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ABSTRACT

We introduce Social Bayesian Optimization (SBO), a query-efficient algorithm for
consensus-building in collective decision-making. In contrast to single-agent sce-
narios, collective decision-making encompasses group dynamics that may distort
agents’ preference feedback, thereby impeding their capacity to achieve a social-
influence-free consensus—the most preferable decision based on the aggregated
latent agent utilities. We demonstrate that under standard rationality assumptions,
reaching social-influence-free consensus using noisy feedback alone is impossi-
ble. To address this, SBO employs a dual voting system: cheap but noisy public
votes (e.g., show of hands in a meeting), and more accurate, though expensive,
private votes (e.g., one-to-one interview). We model social influence using an un-
known social graph and leverage the dual voting system to efficiently learn this
graph. Our findings show that social graph estimation converges faster than the
black-box estimation of agents’ utilities, allowing us to reduce reliance on costly
private votes early in the process. This enables efficient consensus-building pri-
marily through noisy public votes, which are debiased based on the estimated
social graph to infer social-influence-free feedback. We validate the effectiveness
of SBO across multiple real-world applications, including thermal comfort opti-
mization, team building, travel destination discussion, and strategic collaboration
in energy trading.

1 INTRODUCTION

This paper presents a sample-efficient algorithm to achieve consensus x⋆ in an online setting, within
a social group of agents, by solving the following optimization problem:

x⋆ ∈ argmax
x∈X

A[u(x, :)], u(x, :) = {u(x, i)}i∈V , (1)

where V represents a social group of n agents, i.e., |V | = n, X is a set of options that is a bounded
subset of Rd, and A is an aggregation function that produces the social utility. For each agent i ∈ V
and option x ∈ X , u(x, i) represents the utility of option x for agent i, and u(x, :) = {u(x, i)}i∈V

represents the set of utilities for all agents given option x. We assume throughout that u : X×V → R
is a black-box utility function that rationalizes the collective preferences of the social group V . We
iteratively collect votes from agents to minimize regret to reach x⋆ within the given budget.

Efficient consensus-building is essential for collective decision-making but is notoriously difficult,
underpinned by various theoretical impossibility results (Patty & Penn, 2019; Muandet, 2023).
Three key challenges contribute to this difficulty. First, modeling human preferences is inherently
complex. Although utility theory (Fishburn, 1968) offers a framework, individuals often struggle
to introspect and report their preferences accurately (Kahneman & Tversky, 1979), so preferences
are inferred from feedback, such as pairwise comparisons and rankings (Fürnkranz & Hüllermeier,
2010). Second, even with access to each agent’s utility, constructing a social utility that fairly repre-
sents all agents is impossible under mild rationality constraints (Arrow, 1950). Third and most im-
portantly for our settings, social dynamics, i.e. interactions between agents, can distort preference
feedback. For instance, the bandwagon effect (Simon, 1954; Farjam, 2021) occurs when agents’
preferences are swayed by influential individuals, resulting in biased or influenced feedback, i.e.,
feedback that does not reflect their actual underlying utilities. This can result in groupthink, a failure
mode in collective decision-making where the group reaches a influenced consensus, and Section 5
introduces four real-world examples.
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Preferential Bayesian optimization (PBO; González et al. 2017) provides a potentially sample-
efficient framework for solving (1). However, their approach fails to address the second and third
challenges mentioned above. Their framework focuses on single-agent scenarios or assumes homo-
geneity among agents, averaging preferences without addressing individual differences and social
dynamics (Xu et al., 2024b). The influence of social factors is non-trivial, as it distorts agents’ opin-
ions, resulting in influenced votes. Ideally, the consensus-building procedure should be robust to
social influence. However, under mild rationality constraints, we demonstrate that it is impossible to
design a social aggregation method that consistently produces a consensus robust to social dynam-
ics—a phenomenon we term the impossibility of groupthink-proof consensus. To circumvent this
issue, we propose a dual voting system consisting of a cheap but noisy public vote (e.g., show of
hands in a meeting) and a private vote (e.g., one-to-one interview) that is free from social influence
but costly to obtain. We formalize the social influence effect through an unknown social graph and
utilize the dual feedback mechanism to perform graph learning (Dong et al., 2019). Our results show
that the social graph estimation converges faster than black-box utility estimations, allowing us to
reduce reliance on private feedback early in the process (Theorem 3.12). This approach facilitates
efficient consensus-building, primarily relying on noisy public feedback while accounting for social
dynamics (see Figure 1 for an illustration of our procedure).

?< ?< ?<

, , , , …
Task: Select the hotel
          for group retreat.

Public Voting
boss newbie

Yes
N.., I mean, Yes

Facillitator

Yes Actually no

boss newbie

Private Voting
Estimate social influence

Figure 1: A dual voting: the difference in pub-
lic and private votes can identify the social influ-
ence. Once identified, social-influence-free con-
sensus can be estimated only from noisy public
votes, thereby reducing the total cost.

Contributions. (1) Novel setting: We formulate
a new class of optimization problems to facilitate
collective decision-making under social influence
among heterogeneous agents. (2) Algorithm: We
introduce a Social Bayesian Optimization (SBO) al-
gorithm that enables vote-efficient consensus-build-
ing robust to social influence. (3) Theoretical: We
prove an impossibility result highlighting the ne-
cessity of a dual voting system. We also estab-
lish two sublinear convergence rates for SBO: one
for cumulative regret, ensuring SBO achieves group-
think-proofness and no-regret property, and one for
social-influence-free votes, allowing the algorithm
to reduce reliance on costly private votes as the
model gains sufficient confidence. (4) Real-world contributions: We demonstrate SBO’s fast con-
vergence than baselines in four practical scenarios.

2 SOCIAL BAYESIAN OPTIMIZATION

Unlike standard Bayesian optimization (BO), where direct evaluation of the black-box objective is
possible, some objectives—like human utility—are latent and difficult to introspect. To solve (1),
we rely on preference feedback, or votes, where each agent expresses preferences between pairs of
options [x, x′]. Following standard preference modeling, agent i prefers option x1 over x2, denoted
x1 ≻u(·,i) x2, if and only if u(x1, i) > u(x2, i), where ≻u(·,i) represents agent i’s preference
relation. Our optimization procedure thus involves estimating n utility functions {u(·, i)}i∈V from
their votes. When the context is clear, this set also denotes the vector of utilities queried at x.
Pairwise comparisons are widely used in human-in-the-loop systems (Koyama et al., 2020; Li et al.,
2021), as people tend to evaluate relative differences better than absolute magnitudes (Kahneman &
Tversky, 2013). In our setting, we make two key assumptions.
Assumption 2.1 (Facilitator). There exists a single facilitator (or social planner) who facilitates
the decision-making process, and decides the aggregation rule A.
Assumption 2.2 (Pairwise feedback). Given a pair of options (xt, x′t) at time step t, there exists an
oracle that returns a preference signal 1(i)

x≻x′ from the i-th agent where 1(i)x≻x′ := 1 if x is preferred
and zero if x′ is preferred. The feedback 1(i)x≻x′ from the oracle follows the Bernoulli distribution
with P(1(i)x≻x′ = 1) = p

(i)
x≻x′ = σ(u(x, i)− u(x′, i)), where σ(z) = (1 + exp(−z))−1.

Assumption 2.2 is widely accepted Bradly-Terry model (Bradley & Terry, 1952).

2.1 AGGREGATION FUNCTIONS

The crucial part of problem (1) is A that aggregates agents’ utilities into a social utility.
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Definition 2.3 (Aggregation function). The aggregation function A (also known as a social choice
function or social welfare function) combines individual utilities into a single utility via a positive
linear combination, i.e., S(x) := A[u(x, :)] = w⊤u(x, :), where S(x) represents the social utility
and w ∈ Rn

≥0 depends on u(x, :). A is provided a priori by the facilitator and is independent of both
the option x and the time step t, meaning it is homogeneous and stationary.
Harsanyi (1955) demonstrated that a positive linear combination of individual utilities is the only
aggregation rule that satisfies both the von Neumann-Morgenstern (VNM) axioms (Von Neumann &
Morgenstern, 1947) and Bayes optimality (Brown, 1981). Many popular aggregation function, such
as the utilitarian rule, i.e. A[u(x, :)] = 1/n

∑
i∈V u(x, i) and the egalitarian rule, i.e., A[u(x, :)] =

mini∈V u(x, i) are positive linear combinations (c.f. Appendix C.1). Given the range of candidate
methods, we adopt the generalized Gini social-evaluation welfare function (GSF; Weymark (1981);
Sim et al. (2021)) as it can interpolate between utilitarian and egalitarian approaches:

A[ut(x, :)] := w⊤ϕ(ut(x, :)) s.t. wi := ρi−1
/w⊤1, wi > 0, 0 < ρ ≤ 1, (2)

where w := (wi)i∈V is a weight vector, 1 is the one-vector, and ϕ is a sorting function that arranges
the elements of the input vector in ascending order and returns the sorted vector.
Proposition 2.4 (Proposition 1 in Sim et al. (2021)). GSF in Eq. (2) satisfies monotonicity and the
Pigou-Dalton principle (PDP; Pigou (1912); Dalton (1920)) on fairness. Moreover, when

(a) ρ = 1, A is utilitarian such that it satisfies the PDP in the weak sense;
(b) 0 < ρ < 1, A satisfies the PDP in the strong sense;
(c) ρ→ 0, then wi/w1 → 0 for i = 2, . . . , n, A converges to egalitarian.

See Appendix C.4 for the proof and the details. The key result is that the GSF interpolates between
two popular aggregation rules through a single real parameter, ρ, while adhering to the fairness
principle of PDP and maintaining monotonicity for regret analysis. Although ρ must be defined a
priori, we assume the facilitator will make this definition (Assumption 2.1). We argue that selecting a
single parameter is far simpler than choosing an arbitrary aggregation function, and GSF is intuitive:
ρ controls the balance between prioritizing the group average and the worst-off agent. Nonetheless,
our algorithm, described later, is applicable to any aggregation function that is a positive linear
combination and monotonic, encompassing a wide range of popular aggregation rules.

2.2 MODELLING SOCIAL INFLUENCE

While various methods exist to model social interactions among agents, we chose a graph convolu-
tional approach. Let V represent the set of nodes (agents) and E the set of weighted directed edges,
forming the social influence graph G = (V,E) , with A as the corresponding adjacency matrix.
Definition 2.5 (Social influence). Given influence graphG, social-influence-free utility u, and agent
i ∈ V , the corrupted utilities of agent i, v(·, i) can be expressed as h (u(·, i), {u(·, j) | j ∈ NG(i)}),
for some generic function h that specifies how the signals interact, and NG(i) is the (in)-neighbour
of i in G, defined as {j : Aij ̸= 0}.
We make the following assumption on the utility functions u(·, :) and v(·, :).
Assumption 2.6 (Bounded norm). For each i ∈ V , let Hki

be a reproducing kernel Hilbert
space (RKHS) endowed with a symmetric, positive-semidefinite kernel function ki : Rd × Rd → R.
We assume that v(·, i) ∈ Hki and ∥v(·, i)∥ki ≤ Lv , where ∥ · ∥ki is the norm induced by the inner
product in the corresponding RKHS Hki , ki(x, x

′) ≤ 1, x, x′ ∈ X , and ki(x, x′) is continuous on
Rd × Rd. We denote the set Bvi := {ṽ(·, i) ∈ Hki | ∥ṽ(·, i)∥ki≤ Lv}, and Bv := [Bv1 , · · · ,Bvn ].
This assumption also applies to u(·, :), of which bound is isotropic; Lu,∀i ∈ V .
Assumption 2.6 require that the utility functions u, v are regular in the sense that they have bounded
norms in the corresponding RKHS. These assumptions are common in the BO literature. Under
Definition. 2.5, it is natural to consider the graph convolution operation as the function h,

v⊤(·, :) = Au⊤(·, :), s.t. v(·, i)⊤ = Aiiu
⊤(·, i) +

∑
j∈NG(i)

Aiju
⊤(·, j),

n∑
j=1

Aij = 1, Aij > 0. (3)

Lemma 2.7 (Graph properties). Under Eq. (3) and Assumption 2.6, u, v ∈ [−Lv, Lv] have the
same bound (Lv = Lu), thereby being comparable. Moreover, if A is invertible, the matrix A has
the Euclidean norm of inverse matrix bounded by 1 ≤ ∥A−1∥ ≤ n, and A is identifiable from the
observed data pairs (v(xτ , :), u(xτ , :))τ∈[T ] if (u(xτ , :))τ∈[T ] is full rank.
See Appendix B.1 for the proof. See also Appendix B.3 for the extension to other graph structures.
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3 MITIGATING UNDUE SOCIAL INFLUENCE

As discussed, the main challenge in achieving consensus is social influences that hinder the facili-
tator from accessing the true utilities. Consequently, the facilitator can only observe the feedback
from distorted utilities, leading to a consensus that misrepresents the agents’ actual preferences, i.e.,
groupthink. To overcome this, we propose in Section 3.2 a dual voting mechanism consisting of a
cost-effective but noisy public vote and a costly private vote that is free from social influence.

3.1 IMPOSSIBILITY THEOREM

Before introducing our dual voting mechanism, we first illustrate the difficulty of consensus build-
ing based solely on distorted utilities through the impossibility theorem. To this end, we define
groupthink-proofness as desirable property of any aggregation function.
Definition 3.1 (Groupthink-proof). An aggregation function A is groupthink-proof if, for any
social-influence graph G, argmaxx∈X A[u(x, :)] = argmaxx∈X A[v(x, :)].

Intuitively, the aggregation function A is groupthink-proof if its consensus is preserved under any
social influence graph. For example, any aggregation function is groupthink-proof if v(·, :) = u(·, :),
i.e., no social influence. In addition, we define the triviality of the social consensus x∗ as
Definition 3.2. (Trivial social consensus) x∗ is the trivial social consensus if for all i ∈ |V |, x∗ =
argmaxx u(x, i)

Non-triviality of social consensus excludes the situations where all agents unanimously agree on the
best option. The following theorem states that, in the absence of a trivial consensus, no aggregation
function when applied on the distorted utilities satisfies groupthink-proofness.
Theorem 3.3 (Impossibility of groupthink-proof aggregation). Under Definitions 2.3, 3.1, 3.2,
there exists no aggregation rule A satisfying groupthink-proof in the absence of a trivial consensus.

Theorem 3.3 implies that if the agents are not unanimously in consensus on the best option with
respect to their true utilities, then the facilitator cannot identify an aggregation function that is
groupthink-proof. Appendix C.2 provides the detailed proof where the core idea of the proof is
to assume that there exists a groupthink-proof aggregation rule A in the absence of a trivial social
consensus and then show that consensus obtained by this aggregation rule needs to satisfy triviality if
the aggregation rule is groupthink proof w.r.t a selected subset of influence graphs. Thus resulting in
a contradiction. To show the direct implication of our impossibility results we show that a non-trivial
set of consensus—the Pareto front of distorted utilities—is not groupthink-proof, see Appendix C.3
for more details.

3.2 DUAL VOTING MECHANISM WITH APPROXIMATED SOCIAL GRAPH

We now introduce the procedure for learning the social graph A and the surrogate models for u
and v. While preferential Gaussian processes (GPs) (Chu & Ghahramani, 2005) are a common
choice, combining a Gaussian prior with a Bernoulli likelihood poses theoretical and computational
challenges. Hence, we opted for the likelihood ratio model (Owen, 1990; Emmenegger et al., 2024),
which estimates only the worst-case prediction interval, rather than the full predictive distribution.
This approach aligns well with optimistic algorithms like UCB (Srinivas et al., 2010), which only
require confidence intervals, and it provides theoretical guarantees even in cases where the GP prior
and likelihood are non-conjugate such as preference modeling.

Let DQu
t
:= (xτ , x

′
τ , 1

(i)
τ )τ∈Qu

t ,i∈V be the private votes, DQv
t
:= (xτ , x

′
τ , 1

(i)
τ )τ∈Qv

t ,i∈V be the
public votes, 1(i)

τ ∈ {0, 1} be the realization of the Bernoulli random variable 1(i)
x≻x′ , [t] :=

{1, . . . , t}, Qv
t := {τ ∈ [t − 1] | if v is queried in step τ} be public queries, Qu

t be private queries
(t ≥ |Qu

t |, t ≥ |Qv
t |). We use capitals, e.g., XQv

t
, for the set (xτ )τ∈Qv

t
. See Appendix A.1 for the

summarised table of notations.
Assumption 3.4 (Public and private votes). While private votes reflect the social-influence-free
utility u, public votes reflect the (possibly) influenced utility v. The query costs satisfy the relation-
ship λu ≫ λv .

