,:), u(z7,:))rerr) If (W7, ) repr is full rank.

See Appendix [B.T|for the proof. See also Appendix [B.3|for the extension to other graph structures.
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3  MITIGATING UNDUE SOCIAL INFLUENCE

As discussed, the main challenge in achieving consensus is social influences that hinder the facili-
tator from accessing the true utilities. Consequently, the facilitator can only observe the feedback
from distorted utilities, leading to a consensus that misrepresents the agents’ actual preferences, i.e.,
groupthink. To overcome this, we propose in Section [3.2]a dual voting mechanism consisting of a
cost-effective but noisy public vote and a costly private vote that is free from social influence.

3.1 IMPOSSIBILITY THEOREM

Before introducing our dual voting mechanism, we first illustrate the difficulty of consensus build-
ing based solely on distorted utilities through the impossibility theorem. To this end, we define
groupthink-proofness as desirable property of any aggregation function.

Definition 3.1 (Groupthink-proof). An aggregation function A is groupthink-proof if, for any
social-influence graph G, arg max, ¢ y Afu(z, )] = argmax,c y Afv(z,:)].

Intuitively, the aggregation function A is groupthink-proof if its consensus is preserved under any
social influence graph. For example, any aggregation function is groupthink-proof if v(-,:) = u(-, :),
i.e., no social influence. In addition, we define the triviality of the social consensus z* as

Definition 3.2. (Trivial social consensus) x* is the trivial social consensus if for all i € |V|, z* =

arg max, u(x,1)

Non-triviality of social consensus excludes the situations where all agents unanimously agree on the
best option. The following theorem states that, in the absence of a trivial consensus, no aggregation
function when applied on the distorted utilities satisfies groupthink-proofness.

Theorem 3.3 (Impossibility of groupthink-proof aggregation). Under Definitions 2.3} 3.1} B.2]
there exists no aggregation rule A satisfying groupthink-proof in the absence of a trivial consensus.

Theorem [3.3] implies that if the agents are not unanimously in consensus on the best option with
respect to their true utilities, then the facilitator cannot identify an aggregation function that is
groupthink-proof. Appendix [C.2] provides the detailed proof where the core idea of the proof is
to assume that there exists a groupthink-proof aggregation rule .4 in the absence of a trivial social
consensus and then show that consensus obtained by this aggregation rule needs to satisfy triviality if
the aggregation rule is groupthink proof w.r.t a selected subset of influence graphs. Thus resulting in
a contradiction. To show the direct implication of our impossibility results we show that a non-trivial
set of consensus—the Pareto front of distorted utilities—is not groupthink-proof, see Appendix [C.3]
for more details.

3.2 DUAL VOTING MECHANISM WITH APPROXIMATED SOCIAL GRAPH

We now introduce the procedure for learning the social graph A and the surrogate models for u
and v. While preferential Gaussian processes (GPs) (Chu & Ghahramani, [2005) are a common
choice, combining a Gaussian prior with a Bernoulli likelihood poses theoretical and computational
challenges. Hence, we opted for the likelihood ratio model (Owenl |1990; Emmenegger et al.,|2024),
which estimates only the worst-case prediction interval, rather than the full predictive distribution.
This approach aligns well with optimistic algorithms like UCB (Srinivas et al., 2010), which only
require confidence intervals, and it provides theoretical guarantees even in cases where the GP prior
and likelihood are non-conjugate such as preference modeling.

Let Dou := (2,27, ls.i))TGQ;f’iev be the private votes, Doy := (zr,2}, l(f))Tng’ieV be the
public votes, l(f) € {0,1} be the realization of the Bernoulli random variable l(zzir,, [t] =
{1,...,t}, QY := {7 € [t — 1] | if v is queried in step 7} be public queries, Q} be private queries
(t > Q¢|,t > |QF|). We use capitals, e.g., Xgv, for the set (z;);cgy. See Appendixfor the
summarised table of notations.

Assumption 3.4 (Public and private votes). While private votes reflect the social-influence-free
utility u, public votes reflect the (possibly) influenced utility v. The query costs satisfy the relation-
ship Ay, > Ay

Assumption relaxes the typical strong assumption in PBO that votes always reflect the social-
influence-free utility. The cost suggests |Q}| < |Q}| is more cost-effective. This setting is so-called
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truthful utility u(x, :)  non-truthful utility v(x, :) social utility S(x), a(x,,x, )

% Xk private or public votes Dy, Dyv
= W A ground-truth utilities u,v
% S gy - \‘ MAP estimated utilities .7
i F b X, Confidence bound
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> ] | ; _.. ground-truth social utility S
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BN S AN .
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Figure 2: The dotted and solid lines represent the ground truth u, v and estimated utilities @, 9, respectively,
with the shaded area indicating the confidence interval. Dots mark the queried points, where | Q| = 10 and
|Q%| = 20. Since utility values are not directly observable, the dots are for visual guidance. The acquisition
function «(-, z+—1) represents the upper confidence bound of improvement from the previous query x+—1, with
its argmax determining the next query x, (red vertical line). While the independent model assumes 4 € B“
and © € B, the graph convolution model enforces a linear constraint @, € B*“%. This yields a tighter
predictive interval, resulting in a next query closer to the true consensus x* (black vertical line).

heterotopic data if each vote is to be associated with a (partially) different set of pairs (Wackernagel,
2003).

Graph prior. We introduce the regularised row-wise Dirichlet prior for graph A:
1
p(A) = Eexp(—gHAH%) iel_‘I/Dirichlet(Ai; Ki), St mén Aij > 04, 4)

where A; is the i-th row, xk; > 1 is the concentration parameter vector, §4 > 0 is a small positive
constant, ensuring strict positivity, ||-|| 7 denotes the Frobenius norm, ¢ is a small positive constant,
and Z is the normalising constant. The exponential term is a Tikhonov regularization that encourages
invertibility, and the Dirichlet distribution assures 2?21 Ay =1

Likelihood modelling. Under Assumptions[2.2] [3.4] and Definition[2.5] we define the likelihood as
below. See Appendix for the derivation.

Corollary 3.5 (Bradley-Terry model). Given dataset Dgv and corresponding utility function w,
the log-likelihood (LL) for an estimate function 4 € Hy, is given by|\Bradley & Terry|(1952):

(i) | Dg@ => [a(m,i)]@ + a(xh,i)(1 — 1) ] > log [exp(iu(z-, 1)) + exp(i(x],1))] .
TEeQY TeQY

Bayesian modelling. The joint LL of Doy, Dou are 0(t, A, D | Doy, Dgv) := £4(0 | Dgv) +
¢( | Dgw). For the prior, by range preservation Lemma we can set the uniform prior p(u) =
p(v) = U(u;—L,, L), and Eq. (@) for p(A). Then, the (unnormalised) log posterior becomes:
Li(, A, 0) = &(ﬂ Ao | Doy, Dgv)+log p(u)+log p(v) +log p(A), and A can be estimated via
linear constraint u = Az* when solvmg maximisation problem Maximum a posteriori (MAP) offers
Bayesian point estimation for u, A, and v; L= L, (g, At, ) = MaX; 4 jepuio L(a, A , ).

Optimistic MAP. We apply the optimistic MLE approaches (Liu et al., 2023 Emmenegger et al.,
2024; Xu et al.| 2024b) to MAP objective to quantify uncertainty using a confidence set. This
enables us to derive theoretical confidence bounds, and accurately compute the upper bound as
efficient optimisation problem, even for non-conjugate case such as preference likelihood.

Lemma 3.6 (MAP-based confidence set). For all § > 0, we have
Bl = {5 € B' | (u(i | Doy) > & — By}, B = {ii € B | t:(i| Doy) > & — 4},
BUAY = {a e B' o€ B',o = A}, Bt = {a, 4,5 € BYY | £u(@, A,5) 2 Lo - i},

with P (u, Ave B;ﬂr‘? UVt > 1) > 1 — §, where 8%, 0% are the MLE of LLs, B, B are selected as in |Xu

w2 uv |2 Vel ]| oo
et al.|(2024b), | QY| := |QF| + |QY), :necﬂggvH\/64n2L%|Q§w“Og QPN B o),

The proof and notations are in Appendix See Fig. 2] for intuition. As introduced in Assump-
tion[2.6] while the function @(-, ¢) was originally in a broader set of RKHS functions @(-, ) € BY, it
is now in a smaller set defined as @ € B}"_; conditioned on the preference feedback. Intuitively, with
limited data, the MAP may be imperfect. Hence, it is reasonable to suppose that B}, |, bounded by
MAP values ‘slightly worse’ than the MAP, contains the ground truth with high probability.
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Algorithm 1 Social Bayesian Optimisation (SBO)

1: Input: decayrate 0 < ¢ <1

2: Set Q¥ =0, Qf =0, Blu’A’” = B4 and draw the initial point 2y € X.

3: fort € [T] do

4: Solve z; = argmax, ¢y oz, x}) S.t. T, = T4 > Maximising the acquisition function
5 Query public vote on the pair (z;, x}), and obtain 1} := {1,@}?21.

6 Update Dg» = Dgv U (2, 7}, 1) and confidence set Bfff’v

7 if wi'(z, 2}) > max {5, wy(zy,2;)} then ‘ > Stopping criterion
8 Query private vote on the pair (z;, x}), and obtain 1;' := {IEZ)}?:I.

9 Update Dgu = Dgu U (2, 7}, 1;") and confidence set B;‘fi’v.

Remark 3.7 (Confidence bound). By Lemma we define the pointwise confidence bound for
up € Mi, as wy(2,i) < u(w,i) < U(x,i) where wy(z,i) = infy cgm w(x,1), U(z,1) =
supg cpvi U(x,4). Similarly, the confidence bound for S(xz) is [Alu,(z,:)], Alt(z,:)]] by the
mondtorlticity of GSF (see Proposition [2.4).

Remark 3.8 (Prediction via optimisation). Given a prediction point x, the upper confidence bound
(UCB) ¢ (, :) can be estimated via finite-dimensional optimisation; see Appendix for details.

3.3 PROPOSED ALGORITHM

Algorithm summarises our SBO algorithm. Lineﬁnds the next vote (x4, z;) by maximising the
acquisition function. Line[7]outlines the stopping criterion, which halts the expensive private queries
when the graph A is accurately estimated. In Algorithm[l] the condition |Q} | = ¢ and |Q}| > |Q}|
are satisfied. The parameter ¢ is the decay rate which balances the trade-off between private votes
querying cost and consensus convergence rate.

Acquisition function. We propose an optimistic algorithm, akin to GP-UCB (Srinivas et al.|[2010):
oz, ') = max Ala(z,:)] — Alu(z’, :)]. (5)

u€ By
Intuitively, this acquisition function operates similarly to the expected improvement approach. The
second term represents the best observed points so far, while the overall maximization identifies the
highest potential improvement from a given point.

Stopping criterion. We introduce the projection weight function w; as the uncertainty criteria. We
can then estimate the uncertainty of & and ¥ when projecting to the comparison pairs (¢, 2} ),

wi(eeal) = sup [0, ) = () — (@) =0 (ai, ) ©

v eB}

and same notation rule applies to w;'. « is more uncertain than v due to the smaller sample size and
the uncertainty in estimating A. When wj}' becomes smaller, A is confidently estimated at the point
(x4, ;) thus no more u queries are needed. The decay rate ¢ controls the threshold to satisfy this
stopping condition, and we recommend ¢ = 1/2 (detailed later in Section .

Efficient computation. So far, we have introduced several optimization problems (MAP, Prob (3)),
Remark [3.8] Line d]in Alg.[I] and Probs. (6)). However, the functions @ and ¢ exist in an infinite-
dimensional space. Fortunately, by applying the representer theorem (Scholkopf et al., [2001) and
utilizing the RKHS property, we can kernelize these problems into tractable, finite-dimensional
optimization problems. For example, MAP and Prob. become n(t + n) and n(t + n + 1)-
dimensional optimization problems, respectively. The convexity of the kernelized problems allows
for scalable solutions, although the computational cost scales as O(n(t + n)). Notably, this cost
is still more efficient than the multi-task GP, which scales as O(n3t®) and involves non-convex
optimization (Bonilla et al.| 2007). See Appendix [E] for details on the kernelized problems.

3.4 THEORETICAL ANALYSES

Cumulative regret and cost. We define two performance metric: cumulative regret Ry :=
Zip:l(A[u(:c*, ;)] — Alu(zy,:)]) and cumulative private query |Q%|. Under Assumption that
Au > Ay, |QY%| dominates the cost Cp := Ay, | QY| + A, T
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Graph properties. The regret bound is affected by the following properties of adjacency matrix A:

(a) Given: We know A, otherwise A is unknown a priori and we need to estimate it.
(b) Invertible: There exists A~!, otherwise A is singular.
(c) Identifiable: A is identifiable from the votes, otherwise dual voting cannot identify true A.

Theorem 3.9 (Regret bound). Under Assumptions[2.2|to[2.6] Algorithm|[I]satisfies,

Voting scheme and Assumptions cumulative regret Ry sample complexity of private votes | Q|
Oracle (public only) (a)(b)(c) O (nLA, /B%VS’T/T 0

N 2 u
SBO (dual voting) ~ (c) O (LaT™ + Lay/ (B33 + B33)T) © (Tq (7") tog Tl le) T’”‘”*))

None (private only) - O (LA /3%715;7”) T

with probability at least 1.—6, where L 4 := \/EHWH, ~ is maximum information gain, and WUQ”Tl , 75“;
are 7 for the corresponding kernel, 0 < q < 1 is a user-defined parameter.

Remark 3.10 (Groupthink-proof). Any identifiable A has sublinear convergence to true consensus
x*. Without (c) (="None’), we end up querying private votes only (|Q%| = T).

Remark 3.11 (Trade-off in ¢). Larger ¢ can make Ry converge faster, yet requires more |Q%|.

Appendix [F]provides the proof and more details. Furthermore, by incorporating maximum informa-
tion gain bounds (Srinivas et al.,|2012; Vakili et al.,[2021)) and covering number bounds (Wul 2017;
Xu et al., 2024a; |Bull, [201 1}; Zhoul 2002)), we apply Theorem@to derive the kernel-specific bounds
in Table[I} omitting T-independent constants. The convergence rate clarifies several aspects of Al-
gorithm I} While ‘None’ achieves the tightest regret bound Ry, its sample complexity |Q3] is the
worst, scaling linearly with 7'. In contrast, SBO achieves a sublinear sample complexity bound, but
the Ry has an additional 7! —9/4 term. This is reasonable, as later rounds must infer consensus from
corrupted queries. We can view ¢ as a necessary compromise for the graph estimation error, sup-
ported by the impossibility theorem. Importantly, within the typical conditions (7" < 1000,d > 2,
RBF kernel), ¢ dependent term is always smaller than non-dependent ones in Ryp, suggesting a
similar convergence rate in practice. The oracle setting has an additional n factor compared to the
‘None’ case because the norm of the inverse of the graph adjacency matrix, ||A~1||, amplifies the
noise of v when it is transformed onto u. 3} and 3% reflect the utility function estimation error (see
Lemma|3.6). The aggregation function A affects Ry, with egalitarian being the slowest (L4 — /1)
and utilitarian the fastest (L4 = 1). Ry is sublinear to the number of agents. i.e., v/n. The dimen-
sion d scales similarly to standard BO, techniques like additive kernels (Kandasamy et al.;, 2015) can
improve dimensional scalability. Furthermore, by applying the minimum excess risk (MER; Xu &
Raginsky| (2022))), our optimistic MAP has the following asymptotic convergence rate:

Theorem 3.12 (Graph identification). Asymptotic convergence rates of the estimation errors are
14— All <0 (27121Q¢772) (e — dn(a}) — (ulwr) - ul@))] < O (L, 1Q¢ 7).
formax;ey k; = 1+ 04/n2 — 2667, ki > 1, £ < 1/2n2 and A,y € Bz"A’U defined in Lemma

Appendix[G] provides the proof and more details. Theorem [3.12]shows the graph identification error
converges faster than pointwise utility estimation error in the worst-case scenarios. Intuitively, the
estimation error for the linear model (A) converges faster than for the black-box non-linear functions
(u,v). Thus, we can stop querying private votes |Q}| once we reach sufficient confidence. This
results also suggests ¢ = 1/ can be optimal as the cumulative error of Y-, t71/2 < O(T"/?) to

match the rate of |Q}'|. This convergence rate relies on the strong convexity of MAP objective (c.f.,

Table 1: Kernel-specific bounds for main algorithm where v > 4/4(3 + d + \/d? + 14d + 17) = ©(d?).
Metric Linear RBF Matérn

Ry O (Tl—% +T%(logT)%) o (Tl—% + T%(logT)%(d“)) o <T1—% o s i (logT)%)

d_2d(d+1)
|0y O (T(log T)®) 16) (T‘l(log T)3(d“)) 16) (T”f Tra@rD (log T)3)
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MLE is convex yet not strongly convex). As such, Theorem [3.12]also highlights the benefits of the
MAP extension, beyond just improving numerical stability through regularizers.

4 RELATED WORKS

BO for black-box games. In the BO community, the game-theoretic approach has been researched
as the application to multi-objective BO (MOBO) (Hernandez-Lobato et al., |2016; Daulton et al.,
2020). Direct consideration of the multi-agentic scenario is limited, which typically assumes the
specific aggregation rule (Nash equilibrium; |Al-Dujaili et al.| (2018)); [Picheny et al.| (2019); [Han
et al.| (2024), Kalai-Smorodinsky solution; Binois et al.|(2020)) or Chebyshev scalarisation function
(Astudillo et al., [2024)), which requires discrete domain to ensure the existence of solution. Ours is
the first-of-its-kind principled work that addresses the influenced votes over continuous space.

Preferential BO. Preferential BO is a single-agentic preference maximisation algorithms (Gonzalez
et al.| 2017; |Astudillo et al., 2023 Xu et al., [2024b)), extended to diverse scenarios; choice data
(Benavoli et al.| 2023a), top-k ranking (Nguyen et al., 2021)), preference over objectives on MOBO
(Abdolshah et al., 2019} |Ozaki et al., [2024), human-AlI collaboration (Adachi et al.| 2024b). Our
work is the first to study the multi-agentic social influence, and is orthogonal to these works.

Other BO. Multitask BO (Kandasamy et al.l [2016) addresses scenarios where cheap but lower-
fidelity information is available and leverages this information to identify promising regions for
exploration. However, when the low-fidelity information is unreliable, these algorithms may con-
verge much more slowly than the original BO algorithm (Mikkola et al.,[2023)). In contrast, our SBO
framework does not use public votes as constraints but rather as supplementary data to help identify
the underlying model, i.e., the social influence graph A. While cost-aware BO (Lee et al.| 2020)
deals with location-dependent cost functions, public votes in our model are not location-dependent.
Misspecified BO (Bogunovic & Krausel 2021; [Berkenkamp et al., [2019), which addresses cases
where the surrogate model is misspecified, primarily focuses on Gaussian process hyperparameters
and is not directly applicable to the likelihood-ratio model.

5 EXPERIMENTS

Since our problem setting—optimization with preference feedback under social influence—is novel,
we benchmark our proposed algorithm against simpler versions of our method by systematically re-
moving one design choice at a time. An RBF kernel is used by default unless otherwise specified,
and for each optimization iteration, the inputs are rescaled to the unit cude [0, 1]%. The initial dataset
consist of 5 randomly sampled pairs (z, ;) from the domain X with labels generated according
to Assumption A (x4, x1) is determined by arg max, ... o(x,2’) in each iteration then votes
are queried. All' experiments were repeated 10 times under different seeds and initial datasets. Hy-
perparameters such as kernel lengthscales, the norm bound L,, and the confidence bound 3;, were
tuned online at each iteration (c.f. Appendix [I]for details). Optimization problems are solved using
the interior-point nonlinear optimizer [POPT (Wichter & Biegler, 2000), interfaced via the sym-
bolic framework CasADi (Andersson et al.,2019). Code repository[}are provided for reproducibility.
Models are implemented in GPyTorch (Gardner et al.,[2018), and experiments are conducted using
a laptop P Computational time is discussed in Appendix Along with cumulative regret and
query counts, we also report simple regret, defined as SR; := min, ¢7(S(2*) — S(z,)).

Baseline setup. We benchmark our algorithm against four baseline models, each based on specific
assumptions about the aggregation function and influence graph, as considered in Theorem[3.9} (a)
Oracle: A is known, thus only v is queried; (b) Single Agent: Ignores agent heterogeneity, perform-
ing single-agent preference maximization (similar to standard preferential BO); (c) Independence:
Assumes u and v are completely independent; (d) Optimistic MLE: Assumes v = Au without a
prior on A; and (e) Optimistic MAP (ours): Assumes v = Au with the prior p(A) in Eq. @)

Robustness to aggregate function. We first demonstrate the robustness of our algorithm against
different aggregation functions under a fixed influencer-follower graph, A = (-2 8-1), where the
first agent (influencer) prioritizes their own utility 9 times more than the second’s, while the second
(follower) values the influencer’s utility 1.5 times more than their own. Overall, the egalitarian case

'nttps://anonymous.4open.science/r/socialBO-1EED/
MacBook Pro 2019, 2.4 GHz 8-Core Intel Core 19, 64 GB 2667 MHz DDR4
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Figure 3: Robustness analysis was conducted using the function shown in Fig.[2| The lines and shaded areas
represent the mean + 1 standard error. The cumulative regret R reaches a plateau, confirming the no-regret
property, while the cumulative queries | Q' | demonstrate sublinear convergence.

(p = 0.1) shows the slowest R convergence, while the utilitarian case (p = 1) is the fastest. The
cumulative queries |Q}| remain unaffected, supporting Theorem [3.9] The egalitarian case displays
the most diverse results among the baselines, as this rule prioritizes the worst-off agent—in this
case, the follower—making accurate prediction of the follower’s utility key to faster convergence.
Interestingly, our optimistic MAP model outperforms the oracle model. While the oracle model
does not use private votes (|Q}| stays at zero), our model accesses both public and private votes,
utilizing more data and improving early-stage predictions. In contrast, the utilitarian rule focuses on
the average utility among agents, making follower utility prediction less critical for convergence.

Robustness to influence graph. Under a fixed aggregation rule (p = 0.5), three cases were
considered: egoist A = (1-107"" 107" "which strongly prioritizes self-utility; altruist A =

0.3 0.7
(107,° 1-107"") which selflessly prioritizes others" utility; and wishy-washy A = (§:2 §:2 ), where
agents are indecisive. Notably, the oracle performs the worst in the wishy-washy case due to the
singularity of the matrix, which makes it impossible to identify u = A~!v through inversion. In the
altruist case, where a selfless agent causes the public votes to be unanimously influenced, the sce-
nario ironically becomes one of the most challenging for the single-agent baseline, which assumes
homogeneous agents. In contrast, our method remains unaffected by the structure of graph A, as it

does not rely on invertibility or homogeneity assumptions.

Additional experiments. Due to page limitations, we defer additional experimental results to Ap-
pendix[J]} The computational time, provided in Appendix[J.4] shows that the overhead of our method
is comparable to that of simpler baselines. Furthermore, we detail a GP-based variant of our algo-
rithm using convolutional kernel in Appendix [H.1] We did not adopt this as the main algorithm be-
cause the non-conjugate posterior makes the theoretical analysis challenging. While this GP-based
approach is heuristic, it allows for efficient approximation methods, such as the Laplace approxima-
tion, making it a simpler and faster alternative via convolutional kernel.

Real-world tasks. We introduce four new real-world collective-decision tasks to test our algorithm.
For all tasks, we assume that agents prefer not to disclose their social-influence-free votes to other
agents in public voting, but are willing to share them with the facilitator, provided the results remain
closed.

1. Thermal comfort: Three office workers (influencer, follower, altruist) wishes to optimize the
thermal condition (set temperature and air speed) under different garments and activity conditions,
leading to varying thermal insulation and metabolic generation. The facilitator sets aggregation rule
as egalitarian because they considers uncomfortable thermal conditions deteriorates productivity and
health. We calculate each utility function under the given conditions using a simulator (Tartarini &
Schiavon, |2020)), following the ASHRAE industrial standard.

2. TeamOpt: Four office workers (a leader, a follower, and two indecisive members) hold a meet-
ing to select team members for the next project, which includes eight workers in total, including
themselves. The leader prioritizes skill set diversity to enhance productivity, while the others fo-



Under review as a conference paper at ICLR 2025

Thermal comfort TeamOpt TripAdvisor EnergyTrading
n=3,p=0.1) (n=4,p=0.1) n=3,p=0.) (n=3,p=0.5)
0.4

\HK\;
& 0.02 0.2
% S - O_Ii |
0 0 0 0
40 40 40 40
§20 / 20 / 20 / 20 /
0 b 0 0 0
10 20 30 40 S50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
iteration ¢ iteration ¢ iteration 7 iteration ¢
—independent —oracle —optimistic MLE

Figure 4: Real-world experiments with varying number of agents n and aggregation rule p

cus on inter-member compatibility: one considers average compatibility, another seeks to maximize
the worst-case scenario, and the last prefers a balanced team with minimal variance in compatibility.
The facilitator applies an egalitarian rule, ensuring that the worst-off member is at least satisfied with
the team. Each potential team forms a graph with an adjacency matrix representing skills and com-
patibility, and summary statistics define each utility function. The inter-graph kernel was computed
using the graph diffusion kernel (Zhi et al.| 2023).

3. TripAdvisor: Three colleagues (two influencers and a follower) are deciding on a hotel for
their upcoming group retreat, using the TripAdvisor website. One prefers a luxurious hotel with
the highest ranking, another seeks a budget-friendly option with reasonable reviews, and the third
prioritizes the hotel with the highest overall review score. The facilitator (group leader) chooses
p = 0.5 to balance both egalitarian and utilitarian aspects. We used the TripAdvisor New Zealand
Hotel dataset (Rahman, 2023).

4. EnergyTrading: Three firms (a large corporation, a niche startup, and a joint venture) form a
strategic collaboration to enhance their energy trading business. Their profits rely on a machine
learning model that predicts day-ahead market prices, which in turn depends on a demand dataset.
Due to the scarcity of such data, they jointly invest in a market research project. However, since the
demand data is spatiotemporal, they must decide on the optimal location for data collection. Each
firm’s utility function is based on the information gain for the selected location, and their internal
datasets lead to heterogeneous utilities. The facilitator (project leader) adopts p = 0.5 to balance
egalitarian and utilitarian considerations. We used the UK-wide energy demand dataset (Griinewald
& Diakonoval 2020; |Griinewald & Diakonoval 2019).

See Appendix [J] for further details on experimental conditions. Fig. d] summarizes the results. Our
optimistic MAP model consistently identifies better or comparable solutions compared to other base-
lines. Additionally, the cumulative queries |Q}'| remained the smallest among the three adaptive
query baselines. Further comparisons with multi-fidelity BO are available in Appendix [I.3]

6 CONCLUSION AND LIMITATIONS

We explored the impact of social influence, a common but under-researched cognitive bias in col-
lective decision-making. To bypass the impossibility of groupthink-proof aggregation, we proposed
a dual voting mechanism and developed a learning algorithm for social influence graphs using op-
timistic MAP, which accelerated social-influence-free consensus-building across six synthetic and
four real-world tasks. Our results generalize to any positive linear combination of aggregation func-
tions and apply to both provable likelihood-ratio models and popular GP-based approaches.

While our algorithm is the first of its kind with a general theoretical guarantee in the social-influence
setting, it shares limitations common to optimistic algorithms like GP-UCB (Srinivas et al. |2010),
particularly in high-dimensional problems. Additionally, our current framework does not support
batch settings, and the aggregation function must be specified in advance, assuming stationarity
and homogeneity. To extend to heterogeneous and dynamic cases, the probabilistic choice function
approach (Benavoli et al. 2023b) presents a promising avenue for future research. While we framed
social influence as a bias to eliminate, positive social influence—such as debiasing confusion or
using nudge theory (Thaler & Sunstein) 2008)) to guide behavior—can also be beneficial. Since our
algorithm is symmetric to u, v, this inverse approach is possible and a promising direction for future
research, as discussed further in Appendix
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7 ETHICS STATEMENT

Our experiments do not involve human subjects. We study social influence in general, focusing on
the spontaneous aspects of human society, such as cognitive biases that arise from societal influence,
leading to biased votes. We do not investigate issues related to harassment or politically incorrect
behavior. Even if someone attempts to misuse the method, our approach is designed to mitigate such
effects, never to act adversarially. By aiming to protect the worst-off agent, who may be a selfless
altruist, our research upholds ethical standards.