Assumption 3.4 relaxes the typical strong assumption in PBO that votes always reflect the social-
influence-free utility. The cost suggests |Qu

t | ≪ |Qv
t | is more cost-effective. This setting is so-called

4
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truthful utility u(x, :) non-truthful utility v(x, :) social utility S(x), α(xt ,xt-1)
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ground-truth utilities u,v
MAP estimated utilities 

ground-truth social utility S
acquisition function α
next query (xt)
truthful consensus (x*)

private or public votes

Confidence bound
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D v
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−

Figure 2: The dotted and solid lines represent the ground truth u, v and estimated utilities ũ, ṽ, respectively,
with the shaded area indicating the confidence interval. Dots mark the queried points, where |Qu

t | = 10 and
|Qv

t | = 20. Since utility values are not directly observable, the dots are for visual guidance. The acquisition
function α(·, xt−1) represents the upper confidence bound of improvement from the previous query xt−1, with
its argmax determining the next query xt (red vertical line). While the independent model assumes ũ ∈ Bu

and ṽ ∈ Bv , the graph convolution model enforces a linear constraint ũ, ṽ ∈ Bu,A,v . This yields a tighter
predictive interval, resulting in a next query closer to the true consensus x⋆ (black vertical line).

heterotopic data if each vote is to be associated with a (partially) different set of pairs (Wackernagel,
2003).

Graph prior. We introduce the regularised row-wise Dirichlet prior for graph A:

p(A) =
1

Z
exp(−ξ∥A∥2F )

∏
i∈V

Dirichlet(Ai;κi), s.t. min
i,j∈V

Aij > δA, (4)

where Ai is the i-th row, κi > 1 is the concentration parameter vector, δA > 0 is a small positive
constant, ensuring strict positivity, ∥·∥F denotes the Frobenius norm, ξ is a small positive constant,
andZ is the normalising constant. The exponential term is a Tikhonov regularization that encourages
invertibility, and the Dirichlet distribution assures

∑n
j=1Aij = 1.

Likelihood modelling. Under Assumptions 2.2, 3.4 and Definition 2.5, we define the likelihood as
below. See Appendix D.1 for the derivation.
Corollary 3.5 (Bradley-Terry model). Given dataset DQu

t
and corresponding utility function u,

the log-likelihood (LL) for an estimate function û ∈ Hki is given by Bradley & Terry (1952):

ℓt(û(·, i) | D(i)
Qu

t
) =

∑
τ∈Qu

t

[
û(xτ , i)1(i)

τ + û(x′
τ , i)(1− 1(i)

τ )
]
−

∑
τ∈Qu

t

log
[
exp(û(xτ , i)) + exp(û(x′

τ , i))
]
.

Bayesian modelling. The joint LL of DQv
t
, DQu

t
are ℓt(û, Â, v̂ | DQv

t
, DQu

t
) := ℓt(v̂ | DQv

t
) +

ℓt(û | DQu
t
). For the prior, by range preservation Lemma 2.7, we can set the uniform prior p(u) =

p(v) = U(u;−Lv, Lv), and Eq. (4) for p(A). Then, the (unnormalised) log posterior becomes:
Lt(û, Â, v̂) := ℓt(û, Â, v̂ | DQv

t
, DQu

t
)+log p(u)+log p(v)+log p(A), and Â can be estimated via

linear constraint û = Av̂ when solving maximisation problem. Maximum a posteriori (MAP) offers
Bayesian point estimation for u, A, and v; L̂t := Lt(ût, Ât, v̂t) = maxũ,Ã,ṽ∈Bu,A,v Lt(ũ, Ã, ṽ).

Optimistic MAP. We apply the optimistic MLE approaches (Liu et al., 2023; Emmenegger et al.,
2024; Xu et al., 2024b) to MAP objective to quantify uncertainty using a confidence set. This
enables us to derive theoretical confidence bounds, and accurately compute the upper bound as
efficient optimisation problem, even for non-conjugate case such as preference likelihood.
Lemma 3.6 (MAP-based confidence set). For all δ > 0, we have

Bv
t = {ṽ ∈ Bv | ℓt(ṽ | DQv

t
) ≥ ℓ̂vt − βv

t }, Bu
t = {ũ ∈ Bu | ℓt(ũ | DQu

t
) ≥ ℓ̂ut − βu

t },

Bu,A,v = {ũ ∈ Bu, ṽ ∈ Bv, ṽ = Ãũ}, Bu,A,v
t+1 :=

{
ũ, Ã, ṽ ∈ Bu,A,v | Lt(ũ, Ã, ṽ) ≥ L̂t − βt

}
,

with P
(
u,A, v ∈ Bu,A,v

t+1 , ∀t ≥ 1
)

≥ 1 − δ, where ℓ̂vt , ℓ̂
u
t are the MLE of LLs, βu

t , β
v
t are selected as in Xu

et al. (2024b), |Quv
t | := |Qu

t |+ |Qv
t |, and βt = nϵCv

L|Quv
t |+

√
64n2L2

v|Quv
t | log π2|Quv

t |2N (Bv,ϵ,∥·∥∞)

6δ
.

The proof and notations are in Appendix D.3. See Fig. 2 for intuition. As introduced in Assump-
tion 2.6, while the function ũ(·, i) was originally in a broader set of RKHS functions ũ(·, i) ∈ Bu, it
is now in a smaller set defined as ũ ∈ Bu

t+1 conditioned on the preference feedback. Intuitively, with
limited data, the MAP may be imperfect. Hence, it is reasonable to suppose that Bu

t+1, bounded by
MAP values ‘slightly worse’ than the MAP, contains the ground truth with high probability.
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Algorithm 1 Social Bayesian Optimisation (SBO)

1: Input: decay rate 0 ≤ q ≤ 1

2: Set Qu
0 = ∅, Qv

0 = ∅, Bu,A,v
1 = Bu,A,v , and draw the initial point x0 ∈ X .

3: for t ∈ [T ] do
4: Solve xt = argmaxx∈X α(x, x

′
t) s.t. x′t = xt−1 ▷ Maximising the acquisition function

5: Query public vote on the pair (xt, x′t), and obtain 1vt := {1(i)t }ni=1.
6: Update DQv

t
= DQv

t
∪ (xt, x

′
t, 1

v
t ) and confidence set Bu,A,v

t+1 .
7: if wu

t (xt, x
′
t) ≥ max

{
1
tq , w

v
t (xt, x

′
t)
}

then ▷ Stopping criterion
8: Query private vote on the pair (xt, x′t), and obtain 1ut := {1(i)t }ni=1.
9: Update DQu

t
= DQu

t
∪ (xt, x

′
t, 1

u
t ) and confidence set Bu,A,v

t+1 .

Remark 3.7 (Confidence bound). By Lemma 3.6, we define the pointwise confidence bound for
ui ∈ Hki

as ut(x, i) ≤ u(x, i) ≤ ūt(x, i) where ut(x, i) := inf ũi∈Bui
t
ũ(x, i), ūt(x, i) :=

supũi∈Bui
t
ũ(x, i). Similarly, the confidence bound for S(x) is [A[ut(x, :)],A[ūt(x, :)]] by the

monotonicity of GSF (see Proposition 2.4).
Remark 3.8 (Prediction via optimisation). Given a prediction point x, the upper confidence bound
(UCB) ūt(x, :) can be estimated via finite-dimensional optimisation; see Appendix E for details.

3.3 PROPOSED ALGORITHM

Algorithm 1 summarises our SBO algorithm. Line 4 finds the next vote (xt, x
′
t) by maximising the

acquisition function. Line 7 outlines the stopping criterion, which halts the expensive private queries
when the graph A is accurately estimated. In Algorithm 1, the condition |Qv

t | = t and |Qv
t | ≥ |Qu

t |
are satisfied. The parameter q is the decay rate which balances the trade-off between private votes
querying cost and consensus convergence rate.

Acquisition function. We propose an optimistic algorithm, akin to GP-UCB (Srinivas et al., 2010):
α(x, x′) = max

ũ∈Bu
t

A[ũ(x, :)]−A[ũ(x′, :)]. (5)

Intuitively, this acquisition function operates similarly to the expected improvement approach. The
second term represents the best observed points so far, while the overall maximization identifies the
highest potential improvement from a given point.

Stopping criterion. We introduce the projection weight function wt as the uncertainty criteria. We
can then estimate the uncertainty of ũ and ṽ when projecting to the comparison pairs (xt, x′t),

wv
t (xt, x

′
t) = sup

ṽ,ṽ′∈Bv
t

∥ṽ(xt, :)− ṽ(x′
t, :)−

(
ṽ′(xt, :)− ṽ′(x′

t, :)
)
∥, (6)

and same notation rule applies to wu
t . u is more uncertain than v due to the smaller sample size and

the uncertainty in estimating A. When wu
t becomes smaller, A is confidently estimated at the point

(xt, x
′
t) thus no more u queries are needed. The decay rate q controls the threshold to satisfy this

stopping condition, and we recommend q = 1/2 (detailed later in Section 3.4).

Efficient computation. So far, we have introduced several optimization problems (MAP, Prob (5),
Remark 3.8, Line 4 in Alg. 1, and Probs. (6)). However, the functions ũ and ṽ exist in an infinite-
dimensional space. Fortunately, by applying the representer theorem (Schölkopf et al., 2001) and
utilizing the RKHS property, we can kernelize these problems into tractable, finite-dimensional
optimization problems. For example, MAP and Prob. (5) become n(t + n) and n(t + n + 1)-
dimensional optimization problems, respectively. The convexity of the kernelized problems allows
for scalable solutions, although the computational cost scales as O(n(t + n)). Notably, this cost
is still more efficient than the multi-task GP, which scales as O(n3t3) and involves non-convex
optimization (Bonilla et al., 2007). See Appendix E for details on the kernelized problems.

3.4 THEORETICAL ANALYSES

Cumulative regret and cost. We define two performance metric: cumulative regret RT :=∑T
t=1(A[u(x∗, :)] − A[u(xt, :)]) and cumulative private query |Qu

T |. Under Assumption 3.4 that
λu ≫ λv , |Qu

T | dominates the cost CT := λu|Qu
T |+ λvT .

6
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Graph properties. The regret bound is affected by the following properties of adjacency matrix A:

(a) Given: We know A, otherwise A is unknown a priori and we need to estimate it.
(b) Invertible: There exists A−1, otherwise A is singular.
(c) Identifiable: A is identifiable from the votes, otherwise dual voting cannot identify true A.

Theorem 3.9 (Regret bound). Under Assumptions 2.2 to 2.6, Algorithm 1 satisfies,

Voting scheme and Assumptions cumulative regret RT sample complexity of private votes |Qu
t |

Oracle (public only) (a)(b)(c) O
(
nLA

√
βv
T γ

vv′
QT
T
)

0

SBO (dual voting) (c) O
(
LAT

1− q
4 + LA

√
(βu

T γ
uu′
T + βv

T γ
vv′
T )T

)
O
(
T q
(
γvv

′

T

)2
log TN (Bu,1/T ,∥·∥∞)

δ

)
None (private only) - O

(
LA

√
βu
T γ

uu′
QT

T
)

T

with probability at least 1−δ, whereLA :=
√
n∥w∥, γ is maximum information gain, and γvv

′

QT
, γuu

′

QT

are γ for the corresponding kernel, 0 ≤ q ≤ 1 is a user-defined parameter.
Remark 3.10 (Groupthink-proof). Any identifiable A has sublinear convergence to true consensus
x⋆. Without (c) (=‘None’), we end up querying private votes only (|Qu

T | = T ).
Remark 3.11 (Trade-off in q). Larger q can make RT converge faster, yet requires more |Qu

T |.

Appendix F provides the proof and more details. Furthermore, by incorporating maximum informa-
tion gain bounds (Srinivas et al., 2012; Vakili et al., 2021) and covering number bounds (Wu, 2017;
Xu et al., 2024a; Bull, 2011; Zhou, 2002), we apply Theorem 3.9 to derive the kernel-specific bounds
in Table 1, omitting T -independent constants. The convergence rate clarifies several aspects of Al-
gorithm 1. While ‘None’ achieves the tightest regret bound RT , its sample complexity |Qu

t | is the
worst, scaling linearly with T . In contrast, SBO achieves a sublinear sample complexity bound, but
the RT has an additional T 1−q/4 term. This is reasonable, as later rounds must infer consensus from
corrupted queries. We can view q as a necessary compromise for the graph estimation error, sup-
ported by the impossibility theorem. Importantly, within the typical conditions (T ≤ 1000, d ≥ 2,
RBF kernel), q dependent term is always smaller than non-dependent ones in RT , suggesting a
similar convergence rate in practice. The oracle setting has an additional n factor compared to the
‘None’ case because the norm of the inverse of the graph adjacency matrix, ∥A−1∥, amplifies the
noise of v when it is transformed onto u. βu

T and βu
T reflect the utility function estimation error (see

Lemma 3.6). The aggregation function A affectsRT , with egalitarian being the slowest (LA →
√
n)

and utilitarian the fastest (LA = 1). RT is sublinear to the number of agents. i.e.,
√
n. The dimen-

sion d scales similarly to standard BO, techniques like additive kernels (Kandasamy et al., 2015) can
improve dimensional scalability. Furthermore, by applying the minimum excess risk (MER; Xu &
Raginsky (2022)), our optimistic MAP has the following asymptotic convergence rate:
Theorem 3.12 (Graph identification). Asymptotic convergence rates of the estimation errors are

∥Ãt −A∥ ≤ O
(
2−1/2|Qu

t |−1/2
)
, |ũt(xt)− ũt(x

′
t)− (u(xt)− u(x′t))| ≤ O

(
L
1/4
k,Qu

t
|Qu

t |−1/4
)
,

for maxi∈V κi = 1 + δ2A/n2 − 2ξδ2A, κi > 1, ξ < 1/2n2 and Ãt, ũt ∈ Bu,A,v
t defined in Lemma 3.6.

Appendix G provides the proof and more details. Theorem 3.12 shows the graph identification error
converges faster than pointwise utility estimation error in the worst-case scenarios. Intuitively, the
estimation error for the linear model (A) converges faster than for the black-box non-linear functions
(u, v). Thus, we can stop querying private votes |Qu

t | once we reach sufficient confidence. This
results also suggests q = 1/2 can be optimal as the cumulative error of

∑
i∈[T ] t

−1/2 ≤ O(T 1/2) to
match the rate of |Qu

t |. This convergence rate relies on the strong convexity of MAP objective (c.f.,

Table 1: Kernel-specific bounds for main algorithm where ν > d/4(3 + d+
√
d2 + 14d+ 17) = Θ(d2).

Metric Linear RBF Matérn

RT O
(
T 1− q

4 + T
3
4 (log T )

3
4

)
O

(
T 1− q

4 + T
3
4 (log T )

3
4
(d+1)

)
O

(
T 1− q

4 + T
d
4ν

+
d(d+1)

4ν+2d(d+1) (log T )
3
4

)
|Qu

T | O
(
T q(log T )3

)
O

(
T q(log T )3(d+1)

)
O

(
T

q+ d
ν

2d(d+1)
2ν+d(d+1) (log T )3

)
7
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MLE is convex yet not strongly convex). As such, Theorem 3.12 also highlights the benefits of the
MAP extension, beyond just improving numerical stability through regularizers.

4 RELATED WORKS

BO for black-box games. In the BO community, the game-theoretic approach has been researched
as the application to multi-objective BO (MOBO) (Hernández-Lobato et al., 2016; Daulton et al.,
2020). Direct consideration of the multi-agentic scenario is limited, which typically assumes the
specific aggregation rule (Nash equilibrium; Al-Dujaili et al. (2018); Picheny et al. (2019); Han
et al. (2024), Kalai-Smorodinsky solution; Binois et al. (2020)) or Chebyshev scalarisation function
(Astudillo et al., 2024), which requires discrete domain to ensure the existence of solution. Ours is
the first-of-its-kind principled work that addresses the influenced votes over continuous space.

Preferential BO. Preferential BO is a single-agentic preference maximisation algorithms (González
et al., 2017; Astudillo et al., 2023; Xu et al., 2024b), extended to diverse scenarios; choice data
(Benavoli et al., 2023a), top-k ranking (Nguyen et al., 2021), preference over objectives on MOBO
(Abdolshah et al., 2019; Ozaki et al., 2024), human-AI collaboration (Adachi et al., 2024b). Our
work is the first to study the multi-agentic social influence, and is orthogonal to these works.

Other BO. Multitask BO (Kandasamy et al., 2016) addresses scenarios where cheap but lower-
fidelity information is available and leverages this information to identify promising regions for
exploration. However, when the low-fidelity information is unreliable, these algorithms may con-
verge much more slowly than the original BO algorithm (Mikkola et al., 2023). In contrast, our SBO
framework does not use public votes as constraints but rather as supplementary data to help identify
the underlying model, i.e., the social influence graph A. While cost-aware BO (Lee et al., 2020)
deals with location-dependent cost functions, public votes in our model are not location-dependent.
Misspecified BO (Bogunovic & Krause, 2021; Berkenkamp et al., 2019), which addresses cases
where the surrogate model is misspecified, primarily focuses on Gaussian process hyperparameters
and is not directly applicable to the likelihood-ratio model.