8 REPRODUCIBILITY STATEMENT

Our code is open-sourced at https://anonymous.4open.science/r/
socialBO-1EED/|for reproducibility. The experimental details are delineated in Appendix [J}
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A PRELIMINARY

A.1 TABLE OF NOTATIONS

Table 2: Notations and Descriptions (Part I)

Category Symbol Description Reference

x Option Eq.

x* Consensus (global optimum) Eq.
Domain Xy Queried option at ¢-th step Eq.

X e R4 (continuous) domain Eq.

d Number of dimensions Eq.

n Number of agents Eq.

\%4 Set of n agents Eq.

1 Index of agents Eq.

u(x, ) Truthful utility for the i-th agent. Eq.

v(x, 1) Non-truthful utility for the i-th agent. Eq.

u(z,:) Utilities of all agents Eq.

(-0 Preference of agent 4 induced by utility w(-, ¢) Assumption
Utilit - Preference of group induced by social utility S Definition

p(u), p(v) Prior over utilities (uniform prior) Section

U, U MAP estimate of utilities. Lemma

v(x, ) Non-truthful utility for the i-th agent. Eq.

u(x,:) Utilities of all agents Eq.

U, U Utility function sample from confidence set. Assumption

Uy, Uy MAP estimated utility function at ¢-th step. Assumption [2.6|

Uy, Uy The lower confidence bound of utility. Remark 3.7

Uy, Uy The upper confidence bound of utility. Remark [3.7]

o Sigmoid function Assumption |2.2
Likelihood C(u), 4y (v) Log Likellihood (LL) function Corollary 3.

00y MLE estimate of LL values Lemma|3.6

Li(u, A, v) Unnormalized negative log posterior Section 3.

A Aggregation function Definition

. S Social utility Definition [2.
?ggr§gatlon w Weight function of .4 Proposition|C.4
unction . . .-

P GSF interpolation parameter Proposition [C.4

0] Sorting function Proposition [C.4

ki(x,2’) Kernel of i-th agent’s utility Assumption

Hr, RKHS corresponding to the kernel k; Assumption [2.6]

[ 11k Norm induced by inner product in RKHS H, Assumption [2.6|

LY Isotropic norm bound of Hy, Assumption [2.6]

Bvi B%i Set of utility functions of i-th agent Assumption [2.6]
RKHS B, B* Superset of utility functions of all agent Assumption |2.6|

By, B} Superset of MLE-estimated utility functions at ¢-th step Lemma

Bz"A’" Superset of MAP-estimated utility functions at ¢-th step Lemma

Y e, v, veY Maximum information gain for corresponding kernels Lemma

Ly, Kernel specific term Theorem

v Matérn kernel smoothness paramter Table

Fi Filtration at the step ¢ Lemma

5 Probability that B/ does not contain u, A, v Lemma
Confidence ¢ Radius of the function space ball Ly, Lemma 3.6
set N(B“ ¢, |lloc) Covering number of the set B* Lemma 3.6

B, By MLE-based confidence set bound parameter Lemma|3.6]

4 MAP-based confidence set bound parameter Lemma 3.6]
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Table 3: Notations and Descriptions Part II

Category  Symbol Description Reference
E The set of weighted directed edges. Definition
G = (V,E) The social-influence graph Definition 2.5
A The adjacency matrix of G. Definition [2.5]
N¢(7) The (in)-neighbour of 7 in G. Definition 2.5}
p(A) Graph prior Eq. (4
Graph 13 Tiknohov parameter (invertibility regularizer) Eq. (4)
Kq Dirichlet concentration parameter of i-th row  Eq. (
oA The smallest element of A Eq. (
Normalising constant of prior p(A) Eq. (4)
graph sample from confidence set. Assumption

MAP estimated graph. Assumption
The step of iteration Assumption
The running horizon Assumption [3.4]
public queries Assumption [3.4]
private queries Assumption 3.4
combined set of private and public queries Lemma
Public vote Assumption
Private vote Assumption [3.4]
Query costs of private and public votes Assumption |3.4]
Acquisition function Eq. (3)
wy, wy Projection weight function Eq. (6]
. q Decay rate Algorithm |1
Algorithm Rt Cumli,lative regret Thiorem
SR Simple regret Section [5
Ly Regret constant from aggregate function Theorem

A.2 HYPERPARMATER LIST

Table 4: The complete list of hyperparameters and their settings.

hyperparameters initial value data-driven optimisation? tuning method

kernel hyperparamters GPyTorch default 4 the method in Appendixlﬁ'
Y, V1 in Theorem - 4 algorithm using Hong et al.|(2023)
d4 in Eq. 4| 0.01 fixed -

¢ in Eq. 1/25%n? fixed -

k; in Eq. 1+ 1/n2(262 - 1) fixed -

L, in Assumption 1.5 v the method in Appendix
B, By, B¢_in Lemmal|3.6| 0.5 v the method in Appendix [[.1|

q in line.in Alg. 0.5 fixed -

A.3 DEFINITIONS

At first, we formally define the definitions we introduced:

Definition A.1 (Invertibility). The graph matrix A is invertible (also known as nonsingular or
nondegenerate) if there exists a square matrix B such that

AB=BA=1, (7)

and we denote such B as A~ ".

Definition A.2 (Identifiability). Let M = {M 4 : v(z,:) = Au(z,:) | A € R"*"} be a statistical
model of social influence. M is identifiable if the mapping A — M 4 is one-to-one:

MA1 = MA2 = A1 = A27 vAl,AQ c R, (8)
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In an unidentifiable case, the above relationship is not one-to-one. Such cases can be found. For
instance, if v; = u; = w, Vi, j, then matrix A can be any matrix with y A;; = 1. This assumption
excludes such cases.

Definition A.3 (Strong convexity). A function h(x) is said to be strongly convex with parameter
m > 0 if, for all matrices A, B € R"*", the following inequality holds:
h(B) = h(A) + Vh(A)T (B - A) + T 1B - A|*, ©

where Vh(A) denotes the gradient of h at A.
Definition A.4 (Monotonicity). Foranyt € [T],i € V,z,2’ € X, a social utility S is monotonic,
S(z) > S(2') if:

(u@,i) > u(@’,i)) A (V5 € V\{i} u(z,j) = u(2’, j)).

Intuitively, a social utility S(z) should increase if any individual utility u;(x,¢) improves. Mono-
tonicity guarantees the maximising the social utility leads to the improvement of individual utilities.

Definition A.5 (Pigou-Dalton principle (PDP)). An social utility S satisfies S(x) > S(z') if:

1. In a strong sense, u(x,:) = u(z',:) for v € X whenever there exist i,j € V such that (a)
Vk € V\{i, 3} u(z, k) = u(a', k), (b) u(z,i) + u(z,j) = u(a’,i) + u(@’, j), and (c) lu(z',i) —
u(z', 5)| > |u(z, ) — u(z, 7).

2. In a weak sense, we only require that u(x,:) = u(z’,:).

Intuitively, given a utility vector u(z, :), if an agent with a higher utility transfers < 1/2 of its excess

utility to another worse-off agent, the aggregate function A should prefer the transferred utility over
the original for the fairness.

B GRAPH PROPERTIES

B.1 PROOF OF LEMMA[2.7]

We begin by introducing useful lemmas.
Lemma B.1 (Utility bound). Yu € B%,x € X,i € V, the utility is bounded by u(x,i) €

[_Lu: Lu]
Proof.
lu(@)| =[(u, k(z, )|, (10)
<lulll[&Cz, ), (Cauchy-Schwarz)
<Ly \Vk(z,), (Assumption 2.6)
<L,. (Assumption 2.6)
[

Lemma B.2 (Range preservation). Under Eq. (3) and Assumption both u,v are bounded by
the same range u,v € [—L,,, L,].

Proof. Given the conditions A;; > 0and }7_, A;; = 1, each v(-,i) = >27_; Ajju(-,j) is a
convex combination of the (-, j). The convex combination ensures that,

minu(-, j) < o(-,4) < maxu(-, j) (11
J J

By LemmaB.1} u(-,4) € [~ Ly, L]. Therefore, v(-, i) € [~ Ly, L] O

Lemma B.3 (Matrix norm bound). Under Eq. (3), if the graph matrix A is invertible, the Eu-
clidean norm of the inverse matrix satisfies

1< A7 < n. (12)
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Proof. Lower bound. Let A\; > Xy > --- > X, > 0 be the eigenvalues of A. The Euclidean
norm ||A~1|| is the largest singular value of A~!, which, for symmetric matrices, is the largest
eigenvalue of A~", therefore |A~"|| = !/x.. The condition Y 7, A;; = 1 is known as row-
stochastic matrix. The Perron-Frobenius theorem (Meyer, |2023) ensures that such a matrix has a
unique largest eigenvalue. The row-stochastic condition can be understood as Ae = e, where e :=
[1,---,1]" is the column vector, implying e is an eigenvector of A with eigenvalue 1. Therefore,
A1 = 1 holds, thereby \,, < 1. As such, the lower bound: ||A~!|| > 1/x,, = 1 is obtained.

Upper bound. We consider the operator norm induced by the Euclidean norm ||-||2, which is defined
as:
|AT I = sup = [|A7 al2. (13)
lzlla=1
To find an upper bound, it is helpful to use properties of induced norms. Specifically, for any matrix
M, we have:

[M]l2 <[|M]1, (14)
1Mz <[|M]]oo, (15)
where || M||1 is the maximum absolute column sum, and || M ||, is the maximum absolute row sum.
Since A is row-stochastic matrix, || A/ = 1.
We can consider B = A~ = (By;)i jev:
[Blly = max > Jbis| (16)

eV

Given that A has positive entries and is invertible, the inverse B will have entries that can be bounded
based on n. Specifically, by leveraging properties of positive matrices and norm inequalities, it can
be shown that:

|B1 < n. (17)

Consequently,
[1Bll2 < [IBllx < n. (18)
O

Lemma B.4 (Identifiability). Under Eq. , given the full rank observation dataset (u(x+,:))re[m)
from data pairs (v(z+,:),u(x+,:)) ), A is identifiable from such dataset.

Proof. Positivity constraint in Eq. (3) eliminates the possibility of multiple solutions differing by
sign or magnitude in a way that violates positivity. The full rank assumption ensures each row A;.
has a unique solution. Thus, identifiability holds regardless of the invertibility of A. O

Main proof.

Proof. Under Assumption [2.6]and Eq. (3, range preservation is proven in Lemma [B.2}

If we add another condition that matrix A is invertible, Lemma [B.3] shows its Euclidean norm is
bounded by 1 < |A~!|| < n.

Alternatively, if we assume the full rank condition for the observed pairs of (u,v), Lemma
shows A is identifiable from observed datasets. O

B.2 GRAPH PRIOR PROPERTIES

Lemma B.5 (Strongly convex prior). The prior in Eq. (4)) satisfies:

(a) positive matrix: Every entry A;; > 0.
(b) row-stochastic matrix: Each row sums to 1, i.e., 2?21 Aij =1 foralli.
(c) strong convexity: —log p(A) is strongly convex with regard to A.
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Proof. (a) positive matrix. By definition of Dirichlet distribution, all row-wise samples are
nonzero. «; > 1 discourages sampled matrix A from selecting the boundary, i.e., 4;; = 0. To
exclude the small chance of zero entry, the constraint A;; > d4 and 64 > 0 directly ensures the
strict positivity.

(b) row-stochastic matrix. By definition of Dirichlet distribution, all row-wise samples are row-
stochastic.

(d) Strong convexity. The negative log prior is

—logP(A) = Z A?j — Zlog Dirichlet(a;; ;). (19)

i,j€[n] i=1

The sum of strongly convex functions is strongly convex. Therefore, if all terms are strongly convex,
we can say log P(A) is strongly convex with regard to A. We can show the strong convexity if its
Hessian V2 f(z) satisfies:

V2f(z) = ml. (20)
For the Tikhonov term, we have simple sum of squared elements, thereby its Hessian is 27, thus
strongly convex.
For the Dirichlet term, we have

n

— log Dirichlet(a;; ;) = — log IEB H A"/"”‘_1 (21)
j 1

— log B(k;) Z kij — 1) log Ayj, (22)
j=1

where B(k;) is the multivariate Beta function, which is a constant with respect to A. For each A,;,
the Hessian entry is (rii—1)/a2. As k;; > 1 and A;; > 0 for Vi, j € V, therefore the Hessian is
strictly positive, thereby strongly convex. O

B.3 OTHER POSSIBLE GRAPH STRUCTURES

Non-linear graph For non-linear cases, we can employ a graph convolutional kernel network ap-
proach [1]. Using the kernel trick and Nystrém method, this approach can transform non-linear
functions into effectively linear forms. Popular graph neural network models can also be seen as
special cases of [1]. Once the model is linearized, our approach can be applied directly. The lin-
earized graph has m components, where m represents the number of Nystrom model centroids. By
applying the Cauchy-Schwarz inequality, our bound in Theorem 3.12 becomes looser by a factor of
/m. However, since this is a constant, the order of the asymptotic convergence rate remains the
same at —1/2. The Nystrom method provides an eigendecomposition-based approximation of the
non-linear network, where m reflects the complexity of the non-linear social graph. This adjust-
ment is reasonable, as a more complex ground-truth social graph would naturally lead to a slower
convergence.

Peer-pressure model In a peer-pressure scenario, we assume a setting where a minority of agents
may shift their votes toward the majority. This minority or majority could vary based on the option
x, creating a heterogeneous setting. If the setting is homogeneous, our algorithm can model peer
pressure directly. For a heterogeneous setting, as noted in L.534-536, we can incorporate diversity
using a probabilistic choice function (Benavoli et al., 2023b). While regret bounds for this model
are not yet established in the literature—given that even linear graphs are novel in this context—the
submodularity of the probabilistic choice function suggests sublinear convergence.

Hierarchical influence For hierarchical influence, we are unsure of its relevance in settings where
all participants vote in the same room. This scenario may arise when influence propagates slowly
among voters, as in presidential voting. Our target tasks, however, are in an online setting where
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voting is iterative and occurs at a relatively faster pace than in presidential elections (see Section
5). Still, if it does occur, a grey-box Bayesian optimization approach [2] could be applied, where
the hierarchical graph structure is known but the specific attributions remain unknown. Under these
assumptions, we can demonstrate the same convergence rate as in Theorem 3.9 with high probability,
although this analysis is beyond the scope of the current paper.

C AGGREGATION FUNCTION

C.1 POPULAR AGGREGATION FUNCTIONS

We generalize the aggregation function as v(x,7) = >,
popular aggregation rule can be expressed as w(z,4) > 0.

in) W(@, i)u(z, i). Then, we will show the

Utilitarian aggregation

w(z, i) = - (23)

Egalitarian aggregation

1 if i = argmin, e, u(w, ),

- i€ln 24

wz, i) {0 otherwise; @4)
, 1 if i = argmin, e, u(w, ),

_ ie(n 25

wz, i) {0 otherwise; (25)

Chebyshev scalarisation function

e . )
w(z, i) = 1 iti= a.rg MiNep,) = 26)
0 otherwise;

We can understand this function is similar to egalitarian aggregation.

C.2 PROOF OF IMPOSSIBILITY THEOREM

Proof. We prove the impossibility of groupthink-proofness for any aggregation rule .4 in the absence
of a trivial social consensus.

Definition C.1. (Trivial social consensus) j,.;,;.; is the trivial social consensus if for all i € |V
* _ .
Liriviqr = Argmax, u(x, Z)

s

Let us assume that there exists a groupthink-proof aggregation function A and no trivial social
consensus. With respect to (Defn. [3.1)), any aggregation rule A is groupthink-proof if for any social
graph G

arg max Alu(z, )] = arginaX.A[v(a:, 3]

Consider a subset of all possible graphs, Gaictatoriat = {Gi| Vi,j,k € |V| Ajr = I{i = k}}.
Intuitively, G g;ctatoriar 1S the collection of social influence graphs where one agent forces everyone
else to take their utility. Since A is groupthink proof for any G, it must also be groupthink proof
w.r.t subset G g;ictatorial-

Let us denote the social consensus of the groupthink-proof aggregation rule as

x* = arg max Afu(x, )]
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Let us iteratively compute the social consensuses obtained by aggregation of non-truthful utilities
under Gdictatoriah i.e. for all Gz S Gdictatoriah

arg max Alv;(z, :)] = arg max A[A;u(zx, )]

= argmax A[lu(x, )]

T

= arg max u(x, 1)
xT

For A to be groupthink-proof for each G; € G yictatorial
argmax Alu(z,:)] = argmax Afv;(z, :)]

(=) foralli € |V| 2" =argmaxu(z,1)

This means x* is a trivial social consensus, thus resulting in a contradiction. Therefore, no aggrega-
tion rule is groupthink proof in the absence of a trivial social consensus.

The old proof is below for reference:

Proof. To prove impossibility, we show that for every aggregation rule A there exists a graph G and
utility profile u(z, :) such that groupthink-proofness (Defn. is not satisfied. To show this, we
construct a counter-example for any aggregation rule A.

Consider the =g, be a preference relation defined on X’ with respect to S, (x) := Alu(z,:)]. For-
mally, Vz,2’ € X, z =g, o' iff AJu(z,:)] > Afu(z’,:)] Since A ensures non-dictatorship, it
implies that Vz, 2’ € X

3 i (dictator) such that x>, 2’ <= = =g, o' 27)
where u; = u(+, %) is the utility of the agent i.
Casel: V| =1
Given |V| = 1, there exists a single agent with truthful utility u, since it cannot be socially influenced

Alv(z, )] = Alu(z, )]
=u(z,i) (DefP2.3)

Thus all aggregation rules are dictatorships in this case where the single agent acts as a dictator.
Case2: |V| > land |X| =2

Given |X| = 2. Lets consider X = {z, 2’} then for all agents {u(-, ) }icv, (T =y, ')V (2 =y, T)
is true. Now when we consider the social utility S, since it is a complete preference (z >g,
2 )V(x' =g, x)isalso true which implies there exists an agent i such thatx =, @/ < x =g, .
Hence all aggregation rules act as dictatorships in this case.

Case3: [V|>1land X > 2

To show the counter example, we consider u(z,:) such that for i # j, argmax,cy u(x,i) #
arg max, ¢ y u(, j). We can construct a social influence graph G with transition matrix A such that
Aji, = 0;—1 where 7 is the index of agent which influences everyone to take their utility.

Then the final aggregated non-truthful utility
Alv(z,:)] = AlAu(z, )]
= A[lu(z,1)]
=u(w,i) (Defl2.3)

Thus, S, cannot be the same as the aggregation of non-truthful utilities as it will lead to dictatorship.
And given that for all 4, j, arg max,, u(x, i) # arg max, u(x, j), there are two possible cases

Case 3.1: argmax, S, (x) # argmax, u(x,?) for all ¢. In such a case, groupthink-proofness is
impossible by construction for graphs G where an agent influences everyone to take their utility.
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Case 3.2: 3i such that arg max,, S, (z) = arg max, u(x, ). We consider a graph G such that agent
7 # i influences everyone to take their utility.

Thus we show for every aggregation function .4 there exists a graph G and a utility profile u(x. :)
such that groupthink-proofness is not satisfied.

C.3 EXAMPLE: PARETO FRONTS ARE NOT GROUPTHINK-PROOF

individual utility social utilit

-

group S

x*
consensus

)

Pareto frontier
T

S

corrupted
consensus

04 080 04 08
option x option x
Figure 5: Pareto frontier corrupted by the social influence can exclude the true consensus.

=)
S =S

=
[w)

non-truthful utility v truthful utility 2®
B

A common approach to overcome this challenge in multi-objective optimization is to estimate the
Pareto frontier, assuming it includes the consensus point z*, as a ‘trade-off’ solution. We present
a simple illustration where this assumption fails due to social influence. Consider two agents: the
influencer (aq) and the follower (as )’} Here, we assume that v is given, and A is utilitarian (c.f.
Section, yet we do not have the access to u nor A. We set the ground truthas A = (-2 -1 ). This
indicates that a, prioritizes their own utility 9 times more than as’s, while ay values a s utility 1.5
times more than their own. As shown in Figure[5] the non-truthful utilities v become nearly identical.
‘While the truthful consensus is at x* = 0.82, the non-truthful one is at £* = 0.38. Furthermore, the
non-truthful Pareto frontier does not contain the truthful consensus x*. This example demonstrates
that even the Pareto frontier, a conservative consensus approach, fails to address the issue of non-
truthful feedback.

C.4 PROOF OF PROPOSITION [2.4]

Proof. This proof is adapted from Proposition 1 in|Sim et al. (2021)) for our cases.

For any z, 2’ € X, let u*(x,:) := ¢(u(x,:)) be the utility vectors obtained after sorting elements of
u(x, ) in ascending order, and wy > wg > - -+ > w, > 0 be the weight function.

Proof of monotonicity. Let the position of u(z,) in u*(z,:) be iy, ie., u*(z,i,) = u(z,?).
Given Vk € V\{i},u(z, k) = u(2’, k) and u(z, ) > u(z’, ), we must have i,, > i,,. Furthermore,
(i) for k € [0,iy ) and k € (iz, 0], u™(x, k) = w*(2', k) and (ii) if i, > iy, then for k € [iy,iz),

*Note that the decision-maker is not the influencer but the facilitator. The facilitator seeks to elicit the
truthful social utility S, but the influencer distorts the entire voting process.
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u (@' k+1) = u*(x, k).

S(z) - S(a')
= weut(w, k) = > wput (2 k), (Definition of GSF in Eq.[2)
ip—1 ie
= w;,u"(z,ig) + Z w, uw*(z, k) — Z wi, u* (@' k) —w; ,u*(x',iy), (Assumption (i))
k=i k=i, +1
= wi, u* (2, 1,) — w;, u" (@ igr) + Z (w1 — wi)u™ (2, k), (Assumption (ii))
k=i, +1
> wi, u (2,ig) — w; ,u* (@ i) +ut (2 ig) Z (Wg—1 — wg),
k=i, +1
(Using sorting properties: Vk > ./, u*(2’, k) > u*(2',i,) and wr—1 — w > 0)
= wi, u (i) — wi, u (@ i) + u* (2 i) (Wi, —wy, ), (telescoping series)

=w;, (u*(z,iz) —u* (2’ ig)),
= wj, (u(z, 1) — u(@',1)),
> 0. (u(z,4) > u(x’,4) and w; > 0)

Proof of PDP. Let [, be the index of min(u*(z,%),u*(x,j)) and h, be the index of
max(u*(xz,1),u*(x,j)). We will see the following two useful facts:

(1) We must have I,y <1, < h, < h,,. We will see the validity of this condition by considering the
following contradicting assumption; /.- > [,. Because of the strong PDP condition (a) and the fact
that [,/ index a minimum, it would mean min(u(z’,?), w(2’, 7)) > min(u(z,),u(x,j)). By the
strong PDP condition (b), we would also have max(u(z’, ), u(z’, j)) < max(u(z,i),u(x,j)). As
such, we would have |u(z’,7) — u(2’, j)| < |u(x,i) — u(x,j)|, which contradicts the strong PDP
condition (c).

(i1) GSF can be decomposed as:
I —1

S(x Zwku (@' k) + 81, ~1:n,, Z wrpu* (2, k),
k=1 k=h_r+1
1 —1
Zwku (k) + 81,1, ( Z wiu® (z, k),
k=1 k=h,+1
where
iy —1
St 1y, (@) = wi,u (2 1) + Z win* (z', k) + wn,, u (2, har),
k=1_,+1
lp—1 hg—1 hogt
S —1ny, (2) = Z wrpu” (z, k) +wi,u’(z,le)  + z wpt” (2, k) + wr, v’ (T, he)  + Z wru” (z, k)
k=L, k=l,+1 k=ha+1

(iii) Here, by combining the strong PDP condition (a) and the condition (i), we have u*(x, k) =
w (2’ k) fork € [1,1,7 — 1)U [hy + 1,n] U [l + 1, hy + 1]. Thus, we have;
lll 71 lll 71

Z wru* (2’ k) = Z wru*(x, k),

k=h_+1 k=h_+1

hg—1 hy—1

S weut (@ k)= > weut(x,k)
k=l,+1 k=l,+1
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then,
S(') = S(x) =81, 1, (') = S, —1:m, ().

Based on the PDP conditions (a)(b)(c) and the facts (i)(ii)(iii), we have,

S(@') - S(x)
lo—1
:Zwku (x, k) +w u(z,ly) + wp,u*(z, hy) Zwku (z, k)
k=L, ha+1
hy—1
— | w,,u Z wiu* (', k) + Z wpw (2’ k) +wp,u (2 hy) |
1L +1 k=hg
(Using (ii)(iii))
lo—1
:Zwku (x, k) + w u*(z,ly) + wp, u*(z, hy) Zwku (z, k)
k=1, hyt1
— | wi,u Z wiu* (v, k—1) Z wpu*(x, k+ 1) +wp,, u* (@ hy) |

/+1

Here we used the ranking structure: decrement for k € (I, 1], u*(2',k) = u*(z,k — 1) and
increment for k € (hy, hy],u*(2', k) = w*(x, k + 1). Then, by regrouping the related terms, we
have,

lo—1
= D (wp = wn)u (@, k) + (w (@, 1) = wy, u* (@ 1))
k=1,
h»’C’
+ (wth* (J"7 ha:) - whw/U* (.’17/, hw’)) + Z (wk - wk*l)U*($> k)7
he+1
lo—1
> 3 (g — wp ) (& L) + (w07 (2, 1) — w0 (2 1))
k=1,
iy
+ (wp, v (x, hy) — wp (2’ her)) + Z (wr — w—1)u* (2’ hy),
he+1

because wy — wi—1 > 0 and u*(x, k) = u*(m’,k: +1) > u* (2
(wg, — wi_1) is negative, and u*(z, k) = u*(2', k — 1) < u*(x
Then, using the telescoping series,

JAg) fork =1+ )1, — 1, and
:c’) fork = hy + 1, -, hy.

)

= (wi,, —wy, )u* (@', o) + (W, u* (2, 1) —w, u* (2, 1))
+ (wp, v (z, hy) — wp, u (2’ he)) + (W, — wh, )Ju" (2, har),
= —wu (2, ly) + wu* (2, 1) + wp,u (0, hy) — wp, ™ (2 hy ),

= —w u (2 ) +wy, (W (@ 1) +u* (2 her) — u™ (2, he)) + wp,u (2, hy) — wp, ™ (2 hy),
(PDP condition (b))

= (wi, +wn,) (" (@, har) — " (2, ha))

> 0.
(Iy < hy and u*(2', hy > u*(x, hy)), Le., max(u(a’, i), u(z’, j)) > max(u(z, ), u(z, 5)).)

Therefore, S(z’) — S(x) > 0. O
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D PREFERENCE LIKELIHOOD

D.1 PROOF OF COROLLARY [3.3]

Proof. We begin by the original Bradley-Terry model definition:

PAY , —1) = exp(u(z, i) _ )8
o =) = ol ) + explula ) )
Using P(1 527/ =0) = P(liiw = 1), we introduce the likelihood function for a comparison

oracle:
pao (@r, 20,19 =198 (a(x,, ) — a(al,:)) + (1 - 19’)) [1— S (a(xy,:) —a(z",:))]. (29)

We can then derive the likelihood function of a fixed function 4 over the observed dataset, D(QQ;,
]P)ﬂ(i') (D(QZ%‘) = HTEQ“ Pa (ITa Loy 1( ))

Consequently, the log-likelihood (LL) function becomes:

0(a(, 1)) = log By (DG)), (30)
=log [[ paoo (2r,2],19), 31)
TGQf
=Y logpyw (zr, 2, 1), (32)
TEQY
LS tog | R DI + explital )1 1) o)
. exp(aun 0+ exp(ala, 1) |
= 3 [, 19 +aal, ) (1 =10)] = S log exp((er, i) + exp(@(e), )]
TEQY TEQY
(34)
O
D.2 JOINT LIKELIHOOD.
Multi-agent case We can easily extend to all agent cases:
(] QF) (35)
= (i, 1)), (36)
%
=33 [atwein® +agal, (0 - 19)] = 37 37 toglexp(a(er, i) + expla(a), )],
i€V TeQY 1€V ey
37
= 3 faer )1+ ale, )1 - 1] = 303 log lexplin(a, 1)) + exp(ia(al, ). (38)
TEQY i€V TEQY
Non-truthful case Similar to Eq. , we can define the likelihood function for v,
(0] QF) (39
= 4u(b(-,4)), (40)
eV
fz Bar, D1+ (e, ) (1= 12)] = 303 Tog fexp(i(ar. i) + exp(o(@),i)]. @1)

i€V re(t]
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Joint log likelihood The joint likelihood is simply the sum of each likelihood:
Li(h, D)
=l (a] Q) + L (u, v | QF),
=Y lilar, )1 +alal, ) (1 — 1)) = > Y log [exp(i(ay, i) + exp(i(a), i))]

TEQY i€V TeQY
+ Z (7, )1) 4+ 0(xl,:)(1 — 17)] Z Z log [exp(0(xz+,1)) + exp(d(z,4))]. (42)
TEt] i€V reft

MAP estimation We can further extend the above joint log likelihood to MAP estimation by
adding log p(A):

LY"P(a, A, 0)
=L,(2,0) + log p(A),

o L(h,0) + Zlog Dirichlet(A;, ;) — Z A”7 (43)
eV i,j€[n]
oLy, D) + Z(O‘U 1)log Aij — Z A, (Remove constant term)
JEV 1,j€[n]
= Z [a(xr, )12+ a(zl, ) (1 — 1)) Z Z log [exp(@(z,,1)) + exp(a(z.,1))]
TEQY €V reQl
+ ) (e, ) +d(al, ) (1= 10)] =YY log [exp(i(wr, 1)) + exp(d(a), 1))]
T€(t] i€V relt]
+ Z (aij —1)log A — Z A?j. (44)
JjEV i,j€[n]

D.3 PROOF OF LEMMA 3.6

To prepare for the proof of the lemma, we first introduce the following two preliminary lemmas
adapted from the Lemma C.2 and C.3 in|Xu et al.|(2024b)).