5 EXPERIMENTS

Since our problem setting—optimization with preference feedback under social influence—is novel,
we benchmark our proposed algorithm against simpler versions of our method by systematically re-
moving one design choice at a time. An RBF kernel is used by default unless otherwise specified,
and for each optimization iteration, the inputs are rescaled to the unit cude [0, 1]d. The initial dataset
consist of 5 randomly sampled pairs (xt, x

′
t) from the domain X with labels generated according

to Assumption 2.2. A (xt, x
′
t) is determined by argmaxx,x′∈X α(x, x

′) in each iteration then votes
are queried. All experiments were repeated 10 times under different seeds and initial datasets. Hy-
perparameters such as kernel lengthscales, the norm bound Lv , and the confidence bound βt, were
tuned online at each iteration (c.f. Appendix I for details). Optimization problems are solved using
the interior-point nonlinear optimizer IPOPT (Wächter & Biegler, 2006), interfaced via the sym-
bolic framework CasADi (Andersson et al., 2019). Code repository1are provided for reproducibility.
Models are implemented in GPyTorch (Gardner et al., 2018), and experiments are conducted using
a laptop PC2. Computational time is discussed in Appendix J.4. Along with cumulative regret and
query counts, we also report simple regret, defined as SRt := minτ∈[T ](S(x⋆)− S(xτ )).
Baseline setup. We benchmark our algorithm against four baseline models, each based on specific
assumptions about the aggregation function and influence graph, as considered in Theorem 3.9: (a)
Oracle: A is known, thus only v is queried; (b) Single Agent: Ignores agent heterogeneity, perform-
ing single-agent preference maximization (similar to standard preferential BO); (c) Independence:
Assumes u and v are completely independent; (d) Optimistic MLE: Assumes v = Au without a
prior on A; and (e) Optimistic MAP (ours): Assumes v = Au with the prior p(A) in Eq. (4).

Robustness to aggregate function. We first demonstrate the robustness of our algorithm against
different aggregation functions under a fixed influencer-follower graph, A =

(
0.9 0.1
0.6 0.4

)
, where the

first agent (influencer) prioritizes their own utility 9 times more than the second’s, while the second
(follower) values the influencer’s utility 1.5 times more than their own. Overall, the egalitarian case

1https://anonymous.4open.science/r/socialBO-1EED/
2MacBook Pro 2019, 2.4 GHz 8-Core Intel Core i9, 64 GB 2667 MHz DDR4
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Figure 3: Robustness analysis was conducted using the function shown in Fig. 2. The lines and shaded areas
represent the mean ± 1 standard error. The cumulative regret RT reaches a plateau, confirming the no-regret
property, while the cumulative queries |Qu

t | demonstrate sublinear convergence.

(ρ = 0.1) shows the slowest RT convergence, while the utilitarian case (ρ = 1) is the fastest. The
cumulative queries |Qu

t | remain unaffected, supporting Theorem 3.9. The egalitarian case displays
the most diverse results among the baselines, as this rule prioritizes the worst-off agent—in this
case, the follower—making accurate prediction of the follower’s utility key to faster convergence.
Interestingly, our optimistic MAP model outperforms the oracle model. While the oracle model
does not use private votes (|Qu

t | stays at zero), our model accesses both public and private votes,
utilizing more data and improving early-stage predictions. In contrast, the utilitarian rule focuses on
the average utility among agents, making follower utility prediction less critical for convergence.

Robustness to influence graph. Under a fixed aggregation rule (ρ = 0.5), three cases were
considered: egoist A =

(
1−10−10 10−10

0.3 0.7

)
, which strongly prioritizes self-utility; altruist A =(

10−10 1−10−10

0.3 0.7

)
, which selflessly prioritizes others’ utility; and wishy-washy A =

(
0.5 0.5
0.5 0.5

)
, where

agents are indecisive. Notably, the oracle performs the worst in the wishy-washy case due to the
singularity of the matrix, which makes it impossible to identify u = A−1v through inversion. In the
altruist case, where a selfless agent causes the public votes to be unanimously influenced, the sce-
nario ironically becomes one of the most challenging for the single-agent baseline, which assumes
homogeneous agents. In contrast, our method remains unaffected by the structure of graph A, as it
does not rely on invertibility or homogeneity assumptions.

Additional experiments. Due to page limitations, we defer additional experimental results to Ap-
pendix J. The computational time, provided in Appendix J.4, shows that the overhead of our method
is comparable to that of simpler baselines. Furthermore, we detail a GP-based variant of our algo-
rithm using convolutional kernel in Appendix H.1. We did not adopt this as the main algorithm be-
cause the non-conjugate posterior makes the theoretical analysis challenging. While this GP-based
approach is heuristic, it allows for efficient approximation methods, such as the Laplace approxima-
tion, making it a simpler and faster alternative via convolutional kernel.

Real-world tasks. We introduce four new real-world collective-decision tasks to test our algorithm.
For all tasks, we assume that agents prefer not to disclose their social-influence-free votes to other
agents in public voting, but are willing to share them with the facilitator, provided the results remain
closed.

1. Thermal comfort: Three office workers (influencer, follower, altruist) wishes to optimize the
thermal condition (set temperature and air speed) under different garments and activity conditions,
leading to varying thermal insulation and metabolic generation. The facilitator sets aggregation rule
as egalitarian because they considers uncomfortable thermal conditions deteriorates productivity and
health. We calculate each utility function under the given conditions using a simulator (Tartarini &
Schiavon, 2020), following the ASHRAE industrial standard.

2. TeamOpt: Four office workers (a leader, a follower, and two indecisive members) hold a meet-
ing to select team members for the next project, which includes eight workers in total, including
themselves. The leader prioritizes skill set diversity to enhance productivity, while the others fo-
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Figure 4: Real-world experiments with varying number of agents n and aggregation rule ρ

cus on inter-member compatibility: one considers average compatibility, another seeks to maximize
the worst-case scenario, and the last prefers a balanced team with minimal variance in compatibility.
The facilitator applies an egalitarian rule, ensuring that the worst-off member is at least satisfied with
the team. Each potential team forms a graph with an adjacency matrix representing skills and com-
patibility, and summary statistics define each utility function. The inter-graph kernel was computed
using the graph diffusion kernel (Zhi et al., 2023).

3. TripAdvisor: Three colleagues (two influencers and a follower) are deciding on a hotel for
their upcoming group retreat, using the TripAdvisor website. One prefers a luxurious hotel with
the highest ranking, another seeks a budget-friendly option with reasonable reviews, and the third
prioritizes the hotel with the highest overall review score. The facilitator (group leader) chooses
ρ = 0.5 to balance both egalitarian and utilitarian aspects. We used the TripAdvisor New Zealand
Hotel dataset (Rahman, 2023).

4. EnergyTrading: Three firms (a large corporation, a niche startup, and a joint venture) form a
strategic collaboration to enhance their energy trading business. Their profits rely on a machine
learning model that predicts day-ahead market prices, which in turn depends on a demand dataset.
Due to the scarcity of such data, they jointly invest in a market research project. However, since the
demand data is spatiotemporal, they must decide on the optimal location for data collection. Each
firm’s utility function is based on the information gain for the selected location, and their internal
datasets lead to heterogeneous utilities. The facilitator (project leader) adopts ρ = 0.5 to balance
egalitarian and utilitarian considerations. We used the UK-wide energy demand dataset (Grünewald
& Diakonova, 2020; Grünewald & Diakonova, 2019).

See Appendix J for further details on experimental conditions. Fig. 4 summarizes the results. Our
optimistic MAP model consistently identifies better or comparable solutions compared to other base-
lines. Additionally, the cumulative queries |Qu

t | remained the smallest among the three adaptive
query baselines. Further comparisons with multi-fidelity BO are available in Appendix J.3.

6 CONCLUSION AND LIMITATIONS

We explored the impact of social influence, a common but under-researched cognitive bias in col-
lective decision-making. To bypass the impossibility of groupthink-proof aggregation, we proposed
a dual voting mechanism and developed a learning algorithm for social influence graphs using op-
timistic MAP, which accelerated social-influence-free consensus-building across six synthetic and
four real-world tasks. Our results generalize to any positive linear combination of aggregation func-
tions and apply to both provable likelihood-ratio models and popular GP-based approaches.

While our algorithm is the first of its kind with a general theoretical guarantee in the social-influence
setting, it shares limitations common to optimistic algorithms like GP-UCB (Srinivas et al., 2010),
particularly in high-dimensional problems. Additionally, our current framework does not support
batch settings, and the aggregation function must be specified in advance, assuming stationarity
and homogeneity. To extend to heterogeneous and dynamic cases, the probabilistic choice function
approach (Benavoli et al., 2023b) presents a promising avenue for future research. While we framed
social influence as a bias to eliminate, positive social influence—such as debiasing confusion or
using nudge theory (Thaler & Sunstein, 2008) to guide behavior—can also be beneficial. Since our
algorithm is symmetric to u, v, this inverse approach is possible and a promising direction for future
research, as discussed further in Appendix H.2.
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7 ETHICS STATEMENT

Our experiments do not involve human subjects. We study social influence in general, focusing on
the spontaneous aspects of human society, such as cognitive biases that arise from societal influence,
leading to biased votes. We do not investigate issues related to harassment or politically incorrect
behavior. Even if someone attempts to misuse the method, our approach is designed to mitigate such
effects, never to act adversarially. By aiming to protect the worst-off agent, who may be a selfless
altruist, our research upholds ethical standards.

8 REPRODUCIBILITY STATEMENT

Our code is open-sourced at https://anonymous.4open.science/r/
socialBO-1EED/ for reproducibility. The experimental details are delineated in Appendix J.
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A PRELIMINARY

A.1 TABLE OF NOTATIONS

Table 2: Notations and Descriptions (Part I)

Category Symbol Description Reference

Domain

x Option Eq. (1)
x∗ Consensus (global optimum) Eq. (1)
xt Queried option at t-th step Eq. (1)
X ∈ Rd (continuous) domain Eq. (1)
d Number of dimensions Eq. (1)

Utility

n Number of agents Eq. (1)
V Set of n agents Eq. (1)
i Index of agents Eq. (1)
u(x, i) Truthful utility for the i-th agent. Eq. (1)
v(x, i) Non-truthful utility for the i-th agent. Eq. (1)
u(x, :) Utilities of all agents Eq. (1)
≻u(·,i) Preference of agent i induced by utility u(·, i) Assumption 2.2
≻S Preference of group induced by social utility S Definition 3.2
p(u), p(v) Prior over utilities (uniform prior) Section 3.2
û, v̂ MAP estimate of utilities. Lemma 3.6
v(x, i) Non-truthful utility for the i-th agent. Eq. (1)
u(x, :) Utilities of all agents Eq. (1)
ũ, ṽ Utility function sample from confidence set. Assumption 2.6
ût, v̂t MAP estimated utility function at t-th step. Assumption 2.6
ut, vt The lower confidence bound of utility. Remark 3.7
ut, vt The upper confidence bound of utility. Remark 3.7

Likelihood

σ Sigmoid function Assumption 2.2
ℓt(u), ℓt(v) Log Likelihood (LL) function Corollary 3.5
ℓ̂ut , ℓ̂

v
t MLE estimate of LL values Lemma 3.6

Lt(u,A, v) Unnormalized negative log posterior Section 3.2

Aggregation
function

A Aggregation function Definition 2.3
S Social utility Definition 2.3
w Weight function of A Proposition C.4
ρ GSF interpolation parameter Proposition C.4
ϕ Sorting function Proposition C.4

RKHS

ki(x, x
′) Kernel of i-th agent’s utility Assumption 2.6

Hki RKHS corresponding to the kernel ki Assumption 2.6
|| · ||ki Norm induced by inner product in RKHS Hki Assumption 2.6
Lv Isotropic norm bound of Hki Assumption 2.6
Bvi ,Bui Set of utility functions of i-th agent Assumption 2.6
Bv,Bu Superset of utility functions of all agent Assumption 2.6
Bv
t ,Bu

t Superset of MLE-estimated utility functions at t-th step Lemma 3.6
Bu,A,v
t Superset of MAP-estimated utility functions at t-th step Lemma 3.6

γut , γ
v
t , γ

uu
t , γvvt Maximum information gain for corresponding kernels Lemma 3.6

Lk,t Kernel specific term Theorem 3.12
ν Matérn kernel smoothness paramter Table 1

Confidence
set

Ft Filtration at the step t Lemma 3.6
δ Probability that Bu,A,v

t does not contain u,A, v Lemma 3.6
ϵ Radius of the function space ball Lki

Lemma 3.6
N (Bu, ϵ, ∥·∥∞) Covering number of the set Bu Lemma 3.6
βu
t , β

v
t MLE-based confidence set bound parameter Lemma 3.6

βt MAP-based confidence set bound parameter Lemma 3.6
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Table 3: Notations and Descriptions Part II

Category Symbol Description Reference

Graph

E The set of weighted directed edges. Definition 2.5
G = (V,E) The social-influence graph Definition 2.5
A The adjacency matrix of G. Definition 2.5
NG(i) The (in)-neighbour of i in G. Definition 2.5
p(A) Graph prior Eq. (4)
ξ Tiknohov parameter (invertibility regularizer) Eq. (4)
κi Dirichlet concentration parameter of i-th row Eq. (4)
δA The smallest element of A Eq. (4)
Z Normalising constant of prior p(A) Eq. (4)
Ã graph sample from confidence set. Assumption 2.6
Ât MAP estimated graph. Assumption 2.6

Queries

t The step of iteration Assumption 3.4
T The running horizon Assumption 3.4
Qv

t public queries Assumption 3.4
Qu

t private queries Assumption 3.4
Quv

t combined set of private and public queries Lemma 3.6
DQv

t
Public vote Assumption 3.4

DQu
t

Private vote Assumption 3.4
λu, λv Query costs of private and public votes Assumption 3.4

Algorithm

α Acquisition function Eq. (5)
wu

t , w
v
t Projection weight function Eq. (6)

q Decay rate Algorithm 1
RT Cumulative regret Theorem 3.9
SR Simple regret Section 5
LA Regret constant from aggregate function Theorem 3.9

A.2 HYPERPARMATER LIST

Table 4: The complete list of hyperparameters and their settings.
hyperparameters initial value data-driven optimisation? tuning method

kernel hyperparamters GPyTorch default ✓ the method in Appendix I.1
γuT , γ

v
T in Theorem 3.9 – ✓ algorithm using Hong et al. (2023)

δA in Eq. 4 0.01 fixed –
ξ in Eq. 4 1/2δ2An2 fixed –
κi in Eq. 4 1 + 1/n2(2δ2 − 1) fixed –
Lv in Assumption 2.6 1.5 ✓ the method in Appendix I.1
βt, β

u
t , β

v
t in Lemma 3.6 0.5 ✓ the method in Appendix I.1

q in line. 7 in Alg. 1 0.5 fixed –

A.3 DEFINITIONS

At first, we formally define the definitions we introduced:

Definition A.1 (Invertibility). The graph matrix A is invertible (also known as nonsingular or
nondegenerate) if there exists a square matrix B such that

AB = BA = I, (7)

and we denote such B as A−1.

Definition A.2 (Identifiability). Let M = {MA : v(x, :) = Au(x, :) | A ∈ Rn×n} be a statistical
model of social influence. M is identifiable if the mapping A 7→ MA is one-to-one:

MA1 = MA2 ⇒ A1 = A2, ∀A1, A2 ∈ Rn×n. (8)
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In an unidentifiable case, the above relationship is not one-to-one. Such cases can be found. For
instance, if vi = uj = u,∀i, j, then matrix A can be any matrix with

∑
j Aij = 1. This assumption

excludes such cases.
Definition A.3 (Strong convexity). A function h(x) is said to be strongly convex with parameter
m > 0 if, for all matrices A,B ∈ Rn×n, the following inequality holds:

h(B) ≥ h(A) +∇h(A)⊤(B −A) +
m

2
∥B −A∥2, (9)

where ∇h(A) denotes the gradient of h at A.

Definition A.4 (Monotonicity). For any t ∈ [T ], i ∈ V, x, x′ ∈ X , a social utility S is monotonic,
S(x) > S(x′) if:

(u(x, i) > u(x′, i)) ∧ (∀j ∈ V \{i} u(x, j) = u(x′, j)).

Intuitively, a social utility S(x) should increase if any individual utility ut(x, i) improves. Mono-
tonicity guarantees the maximising the social utility leads to the improvement of individual utilities.
Definition A.5 (Pigou-Dalton principle (PDP)). An social utility S satisfies S(x) > S(x′) if:

1. In a strong sense, u(x, :) ≻ u(x′, :) for x ∈ X whenever there exist i, j ∈ V such that (a)
∀k ∈ V \{i, j} u(x, k) = u(x′, k), (b) u(x, i) + u(x, j) = u(x′, i) + u(x′, j), and (c) |u(x′, i) −
u(x′, j)| > |u(x, i)− u(x, j)|.
2. In a weak sense, we only require that u(x, :) ⪰ u(x′, :).

Intuitively, given a utility vector u(x, :), if an agent with a higher utility transfers ≤ 1/2 of its excess
utility to another worse-off agent, the aggregate function A should prefer the transferred utility over
the original for the fairness.

B GRAPH PROPERTIES

B.1 PROOF OF LEMMA 2.7

We begin by introducing useful lemmas.
Lemma B.1 (Utility bound). ∀u ∈ Bu, x ∈ X , i ∈ V , the utility is bounded by u(x, i) ∈
[−Lu, Lu].

Proof.

|u(x)| =|⟨u, k(x, ·)⟩|, (10)
≤∥u∥∥k(x, ·)∥, (Cauchy-Schwarz)

≤Lu

√
k(x, ·), (Assumption 2.6)

≤Lu. (Assumption 2.6)

Lemma B.2 (Range preservation). Under Eq. (3) and Assumption 2.6, both u, v are bounded by
the same range u, v ∈ [−Lv, Lv].

Proof. Given the conditions Aij ≥ 0 and
∑n

j=1Aij = 1, each v(·, i) =
∑n

j=1Aiju(·, j) is a
convex combination of the u(·, j). The convex combination ensures that,

min
j
u(·, j) ≤ v(·, i) ≤ max

j
u(·, j) (11)

By Lemma B.1, u(·, i) ∈ [−Lu, Lu]. Therefore, v(·, i) ∈ [−Lu, Lu].

Lemma B.3 (Matrix norm bound). Under Eq. (3), if the graph matrix A is invertible, the Eu-
clidean norm of the inverse matrix satisfies

1 ≤ ∥A−1∥ ≤ n. (12)
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Proof. Lower bound. Let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 be the eigenvalues of A. The Euclidean
norm ∥A−1∥ is the largest singular value of A−1, which, for symmetric matrices, is the largest
eigenvalue of A−1, therefore ∥A−1∥ = 1/λn. The condition

∑n
j=1Aij = 1 is known as row-

stochastic matrix. The Perron-Frobenius theorem (Meyer, 2023) ensures that such a matrix has a
unique largest eigenvalue. The row-stochastic condition can be understood as Ae = e, where e :=
[1, · · · , 1]⊤ is the column vector, implying e is an eigenvector of A with eigenvalue 1. Therefore,
λ1 = 1 holds, thereby λn ≤ 1. As such, the lower bound: ∥A−1∥ ≥ 1/λn = 1 is obtained.

Upper bound. We consider the operator norm induced by the Euclidean norm ∥·∥2, which is defined
as:

∥A−1∥ = sup
∥x∥2=1

= ∥A−1x∥2. (13)

To find an upper bound, it is helpful to use properties of induced norms. Specifically, for any matrix
M , we have:

∥M∥2 ≤∥M∥1, (14)
∥M∥2 ≤∥M∥∞, (15)

where ∥M∥1 is the maximum absolute column sum, and ∥M∥∞ is the maximum absolute row sum.
Since A is row-stochastic matrix, ∥A∥∞ = 1.

We can consider B = A−1 = (Bij)i,j∈V :

∥B∥1 = max
j∈V

∑
i∈V

|bij |. (16)

Given thatA has positive entries and is invertible, the inverseB will have entries that can be bounded
based on n. Specifically, by leveraging properties of positive matrices and norm inequalities, it can
be shown that:

∥B∥1 ≤ n. (17)

Consequently,

∥B∥2 ≤ ∥B∥1 ≤ n. (18)

Lemma B.4 (Identifiability). Under Eq. (3), given the full rank observation dataset (u(xτ , :))τ∈[T ]

from data pairs (v(xτ , :), u(xτ , :))τ∈[T ], A is identifiable from such dataset.

Proof. Positivity constraint in Eq. (3) eliminates the possibility of multiple solutions differing by
sign or magnitude in a way that violates positivity. The full rank assumption ensures each row Ai:

has a unique solution. Thus, identifiability holds regardless of the invertibility of A.

Main proof.

Proof. Under Assumption 2.6 and Eq. (3), range preservation is proven in Lemma B.2.

If we add another condition that matrix A is invertible, Lemma B.3 shows its Euclidean norm is
bounded by 1 ≤ ∥A−1∥ ≤ n.

Alternatively, if we assume the full rank condition for the observed pairs of (u, v), Lemma B.4
shows A is identifiable from observed datasets.

B.2 GRAPH PRIOR PROPERTIES

Lemma B.5 (Strongly convex prior). The prior in Eq. (4) satisfies:

(a) positive matrix: Every entry Aij > 0.
(b) row-stochastic matrix: Each row sums to 1, i.e.,

∑n
j=1Aij = 1 for all i.

(c) strong convexity: − log p(A) is strongly convex with regard to A.
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Proof. (a) positive matrix. By definition of Dirichlet distribution, all row-wise samples are
nonzero. αi > 1 discourages sampled matrix A from selecting the boundary, i.e., Aij = 0. To
exclude the small chance of zero entry, the constraint Aij > δA and δA > 0 directly ensures the
strict positivity.

(b) row-stochastic matrix. By definition of Dirichlet distribution, all row-wise samples are row-
stochastic.

(d) Strong convexity. The negative log prior is

− logP(A) =
∑

i,j∈[n]

A2
ij −

n∑
i=1

logDirichlet(ai;κi). (19)

The sum of strongly convex functions is strongly convex. Therefore, if all terms are strongly convex,
we can say logP(A) is strongly convex with regard to A. We can show the strong convexity if its
Hessian ∇2f(x) satisfies:

∇2f(x) ⪰ mI. (20)

For the Tikhonov term, we have simple sum of squared elements, thereby its Hessian is 2λI , thus
strongly convex.

For the Dirichlet term, we have

− logDirichlet(ai;κi) =− log

 1

B(αi)

n∏
j=1

A
κij−1
ij

 , (21)

=− logB(κi)−
n∑

j=1

(κij − 1) logAij , (22)

where B(κi) is the multivariate Beta function, which is a constant with respect to A. For each Aij ,
the Hessian entry is (κij−1)/A2

ij . As κij > 1 and Aij > 0 for ∀i, j ∈ V , therefore the Hessian is
strictly positive, thereby strongly convex.

B.3 OTHER POSSIBLE GRAPH STRUCTURES

Non-linear graph For non-linear cases, we can employ a graph convolutional kernel network ap-
proach [1]. Using the kernel trick and Nyström method, this approach can transform non-linear
functions into effectively linear forms. Popular graph neural network models can also be seen as
special cases of [1]. Once the model is linearized, our approach can be applied directly. The lin-
earized graph has m components, where m represents the number of Nyström model centroids. By
applying the Cauchy-Schwarz inequality, our bound in Theorem 3.12 becomes looser by a factor of√
m. However, since this is a constant, the order of the asymptotic convergence rate remains the

same at −1/2. The Nyström method provides an eigendecomposition-based approximation of the
non-linear network, where m reflects the complexity of the non-linear social graph. This adjust-
ment is reasonable, as a more complex ground-truth social graph would naturally lead to a slower
convergence.

Peer-pressure model In a peer-pressure scenario, we assume a setting where a minority of agents
may shift their votes toward the majority. This minority or majority could vary based on the option
x, creating a heterogeneous setting. If the setting is homogeneous, our algorithm can model peer
pressure directly. For a heterogeneous setting, as noted in L534-536, we can incorporate diversity
using a probabilistic choice function (Benavoli et al., 2023b). While regret bounds for this model
are not yet established in the literature—given that even linear graphs are novel in this context—the
submodularity of the probabilistic choice function suggests sublinear convergence.

Hierarchical influence For hierarchical influence, we are unsure of its relevance in settings where
all participants vote in the same room. This scenario may arise when influence propagates slowly
among voters, as in presidential voting. Our target tasks, however, are in an online setting where
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voting is iterative and occurs at a relatively faster pace than in presidential elections (see Section
5). Still, if it does occur, a grey-box Bayesian optimization approach [2] could be applied, where
the hierarchical graph structure is known but the specific attributions remain unknown. Under these
assumptions, we can demonstrate the same convergence rate as in Theorem 3.9 with high probability,
although this analysis is beyond the scope of the current paper.

C AGGREGATION FUNCTION

C.1 POPULAR AGGREGATION FUNCTIONS

We generalize the aggregation function as v(x, i) =
∑

i∈[n] w(x, i)u(x, i). Then, we will show the
popular aggregation rule can be expressed as w(x, i) ≥ 0.

Utilitarian aggregation

w(x, i) =
1

n
(23)

Egalitarian aggregation

w(x, i) =

{
1 if i = argmini∈[n] u(x, i),

0 otherwise;
(24)

w(x, i) =

{
1 if i = argmini∈[n] u(x, i),

0 otherwise;
(25)

Chebyshev scalarisation function

w(x, i) =

{
1 if i = argmini∈[n]

u(x,i)
wi

,

0 otherwise;
(26)

We can understand this function is similar to egalitarian aggregation.

C.2 PROOF OF IMPOSSIBILITY THEOREM

Proof. We prove the impossibility of groupthink-proofness for any aggregation rule A in the absence
of a trivial social consensus.

Definition C.1. (Trivial social consensus) x∗trivial is the trivial social consensus if for all i ∈ |V |,
x∗trivial = argmaxx u(x, i)

Let us assume that there exists a groupthink-proof aggregation function A and no trivial social
consensus. With respect to (Defn. 3.1), any aggregation rule A is groupthink-proof if for any social
graph G

argmax
x

A[u(x, :)] = argmax
x

A[v(x, :)]

Consider a subset of all possible graphs, Gdictatorial = {Gi| ∀i, j, k ∈ |V | Ajk = I{i = k}}.
Intuitively, Gdictatorial is the collection of social influence graphs where one agent forces everyone
else to take their utility. Since A is groupthink proof for any G, it must also be groupthink proof
w.r.t subset Gdictatorial.

Let us denote the social consensus of the groupthink-proof aggregation rule as

x∗ = argmax
x

A[u(x, :)]
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Let us iteratively compute the social consensuses obtained by aggregation of non-truthful utilities
under Gdictatorial, i.e. for all Gi ∈ Gdictatorial,

argmax
x

A[vi(x, :)] = argmax
x

A[Aiu(x, :)]

= argmax
x

A[1u(x, i)]

= argmax
x

u(x, i)

For A to be groupthink-proof for each Gi ∈ Gdictatorial

argmax
x

A[u(x, :)] = argmax
x

A[vi(x, :)]

(⇒) for all i ∈ |V | x∗ = argmax
x

u(x, i)

This means x∗ is a trivial social consensus, thus resulting in a contradiction. Therefore, no aggrega-
tion rule is groupthink proof in the absence of a trivial social consensus.

The old proof is below for reference:

Proof. To prove impossibility, we show that for every aggregation rule A there exists a graph G and
utility profile u(x, :) such that groupthink-proofness (Defn. 3.1) is not satisfied. To show this, we
construct a counter-example for any aggregation rule A.

Consider the ⪰Su
be a preference relation defined on X with respect to Su(x) := A[u(x, :)]. For-

mally, ∀ x, x′ ∈ X , x ⪰Su
x′ iff A[u(x, :)] ≥ A[u(x′, :)] Since A ensures non-dictatorship, it

implies that ∀x, x′ ∈ X

∄ i (dictator) such that x ⪰ui
x′ ⇐⇒ x ⪰Su

x′ (27)

where ui = u(·, i) is the utility of the agent i.

Case 1: |V| = 1

Given |V | = 1, there exists a single agent with truthful utility u, since it cannot be socially influenced

A[v(x, :)] = A[u(x, :)]

= u(x, i) (Def 2.3)

Thus all aggregation rules are dictatorships in this case where the single agent acts as a dictator.

Case 2: |V| > 1 and |X | = 2

Given |X | = 2. Lets consider X = {x, x′} then for all agents {u(·, i)}i∈V , (x ⪰ui
x′)∨ (x′ ⪰ui

x)
is true. Now when we consider the social utility Su since it is a complete preference (x ⪰Su

x′)∨(x′ ⪰Su
x) is also true which implies there exists an agent i such that x ⪰ui

x′ ⇐⇒ x ⪰Su
x′.

Hence all aggregation rules act as dictatorships in this case.

Case 3: |V| > 1 and X > 2

To show the counter example, we consider u(x, :) such that for i ̸= j, argmaxx∈X u(x, i) ̸=
argmaxx∈X u(x, j). We can construct a social influence graphG with transition matrix A such that
Ajk = δi=k where i is the index of agent which influences everyone to take their utility.

Then the final aggregated non-truthful utility

A[v(x, :)] = A[Au(x, :)]

= A[1u(x, i)]

= u(x, i) (Def 2.3)

Thus, Su cannot be the same as the aggregation of non-truthful utilities as it will lead to dictatorship.
And given that for all i, j, argmaxx u(x, i) ̸= argmaxx u(x, j), there are two possible cases

Case 3.1: argmaxx Su(x) ̸= argmaxx u(x, i) for all i. In such a case, groupthink-proofness is
impossible by construction for graphs G where an agent influences everyone to take their utility.
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Case 3.2: ∃i such that argmaxx Su(x) = argmaxx u(x, i). We consider a graph G such that agent
j ̸= i influences everyone to take their utility.

Thus we show for every aggregation function A there exists a graph G and a utility profile u(x. :)
such that groupthink-proofness is not satisfied.

C.3 EXAMPLE: PARETO FRONTS ARE NOT GROUPTHINK-PROOF

individual utility
influencer a1follower a2

social utility

4

2

0

tru
th

fu
l u

til
ity

 u
(i)

0.4 0.80 0.4 0.80

4

2

0

no
n-

tru
th

fu
l u

til
ity

 v
(i)

group S

Pareto frontier

option x option x

x*
corrupted

~

consensus

x*
consensus

Figure 5: Pareto frontier corrupted by the social influence can exclude the true consensus.

A common approach to overcome this challenge in multi-objective optimization is to estimate the
Pareto frontier, assuming it includes the consensus point x⋆, as a ‘trade-off’ solution. We present
a simple illustration where this assumption fails due to social influence. Consider two agents: the
influencer (a1) and the follower (a2)3. Here, we assume that v is given, and A is utilitarian (c.f.
Section 2.1), yet we do not have the access to u norA. We set the ground truth asA =

(
0.9 0.1
0.6 0.4

)
. This

indicates that a1 prioritizes their own utility 9 times more than a2’s, while a2 values a′1s utility 1.5
times more than their own. As shown in Figure 5, the non-truthful utilities v become nearly identical.
While the truthful consensus is at x∗ = 0.82, the non-truthful one is at x̃∗ = 0.38. Furthermore, the
non-truthful Pareto frontier does not contain the truthful consensus x∗. This example demonstrates
that even the Pareto frontier, a conservative consensus approach, fails to address the issue of non-
truthful feedback.

C.4 PROOF OF PROPOSITION 2.4

Proof. This proof is adapted from Proposition 1 in Sim et al. (2021)) for our cases.

For any x, x′ ∈ X , let u∗(x, :) := ϕ(u(x, :)) be the utility vectors obtained after sorting elements of
u(x, :) in ascending order, and w1 > w2 > · · · > wn > 0 be the weight function.

Proof of monotonicity. Let the position of u(x, i) in u∗(x, :) be ix, i.e., u∗(x, ix) = u(x, i).
Given ∀k ∈ V \{i}, u(x, k) = u(x′, k) and u(x, i) > u(x′, i), we must have ix ≥ ix′ . Furthermore,
(i) for k ∈ [0, ix′) and k ∈ (ix, n], u∗(x, k) = u∗(x′, k) and (ii) if ix > ix′ , then for k ∈ [ix′ , ix),

3Note that the decision-maker is not the influencer but the facilitator. The facilitator seeks to elicit the
truthful social utility S, but the influencer distorts the entire voting process.
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u∗(x′, k + 1) = u∗(x, k).
S(x)− S(x′)

=

n∑
k=1

wku
∗(x, k)−

n∑
k=1

wku
∗(x′, k), (Definition of GSF in Eq. 2)

= wixu
∗(x, ix) +

ix−1∑
k=ix

wixu
∗(x, k)−

ix∑
k=ix′+1

wixu
∗(x′, k)− wix′u

∗(x′, ix′), (Assumption (i))

= wixu
∗(x, ix)− wix′u

∗(x′, ix′) +

ix∑
k=ix′+1

(wk−1 − wk)u
∗(x′, k), (Assumption (ii))

≥ wixu
∗(x, ix)− wix′u

∗(x′, ix′) + u∗(x′, ix′)

ix∑
k=ix′+1

(wk−1 − wk),

(Using sorting properties: ∀k > ix′ , u∗(x′, k) ≥ u∗(x′, ix′) and wk−1 − w > 0)

= wixu
∗(x, ix)− wix′u

∗(x′, ix′) + u∗(x′, ix′)(wix′ − wix), (telescoping series)

= wix(u
∗(x, ix)− u∗(x′, ix′)),

= wix(u(x, i)− u(x′, i)),

> 0. (u(x, i) > u(x′, i) and wi > 0)

Proof of PDP. Let lx be the index of min(u∗(x, i), u∗(x, j)) and hx be the index of
max(u∗(x, i), u∗(x, j)). We will see the following two useful facts:

(i) We must have lx′ ≤ lx < hx ≤ hx′ . We will see the validity of this condition by considering the
following contradicting assumption; lx′ > lx. Because of the strong PDP condition (a) and the fact
that lx′ index a minimum, it would mean min(u(x′, i), u(x′, j)) > min(u(x, i), u(x, j)). By the
strong PDP condition (b), we would also have max(u(x′, i), u(x′, j)) < max(u(x, i), u(x, j)). As
such, we would have |u(x′, i) − u(x′, j)| < |u(x, i) − u(x, j)|, which contradicts the strong PDP
condition (c).