Lemma D.1. For any fixed 99 := (-, 1) that is independent of (., ", 13 ))TE\Q;’\» we have, with
probability at least 1 — §, Vt > 1,¥Vi € V,

7.‘.2 | Q? |2
65
(45)

log P50 ((9CT7$T71(T )Te\g;{\) —log P, ((ffwffml(r )Te\g;{\) < \/32|Qf|L12; log

where v\ is the ground truth function.

Lemma D.2. There exists an independent constant C} > 0, such that, Ve > 0, Vv%i), véi) € B" that
satisfies ||v§l) - vgl) lloo < € we have,

IOgPUY) ((xTvxrvls-))TE\Q}’\) - logpvéi) ((x‘rvxrvls-))TE\Qi’\) < CEE|Q216)|7 (46)

where C} =1+ W

Main proof. We use N (B¢, ||||oc) to denote the covering number of the set BY, with
(1), \N(B",¢|-lloo) ) : v 50

(v; 7" )j=1 be a set of e-covering for the set B”. Reset the ‘6’ in Lemma [D.1| as

8/N(B”,e,|ll«) and applying the probability union bound, we have, with probability at least

1- 30 t>1ieV,

™| QF[?
66

(47)

logP, . ((2r, 7,19 ei0p1) — T0gPuo (2,219 ey ) < %2@5@% log
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By the definition of e-covering, there exists k € [NV (BY, ¢, ||*||oo)], such that,
10— villo <6
Hence, with probability at least 1 — 4,
log Py ((ffrvfflwl(f)%e\g;w) —log Py0) ((ffr»ffial(f))Te\gm)
—10g Py ((2r, 2, 19) reip) ) - log P, 0.« (e 2 19) 100
—i—log]P’U;i),e ((xrvmlrvlg'i)>T€\Qf|) —log P, (($r7$;71§i))re\gf|) ;

T2 QPN (B, €, ||-[loo)
66

Under the isotropic norm bound assumption [2.6] this easily extends to n utilities,

<C7e|lQ}| + \/32@}’L5 log

log P5 ((337733'7713)76\%0 — logP, (($T,$;,1$)Te|gg|)

T2 QPN (B, € ||[loo)
60

<nCyelQy| + J 32/Q¢n?L2 log

Similarly, the same applies to v under Assumption 2.6}

log Py ((xﬂx{rv lﬁ)re\Q’#l) — logP, ((x77m;—7 1$)Te|gg|)
2| QFPN (B, €, || ] 0)
60

<nCyelQy| + ¢32|Q%|n2La log

Therefore, the joint likelihood £, (i, A, ©) is bounded by:

Li(t, A, D)
=logP; ((wr,27,17)r¢j0p)) — log Py (2,27, 17) ¢ 0y))
+ IOg Pq ((fr,flﬂlg)re@;ﬂ) - IOg]Pu ((SUT,.%;., IZ)TE|Q?\) )
T QPN (B, € [|-]loo)
66
w2 QPN (B, €, ||-[loc)
60 '

<nCyel Q)| + \/32|Q;)|n2L%, log

+nCyel Q)| + \/32Q?In2L%; log

(48)

(49)

(50)

619

(52)

By range preservation lemma @ L, = L,, thereby C} = C}. For brevity, we introduce the

2 v .
notations C, := T—="=_"llllee) N(Bd;’“ lee) ) Quv| = | QY| + | QY.
Therefore,
Lt(aa‘ZLﬁ)
<neCy(Q¢| +1971) + /3207L2 (V/1QfTIog CIQFP + /@3 Tlog CIQ}?) ),

(Rearranging Eq. (52))

<neCy|Qi"| + /320712 (v/[Q}1og CIQ ' + /[Qf1og C Q7))

(1941, 1971 < 12D

=neCy|Q}"| + /3202 L2 (V/|QF] + V/[Q7])v/log Cc| Q" 2, (factor out)

<neC¥| Q™| 4 /64n2L2| Q1| log C.|Q¥¥|2, (Cauchy-Schwarz)
2 uv |2 v .

=neC}| Q1| + \/64n2Lg|Q;“f| log = il Néf &) , (unpack C.)

::/Bl(eaéana |Q;“)|) (deﬁne /8)

The last inequality was derived from Cauchy-Schwarz inequality, \/a + vb < \/2(a + b).
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E EFFICIENT COMPUTATIONS

E.1 ProOF oF LEMMA[ET]

Lemma E.1 (Kernelized formulation). MAP and (3)) can be recasted into convex optimisation:

(Reformulated MLE) (Reformulated acquisition function)
max Ly (U, A, Vi | Dy) max  Alz] — Alz]
Uy eR™ UteR ,z€R2
V,,eR"; Vi €R™E ACR™
AcRr™ T
U 1 U 2
st Ul KguUy < L3, (532 O { N ] Kgi, { . } <12,
V' KgpVe < L2, Vi KgpVi < L3,
1—04 2 Ay 204, Vi, LA (U, A, Ve | D) > L7 (i, Ay, 00) — Bu(| Q1))
DAy =1,V (U | Day) > £(Ur | Doy) = B (191,
J

6(Ve | Dav) > 6:(Ve | Dav) — B (19F]),
1-— 514 Z A’LJ 2 5Aa Vi?ja
> Ai=1,9j
J
(53b)
Proof. We begin by the convexity, then we show the equivalence to MAP, and the acquisition func-

tion maximisation problem (3).

E.1.1 PROOF OF CONVEXITY.

Reformulated MLE The function ¢, (y,%') := log(e¥ + e ) — p,y — (1 — p. )y, pr € {0,1} is
a convex function because V), (y,,y.) = 0, thus the Hessian is nonnegative. Then, when assume
z; = 0(x;),nr = @(z,), our negative log likelihood function —L;(z., 2., n,,n.) is also a convex
function with VL (2., 2., n,,m.) = 0.

For graph convolution part, the function 9. (A) := log(e* + e4*") — p, Au — (1 — p,) Au/ is also
convex with respect to A because its Hessian is nonnegative:

82
9AZ P(A) = (u— “/)2 (eAu + eAu')2 2 0. (54)

Similarly, this function is convex with respect to « and u'. We introduce the function P(u,u’) =
eA'“/eAu+eAu’

!
eAueAu

0% ,
5. 0r () = AZP(u)(1 = P(u)), (55)
62 ! /
o7 Vr(w) = APW)(1 - P(W)), (56)
9? ’ A 2 / /
Sud i (u,u') = —A*P(u,u')(1 — P(u,u’)), (57
Therefore, Hessian matrix H is
H = A2P(u,u/)(1 — P(u,u')) {_11 _11] (58)

and the Hessian matrix is positive semi-definite because all eigenvalues are non-negative. Thus, this
is also convex.

Reformulated acquisition function The GSF is the convex combination of utilities independent

of both A and z. Thus, the aggregate operation is simply reduced to the linear combination of z.
Under the convex constraint of optimistic MLE, the linear combination of convex functions with
nonzero weights is also a convex function. And the weight function of GSF is nonzero by definition.
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E.1.2 PROOF OF MLE REFORMULATION.

The joint likelihood £; in Eq. only depends on the values (i(zr,:), @(27,:), 0(zr, ), D(2,:
) = (ur,ul,v;,00), where u, = (u(TZ))ie[n}. As such, we only need to optimise over
(ur, ul, vy, v)) subject to that they are functions in Hy, with norm less or equal to L,. Further-
more, Algorithm sets /. = x,_1, thereby u/. = u,_1, v, = v,_1. Hence, we can further reduce
the optimisation variables to (u.,, v, ).

Here, we only assume @(-,7) € Hy,, then the norm bound constraints are only subject to @. Note
that our kernel is vector-valued, so we use the following notation to describe:

U KgpUs = (UG Ul (59)
where K (ng := (ky(27,, 27, )71,7c0r. The same applies to V; and corresponding kernel. As such,

the constraint in Prob. (53a) consists of n kernel bound constraints. Each constraint is direct appli-
cation of representor theorem (Scholkopf et al., 2001).

E.1.3 PROOF OF ACQUISITION FUNCTION REFORMULATION.

Prob (3] can be formally written as
max Alt(x,:)] — Ala(xy, )],
st. a,A,0eBYAY, (60)
Lo(@, A,0) > Ly(a, A, 0) — g

This has an infinite-dimensional function variable, thereby being intractable. Similar to the MLE
reformulation, we can recast to finite, tractable optimization problem.

Simplest setting. First, we will start with the simplest case where |Q}| = T', as such
max Alu(x,:)] — Ala(ay, )],
s.t.  ueBY, (61)
Lo(@) > Ly(a) — By

And we show the equivalence to the following kernelized formulation.

max Alz] — Alz]
Zot €RP (1) | zeR7
Zow || Z
0:t —1 0:t 2
s.t. [ > } Kgu, { . } < Lu (62)

ZowKo Zow < L2,
Ci(Zo.t) > Li(Ug) — B
Let @ be any feasible solution of the above innter optimisaton problem, and 2 = u(x,:) and

Zow = (@(zr,:))E_, be the corresponding utility value. Consider the minimum-norm interpola-
tion problem,

min |s]|?

seBY

st s(xr,:) =2z, Vr € {0} U, (63)
s(z) = 2.

By representer theorem, this problem admits an optimal solution with the form a ' ko.; ., where
ko:t,e == {k(w, ) }we{ug, - zs,z}- Thus, Prob. can be reduced to

min o' Koy
acRt+2 ’

A N\

64
S.t. K();t’wa = |: 0:t :| . ( )

32



Under review as a conference paper at ICLR 2025

Then the optimal solution of this Prob. (64) is
o Kozo = (Koo)' Ko o Kouaor,
~ T -
_ |: Zo:t :| K1 |: Zo:t :| ) ©65)

3 O:t,x

z

Since w is an interpolant by construction of (ZOzt, Z). We have
~ T ~
P | s | B < e < 2 )

yielding the first constraint. As the LL function only depends on (ZO;t), it holds that

L(Zox,| Doy) = L4(8) = La(iu) — B, (67)
and the objective satisfy

Alz] = Alz] = Alu(z, )] — Ala(zy, )] (68)

Therefore, a set (Zo., 7) is a feasible solution for Prob. (62), with the same objective as © for the the
infinite dimensional Prob. (61)).

Next, we show that for any feasible solution for Prob. (62)), we can find a corresponding feasible
solution of Prob. (61) with the same objective value. Let (Zy.;, z) be a feasible solution of Prob. .
We construct

~ T
. Zo. _
Uz = |: go.t :| KO:tl,xkO!tJ(')v (69)
Hence,
Zox 1T Z
- 11* = [ P } Ko [ 5 ] <L, (70)

and it can be checked that @, (x,) = z.,V7 € {0} U [t] and @,(x) = z. So Li(U,) = L(Zo |
D) > L(0) — B;*. And the objectives satisfy A, (x)] — A[t,(x)] = Alz] — Alz¢]. Soitis
proved that for any feasible solution of Prob. (62)), we can find a corresponding feasible solution of
Prob. (61) with the same objective value.

Original setting The V; constraint is the same with the previous MLE reformulation. Also, the

optimistic MLE bound needs to modify to £ (, A, ¥) as it involves A and v estimate. Then, we can
show the equivalence of this Prob. (60) with the constraint in Prob. (33D). O

E.2 PREDICTIVE CONFIDENCE BOUND

Using the same idea, we can obtain the predictive confidence bounds. Here, x is given as the pre-
diction point, then the upper confidence bound @(x, 7) and lower confidence bound u(zx, i) become

u(x, i) = max z
’ t+1 t
UreR*T! ViR, z€R
Aer™?,
-
Ui -1 Ui 2
s.t. [ 2 KQ%T . | = L,

V' KgiVi < L2,
LYAP (U, AV | Dy) > LAY (4, Ay, 6r) — Be(1QM)), (7D
0(U; | Dgy) > 6(Uy | Day) — B(|1Q1),

(Vi | Doy) > (Vi | Doy) — BY(1QF)),
1-— 6A 2 Al] Z 614’ Vivja

D Aij=1,Y)
J
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u(x, i) = min z
’ t+1 t
U,eR'"*! V,€R",z€R
AER"Q,
Ut Ut 2
s.t. [ > Kgf < LZ,

Vi KoV < L3,

LMAY (U, AV, | DY) > LA (4, Ay, 6y) —
0(Uy | Dgy) > (U | Do) — B1(1QF)),
(Ve | Dgy) > £(Vi | Doy) — B (1QF)),
1—-642> A4 264, Vi, j,

> Ay=1,Vj
J

E.3 PROJECTION WEIGHT FUNCTION

We decompose the projection weight function to the following:

—=u
wf(xtax;) = ||6t (xtvxéa:)f (xtvl'ta')Ha
where
0 (g, i) = max z — max U,
¢ (T6,21,7) U, R V,€Rt,zeR teQy '
Aer™?,

T
s.t. [ Ui ] Ké} [ Ui ] <2
z % | Z v

V' Kg,Vi < L2,

LMAP(U, A Vi | Dy) > LYAP (44, Ay, 0y) —
6(Uy | Dgy) > 4(Uy | Doy) — B1(1QF)),
6(Vi | Doy) > t:(Vy | Doy) — 87 (1Q7)),
1—04 2> A5 >04, Vi, j,

> Ajj=1,Yj
J

0 (zy, wy, 1) = min z —max Uy
U, eRt! V,eR? zeR teQy
Aer™?,

-
Uy -1 U 2
w (5] kg [B] <

V,'KGlV, < L3,

ﬁ}&\/IAP(UhA’ V;f | Dt) 2 ‘C%E\AAP(ﬂtaAtvot) -
6(Uy | Dgv) > €(Up | Dgw) — BH(1QY)),

(Vi | Doy) = (Vi | Doy) — BY(1Q7)),
1-— (SA 2 Al] Z 5147 Vi7ja

> Aij=1,Y)
J
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F PROOF OF THEOREM 3.9
F.1 PRELIMINARIES

We begin by introducing the known proofs.