(ii) GSF can be decomposed as:

S(x′) =
lx′−1∑
k=1

wku
∗(x′, k) + Slx′−1:hx′ (x

′) +

n∑
k=hx′+1

wku
∗(x′, k),

S(x) =
lx′−1∑
k=1

wku
∗(x, k) + Slx′−1:hx′ (x) +

n∑
k=hx′+1

wku
∗(x, k),

where

Slx′−1:hx′ (x
′) = wlx′u

∗(x′, lx′) +

hx′−1∑
k=lx′+1

wku
∗(x′, k) + whx′u

∗(x′, hx′),

Slx′−1:hx′ (x) =

lx−1∑
k=lx′

wku
∗(x, k) + wlxu

∗(x, lx) +

hx−1∑
k=lx+1

wku
∗(x, k) + whxu

∗(x, hx) +

hx′∑
k=hx+1

wku
∗(x, k)

(iii) Here, by combining the strong PDP condition (a) and the condition (i), we have u∗(x, k) =
u∗(x′, k) for k ∈ [1, lx′ − 1] ∪ [hx′ + 1, n] ∪ [lx + 1, hx + 1]. Thus, we have;

lx′−1∑
k=1

wku
∗(x′, k) =

lx′−1∑
k=1

wku
∗(x, k),

n∑
k=hx′+1

wku
∗(x′, k) =

n∑
k=hx′+1

wku
∗(x, k),

hx−1∑
k=lx+1

wku
∗(x′, k) =

hx−1∑
k=lx+1

wku
∗(x, k),
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then,

S(x′)− S(x) = Slx′−1:hx′ (x
′)− Slx′−1:hx′ (x).

Based on the PDP conditions (a)(b)(c) and the facts (i)(ii)(iii), we have,

S(x′)− S(x)

=

lx−1∑
k=lx′

wku
∗(x, k) + wlxu

∗(x, lx) + whx
u∗(x, hx) +

hx′∑
hx+1

wku
∗(x, k)

−

wlx′u
∗(x′, lx′) +

lx∑
lx′+1

wku
∗(x′, k) +

hx′−1∑
k=hx

wku
∗(x′, k) + whx′u

∗(x′, hx′)

 ,

(Using (ii)(iii))

=

lx−1∑
k=lx′

wku
∗(x, k) + wlxu

∗(x, lx) + whx
u∗(x, hx) +

hx′∑
hx+1

wku
∗(x, k)

−

wlx′u
∗(x′, lx′) +

lx∑
lx′+1

wku
∗(x, k − 1) +

hx′−1∑
k=hx

wku
∗(x, k + 1) + whx′u

∗(x′, hx′)

 ,

Here we used the ranking structure: decrement for k ∈ (lx′ , lx], u
∗(x′, k) = u∗(x, k − 1) and

increment for k ∈ (hx, hx′ ], u∗(x′, k) = u∗(x, k + 1). Then, by regrouping the related terms, we
have,

=

lx−1∑
k=lx′

(wk − wk+1)u
∗(x, k) + (wlxu

∗(x, lx)− wlx′u
∗(x′, lx′))

+ (whx
u∗(x, hx)− whx′u

∗(x′, hx′)) +

hx′∑
hx+1

(wk − wk−1)u
∗(x, k),

≥
lx−1∑
k=lx′

(wk − wk+1)u
∗(x′, lx′) + (wlxu

∗(x, lx)− wlx′u
∗(x′, lx′))

+ (whx
u∗(x, hx)− whx′u

∗(x′, hx′)) +

hx′∑
hx+1

(wk − wk−1)u
∗(x′, hx′),

because wk − wk−1 > 0 and u∗(x, k) = u∗(x′, k + 1) ≥ u∗(x′, lx′) for k = lx′ , · · · , lx − 1, and
(wk − wk−1) is negative, and u∗(x, k) = u∗(x′, k − 1) ≤ u∗(x, hx′) for k = hx + 1, · · · , hx′ .
Then, using the telescoping series,

= (wlx′ − wlx)u
∗(x′, lx′) + (wlxu

∗(x, lx)− wlx′u
∗(x′, lx′))

+ (whxu
∗(x, hx)− whx′u

∗(x′, hx′)) + (whx′ − whx)u
∗(x′, hx′),

= −wlxu
∗(x′, lx′) + wlxu

∗(x, lx) + whx
u∗(x, hx)− whx

u∗(x′, hx′),

= −wlxu
∗(x′, lx′) + wlx (u

∗(x′, lx′) + u∗(x′, hx′)− u∗(x, hx)) + whxu
∗(x, hx)− whxu

∗(x′, hx′),
(PDP condition (b))

= (wlx + whx
) (u∗(x′, hx′)− u∗(x, hx)) ,

> 0.
(lx < hx and u∗(x′, hx′ > u∗(x, hx)), i.e., max(u(x′, i), u(x′, j)) > max(u(x, i), u(x, j)).)

Therefore, S(x′)− S(x) > 0.
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D PREFERENCE LIKELIHOOD

D.1 PROOF OF COROLLARY 3.5

Proof. We begin by the original Bradley-Terry model definition:

P(1(i)
x≻x′ = 1) =

exp(u(x, i))

exp(u(x, i)) + exp(u(x′, i))
. (28)

Using P(1(i)x≻x′ = 0) = 1 − P(1(i)x≻x′ = 1), we introduce the likelihood function for a comparison
oracle:

pû(i)(xτ , x
′
τ , 1

(i)
τ ) := 1(i)

τ S (û(xτ , :)− û(x′τ , :)) +
(
1− 1(i)τ

)
[1− S (û(xτ , :)− û(x′τ , :))] . (29)

We can then derive the likelihood function of a fixed function û over the observed dataset, D(i)
Qu

t
,

Pû(i)(D
(i)
Qu

t
) :=

∏
τ∈Qu

t
pû(i)(xτ , x

′
τ , 1

(i)
τ ).

Consequently, the log-likelihood (LL) function becomes:

ℓt(û(·, i)) = logPû(i)(D
(i)
Qu

t
), (30)

= log
∏

τ∈Qu
t

pû(i)(xτ , x
′
τ , 1

(i)
τ ), (31)

=
∑
τ∈Qu

t

log pû(i)(xτ , x
′
τ , 1

(i)
τ ), (32)

=
∑
τ∈Qu

t

log

[
exp(û(xτ , i))1(i)τ + exp(û(x′τ , i))(1− 1(i)τ )

exp(û(xτ , i)) + exp(û(x′τ , i))

]
, (33)

=
∑
τ∈Qu

t

[
û(xτ , i)1(i)τ + û(x′τ , i)(1− 1(i)τ )

]
−
∑
τ∈Qu

t

log [exp(û(xτ , i)) + exp(û(x′τ , i))] .

(34)

D.2 JOINT LIKELIHOOD.

Multi-agent case We can easily extend to all agent cases:

ℓt(û | Qu
t ) (35)

=
∑
i∈V

ℓt(û(·, i)), (36)

=
∑
i∈V

∑
τ∈Qu

t

[
û(xτ , i)1(i)

τ + û(x′τ , i)(1− 1(i)τ )
]
−
∑
i∈V

∑
τ∈Qu

t

log [exp(û(xτ , i)) + exp(û(x′τ , i))] ,

(37)

=
∑
τ∈Qu

t

[û(xτ , :)1uτ + û(x′τ , :)(1− 1uτ )]−
∑
i∈V

∑
τ∈Qu

t

log [exp(û(xτ , i)) + exp(û(x′τ , i))] . (38)

Non-truthful case Similar to Eq. (29), we can define the likelihood function for v,

ℓt(v̂ | Qv
t ) (39)

=
∑
i∈V

ℓt(v̂(·, i)), (40)

=
∑
τ∈[t]

[v̂(xτ , :)1vτ + v̂(x′τ , :)(1− 1vτ )]−
∑
i∈V

∑
τ∈[t]

log [exp(v̂(xτ , i)) + exp(v̂(x′τ , i))] . (41)
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Joint log likelihood The joint likelihood is simply the sum of each likelihood:

Lt(û, v̂)

=ℓt(û | Qu
t ) + ℓt(û, v̂ | Qv

t ),

=
∑
τ∈Qu

t

[û(xτ , :)1uτ + û(x′τ , :)(1− 1uτ )]−
∑
i∈V

∑
τ∈Qu

t

log [exp(û(xτ , i)) + exp(û(x′τ , i))]

+
∑
τ∈[t]

[v̂(xτ , :)1vτ + v̂(x′τ , :)(1− 1vτ )]−
∑
i∈V

∑
τ∈[t]

log [exp(v̂(xτ , i)) + exp(v̂(x′τ , i))] . (42)

MAP estimation We can further extend the above joint log likelihood to MAP estimation by
adding log p(A):

LMAP
t (û, Â, v̂)

=Lt(û, v̂) + log p(A),

∝Lt(û, v̂) +
∑
i∈V

logDirichlet(Ai, αi)−
∑

i,j∈[n]

A2
ij , (43)

∝Lt(û, v̂) +
∑
j∈V

(αij − 1) logAij −
∑

i,j∈[n]

A2
ij , (Remove constant term)

=
∑
τ∈Qu

t

[û(xτ , :)1uτ + û(x′τ , :)(1− 1uτ )]−
∑
i∈V

∑
τ∈Qu

t

log [exp(û(xτ , i)) + exp(û(x′τ , i))]

+
∑
τ∈[t]

[v̂(xτ , :)1vτ + v̂(x′τ , :)(1− 1vτ )]−
∑
i∈V

∑
τ∈[t]

log [exp(v̂(xτ , i)) + exp(v̂(x′τ , i))]

+
∑
j∈V

(αij − 1) logAij −
∑

i,j∈[n]

A2
ij . (44)

D.3 PROOF OF LEMMA 3.6

To prepare for the proof of the lemma, we first introduce the following two preliminary lemmas
adapted from the Lemma C.2 and C.3 in Xu et al. (2024b).

Lemma D.1. For any fixed v̂(i) := v̂(·, i) that is independent of (xτ , x′τ , 1
(i)
τ )τ∈|Qv

t |, we have, with
probability at least 1− δ, ∀t ≥ 1,∀i ∈ V ,

logPv̂(i)

(
(xτ , x

′
τ , 1

(i)
τ )τ∈|Qv

t |

)
− logPv(i)

(
(xτ , x

′
τ , 1

(i)
τ )τ∈|Qv

t |

)
≤
√

32|Qv
t |L2

v log
π2|Qv

t |2
6δ

,

(45)
where v(i) is the ground truth function.

Lemma D.2. There exists an independent constant Cv
L > 0, such that, ∀ϵ > 0,∀v(i)1 , v

(i)
2 ∈ Bu that

satisfies ∥v(i)1 − v
(i)
2 ∥∞ ≤ ϵ, we have,

logP
v
(i)
1

(
(xτ , x

′
τ , 1

(i)
τ )τ∈|Qv

t |

)
− logP

v
(i)
2

(
(xτ , x

′
τ , 1

(i)
τ )τ∈|Qv

t |

)
≤ Cv

Lϵ|Qv
t |, (46)

where Cv
L := 1 + 2

1+e−2Lv
.

Main proof. We use N (Bv, ϵ, ∥·∥∞) to denote the covering number of the set Bv , with
(v

(i),ϵ
j )

N (Bv,ϵ,∥·∥∞)
j=1 be a set of ϵ-covering for the set Bv . Reset the ‘δ’ in Lemma D.1 as

δ/N (Bv,ϵ,∥·∥∞) and applying the probability union bound, we have, with probability at least
1− δ, ∀v(i),ϵj , t ≥ 1, i ∈ V ,

logP
v
(i),ϵ
j

(
(xτ , x

′
τ , 1

(i)
τ )τ∈|Qv

t |

)
− logPv(i)

(
(xτ , x

′
τ , 1

(i)
τ )τ∈|Qv

t |

)
≤
√
32|Qv

t |L2
v log

π2|Qv
t |2

6δ
.

(47)
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By the definition of ϵ-covering, there exists k ∈ [N (Bv, ϵ, ∥·∥∞)], such that,

∥v̂ − vϵk∥∞ ≤ ϵ, (48)

Hence, with probability at least 1− δ,

logPv̂(i)

(
(xτ , x

′
τ , 1

(i)
τ )τ∈|Qv

t |

)
− logPv(i)

(
(xτ , x

′
τ , 1

(i)
τ )τ∈|Qv

t |

)
= logPv̂(i)

(
(xτ , x

′
τ , 1

(i)
τ )τ∈|Qv

t |

)
− logP

v
(i),ϵ
j

(
(xτ , x

′
τ , 1

(i)
τ )τ∈|Qv

t |

)
+ logP

v
(i),ϵ
j

(
(xτ , x

′
τ , 1

(i)
τ )τ∈|Qv

t |

)
− logPv(i)

(
(xτ , x

′
τ , 1

(i)
τ )τ∈|Qv

t |

)
,

≤Cv
Lϵ|Qv

t |+
√
32|Qv

t |L2
v log

π2|Qv
t |2N (Bv, ϵ, ∥·∥∞)

6δ
.

(49)

Under the isotropic norm bound assumption 2.6, this easily extends to n utilities,

logPv̂

(
(xτ , x

′
τ , 1

v
τ )τ∈|Qv

t |
)
− logPv

(
(xτ , x

′
τ , 1

v
τ )τ∈|Qv

t |
)

≤nCv
Lϵ|Qv

t |+
√
32|Qv

t |n2L2
v log

π2|Qv
t |2N (Bv, ϵ, ∥·∥∞)

6δ
.

(50)

Similarly, the same applies to u under Assumption 2.6,

logPû

(
(xτ , x

′
τ , 1

u
τ )τ∈|Qu

t |
)
− logPu

(
(xτ , x

′
τ , 1

u
τ )τ∈|Qu

t |
)

≤nCu
Lϵ|Qu

t |+
√
32|Qu

t |n2L2
u log

π2|Qu
t |2N (Bv, ϵ, ∥·∥∞)

6δ
.

(51)

Therefore, the joint likelihood Lt(ũ, Ã, ṽ) is bounded by:

Lt(ũ, Ã, ṽ)

= logPv̂

(
(xτ , x

′
τ , 1

v
τ )τ∈|Qv

t |
)
− logPv

(
(xτ , x

′
τ , 1

v
τ )τ∈|Qv

t |
)

+ logPû

(
(xτ , x

′
τ , 1

u
τ )τ∈|Qu

t |
)
− logPu

(
(xτ , x

′
τ , 1

u
τ )τ∈|Qu

t |
)
,

≤nCv
Lϵ|Qv

t |+
√
32|Qv

t |n2L2
v log

π2|Qv
t |2N (Bv, ϵ, ∥·∥∞)

6δ

+ nCu
Lϵ|Qu

t |+
√
32|Qu

t |n2L2
u log

π2|Qu
t |2N (Bv, ϵ, ∥·∥∞)

6δ
. (52)

By range preservation lemma B.2, Lv = Lu, thereby Cv
L = Cu

L. For brevity, we introduce the
notations Cϵ :=

π2N (Bv,ϵ,∥·∥∞)
6δ , |Quv

t | := |Qv
t |+ |Qu

t |.
Therefore,

Lt(ũ, Ã, ṽ)

≤nϵCv
L(|Qu

t |+ |Qv
t |) +

√
32n2L2

v

(√
|Qu

t | logCϵ|Qu
t |2 +

√
|Qv

t | logCϵ|Qv
t |2)

)
,

(Rearranging Eq. (52))

≤nϵCv
L|Quv

t |+
√
32n2L2

v

(√
|Qu

t | logCϵ|Quv
t |2 +

√
|Qv

t | logCϵ|Quv
t |2)

)
,

(|Qu
t |, |Qv

t | < |Quv
t |)

=nϵCv
L|Quv

t |+
√
32n2L2

v(
√

|Qu
t |+

√
|Qv

t |)
√

logCϵ|Quv
t |2, (factor out)

≤nϵCv
L|Quv

t |+
√
64n2L2

v|Quv
t | logCϵ|Quv

t |2, (Cauchy-Schwarz)

=nϵCv
L|Quv

t |+
√
64n2L2

v|Quv
t | log π

2|Quv
t |2N (Bv, ϵ, ∥·∥∞)

6δ
, (unpack Cϵ)

:=β1(ϵ, δ, n, |Quv
t |). (define β)

The last inequality was derived from Cauchy-Schwarz inequality,
√
a+

√
b ≤

√
2(a+ b).
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E EFFICIENT COMPUTATIONS

E.1 PROOF OF LEMMA E.1

Lemma E.1 (Kernelized formulation). MAP and (5) can be recasted into convex optimisation:

(Reformulated MLE)

max
Ut∈Rnt

Vt∈Rnt

Ã∈Rn2

LMAP
t (Ut, Ã, Vt | Dt)

s.t. U⊤
t K−1

Qu
t
Ut ≤ L2

v,

V ⊤
t K−1

Qv
t
Vt ≤ L2

v,

1− δA ≥ Aij ≥ δA, ∀i, j,∑
j

Aij = 1, ∀j

(53a)

(Reformulated acquisition function)
max

Ut∈Rnt, z∈Rn

Vt∈Rnt,Ã∈Rn2

A[z]−A[zt]

s.t.
[

Ut

z

]⊤

K−1
Qu

t ,x

[
Ut

z

]
≤ L2

v,

V ⊤
t K−1

Qv
t
Vt ≤ L2

v,

LMAP
t (Ut, Ã, Vt | Dt) ≥ LMAP

t (ût, Ât, v̂t)− βt(|Quv
t |),

ℓt(Ut | DQu
t
) ≥ ℓt(Ût | DQu

t
)− βu

t (|Qu
t |),

ℓt(Vt | DQv
t
) ≥ ℓt(V̂t | DQv

t
)− βv

t (|Qv
t |),

1− δA ≥ Aij ≥ δA, ∀i, j,∑
j

Aij = 1, ∀j

(53b)

Proof. We begin by the convexity, then we show the equivalence to MAP, and the acquisition func-
tion maximisation problem (5).

E.1.1 PROOF OF CONVEXITY.

Reformulated MLE The function ψτ (y, y
′) := log(ey + ey

′
)− pτy − (1− pτ )y

′, pτ ∈ {0, 1} is
a convex function because ∇ψτ (yτ , y

′
τ ) = 0, thus the Hessian is nonnegative. Then, when assume

zτ = ṽ(xτ ), ητ = ũ(xτ ), our negative log likelihood function −Lt(zτ , z
′
τ , ητ , η

′
τ ) is also a convex

function with ∇Lt(zτ , z
′
τ , ητ , η

′
τ ) = 0.

For graph convolution part, the function ψ′
τ (A) := log(eAu + eAu′

)− pτAu− (1− pτ )Au
′ is also

convex with respect to A because its Hessian is nonnegative:

∂2

∂A2
ψ′
τ (A) = (u− u′)2

eAueAu′

(eAu + eAu′)2
≥ 0. (54)

Similarly, this function is convex with respect to u and u′. We introduce the function P (u, u′) =
eAu
/eAu+eAu′

∂2

∂u2
ψ′
τ (u) = A2P (u)(1− P (u)), (55)

∂2

∂u′2
ψ′
τ (u) = A2P (u′)(1− P (u′)), (56)

∂2

∂u∂u′
ψ′
τ (u, u

′) = −A2P (u, u′)(1− P (u, u′)), (57)

Therefore, Hessian matrix H is

H = A2P (u, u′)(1− P (u, u′))

[
1 −1
−1 1

]
(58)

and the Hessian matrix is positive semi-definite because all eigenvalues are non-negative. Thus, this
is also convex.

Reformulated acquisition function The GSF is the convex combination of utilities independent
of both Ã and z. Thus, the aggregate operation is simply reduced to the linear combination of z.
Under the convex constraint of optimistic MLE, the linear combination of convex functions with
nonzero weights is also a convex function. And the weight function of GSF is nonzero by definition.
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E.1.2 PROOF OF MLE REFORMULATION.

The joint likelihood Lt in Eq. (42) only depends on the values (û(xτ , :), û(x
′
τ , :), v̂(xτ , :), v̂(x

′
τ , :

)) = (uτ , u
′
τ , vτ , v

′
τ ), where uτ = (u

(i)
τ )i∈[n]. As such, we only need to optimise over

(uτ , u
′
τ , vτ , v

′
τ ) subject to that they are functions in Hki

with norm less or equal to Lv . Further-
more, Algorithm 1 sets x′τ = xτ−1, thereby u′τ = uτ−1, v′τ = vτ−1. Hence, we can further reduce
the optimisation variables to (uτ , vτ ).

Here, we only assume ũ(·, i) ∈ Hki
, then the norm bound constraints are only subject to ũ. Note

that our kernel is vector-valued, so we use the following notation to describe:

U⊤
t K

−1
Qu

t
Ut :=

(
(U

(i)
t )⊤(K

(i)
Qu

t
)−1U

(i)
t

)n
i=1

(59)

where K(i)
Qu

t
:= (kv(xτ1 , xτ2)τ1,τ2∈Qu

t
. The same applies to Vt and corresponding kernel. As such,

the constraint in Prob. (53a) consists of n kernel bound constraints. Each constraint is direct appli-
cation of representor theorem (Schölkopf et al., 2001).

E.1.3 PROOF OF ACQUISITION FUNCTION REFORMULATION.

Prob (5) can be formally written as

max
ũ

A[ũ(x, :)]−A[ũ(xt, :)],

s.t. ũ, Ã, ṽ ∈ Bu,A,v,

Lt(ũ, Ã, ṽ) ≥ Lt(û, Â, v̂)− βu,A,v
t .

(60)

This has an infinite-dimensional function variable, thereby being intractable. Similar to the MLE
reformulation, we can recast to finite, tractable optimization problem.

Simplest setting. First, we will start with the simplest case where |Qu
t | = T , as such

max
ũ

A[ũ(x, :)]−A[ũ(xt, :)],

s.t. ũ ∈ Bu,

Lt(ũ) ≥ Lt(û)− βu
t .

(61)

And we show the equivalence to the following kernelized formulation.

max
Z0:t∈Rn(t+1), z∈Rn

A[z]−A[zt]

s.t.
[
Z0:t

z

]⊤
K−1

Qu
t ,x

[
Z0:t

z

]
≤ L2

u,

Z⊤
0:tK

−1
0:t Z0:t ≤ L2

v,

ℓt(Z0:t) ≥ Lt(ût)− βu
t .

(62)

Let ũ be any feasible solution of the above innter optimisaton problem, and z̃ = ũ(x, :) and
Z̃0:t = (ũ(xτ , :))

t
τ=0 be the corresponding utility value. Consider the minimum-norm interpola-

tion problem,
min
s∈Bv

∥s∥2

s.t. s(xτ , :) = z̃τ ,∀τ ∈ {0} ∪ [t],

s(x) = z̃.

(63)

By representer theorem, this problem admits an optimal solution with the form α⊤k0:t,x, where
k0:t,x := {k(w, ·)}w∈{x0,··· ,xt,x}. Thus, Prob. (63) can be reduced to

min
α∈Rt+2

α⊤K0:t,xα

s.t. K0:t,xα =

[
Z̃0:t

z̃

]
.

(64)
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Then the optimal solution of this Prob. (64) is

α⊤K0:t,xα = (K0:t,xα)
⊤K−1

0:t,xK0:t,xα,

=

[
Z̃0:t

z̃

]T
K−1

0:t,x

[
Z̃0:t

z̃

]
.

(65)

Since ũ is an interpolant by construction of (Z̃0:t, z̃). We have[
Z̃0:t

z̃

]T
K−1

0:t,x

[
Z̃0:t

z̃

]
≤ ∥u∥2 ≤ L2

u, (66)

yielding the first constraint. As the LL function only depends on (Z̃0:t), it holds that

L(Z̃0:t, | DQu
t
) = Lt(ṽ) ≥ Lt(ût)− βu

t , (67)

and the objective satisfy

A[z]−A[zt] = A[ũ(x, :)]−A[ũ(xt, :)]. (68)

Therefore, a set (Z̃0:t, z̃) is a feasible solution for Prob. (62), with the same objective as ṽ for the the
infinite dimensional Prob. (61).

Next, we show that for any feasible solution for Prob. (62), we can find a corresponding feasible
solution of Prob. (61) with the same objective value. Let (Z0:t, z) be a feasible solution of Prob. (62).
We construct

ũz =

[
Z̃0:t

z̃

]T
K−1

0:t,xk0:t,x(·), (69)

Hence,

∥ũz∥2 =

[
Z̃0:t

z̃

]T
K−1

0:t,x

[
Z̃0:t

z̃

]
≤ L2

u, (70)

and it can be checked that ũz(xτ ) = zτ ,∀τ ∈ {0} ∪ [t] and ũz(x) = z. So Lt(ũz) = L(Z̃0:t |
Dt) ≥ L(v̂) − βu

t . And the objectives satisfy A[ũz(x)] − A[ũz(xt)] = A[z] − A[zt]. So it is
proved that for any feasible solution of Prob. (62), we can find a corresponding feasible solution of
Prob. (61) with the same objective value.

Original setting The Vt constraint is the same with the previous MLE reformulation. Also, the
optimistic MLE bound needs to modify to Lt(û, Â, v̂) as it involves A and v estimate. Then, we can
show the equivalence of this Prob. (60) with the constraint in Prob. (53b).

E.2 PREDICTIVE CONFIDENCE BOUND

Using the same idea, we can obtain the predictive confidence bounds. Here, x is given as the pre-
diction point, then the upper confidence bound u(x, i) and lower confidence bound u(x, i) become

u(x, i) := max
Ut∈Rt+1 Vt∈Rt,z∈R

Ã∈Rn2
,

z

s.t.
[
Ut

z

]⊤
K−1

Qu
t ,x

[
Ut

z

]
≤ L2

v,

V ⊤
t K

−1
Qv

t
Vt ≤ L2

v,

LMAP
t (Ut, Ã, Vt | Dt) ≥ LMAP

t (ût, Ât, v̂t)− βt(|Quv
t |),

ℓt(Ut | DQu
t
) ≥ ℓt(Ût | DQu

t
)− βu

t (|Qu
t |),

ℓt(Vt | DQv
t
) ≥ ℓt(V̂t | DQv

t
)− βv

t (|Qv
t |),

1− δA ≥ Aij ≥ δA, ∀i, j,∑
j

Aij = 1, ∀j

(71)
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u(x, i) := min
Ut∈Rt+1 Vt∈Rt,z∈R

Ã∈Rn2
,

z

s.t.
[
Ut

z

]⊤
K−1

Qu
t ,x

[
Ut

z

]
≤ L2

v,

V ⊤
t K

−1
Qv

t
Vt ≤ L2

v,

LMAP
t (Ut, Ã, Vt | Dt) ≥ LMAP

t (ût, Ât, v̂t)− βt(|Quv
t |),

ℓt(Ut | DQu
t
) ≥ ℓt(Ût | DQu

t
)− βu

t (|Qu
t |),

ℓt(Vt | DQv
t
) ≥ ℓt(V̂t | DQv

t
)− βv

t (|Qv
t |),

1− δA ≥ Aij ≥ δA, ∀i, j,∑
j

Aij = 1, ∀j

(72)

E.3 PROJECTION WEIGHT FUNCTION

We decompose the projection weight function to the following:

wu
t (xt, x

′
t) := ∥δut (xt, x′t, :)− δut (xt, x

′
t, :)∥, (73)

where

δ
u

t (xt, x
′
t, i) = max

Ut∈Rt+1 Vt∈Rt,z∈R
Ã∈Rn2

,

z − max
t∈Qu

t

Ut

s.t.
[
Ut

z

]⊤
K−1

Qu
t ,x

[
Ut

z

]
≤ L2

v,

V ⊤
t K

−1
Qv

t
Vt ≤ L2

v,

LMAP
t (Ut, Ã, Vt | Dt) ≥ LMAP

t (ût, Ât, v̂t)− βt(|Quv
t |),

ℓt(Ut | DQu
t
) ≥ ℓt(Ût | DQu

t
)− βu

t (|Qu
t |),

ℓt(Vt | DQv
t
) ≥ ℓt(V̂t | DQv

t
)− βv

t (|Qv
t |),

1− δA ≥ Aij ≥ δA, ∀i, j,∑
j

Aij = 1, ∀j

(74)

δut (xt, x
′
t, i) = min

Ut∈Rt+1 Vt∈Rt,z∈R
Ã∈Rn2

,

z − max
t∈Qu

t

Ut

s.t.
[
Ut

z

]⊤
K−1

Qu
t ,x

[
Ut

z

]
≤ L2

v,

V ⊤
t K

−1
Qv

t
Vt ≤ L2

v,

LMAP
t (Ut, Ã, Vt | Dt) ≥ LMAP

t (ût, Ât, v̂t)− βt(|Quv
t |),

ℓt(Ut | DQu
t
) ≥ ℓt(Ût | DQu

t
)− βu

t (|Qu
t |),

ℓt(Vt | DQv
t
) ≥ ℓt(V̂t | DQv

t
)− βv

t (|Qv
t |),

1− δA ≥ Aij ≥ δA, ∀i, j,∑
j

Aij = 1, ∀j

(75)
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F PROOF OF THEOREM 3.9

F.1 PRELIMINARIES

We begin by introducing the known proofs.

F.1.1 KNOWN RESULTS

We introduce useful theorems from literature.

Theorem F.1 (Theorem 3.6 in Xu et al. (2024b)). For any estimate ṽt+1 ∈ Bv
t+1 measurable with

respect to the filtration Ft, we have, with probability at least 1− δ, ∀t ≥ 1, (x, x′) ∈ X × X ,

|(ṽt+1(x)− ṽt+1(x
′))− (v(x)− v(x′))| ≤ 2

(
2Lv + λ−

1/2
√
β(ϵ, δ/2, |Qv

t |)
)
σvv′

t+1(x, x
′). (76)

where

β(ϵ, δ/2, |Qv
t |) = O

(√
|Qv

t | log
|Qv

t |N (Bv, ϵ, ∥·∥∞)

δ
+ ϵ|Qv

t |+ ϵ2|Qv
t |

)
, (77)

(
σvv′

t+1(x, x
′)
)2

= kvv
′
(ω, ω)− kvv

′
(ω1:t, ω)

⊤
(
Kvv′

t−1 + λI
)
kvv

′
(ω1:t, ω), (78)

kvv
′
((x, x′), (y, y′)) := k(x, y) + k(x′, y′), (79)

ω := (x, x′), (80)

ω1:t−1 := ((xτ , x
′
τ ))

t−1
τ=1 , (81)

Kvv′

t−1 :=
(
kvv

′
((xτ1 , x

′
τ1), (xτ2 , x

′
τ2))

)
τ1∈[t−1],τ2∈[t−1]

, (82)

and λ is a positive regularization constant.

F.1.2 SUPPORTING RESULTS

We introduce the supporting lemmas for the main proof.