F.1.1 KNOWN RESULTS

We introduce useful theorems from literature.

Theorem F.1 (Theorem 3.6 in Xu et al.[(2024b)). For any estimate v;11 € By, '\ 1 measurable with
respect to the filtration F;, we have, with probability at least 1 — §,Vt > 1, (x,2') € X X X,

(e (@) = 41 (a”)) = (0(@) = o(@)| < 2 (2L + A~VBE 2O 07 (@,2'). (76)

where

UNBU, s || lloo v v
5<e,6/z,|gz|>=0<\/|gzlogQt el )+e|Qt+e2|Qt|>, )

i 2 !’ ! ! !
(Jff_ﬂ:r,x')) = k" (w,w) — k" (wl:t,w)T (Kffl + /\I) kY (wr.,w), (78)

B (2, 27), (y,)) = k(@ y) + k(' y), (79)
w = (z,2'), (80)

wie—1 = (@, 2)))] 81

Km/ — k,m;’ i ’ i ’ 82

=t ( (@n, 7). (@ 27x72)>)r16[t—1]ﬁ2€[t—1] 7 ®2

and \ is a positive regularization constant.

F.1.2 SUPPORTING RESULTS

We introduce the supporting lemmas for the main proof.

Theorem F.2. With probability at least 1 — 9, for v, € By that is measurable with respect to the
filtration F,

S [ ) — () — (v(e) —v(@)) < 3 wf (e, a) =o( ﬁmwgf) (83)

teQy teQy
where
Br = B(Y/1,6,|Q¢]) (84)
o ( ¢ 0 1og 2N E"- ||'||oo>) | 55)
vv’ 1 —1 grvv’
W e o o los ‘I A (86)
K= (1 (G ) (87)
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Proof. The first inequality follows by the definition.

> wilz,ay) (88)
te Q.
=Y sup |(d(xy) — (x})) — (v(ze) — v(a}))| (89)
teqy, VEB!
<32 (2Lu + AT VBle 32,197 ) ot (w,2) (Thm. [FT)
teQy
< (ZLU + A2,/ B(e,3/2, |Q%|)> Z af}r’/l(as, ') (Monotonicity of 3 in t)
teQy
<O (\ | Br 2’| Q“T|) , (Lem. 4 in[Chowdhury & Gopalan| (2017))
O

The old proof is below for reference. We will remove it upon acceptance.

Lemma F.3 (Weighted utility difference bound (This will be removed)). Vu € B“ z,z’ €
X,0 < w; < 1,W := max; w;, w := min; w;, ¢ € {1, 2}, the weighted utility difference is bounded
by

w(u(z) —u(z")) < wiu(z) — wou(z") <w(u(z) —u(z')), (90)

Proof. We consider the following inequality:

wiu(z) — wou(z') < L(u(z) — u(z')). 91)
Given bound from Lemma[B.1} u(z) € [—L., L,], we consider the following extreme cases;
When u(z) = L, and u(z') = — L., Eq. becomes:

wy Ly 4wy Ly, < L(Ly + L), (92)
Ly (wy +ws) < 2LL,, (93)
wy 4wy < 2L. (94)
Inversely, when u(z) = —L,, and u(z’) = L,, then
—wy Ly — waLy, < L(—Ly, — L), (95)
—Ly(wy +ws) < —2LL,, (96)
wy + wy > 2L. o7
To satisfy both cases, we find
wy + ws = 2L, (98)
By definition, we have
2w < wy + we < 2w, (99)
Therefore
w<IL< (100)
Lemma F.4 (Instantaneous regret). Vu € BY,z,2’ € X,w; € w,W = maX;cy w;,w =
min;ey w;

Alag(2*, )] — Altie (e, 2)]
<Lalin(ee) — 50(}) — (0(z2) — o) (101)
<L qwy (T, x4—1)

where L 4 = \/n|jw||.

36



Under review as a conference paper at ICLR 2025

Proof. By the acquisition function maximization, we have
Alu(x*,:)] — Alu(zy, )] (102)
=Alu(z*,:)] — Alu(zi—1, )] + Aju(xi—1,:)] — Alu(ze, 1)) (cancel out)
<Altg (¢, )] — Altg(@i—1,:)] — (Alu(ze, :)] — Alu(xi—1,:)]), (Optimality of Linedin Alg.[T)
Here, the aggregation function A is the GSF in Eq. . The sorting function ¢(-) rearranges elements

based on the current function estimate @(x¢—1,:). To clarify, we denote ¢g, (y) as the sorting
function that rearranges y based on @ (z¢, :). More formally,

ba(y) = ylrank(as(zr, ),
Da,_, (Y) = Y[rank(ﬂt(wt—h 3))}’
buly) = ylrank(u(z, )], (109

Pu,, (¥) = ylrank(u(z;—1,:))),
where rank(-) is a function that rearranges the indices based on the input in ascending order, y[|
is a rearranged vector of y based on the indices input. We use a slight abuse of notation to avoid
unnecessary x for representing the utility vectors. Then, our regret becomes

W' da [ (w0, )] = W' Ga, [ (we-1,9)] = (W Gu, Julze, )] = W du,_, [ulze1,2)]). (104)
Here, (1981) proved that Hardy-Littlewood-Polya inequality is satisfied for GSF in

Lemma 1. This implies that a mismatch between the sorting basis and the actual functions leads
to the following inequality, e.g.,

W' ga, [t (e, 0)] < W' da, [z, )], (105)
Uy =Ty Up— 17Ut

Therefore, we can further upper bound the Eq. (104):
WT¢17¢ [’at(zt’ )] - WT¢1]t71 [ﬂt(xt—la )] - (qusut, [U($t7 )] - WT¢ut71 [u('rt—la :)])7 (106)
<w' by [Ue (@1, 2)] —w' by, [Ue(ze-1,")] _(WT Du, [ulzy, 1)) —w' Gu, [u(zi-1,1)]),
U1 F Uy Ut—1=Ut—1 Ut ="t U FEUL 1
(Lemma 1 in Weyimark|(1981)
=W da,  [Ue(we,:) — Ue(zi_1,:)] — W' by, [ulzs,:) — u(xi_1,:)]. (107)
The last combination is assured by the additivity of GSF (Theorem 4 in (1981)).

Here, recall our acquisition function maximization is defined as the upper bound of the difference
between utilities maxg, cgu Ut (2, :) — Ut (¢, :). And Lemma(3.6/proves the true function is within
this confidence interval. To maximize, the first and second terms become the upper and lower bounds
within the confidence set, respectively. Thus we have

U (4, 1) > Ug(Tp-1,1), (108)
U, ) > u(ay, ), (109)
w(xi—1,:) > U(we-1,:), (110)
w(xe,:) > U(ze—1,:), (111)

Here, GSF is the Schur-concave function (Theorem 1 in[Weymark| (1981)). Using this property and
the last inequality, we have

W, [ (1, 2) — g (ze-1,2)] > W b, [l (e, :) — g (zp_1, )] (112)

By using this inequality back to Eq. (I07),
WT¢ﬁt71 [@e(xs, ) — Ug(w—1,:)] — WT¢W [u(ze,:) — u(ze—1,:)], (Eq. (T07))
Squﬁut [t (2, ) — Ge(Te—1,:)] — WT¢ut [u(ze,:) — w(wi1,:)], (Eq. (T12))
<W T (b, [l (4, 2) — g (21, :) — w(y,2) — ulzi_1,:)]), (Additivity of GSF)
<|[W|lpw, [Ge (e, :) — Qe(@i—1,:) — w(@y,:) — w(ze—1, )], (Cauchy-Schwarz)

<[Iwll[lte (e, 2) — e (2p—1,:) — wl(@e, ) —u(ze1,:)|,
(Euclidean norm is permutation-invariant)

<Vnl|lwl||ag(ze) — g (z—1) — w(xy) — u(wi—1)), (Cauchy-Schwarz for n agents)
=Lalts(xs) — Ue(xe—1) — u(ze) — ulxe—q)], (Define L 4)
<Lqwy (T, xe-1), (Definition of w}* (24, x¢—1) (Supremum))
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F.2 MAIN PROOF

F.2.1 CASE-I: GIVEN AND INVERTIBLE MATRIX A

Confidence set. The ground-truth matrix A is known and invertible. In this case, we do not need
to learn A, so we can restrict the confidence set,

By = {0 | t:(v | Doy) > 6" — B}'}
Bt ={a|t(a| Doy) > (" — Bi'}
B:’Ayu:{(@vleaﬂ) |£t( ~7ﬂ7@ | DQ;‘aDQ;’) ZgiltvlLEi :7A,u75:Aa7A:A76 EB}&)vﬂ’EB#}

(113)
Instantaneous regret.
Afu(a*, )] - Alu(r), ]
<Laltg(me,:) — Ge(Te—1,:) — (w(ze, 1) — w(ze—1,:))|, (Lemma [F.4)
LA A0 (e, ) — De(@p—1,:) — (v(g,2) — v(w4_1,2))] (Cauchy-Schwarz)

Cumulative regret. By using Theorem[F.2] our cumulative regret is:

Rr = Z Alu(z*, )] — Alu(zy), ]

te[T]

<Y LallAT B, 1) = B(i1,:) — (@) — v(@e-1,9)));

te[T]

<0 (nL AN Bry'T ) (Theorem[F2]and Lemma2.7)
Cumulative queries. Obviously, we do not even need to query the ground truth u. Thus,
Q7| =0. (114)

F.2.2 CASE-II: UNKNOWN BUT IDENTIFIABLE A

Confidence set. Altough the matrix A can be non-invertibible, the linear relationship can constrain
the confidence set, as such,

By = {0 | (3| Dgy) > (™" — 87}
By = {a| ti(a| Doy) > ;" — gy}
B = {(0,4,@) | (A, 0,0 | Doy, Doy) > 4™F — 5", 0 = A0 € By, i € BY}.

Instantaneous regret. The result is exactly the same with Lemma[F4]

Cumulative regret. Consider the following stopping criterion,

1
wy' (x¢, 24—1) = max {tqaw;}(xtvl'tl)} )
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Then, we have

> (Afu(e*, )] — Alu(zr, 2)]) (116)
te[T]
<Ly Z Wi (Tr, Tr1), (Lemmal[F.4)
T€[T]
1
<L4 Z W (T, Tr_1)+ La Z max{tq,wﬁ(xﬁml)}, (stopping criterion)
TEQY TE[T\ QY
1
<La ) wiwnzra)+La Y, wi@naea)+La Y, (117)
TEQT TE[T\ Q% T[T\ Q%

<0 (LA\/B%%“'IQ%I - Lay/ B3 (T — |Q4]) + La(T - |Q%>1q) (Theorem [F2)

This is the tightest bound. For visibility and interpretability, we simplify

Ry <0 (LAT” LB T LA\/ﬁi“rv%”'T> , (104 < T)

<0 <LAT1 4 LA\/ Blyu’ + B%’y%“')T) , (factor out)

Cumulative queries.

Q% =D 1,

teQy
1
q =
<77y prt (118)
teQy
<71 Z wy (xy, Tr—1), (stopping criterion)
teQy

=0 ( \/BTW““/|Q%|) (Theorem [F.2)

Here, by setting € = le , we have
N (B, Y1, ||l
<\/|Q“T log / Il )) . (119)

Hence,
. T u 1 Yoo 1/4
Q4] <O (Tq|%3/4 i (g A ) ) 120,
S TN(BY Y| lse)
w|1/4 uu
| Q%! <(9(qu/ <log 5 , (121)
Q4| <0 (T‘*‘Z(v%“')?log NGB, ;/ = ”'°°>> : (122)

Here, we consider the optimal g. For upper bound, at least we want |Q%.| < T, otherwise we have
to query u every iteration. Based on this, we have

O (T*Ly) <T, (123)
O(T*) <T, (124)
4q <1, (125)

1

< Z
< (126)
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That is to say, by picking ¢ < %, we can get a sublinear regret bound for the cumulative queries of
U.

F.2.3 CASE-III: UNIDENTIFIABLE A

Confidence set. The matrix A and public u information is not useful anymore. Thus, we just only
query private u.

Bt ={a | t(a| Doy) > 4"°F — Bi'} (127)

Instantaneous regret.

Alu(z*, )] — Alu(zy), 1]
SLaltg(ze,:) — Ge(xe—1,:) — (w(ze, 1) — w(Te—1,1))l, (Lemma [F.4)

Cumulative regret. By using Theorem our cumulative regret is:

Ry = Z Afu(z*, )] — Alu(a), 1]

te[T]

< Z Loaltg(ze,:) — @e(xe—1,:) — (w(xe, 1) — u(ze-1,:))|,
te[T]

<0 <L AN Bry&eT > (Theorem [F2] and Lemma 2.7))

Cumulative queries. Obviously, we end up querying the ground truth v all the time. Thus,

|O%| =T. (128)

F.3 PROOF OF THE KERNEL-SPECIFIC BOUNDS IN TABLE[]

To focus on kernel specific term only, we reduce the constants

Rr <O (Tl—i + \/ﬁTv;”pv’T) : (129)

N2
Qi =T (4"") Tog N (B", T, | - [|sc), (130)
Recall
pr =0 (\/Tlog IN(B, ;/T’ 'H°°)> .

For kernel specific bound, we have,

Linear kernel

log N (B, T7, || - [|o) = O (log 1) =0O(logT).