Theorem F.2. With probability at least 1 − δ, for ṽt ∈ Bv
t that is measurable with respect to the

filtration Ft,

∑
t∈Qv

t

|ṽt(xt)− ṽt(x
′
t)− (v(xt)− v(x′t))| ≤

∑
t∈Qv

t

wv
t (xt, x

′
t) = O

(√
βT γvv

′
T |Qv

t |
)

(83)

where

βT := β(1/T , δ, |Qv
t |) (84)

= O

(√
|Qv

t | log
|Qv

t |N (Bv, 1/T , ∥·∥∞)

δ

)
, (85)

γvv
′

T := max
Ω⊂X×X ;|Ω|=|Qv

t |

1

2
log
∣∣∣I + λ−1Kvv′

Ω

∣∣∣ , (86)

Kvv′

Ω :=
(
kvv

′
((x, x′), (y, y′))

)
(x,x′),(y,y′)∈Ω

. (87)
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Proof. The first inequality follows by the definition.∑
t∈Qv

T

wv
t (xt, x

′
t) (88)

=
∑
t∈Qv

T

sup
ṽ∈Bv

t

|(ṽ(xt)− ṽ(x′t))− (v(xt)− v(x′t))| (89)

≤
∑
t∈Qv

T

2
(
2Lv + λ−

1/2
√
β(ϵ, δ/2, |Qv

t |)
)
σvv′

t+1(x, x
′) (Thm. F.1)

≤
(
2Lv + λ−

1/2
√
β(ϵ, δ/2, |Qv

T |)
) ∑

t∈Qv
T

σvv′

t+1(x, x
′) (Monotonicity of β in t)

≤O
(√

βT γvv
′

T |Qv
T |
)
, (Lem. 4 in Chowdhury & Gopalan (2017))

The old proof is below for reference. We will remove it upon acceptance.
Lemma F.3 (Weighted utility difference bound (This will be removed)). ∀u ∈ Bu, x, x′ ∈
X , 0 < wi < 1, w := maxi wi, w := mini wi, i ∈ {1, 2}, the weighted utility difference is bounded
by

w(u(x)− u(x′)) ≤ w1u(x)− w2u(x
′) ≤ w(u(x)− u(x′)), (90)

Proof. We consider the following inequality:

w1u(x)− w2u(x
′) ≤ L̃(u(x)− u(x′)). (91)

Given bound from Lemma B.1, u(x) ∈ [−Lu, Lu], we consider the following extreme cases;

When u(x) = Lu and u(x′) = −Lu, Eq. (91) becomes:

w1Lu + w2Lu ≤ L̃(Lu + Lu), (92)

Lu(w1 + w2) ≤ 2L̃Lu, (93)

w1 + w2 ≤ 2L̃. (94)

Inversely, when u(x) = −Lu and u(x′) = Lu, then

−w1Lu − w2Lu ≤ L̃(−Lu − Lu), (95)

−Lu(w1 + w2) ≤ −2L̃Lu, (96)

w1 + w2 ≥ 2L̃. (97)

To satisfy both cases, we find

w1 + w2 = 2L̃, (98)

By definition, we have

2w ≤ w1 + w2 ≤ 2w, (99)

Therefore

w ≤ L̃ ≤ w. (100)

Lemma F.4 (Instantaneous regret). ∀u ∈ Bu, x, x′ ∈ X , wi ∈ w, w := maxi∈V wi, w :=
mini∈V wi

A[ũt(x
∗, :)]−A[ũt(xt, :)]

≤LA|ṽt(xt)− ṽt(x
′
t)− (v(xt)− v(x′t))|

≤LAw
u
t (xt, xt−1)

(101)

where LA :=
√
n∥w∥.
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Proof. By the acquisition function maximization, we have
A[u(x⋆, :)]−A[u(xt, :)] (102)

=A[u(x⋆, :)]−A[u(xt−1, :)] +A[u(xt−1, :)]−A[u(xt, :)] (cancel out)
≤A[ũt(xt, :)]−A[ũt(xt−1, :)]− (A[u(xt, :)]−A[u(xt−1, :)]), (Optimality of Line 4 in Alg. 1)

Here, the aggregation function A is the GSF in Eq. (2). The sorting function ϕ(·) rearranges elements
based on the current function estimate ũt(xt−1, :). To clarify, we denote ϕũt(y) as the sorting
function that rearranges y based on ũt(xt, :). More formally,

ϕũt(y) := y[rank(ũt(xt, :))],
ϕũt−1

(y) := y[rank(ũt(xt−1, :))],

ϕut
(y) := y[rank(u(xt, :))],

ϕut−1(y) := y[rank(u(xt−1, :))],

(103)

where rank(·) is a function that rearranges the indices based on the input in ascending order, y[·]
is a rearranged vector of y based on the indices input. We use a slight abuse of notation to avoid
unnecessary x for representing the utility vectors. Then, our regret becomes

w⊤ϕũt
[ũt(xt, :)]− w⊤ϕũt−1

[ũt(xt−1, :)]− (w⊤ϕut
[u(xt, :)]− w⊤ϕut−1

[u(xt−1, :)]). (104)
Here, Weymark (1981) proved that Hardy-Littlewood-Polya inequality is satisfied for GSF in
Lemma 1. This implies that a mismatch between the sorting basis and the actual functions leads
to the following inequality, e.g.,

w⊤ ϕũt [ũt(xt, :)]︸ ︷︷ ︸
ũt=ũt

≤ w⊤ ϕũt−1 [ũt(xt, :)]︸ ︷︷ ︸
ũt−1 ̸=ũt

, (105)

Therefore, we can further upper bound the Eq. (104):
w⊤ϕũt

[ũt(xt, :)]− w⊤ϕũt−1
[ũt(xt−1, :)]− (w⊤ϕut

[u(xt, :)]− w⊤ϕut−1
[u(xt−1, :)]), (106)

≤w⊤ ϕũt−1
[ũt(xt, :)]︸ ︷︷ ︸

ũt−1 ̸=ũt

−w⊤ ϕũt−1
[ũt(xt−1, :)]︸ ︷︷ ︸

ũt−1=ũt−1

−(w⊤ ϕut
[u(xt, :)]︸ ︷︷ ︸
ut=ut

−w⊤ ϕut
[u(xt−1, :)]︸ ︷︷ ︸
ut ̸=ut−1

),

(Lemma 1 in Weymark (1981))

=w⊤ϕũt−1
[ũt(xt, :)− ũt(xt−1, :)]− w⊤ϕut

[u(xt, :)− u(xt−1, :)]. (107)
The last combination is assured by the additivity of GSF (Theorem 4 in Weymark (1981)).

Here, recall our acquisition function maximization is defined as the upper bound of the difference
between utilities maxũt∈Bu

t
ũt(xt, :)− ũt(xt, :). And Lemma 3.6 proves the true function is within

this confidence interval. To maximize, the first and second terms become the upper and lower bounds
within the confidence set, respectively. Thus we have

ũt(xt, :) ≥ ũt(xt−1, :), (108)
ũt(xt, :) ≥ u(xt, :), (109)

u(xt−1, :) ≥ ũt(xt−1, :), (110)
u(xt, :) ≥ ũt(xt−1, :), (111)

Here, GSF is the Schur-concave function (Theorem 1 in Weymark (1981)). Using this property and
the last inequality, we have

w⊤ϕut
[ũt(xt, :)− ũt(xt−1, :)] ≥ w⊤ϕũt−1

[ũt(xt, :)− ũt(xt−1, :)]. (112)
By using this inequality back to Eq. (107),

w⊤ϕũt−1 [ũt(xt, :)− ũt(xt−1, :)]− w⊤ϕut [u(xt, :)− u(xt−1, :)], (Eq. (107))

≤w⊤ϕut
[ũt(xt, :)− ũt(xt−1, :)]− w⊤ϕut

[u(xt, :)− u(xt−1, :)], (Eq. (112))

≤w⊤ (ϕut
[ũt(xt, :)− ũt(xt−1, :)− u(xt, :)− u(xt−1, :)]) , (Additivity of GSF)

≤∥w∥∥ϕut
[ũt(xt, :)− ũt(xt−1, :)− u(xt, :)− u(xt−1, :)]∥, (Cauchy-Schwarz)

≤∥w∥∥ũt(xt, :)− ũt(xt−1, :)− u(xt, :)− u(xt−1, :)∥,
(Euclidean norm is permutation-invariant)

≤
√
n∥w∥|ũt(xt)− ũt(xt−1)− u(xt)− u(xt−1)|, (Cauchy-Schwarz for n agents)

=LA|ũt(xt)− ũt(xt−1)− u(xt)− u(xt−1)|, (Define LA)
≤LAw

u
t (xt, xt−1), (Definition of wu

t (xt, xt−1) (supremum))
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F.2 MAIN PROOF

F.2.1 CASE-I: GIVEN AND INVERTIBLE MATRIX A

Confidence set. The ground-truth matrix A is known and invertible. In this case, we do not need
to learn A, so we can restrict the confidence set,

Bv
t = {ṽ | ℓt(ṽ | DQv

t
) ≥ ℓMLE

t − βv
t }

Bu
t = {ũ | ℓt(ũ | DQu

t
) ≥ ℓMLE

t − βu
t }

Bv,A,u
t = {(ṽ, Ã, ũ) | ℓt(Ã, ũ, ṽ | DQu

t
, DQv

t
) ≥ ℓMLE

t − βv,A,u
t , ṽ = Ãũ, Ã = A, ṽ ∈ Bv

t , ũ ∈ Bu
t }.

(113)

Instantaneous regret.

A[u(x⋆, :)]−A[u(xt), :]

≤LA|ũt(xt, :)− ũt(xt−1, :)− (u(xt, :)− u(xt−1, :))|, (Lemma F.4)

≤LA∥A−1∥|ṽt(xt, :)− ṽt(xt−1, :)− (v(xt, :)− v(xt−1, :))|. (Cauchy-Schwarz)

Cumulative regret. By using Theorem F.2, our cumulative regret is:

RT =
∑
t∈[T ]

A[u(x⋆, :)]−A[u(xt), :]

≤
∑
t∈[T ]

LA∥A−1∥|ṽt(xt, :)− ṽt(xt−1, :)− (v(xt, :)− v(xt−1, :))|,

≤O
(
nLA

√
βT γvv

′
T T

)
(Theorem F.2 and Lemma 2.7)

Cumulative queries. Obviously, we do not even need to query the ground truth u. Thus,

|Qu
T | = 0. (114)

F.2.2 CASE-II: UNKNOWN BUT IDENTIFIABLE A

Confidence set. Altough the matrixA can be non-invertibible, the linear relationship can constrain
the confidence set, as such,

Bv
t = {ṽ | ℓt(ṽ | DQv

t
) ≥ ℓMLE

t − βv
t }

Bu
t = {ũ | ℓt(ũ | DQu

t
) ≥ ℓMLE

t − βu
t }

Bv,A,u
t = {(ṽ, Ã, ũ) | ℓt(Ã, ũ, ṽ | DQu

t
, DQv

t
) ≥ ℓMLE

t − βv,A,u
t , ṽ = Ãũ, ṽ ∈ Bv

t , ũ ∈ Bu
t }.

(115)

Instantaneous regret. The result is exactly the same with Lemma F.4.

Cumulative regret. Consider the following stopping criterion,

wu
t (xt, xt−1) ≥ max

{
1

tq
, wv

t (xt, xt−1)

}
,
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Then, we have∑
t∈[T ]

(A[u(x⋆, :)]−A[u(xt, :)]) (116)

≤LA
∑
τ∈[T ]

wu
t (xτ , xτ−1), (Lemma F.4)

≤LA
∑

τ∈Qu
T

wu
τ (xτ , xτ−1) + LA

∑
τ∈[T ]\Qu

T

max

{
1

tq
, wv

τ (xτ , xτ−1)

}
, (stopping criterion)

≤LA
∑

τ∈Qu
T

wu
τ (xτ , xτ−1) + LA

∑
τ∈[T ]\Qu

T

wv
τ (xτ , xτ−1) + LA

∑
τ∈[T ]\Qu

T

1

τ q
, (117)

≤O
(
LA

√
βu
T γ

uu′
T |Qu

T |+ LA

√
βv
T γ

vv′
T (T − |Qu

T |) + LA(T − |Qu
T |)1−q

)
(Theorem F.2)

This is the tightest bound. For visibility and interpretability, we simplify

RT ≤O
(
LAT

1−q + LA

√
βu
T γ

uu′
T T + LA

√
βv
T γ

vv′
T T

)
, (|Qu

T | < T )

≤O
(
LAT

1−q + LA

√
(βu

T γ
uu′
T + βv

T γ
vv′
T )T

)
, (factor out)

Cumulative queries.

|Qu
T | =

∑
t∈Qu

T

1,

≤T q
∑
t∈Qu

T

1

tq
, (118)

≤T q
∑
t∈Qu

T

wu
t (xt, xt−1), (stopping criterion)

=O
(
T q
√
βu
T γ

uu′
T |Qu

T |
)

(Theorem F.2)

Here, by setting ϵ = 1
T , we have

βu
T = O

(√
|Qu

T | log
TN (Bu, 1/T , ∥·∥∞)

δ

)
. (119)

Hence,

|Qu
T | ≤O

(
T q|Qu

T |3/4
√
γuu

′
T

(
log

TN (Bu, 1/T , ∥·∥∞)

δ

)1/4
)
, (120)

|Qu
T |1/4 ≤ O

(
T q
√
γuu

′
T

(
log

TN (Bu, 1/T , ∥·∥∞)

δ

)1/4
)
, (121)

|Qu
T | ≤O

(
T 4q(γuu

′

T )2 log
TN (Bu, 1/T , ∥·∥∞)

δ

)
, (122)

Here, we consider the optimal q. For upper bound, at least we want |Qu
T | ≤ T , otherwise we have

to query u every iteration. Based on this, we have
O
(
T 4qLk

)
≤ T, (123)

O
(
T 4q
)
≤ T, (124)

4q ≤ 1, (125)

q ≤ 1

4
, (126)

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

That is to say, by picking q ≤ 1
4 , we can get a sublinear regret bound for the cumulative queries of

u.

F.2.3 CASE-III: UNIDENTIFIABLE A

Confidence set. The matrix A and public u information is not useful anymore. Thus, we just only
query private u.

Bu
t = {ũ | ℓt(ũ | DQu

t
) ≥ ℓMLE

t − βu
t } (127)

Instantaneous regret.

A[u(x⋆, :)]−A[u(xt), :]

≤LA|ũt(xt, :)− ũt(xt−1, :)− (u(xt, :)− u(xt−1, :))|, (Lemma F.4)

Cumulative regret. By using Theorem F.2, our cumulative regret is:

RT =
∑
t∈[T ]

A[u(x⋆, :)]−A[u(xt), :]

≤
∑
t∈[T ]

LA|ũt(xt, :)− ũt(xt−1, :)− (u(xt, :)− u(xt−1, :))|,

≤O
(
LA

√
βT γuu

′
T T

)
(Theorem F.2 and Lemma 2.7)

Cumulative queries. Obviously, we end up querying the ground truth u all the time. Thus,

|Qu
T | = T. (128)

F.3 PROOF OF THE KERNEL-SPECIFIC BOUNDS IN TABLE 1

To focus on kernel specific term only, we reduce the constants

RT ≤ O
(
T 1− q

4 +
√
βT γvv

′
T T

)
, (129)

|Qu
t | = T q

(
γvv

′

T

)2
logN (Bv, T−1, ∥ · ∥∞), (130)

Recall

βT = O

(√
T log

TN (Bv, 1/T , ∥·∥∞)

δ

)
.

For kernel specific bound, we have,

Linear kernel

logN (Bv, T−1, ∥ · ∥∞) = O
(
log

1

ϵ

)
= O (log T ) .

The corresponding kvv
′
((x, x′), (y, y′)) = x⊤y + x′

⊤
y′ = ⟨(x, x′), (y, y′)⟩, which is also linear.

Thus, by Theorem. 5 in Srinivas et al. (2012),

γvv
′

T = O(log T ).

Hence,

RT ≤ O
(
T 1− q

4 + T 3/4(log T )3/4
)
, (131)

|Qu
t | ≤ O

(
T q(log T )3

)
. (132)
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Squared exponential kernel

logN (Bv, T−1, ∥ · ∥∞) = O
(
(log

1

ϵ
)d+1

)
= O

(
(log T )d+1

)
.

(Example 4, Zhou (2002)). By Thm. 4 in Kandasamy et al. (2015), we have,

γvv
′

T = O((log T )d+1).

Hence,

RT ≤ O
(
T 1− q

4 + T 3/4(log T )3/4(d+1)
)
, (133)

|Qu|t ≤ O
(
T q(log T )3(d+1)

)
. (134)

Mátern kernel

logN (Bv, T−1, ∥ · ∥∞) = O
(
(
1

ϵ
)
d/ν log

1

ϵ

)
= O

(
T

d/ν log T
)
.

(by Thm. 5.1 and Thm. 5.3 in Xu et al. (2024a)). By Thm. 4 in Kandasamy et al. (2015), we have,

γvv
′

T = O
(
T

d(d+1)
2ν+d(d+1) log T

)
.

where ν > d(d+3+
√
d2+14d+17)
4 .

Hence,

RT ≤ O
(
T 1− q

4 + T
d
4ν +

d(d+1)
4ν+2d(d+1) (log T )3/4

)
, (135)

|Qu|t ≤ O
(
T q+ d

v+
2d(d+1)

2ν+d(d+1) (log T )3
)
. (136)

G PROOF OF THEOREM 3.12

We first introduce the supporting results, then we prove Theorem G.

G.1 SUPPORTING RESULTS

Lemma G.1 (Strongly convex MAP estimation). The log posterior defined in Eq. (44) is strongly
convex with respect to A.

Proof. By Eq. (44), the (unnormalised) negative log posterior can be written as:

LMAP
t := −Lt(û, Â, v̂)− log p(A)− log p(u)− log p(v) (137)

Here, we assume the priors for u and v are the same uniform distribution U(u;−Lv, Lv), where the
range is the same due to the range preservation Lemma 2.7. Then, its log prior becomes − log p(u) =
− log p(v) = log(2Lv), and these are constant, thereby negligible in terms of the optimisation.
Similarly, the normalising constant (also known as Bayesian evidence, marginal likelihood) is also
constant, thereby negligible.

Original log likelihood function was convex yet not strongly convex with respect to A because the
Hessian matrix is positive semi-definite instead of positive definite. By adding the negative log prior
term as regularliser, Eq. (137) becomes strongly convex.

As the sum of strongly convex functions is strongly convex, we will show the row-wiseAi is strongly
convex. First, we unpack the Eq. (137) for graph A related parts. By symmetric structure for u and
v, we only extract for u at t = 1 step for brevity,

LMAP = log
(
eA

⊤
i u(x,:) + eA

⊤
i u(x′,:)

)
− 1uA⊤

i u(x, :)− (1− 1u)A⊤
i u(x, :)

−
∑
i∈V

(κi − 1) logAi + ξ
∑
i,j∈V

Aij ,
(138)
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Then, we introduce the function P = eA
⊤
i u(x,:)

/eA
⊤
i u(x,:)+eA

⊤
i u(x′,:). Then, the Hessian matrix H is,

Hjk =
∂2LMAP

∂Aij∂Aik
, (139)

=P (1− P )(u(x, j)− u(x′, j))(u(x, k)− u(x′, k)) + δjk
κi
A2

i

+ 2ξ (140)

where δjk is the Kronecker delta. The first term is a positive semi-definite matrix as show in
Lemma E.1. The second term is a diagonal matrix, which is positive definite because αi−1 > 0 and
Ai > 0. The sum of a positive definite matrix and positive semi-definite matrix is positive definite.
Therefore, Hessian is positive definite.