The corresponding k' ((z,2'), (y,v)) = 2Ty + 'y = ((z,2'), (y,y')), which is also linear.
Thus, by Theorem. 5 in|Srinivas et al.|(2012),

' = O(log T).
Hence,
Rp <O (Tl—% +T3/(log T)3/4) , (131)
QY| < O (T9(log T)?). (132)
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Squared exponential kernel
log N (B, T, || - ) = O <(1og i)d“) =0 ((logT)*).
(Example 4, Zhou|(2002)). By Thm. 4 in|Kandasamy et al.|(2015), we have,
¥ = O((log T)*).
Hence,
Rp <O (Tlf% + T3/4(1ogT)3/4<d+1>) : (133)
104, <O <Tq(log T)3(d+1>) . (134)
Matern kernel
log N' (B, T~ L,|| - [lc) = © ((i)d/v log 1) -0 (Td/” 1ogT) .
(by Thm. 5.1 and Thm. 5.3 in Xu et al.|(2024a)). By Thm. 4 in|[Kandasamy et al.|(2015), we have,

v d(d+1)
v =0 (T2V+d<d+1> log T) .

where v > d(d+3+\/cf+14W)'
Hence,
Rr <O (Tl_% + T%Jr%(lOgT)BM) ) (135)
] 2d(d+1)
Q4] < O (T = (10g T)?) (136)

G PROOF OF THEOREM

We first introduce the supporting results, then we prove Theorem

G.1 SUPPORTING RESULTS

Lemma G.1 (Strongly convex MAP estimation). The log posterior defined in Eq. {#4)) is strongly
convex with respect to A.

Proof. By Eq. {#4), the (unnormalised) negative log posterior can be written as:
LYAP.— L, (4, A, ©) — log p(A) — log p(u) — log p(v) (137)

Here, we assume the priors for u and v are the same uniform distribution ¢ (u; —L,,, L, ), where the
range is the same due to the range preservation Lemma Then, its log prior becomes — log p(u) =
—logp(v) = log(2L,), and these are constant, thereby negligible in terms of the optimisation.
Similarly, the normalising constant (also known as Bayesian evidence, marginal likelihood) is also
constant, thereby negligible.

Original log likelihood function was convex yet not strongly convex with respect to A because the
Hessian matrix is positive semi-definite instead of positive definite. By adding the negative log prior
term as regularliser, Eq. (137) becomes strongly convex.

As the sum of strongly convex functions is strongly convex, we will show the row-wise A; is strongly
convex. First, we unpack the Eq. (I37) for graph A related parts. By symmetric structure for u and
v, we only extract for u at ¢ = 1 step for brevity,

LMAP —Jog (eAiT“('T’:) + eAiT“(ﬂ’:)) — 1Al u(z, ) — (1 = 1A u(z,:)

- Z(Iii —1)log A; +¢ Z Aij,

% i,jeV

(138)
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. . AT u(x,: R . . . .
Then, we introduce the function P = e*i ™ )/eAiT“(IvJ-s-e“iT“(w"»). Then, the Hessian matrix H is,

62£MAP
=P(1 — P)(u(z, §) — u(@’, ) (u(z, k) — u(a’, k)) + 5jk% Y (140)

where ;1 is the Kronecker delta. The first term is a positive semi-definite matrix as show in
LemmalE.T] The second term is a diagonal matrix, which is positive definite because o; —1 > 0 and
A; > 0. The sum of a positive definite matrix and positive semi-definite matrix is positive definite.
Therefore, Hessian is positive definite.

The smallest eigenvalue of Hessian Apin (H) is at least as large as the smallest eigenvalue of the
positive definite matrix, namely the second term, as such:

i — 1
Amin(H) > “L= 4 2¢ > 0. (141)
0%
As we confirmed, all elements are positive, thereby the minimum eigenvalues of Hessian is strictly
positive. Therefore, our MAP loss function is stringly convex with respect to A. O

G.2 MAIN PROOF

Proof. We first prove the graph estimation error, then we show the utility estimation error conver-
gence.

G.2.1 GRAPH IDENTIFICATION ERROR

Firstly, we define the minimum excess risk (MER; Xu & Raginsky|(2022)):

MER = H/lif EDQ? [‘CMAP(A)] — ,CMAP(A), (142)

Here, Lyap is ‘omniscient’ loss function when true hyperparamter A is given. Even if A estimation
is perfect, our log likelihood estimate should have some error according to the randomness of the
data generating process. Thus, the second term express the fundemental limit of Bayesian learning,
and we can interpret this as aleatoric uncertainty. The first term, on the other hand, represents the

empirical estimate from the observed data, i.e., Ep,, [Cvap(A)] = LYAP(A). Thus, MER repre-
sents reducible risk by gathering more data, thus we can interpret MER as epistemic uncertainty.
Xu & Raginsky| (2022) theoretically analyses the connection between MER and the information-
theoretic quantity, particularly conditional mutual information, then derived the following asymp-
totic convergence rate,

2

n
MER <O — ), 143
= (2|Qy|) (149

for the logistic regression cases with binary feedback in Theorem 5, which is the same with our case.

By Definition[A.3] of strong convexity,
EMAP(A) > LMAP(A) + VﬁMAp(A)T(A — A) + %”A — A”2 (144)

Since A is the ground truth matrix, the optimality assures its gradient is zero. Thus, the inequality
can simplify

Luse(4) = Lyap(4) + T4 - AP, (145)

Luse(4) = Luar(4) > T4 - AP, (146)

This left-hand side is exactly the MER since Lyap(A) is irreducible risk as A is a ground-truth
parameter, and A := argmin g 4u..5 L*F (A | Djgy|) is reducible risk. Then, we have

MER > %HA—AH?, (147)
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By Eq. (I43), we have

2
1A - A2 <0 (2T£u|> : (Egs. (T43) and (T47))
t
A— A <O nym , (square root)
V2[Q¢
t

Next, we analyse the upper bound of strong convexity constant /. Recall Lemma|G.T]that the strong
convexity constant is only dependent on the prior term, thereby

-1

m < max <“A2_ ) 12, (148)
ij

_A-1

+ 2¢, (149)

where K = max; jev K4,j. As &, { are user-defined parameters, we set

-1 1
o= 150
A= (150)
_ 3 5
R=1+ 5 — 203, (151)

where r; > 1, £ < 55 for the positivity. Then \/m < -, leading to

p 1
JA-Al <O —— . (152)
V29
The equal constraint Eq. (I50) shows that «; almost equal to 1 for all ¢, j, we need ‘flat’ prior for
graph A estimate.
G.2.2 POINTWISE UTILITY ESTIMATION ERROR

By definition of w}' (x¢, x}), which is the supremum of the pointwise error, we can upper bound

e (24) — () — (u(ze) — u(zy))| < wy(we, 1), (153)
Here, we introduce the following notation:
W(T) = Y w(r) = w}(zs,21-1), (154)
TEQY

By Theorem w(t) is submodular with respect to ¢, and W (T') is monotonic with respect to T'
because it is cumulative sum of positive values. Then by Theorem[F.2] we have

W(T) <0 ( Wf“l@%l) : (155)
N 1/2 TN (BY, Y7, |||l 1/4

<0 (IQ%?’/“ () <|Q;;|1og B )) ) NGO

=0 (194" Li/g; ) (157

’ 2 v
where Ly gu = ('y%“ ) |Q%|log w is the kernel-dependent term.

By submodularity and monotonicity, we have

w(t) < WT(t) (158)
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for large ¢, i.e., t > 1, because

w(t) > w(T), (submodularity, t < T')
T T

Z w(r) > Z (1), (submodular inequality holds 7 < T for all 7)

T=1 T=1
W(T) > Tw(T), (W (T) definition)

w(T

w(T) < (1), (159)

T

Here, we assume the running horizons (), 7' > 1. Then we have
‘Qu|3/4 1/4 1/471/4

w(Qfl) <0 | =52 ) = 0 (1087 Llg, ). (160)

H EXTENSIONS

H.1 GAUSSIAN PROCESS MODEL APPROACH

Assumption H.1 (Direct feedback). A step t, if query point x; is evaluated, we get a noisy evalu-
ation of u'?, uil) = u(x;) + & , where & is i.i.d. D -sub-Gaussian noise with fixed o) > 0.

Modelling. Considering the data-generation process under Defn. we employ zero-mean multi-
task GP (MTGP) regression model (Bonilla et al.l 2007). For simplicity, define u : X x E — R as
our utility function taking location query and agent index as arguments, i.e. u(x,1) is the utility
for query x and agent 7. We place a prior over u as u ~ GP(0,kx ® k E)ﬂ which is distributed as,

u(z,:) ~ N(0,kx(z,7) x Kg),

where K is the kernel across agents and kx is the kernel across options . Under the bandwagon
model, with a graph G (and its adjacency matrix A), we have,

v(z,:) = Au(z,:) ~ N(0,kx (z,2) x AKgAT), (161)

due to the linearity of the graph convolution, we naturally get v being itself an induced MTGP
v~ GP(0,kx x AkgA"), such that Cov(v(z,i),v(z’,5)) = kx(z,2') x (AKpA");; (162)
This holds true for the inverse case, where B := (A + \I) ™1, resulting in u(z, :) ~ Bv(z,:). Here,

A is a regularization term and we typically set a fixed small positive value (e.g., le-4).

Estimate social graph. Interestingly, Eq. tells us that the graph adjacent matrix A is merely
the kernel hyperaparameter for v. Thus, similarly to optimise other kernel hyperparameters, we can
estimate the graph A (or equivalently, B) through maximum likelihood estimation (MLE) of log
marginal likelihood (LML), with a slight modification:

1 i L<> o)
log P(Uoy | Doy, Xoy B) i= — > log N (U(Q) 5 (Xau), OB (ng,XQg)), (163)
i=1
where Dgu := (Xgu, Ugy) is the u observations, and mQU and CQ; represent the predictive mean

and covariance of u(z, 7) using the GP conditioned on Doy := (X oy, Voy) through Eq. (H.1).

w(® /(1 _
migy (@) = [kx(z. Xop) @ K] 57 (BVay),

; . AT .
8y (z,2) = kx(z,2') x K - [kx(x,ng) ® kgﬂ n-! [kx(x,ng) ® k;ﬁﬂ :

*® denotes Kronecker product.
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where ¥ 1= kx(Xov, Xov) ® K 4 Dy @ I K = (BKg BT)( " is the i-th column of the
matrix BKgBT, D, is the diagonal matrix whose (i, z) th element is the v(*) noise variance.

Note that the GP is conditioned on v, not u. Dgg is used as ‘test dataset’ to estimate B. This offers
|Q7| # |Q}|, where typical MTGP requires Xgv = Xgu. Thus, this formulation allows us to
separate the predictive contribution on @ and Q}, allowing decoupled query for u and v.

H.1.1 INFERENCE FROM DIRECT UTILITY FEEDBACK

To estimate the posterior predictive distribution of v including the uncertainty of B estimate requires
extensive MCMC approximation. For the computational efficiency and closed-form propagation, we
adopt the Laplace approximation:

P(B | Doy, Dgy) ~N(B; Bg,, Ag)),
Bg, = arg maxlog P(Ugy | Doy, Xoy, B), Ag, = =ViVplogP(Ugy | Doy, Xoy, B) |p_ps -

The Hessian for covariance can be conveniently estimated via auto-differentiation. Now all of our
variables are Gaussian, offering the closed-form uncertainty propagation:

Corollary H.2‘(Uncertainty propagation). Given B ~ N (B; BQt7Aé}) and v(x,i) | Dgv ~
QP(mié(; , C’g;) ), the posterior predictive distribution of u becomes the closed-form:

(i)

P(u(x,1) | Doy, Day) ~ N (u(w, i), (2), Qi”os))

n
(@)

s (@) = Bo, (i Jmiy (@), (o (@) Z wa -1

We obtain the closed-form UCB u(x,i) := mQt ( )+ 61/ 2y’ )( ) for the acqusition function,
and U(B) := A’ [diag(Aéi)} for stopping criterion.

Proof. Given graph convolution operation in Eq. [T6I] we can decompose the i-th truthful utility
u(x, ) as such:

u(x,i) = B(i,)o(x,:) = Y _ bijv(, ), (164)
j=1

where b;; is the element of B at i-th row and j-th column. Here, b;; is independent of v, thus this
linear operation is the product of two independent random variables. The expectation and variance
of such case is known (Goodman, |1960)), as such:

ps =E mevxj : (Eq.[T64)
= Z E[b;jv(z, 5)], (linearity of expectation)
= ZE[bzg]E[ (z,7)], (independence)
j=1
= Z lA)Z] mQ(Z) (z), (predictive mean of b;; and u)
j=1
= BQt (4, i)m&g (). (inner product)
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12
75 u® =V Zb”v x,5) 1, (Eq.[164)

= Z V [bijv(z, )], (independence)
=1

=3 | TL(Vibi) + Elbi ) (VIo(e. )] + Efo( - []EP z, )

j=1

~
Il
-

<.
Il
_

<.

(independence)

J=1 \y=1 j=1
(posterior mean)
n n B N n A 72
- Z H b?j{)(j)z (z) - H b?jm&(};’) () |, (notation change)
J=1 \J=1 j=1
where b2, := + 52 and 00)° (2) == Y. (z) + E;Z) (@) -

H.2 POSITIVE SOCIAL INFLUENCE
When consider the our objective is now changed to:

x* = arg max Afv(z, :)]. (165)
TEX

Note that now we consider v(x, :) as the truthful utilities, and more costly to query than u(zx, :). We
can think individual utility u(z, :) can be based on misunderstanding, but the meeting can mitigate
this confusion, then we get truthful v(z, :) thanks to the social interaction. This can be seen in real-
world, highlighting our OpenReview discussion is exactly the same, where each review is based
on individual utility, yet the discussion can mitigate this misunderstanding thus the utility after
discussion v(z, :) can be regarded as truthful. Then, our problem becomes easier than before; we
can cheaply observe u(z,:), and v(zx,:) = Au(z,:), meaning that we do not need to consider the
invertibility issues. Moreover, importantly, the impossibility theorem also can be mitigated. That
means, of course Afu(z,:)] # Afv(z,:)] is still valid, yet we can say the following Pareto Front
containment Theorem:

Theorem H.3 (Pareto Front Containment). For any social graph G the Pareto front corresponding
to non-truthful utilities is a subset of the original Pareto front of truthful utilities.

Proof. Before we define the Pareto fronts of truthful and non-truthful utilities, we define two pref-
erences —, and >, as

x =, 7 iff u(z, i)
x =, x iff v(x, i)

w(z',i) Vi (166)

>
> (/i) Vi (167)

Consider the Pareto front of truthful utilities as P, := {z|Va’ € Xz’ ¥, x} and analogously for
non-truthful utilities as P, := {z|V 2’ € X2’ ¥, x}. We want to show that P, C P,. Before we
show that, we prove that the following holds for any unknown social influence graph G

Ve, eXe -y o = o>, 2
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Given the transition matrix of graph G as A, we know that a;; > 0 and > j Qi = 1. Consider

Ty X
Vi u(z,i) > u(z’,i) (Definition
Zaiju(x,i) > Zaiju(x',i) (a;; >0)
ATu(z,:) > AT (z',:)  (A; = j" row of A)
v(w,j) Zv(a',j) Vi
Ty X

Since, the Pareto set is defined as P, = {z|V 2’ € X1’ £, x}, we can rewrite the condition of x
not being strictly dominated by z’ as either = weakly domainates =’ or is incomparable

o r=(x =0 &) V(@ fo ) A (@ Fo 7))
=[x =v2) V(@ o 2 A [(w 20 @) V (2 o @)]
=(z = @)V (@' fo @)
Then P, ={z|Va' € X(x =, 2') V (' %, x)} and similarly, P, = {z|V 2 € X( i

%u )}. To show that P, C P,, consider x € P,, then = needs to satisfy (z =, z’)
V:c € X. We divide the condition into two cases,

Casel: Vo' e X 2’ 'z

)V

i

Since x >, &' = x =, 2/, considering the contrapositive we have 2’ %, © = x %, 2’. Then
T € P,.

Case2: Vo' e Xz =, o’
This case is rarer as it implies that P, = {x}. We can re-write the case as, V2’ € X
Vj wv(z,j) >wv(z’,j) (Definition [167)
Vi ATu(e,:) > ATu(@,:)

By fixing any j we can say that v = arg max, ¢ y Aj u(zx, :). Therefore x € P,. O

Therefore, we can use private votes to explore the Pareto front X'*, then the consensus is contained
2* € X'*. This can naturally lead to the combination of multi-objective BO, where we use private
vote u to estimate the Pareto Front X'*, then we search the consensus z* within the estimated Pareto
Front set.

Let vol(X') be the volume of the domain. Then, we have vol(X*) < vol(X) since X* C X. As
shown in Kandasamy et al.| (2016)), the maximum information gain (MIG) depends on the domain
volume. Let W;(X) be the MIG at ¢-th iteration over the domain X'. For instance, with the squared
exponential kernel, MIG can be expressed as ¥;(X') oc vol(X') log(t)?*!. This means that the regret
of our algorithm should improve by a factor of ¥;(X9)/¥,(X) = vol(X'9)/vol(X). Thus, in this
case, we can provably better regret convergence bound when individual votes are available. This is
actually what our OpenReview system does.

I HYPERPARAMETERS

We summarized the comprehensive list of hyperparameters used in this work and their settings in
Table[d] Most of these are standard in typical GP-UCB approaches. The newly introduced hyperpa-
rameters are primarily tunable in a data-driven manner, and we provided a sensitivity analysis in the
experiment section for those that are not.

1.1 UPDATE KERNEL HYPERPARAMETERS

By Assumption there exists a large enough constant L, that upper bounds the norm of the
ground-truth latent black-box utility function u, v. However, a tight estimate of this upper bound
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may be unknown to us in practice, while the execution of our algorithm explicitly relies on knowing
a bound L, (in Prob. @), L, is a key parameter).

So it is necessary to estimate the norm bound L, using the online data. Suppose our guess is
L. Tt is possible that L is even smaller than the ground-truth function norm |jv||. To detect this
underestimate, we observe that, with the correct setting of L,, such that L,, > ||v||, we have that by
Lemma[3.6]and the definition of MAP estimate,

MAP [~ A B MAP MAP 2 .
Ly (ut|ﬁ7At|£’Ut\i) > Ly (u, A,v) > Ly (Ut|ﬁaAt|ﬁ7Ut|£) - Bt‘p

where 1, ; is the MAP estimate function with function norm bound L and 3, is the corresponding

t|
parameter as defined in Lemmawith norm bound L. We also have 2L is a valid upper bound on
||v]| and thus,

MAP [~ i < MAP MAP 5 7 N
Ly (ut|2ﬁ7At\2ﬁ’vt|2ﬁ) > Ly (u, Av) = Ly (ut|2ﬁ7At|2fﬂvt\2ﬁ) - 5t|2£»
Therefore,
MAP [~ i MAP MAP [~ 7 .

L5 (g Ay Oy ) 2 Lo (uy Ayv) 2 L85 (o7, Ayois Oypoi) = Byjais

That is to say, £}5\/IAP(QH£,A”D 0,;) needs to be greater than or equal to
MAP (5 i N s .
L (U975 Ayjat Oyy2) — Byjoz, When L is a valid upper bound on [[v]].
Therefore, we can use the heuristic: every time we find that
MAP [~ Pooa MAP [~ ; .
Ly (ut|ﬁ’ At|vat|L) <L (ut|2ﬁ’At|2ﬁ7vt\2ﬁ) - ﬁt|2fﬂ

we double the upper bound guess L.

1.2 OPTIMIZE THE KERNEL HYPERPARAMTERS

Unlike the GP, our likelihood model does not have the analytical form of marginal likelihood. Thus,
we adopt the leave-one-out cross-validation (LOO-CV) as the optimization loss (See Section 5.3 in
Williams & Rasmussen| (2006))). That is, we leave one out from the observed dataset and compute
the negative log posterior of the left one dataset, and averaging all samples. We optimize the kernel
hyperparameters by minimizing this LOO-CV.

J EXPERIMENTS

J.1 ToOY EXAMPLE 1

The instrinsic utilities of the influencer (u(!)) and the follower (u(?)) are defined as follows:
u™ = 0.3V (2 0.35,0.05) + 1.2V (; 0.45,0.18) + 0.8\ (2 0.75,0.1), (168)
u'? = 0.5N(2;0.25,0.1) + 0.8\ (x;0.65,0.15) + 0.4\ (x; 0.85, 0.05), (169)

The social-influence graph is defined as A := <82 8}1), and the aggregation function is utilitar-

fan A= 327 L),

1=
J.2  REAL-WORLD TASKS

J.2.1 THERMAL COMFORT

We compute the utility function using the PMV (predicted mean vote), which is the estimation from
the large collection of human preference dataset that predicts the values from [—3, 3], where —3
means very cold, and 3 means very hot, and 0 means comfortable at the current condition. We take
the minus absolute PMV, with 0 is the maximum for each agent’s utility. The input values are two
dimensional continuous values # € R?, where the first dimension denotes the temperature [15, 35]
with degrees Celcius, and the second dimension is the air velocity [0.3, 1.5].
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The agents has different conditions of the garments and activity conditions, resulting in the relative
air velocity difference. The conditions are as follows:

Activity

(agent 1) Seated, heavy limb movement
(agent 2) House cleaning
(agent 3) Writing

Garments

(agent 1) ’Executive chair’, *Thick trousers’, ’Long-sleeve long gown’, "Boots”, ’ Ankle socks’
(agent 2) Thin trousers”, ”T-shirt”, ”Shoes or sandals”
(agent 3) ’Standard office chair’, ’Long sleeve shirt (thin)’, ’Long-sleeve dress shirt’, ’Slippers’

Then PyThermalComfort (Tartarini & Schiavon, 2020) computes the corresponding metabolic gen-
eration and thermal insulation based on ASHRAE industrial standard. The social-influence graph is

0.8 0.1 0.1
defined as A := <0.6 0.1 O.3> , and the aggregation function is egalitarian p = 0.1.
04 03 0.3

J.2.2 TEAMOPT

We have modified the setting from Wan et al.| (2023); |/Adachi et al| (2024a). Each team is repre-
sented by graphs with 8 members from 11 candidates. Such teams are positioned on the node of the
supergraph, of which edge is the similarity between teams defined as the Jaccord index. There are
two additional information on nodes; skills and inter-member compatibility. Both are represented
as continuous values, generated from row-wise Dirichlet distribution, resulting in n X n square
matrices. There are four agents who has the different utility function.

Utility functions

(agent 1) Skill set diversity: this is measured by the entropy of the skill set matrix, assuming the op-
timal team is when each member is specialised in one skill, and the whole skill distribution
is close to uniform.

(agent 2) mean compatibility: averaging the compatibility matrix.

(agent 3) minimax compatibility: take minimum element of the compatibility matrix.

(agent 4) flat compatibility: take minimum variance of the compatibility matrix.

0.7 01 0.1 0.1

gé 8;1 8; 8% , and the aggregation function

03 02 02 0.3

The social-influence graph is defined as A :=

is egalitarian p = 0.1.

J.2.3 TRIPADVISER:

We used the TripAdvisor New Zealand Hotel dataset (Rahman, [2023) which consists of three di-
mensional data, price, number of review, and review rank. We denote p(z) as price, r(x) as number
of review, and R(z) as the review rank. There are three agents who has the different utility function.

Utility functions

(agent 1) luxury: 0.5 p(x) + 0.5 R(x)
(agent 2) budget: -0.5 p(x) + r(x) + 0.5 r(x)
(agent 3) review: R(x)

0.5 03 0.2
The social-influence graph is defined as A := <0.1 0.8 O.l), and the aggregation function is
0.2 0.1 0.7

egalitarian p = 0.5.
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Figure 6: Simple regret, cumulative regret, and cumulative queries on different social influence
graph.

J.2.4 ENERGYTRADING:

We used METER dataset, UK-wide energy demand dataset (Griinewald & Diakonoval [2020;
Griinewald & Diakonova, 2019). Due to the privacy reason, we cannot identify which smart meter
id corresponds to the geography in the UK. Therefore, we place the all meter dataset into the hypo-
thetical two-dimensional space, which placed based on the similarity between the time series data.
Intuitively, the energy demand should have some geographical relationship, for instance Scotland is
cooler than England, thereby the heating energy is more necessary. As such estimated two dimen-
sional space locations are further transformed into continuous space, by interpolating by GP model.
We refer to this GP as oracle GP. We also assume three firms use GPs as their demand prediction
model. We refer to these individual GPs as internal models. As we use GP, the maximum informa-
tion gain can be reasonably approximated by the predictive variance (Srinivas et al.,|2010). Then,
we allocate different number of datasets to each internal models, resulting in different information
gain functions. We use this predictive variance of each internal model as the utility functions. A
large corporation is assumed to have the largest and diverse data, and a niche startup has handful of
data but is very niche where the large corporation does not have. A joint venture is the mixture of
niche data. These data distribution creates the different maximizers of utility functions.

0.8 0.1 0.1
The social-influence graph is defined as A := <0.6 0.1 O.3>, and the aggregation function is
04 03 0.3

egalitarian p = 0.5.

J.3  GAUSSIAN PROCESS BASED MODEL

Now we tested our GP-based algorithm with popular baselines: (a) GP-UCB (Srinivas et al.,[2010):
This baseline solves Prob. (I)) as a single-objective BO, conditioning a GP on aggregated votes,
yr = Alu(axs,:)]. We compare scenarios where the GP is conditioned on truthful utilities (u)
versus non-truthful ones (v). (b) Multi-task (MT) GP-UCB (Kandasamy et al.,2016): This baseline
models utilities using a simple MTGP without incorporating the graph structure, employing our
acquisition function from Prob. (3) for querying. We compare cases where the GP is conditioned
only on truthful utilities (u) versus both truthful and non-truthful utilities (u, v). If the non-truthful
utilities (v) provide useful low-fidelity information, the convergence rate for (u, v) should improve
relative to (u) alone; otherwise, it might remain the same or deteriorate.

Social-influence graph. To examine the effect of the social-influence graph A, we varied A us-
ing the same funcitons and graph in Figure [3] Figure [6] highlights the robustness and efficacy of
our algorithm. Our approach consistently outperforms the baselines in both simple and cumulative
regret. Notably, the cumulative number of truthful queries |Q%| grows logarithmically, requiring
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Figure 7: Simple regret, cumulative regret, and cumulative queries on different aggregation function.

only a few queries overall, while the baselines require a linear growth in |Q%.|. This demonstrates
our algorithm’s sample efficiency for expensive u queries. A closer look reveals that GP-UCB often
gets stuck in local maxima. This is a known limitation of GP-UCB under model misspecification
(Berkenkamp et al., 2019), which necessitates additional exploration through an increased (3 pa-
rameter (Bogunovic & Krausel 2021)), requiring more iterations for 3 to grow. In contrast, our
convolutional kernel GP captures the correlations in corrupted v, providing better extrapolation and
avoiding misspecification issues compared to the vanilla GP model. Contrastingly, a naive combi-
nation of MT-GP-UCB (u, v) fails to accelerate in most cases because standard correlation learning
in MTGP is not the convolution learning. It often performs worse than using only truthful data (u),

as Mikkola et al.| (2023) explains that incorporating unreliable information can actually decelerate
convergence.

Aggregate function. We further tested the effect of the aggregation function by varying p €
[1,0.5,1071°] in Eq. (2), keeping the influencer-follower matrix A fixed. Smaller p values lead
to more pronounced differences in our model. This makes sense, as p controls the degree to which
minority preferences, such as those of the follower in this case, are prioritized, thereby accentuating
model misspecification issues as p decreases.

J.4 COMPUTATION TIME

Thermal comfort Team Opt TripAdviser EnergyTrading
(n=3,p=0.1) (n=4,p=0.1) (n=3,p=0.5) (n=3,p=0.5)
0.04 0.4
N 0.4
&2 0.02 0.2
n 0.2 ol
0 0 0 0
40 40 40 40
Qi20 / 20 20 20
Z

0 0 0 0

=,
5 20 20 20 20

<

Q
=10 10 10 10

(]

o f/
© 0 0 0 0
10 20 30 40 50 0 10 20, 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
iteration ¢ iteration ¢ iteration ¢ iteration ¢
—independent —oracle —optimistic MLE

Figure 8: Computation time on real-world tasks.

We report the computation time on Figure[8] As we can see, although our algorithm is the slowest,
each query only takes within 30 seconds at iteration ¢ = 50. The complexity is O(n(t + n)), and
the computation time scales linearly as shown in the figure. Taking tens of seconds in multi-agentic
scenario is common as it is inherently expensive computation.
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