The smallest eigenvalue of Hessian λmin(H) is at least as large as the smallest eigenvalue of the
positive definite matrix, namely the second term, as such:

λmin(H) ≥ κi − 1

δ2A
+ 2ξ > 0. (141)

As we confirmed, all elements are positive, thereby the minimum eigenvalues of Hessian is strictly
positive. Therefore, our MAP loss function is stringly convex with respect to A.

G.2 MAIN PROOF

Proof. We first prove the graph estimation error, then we show the utility estimation error conver-
gence.

G.2.1 GRAPH IDENTIFICATION ERROR

Firstly, we define the minimum excess risk (MER; Xu & Raginsky (2022)):

MER := inf
Ã

EDQv
t
[LMAP(Ã)]− LMAP(A), (142)

Here, LMAP is ‘omniscient’ loss function when true hyperparamter A is given. Even if A estimation
is perfect, our log likelihood estimate should have some error according to the randomness of the
data generating process. Thus, the second term express the fundemental limit of Bayesian learning,
and we can interpret this as aleatoric uncertainty. The first term, on the other hand, represents the
empirical estimate from the observed data, i.e., EDQu

t
[LMAP(Ã)] = LMAP

t (A). Thus, MER repre-
sents reducible risk by gathering more data, thus we can interpret MER as epistemic uncertainty.

Xu & Raginsky (2022) theoretically analyses the connection between MER and the information-
theoretic quantity, particularly conditional mutual information, then derived the following asymp-
totic convergence rate,

MER ≤ O
(

n2

2|Qu
t |

)
, (143)

for the logistic regression cases with binary feedback in Theorem 5, which is the same with our case.

By Definition A.3 of strong convexity,

LMAP(Â) ≥ LMAP(A) +∇LMAP(A)
⊤(Â−A) +

m

2
∥Â−A∥2 (144)

Since A is the ground truth matrix, the optimality assures its gradient is zero. Thus, the inequality
can simplify

LMAP(Â) ≥ LMAP(A) +
m

2
∥Â−A∥2, (145)

LMAP(Â)− LMAP(A) ≥
m

2
∥Â−A∥2, (146)

This left-hand side is exactly the MER since LMAP(A) is irreducible risk as A is a ground-truth
parameter, and Â := argminÃ∈Au,v,B LMAP

t (Ã | D|Qu
t |) is reducible risk. Then, we have

MER ≥ m

2
∥Â−A∥2, (147)
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By Eq. (143), we have

∥Â−A∥2 ≤O
(
mn2

2|Qu
t |

)
, (Eqs. (143) and (147))

∥Â−A∥ ≤O

(
n
√
m√

2|Qu
t |

)
, (square root)

Next, we analyse the upper bound of strong convexity constantm. Recall Lemma G.1 that the strong
convexity constant is only dependent on the prior term, thereby

m ≤ max
i

(
κi − 1

A2
ij

)
+ 2ξ, (148)

≤ κ− 1

δ2A
+ 2ξ, (149)

where κ = maxi,j∈V κi,j . As κ, ξ are user-defined parameters, we set

κ− 1

δ2A
+ 2ξ =

1

n2
, (150)

κ = 1 +
δ2A
n2

− 2ξδ2A, (151)

where κi > 1, ξ < 1
2n2 for the positivity. Then

√
m ≤ 1

n2 , leading to

∥Â−A∥ ≤ O

(
1√
2|Qu

t |

)
, (152)

The equal constraint Eq. (150) shows that κi almost equal to 1 for all i, j, we need ‘flat’ prior for
graph A estimate.

G.2.2 POINTWISE UTILITY ESTIMATION ERROR

By definition of wu
t (xt, x

′
t), which is the supremum of the pointwise error, we can upper bound

|ũt(xt)− ũt(x
′
t)− (u(xt)− u(x′t))| ≤ wu

t (xt, x
′
t), (153)

Here, we introduce the following notation:

W (T ) :=
∑
τ∈Qu

t

w(τ) := wu
t (xt, xt−1), (154)

By Theorem F.1, w(t) is submodular with respect to t, and W (T ) is monotonic with respect to T
because it is cumulative sum of positive values. Then by Theorem F.2, we have

W (T ) ≤ O
(√

βu
T γ

uu′
T |Qu

T |
)
, (155)

≤ O

(
|Qu

T |3/4
(
γuu

′

T

)1/2(
|Qu

t | log
TN (Bv, 1/T , ∥·∥∞)

δ

)1/4
)
, (156)

= O
(
|Qu

T |3/4L
1/4
k,Qu

t

)
, (157)

where Lk,Qu
t
:=
(
γuu

′

T

)2
|Qu

t | log
TN (Bv,1/T ,∥·∥∞)

δ is the kernel-dependent term.

By submodularity and monotonicity, we have

w(t) ≤ W (t)

t
(158)

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

for large t, i.e., t≫ 1, because

w(t) ≥ w(T ), (submodularity, t ≤ T )
T∑

τ=1

w(τ) ≥
T∑

τ=1

w(T ), (submodular inequality holds τ ≤ T for all τ )

W (T ) ≥ Tw(T ), (W (T ) definition)

w(T ) ≤ W (T )

T
. (159)

Here, we assume the running horizons Q,T ≫ 1. Then we have

w(|Qu
T |) ≤ O

(
|Qu

T |3/4L
1/4
k,Q

Q

)
= O

(
|Qu

T |−1/4L
1/4
k,Qu

t

)
. (160)

H EXTENSIONS

H.1 GAUSSIAN PROCESS MODEL APPROACH

Assumption H.1 (Direct feedback). At step t, if query point xt is evaluated, we get a noisy evalu-
ation of u(i), u(i)t = u(i)(xt) + ξt , where ξt is i.i.d. σ(i)-sub-Gaussian noise with fixed σ(i) > 0.

Modelling. Considering the data-generation process under Defn. 2.5, we employ zero-mean multi-
task GP (MTGP) regression model (Bonilla et al., 2007). For simplicity, define u : X × E → R as
our utility function taking location query x and agent index as arguments, i.e. u(x, i) is the utility
for query x and agent i. We place a prior over u as u ∼ GP(0, kX ⊗ kE)

4, which is distributed as,

u(x, :) ∼ N (0, kX(x, x)×KE),

where KE is the kernel across agents and kX is the kernel across options x. Under the bandwagon
model, with a graph G (and its adjacency matrix A), we have,

v(x, :) = Au(x, :) ∼ N (0, kX(x, x)×AKEA
⊤), (161)

due to the linearity of the graph convolution, we naturally get v being itself an induced MTGP

v ∼ GP(0, kX ×AkEA
⊤), such that Cov(v(x, i), v(x′, j)) = kX(x, x′)× (AKEA

⊤)ij (162)

This holds true for the inverse case, where B := (A+λI)−1, resulting in u(x, :) ≈ Bv(x, :). Here,
λ is a regularization term and we typically set a fixed small positive value (e.g., 1e-4).

Estimate social graph. Interestingly, Eq. (H.1) tells us that the graph adjacent matrix A is merely
the kernel hyperaparameter for v. Thus, similarly to optimise other kernel hyperparameters, we can
estimate the graph A (or equivalently, B) through maximum likelihood estimation (MLE) of log
marginal likelihood (LML), with a slight modification:

logP(UQu
t
| DQv

t
, XQu

t
, B) :=

1

n

n∑
i=1

logN
(
U

(i)
Qu

t
;mu(i)

Qv
t
(XQu

t
), Cu(i)

Qv
t
(XQu

t
, XQu

t
)
)
, (163)

whereDQu
t
:= (XQu

t
, UQu

t
) is the u observations, andmu(i)

Qv
t

andCu(i)

Qv
t

represent the predictive mean
and covariance of u(x, i) using the GP conditioned on DQv

t
:= (XQv

t
, VQv

t
) through Eq. (H.1).

mu(i)

Qv
t
(x) =

[
kX(x,XQv

t
)⊗ k

′(i)
E

]⊤
Σ−1(BVQv

t
),

Cu(i)

Qv
t
(x, x′) = kX(x, x′)× k

′(i)
E −

[
kX(x,XQv

t
)⊗ k

′(i)
E

]⊤
Σ−1

[
kX(x,XQv

t
)⊗ k

′(i)
E

]
,

4⊗ denotes Kronecker product.
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where Σ := kX(XQv
t
, XQv

t
) ⊗ k

′(i)
E + Dσ2 ⊗ I , k′(i)E :=

(
BKEB

⊤)(i) is the i-th column of the
matrix BKEB

⊤, Dσ2 is the diagonal matrix whose (i, i)-th element is the v(i) noise variance.

Note that the GP is conditioned on v, not u. DQu
t

is used as ‘test dataset’ to estimate B. This offers
|Qv

t | ̸= |Qu
t |, where typical MTGP requires XQv

t
= XQu

t
. Thus, this formulation allows us to

separate the predictive contribution on Qv
t and Qu

t , allowing decoupled query for u and v.

H.1.1 INFERENCE FROM DIRECT UTILITY FEEDBACK

To estimate the posterior predictive distribution of u including the uncertainty ofB estimate requires
extensive MCMC approximation. For the computational efficiency and closed-form propagation, we
adopt the Laplace approximation:

P(B | DQu
t
, DQv

t
) ≈N (B; B̂Qt

,Λ−1
Qt

),

B̂Qt
= argmax

B
logP(UQu

t
| DQv

t
, XQu

t
, B), ΛQt

= −∇B∇B logP(UQu
t
| DQv

t
, XQu

t
, B) |B=B̂ .

The Hessian for covariance can be conveniently estimated via auto-differentiation. Now all of our
variables are Gaussian, offering the closed-form uncertainty propagation:

Corollary H.2 (Uncertainty propagation). Given B ∼ N (B; B̂Qt
,Λ−1

Qt
) and v(x, i) | DQv

t
∼

GP(mu(i)

Qv
t
, Cu(i)

Qv
t
), the posterior predictive distribution of u becomes the closed-form:

P(u(x, i) | DQu
t
, DQv

t
) ≈ N

(
u(x, i);µu(i)

Qt
(x), σu(i)

Qt
(x)
)

µu(i)

Qt
(x) = B̂Qt

(i, :)mv
Qv

t
(x),

(
σu(i)

Qt
(x)
)2

=

n∑
j=1

 n∏
j=1

b̄2ij v̄
(j)2(x)−

n∏
j=1

b̂2ijm
v(j)2

Qv
t

(x)

 .

We obtain the closed-form UCB ū(x, i) := mu(i)

Qt
(x) + β

1/2
t σu(i)

Qt
(x) for the acqusition function,

and Ψ(B) := A′[diag(Λ−1
Qt

)] for stopping criterion.

Proof. Given graph convolution operation in Eq. 161, we can decompose the i-th truthful utility
u(x, i) as such:

u(x, i) = B(i, :)v(x, :) =

n∑
j=1

bijv(x, j), (164)

where bij is the element of B at i-th row and j-th column. Here, bij is independent of v, thus this
linear operation is the product of two independent random variables. The expectation and variance
of such case is known (Goodman, 1960), as such:

µu(i)

Qt
= E

 n∑
j=1

bijv(x, j)

 , (Eq. 164)

=

n∑
j=1

E[bijv(x, j)], (linearity of expectation)

=

n∑
j=1

E[bij ]E[v(x, j)], (independence)

=

n∑
j=1

b̂ijm
v(j)

Qv
t
(x), (predictive mean of bij and u)

= B̂Qt
(i, :)mv

Qv
t
(x). (inner product)
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σu(i)2

Qt
(x) = V

 n∑
j=1

bijv(x, j)

 , (Eq. 164)

=

n∑
j=1

V [bijv(x, j)] , (independence)

=

n∑
j=1

 n∏
j=1

(V[bij ] + E[bij ]2)(V[v(x, j)] + E[v(x, j)]2)−
n∏

j=1

E[bij ]2E[v(x, j)]2


(independence)

=

n∑
j=1

 n∏
j=1

(σ2
bij + b̂2ij)(C

v(j)

Qv
t
(x) +mv(j)

Qv
t

2
(x))−

n∏
j=1

(
b̂ijm

v(j)

Qv
t
(x)
)2

(posterior mean)

=

n∑
j=1

 n∏
j=1

b̄2ij v̄
(j)2(x)−

n∏
j=1

b̂2ijm
v(j)2

Qv
t

(x)

 , (notation change)

where b̄2ij := σ2
bij

+ b̂2ij and v̄(j)
2

(x) := Cv(j)

Qv
t
(x) +mv(j)

Qv
t

2
(x).

H.2 POSITIVE SOCIAL INFLUENCE

When consider the our objective is now changed to:

x⋆ = argmax
x∈X

A[v(x, :)]. (165)

Note that now we consider v(x, :) as the truthful utilities, and more costly to query than u(x, :). We
can think individual utility u(x, :) can be based on misunderstanding, but the meeting can mitigate
this confusion, then we get truthful v(x, :) thanks to the social interaction. This can be seen in real-
world, highlighting our OpenReview discussion is exactly the same, where each review is based
on individual utility, yet the discussion can mitigate this misunderstanding thus the utility after
discussion v(x, :) can be regarded as truthful. Then, our problem becomes easier than before; we
can cheaply observe u(x, :), and v(x, :) = Au(x, :), meaning that we do not need to consider the
invertibility issues. Moreover, importantly, the impossibility theorem also can be mitigated. That
means, of course A[u(x, :)] ̸= A[v(x, :)] is still valid, yet we can say the following Pareto Front
containment Theorem:

Theorem H.3 (Pareto Front Containment). For any social graph G the Pareto front corresponding
to non-truthful utilities is a subset of the original Pareto front of truthful utilities.

Proof. Before we define the Pareto fronts of truthful and non-truthful utilities, we define two pref-
erences ⪰u and ⪰v as

x ⪰u x
′ iff u(x, i) ≥ u(x′, i) ∀i (166)

x ⪰v x
′ iff v(x, i) ≥ v(x′, i) ∀i (167)

Consider the Pareto front of truthful utilities as Pu := {x|∀x′ ∈ Xx′ ⊁u x} and analogously for
non-truthful utilities as Pv := {x|∀ x′ ∈ Xx′ ⊁v x}. We want to show that Pv ⊆ Pu. Before we
show that, we prove that the following holds for any unknown social influence graph G

∀ x, x′ ∈ Xx ⪰u x
′ =⇒ x ⪰v x

′
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Given the transition matrix of graph G as A, we know that aij ≥ 0 and
∑

j aij = 1. Consider

x ⪰u x
′

∀i u(x, i) ≥ u(x′, i) (Definition 167)∑
i

aiju(x, i) ≥
∑
i

aiju(x
′, i) (aij ≥ 0)

AT
j u(x, :) ≥ AT

j u(x
′, :) (Ai := jth row of A)

v(x, j) ≥ v(x′, j) ∀j
x ⪰v x

′

Since, the Pareto set is defined as Pv = {x|∀ x′ ∈ Xx′ ⊁v x}, we can rewrite the condition of x
not being strictly dominated by x′ as either x weakly domainates x′ or is incomparable

x′ ⊁v x = (x ⪰v x
′) ∨ [(x ⪰̸v x

′) ∧ (x′ ⪰̸v x)]

= [(x ⪰v x
′) ∨ (x ⪰̸v x

′)] ∧ [(x ⪰v x
′) ∨ (x′ ⪰̸v x)]

= (x ⪰v x
′) ∨ (x′ ⪰̸v x)

Then Pv = {x|∀ x′ ∈ X (x ⪰v x
′) ∨ (x′ ⪰̸v x)} and similarly, Pu = {x|∀ x′ ∈ X (x ⪰u x′) ∨

(x′ ⪰̸u x)}. To show that Pv ⊆ Pu, consider x ∈ Pv , then x needs to satisfy (x ⪰v x
′)∧ (x′ ⪰̸v x)

∀x′ ∈ X . We divide the condition into two cases,

Case 1: ∀x′ ∈ X x′ ⪰̸v x

Since x ⪰u x
′ =⇒ x ⪰v x

′, considering the contrapositive we have x′ ⪰̸v x =⇒ x ⪰̸u x
′. Then

x ∈ Pu.

Case 2: ∀x′ ∈ X x ⪰v x
′

This case is rarer as it implies that Pv = {x}. We can re-write the case as, ∀x′ ∈ X

∀j v(x, j) ≥ v(x′, j) (Definition 167)

∀j AT
j u(x, :) ≥ AT

j u(x
′, :)

By fixing any j we can say that x = argmaxx∈X A
T
j u(x, :). Therefore x ∈ Pu.

Therefore, we can use private votes to explore the Pareto front X ⋆, then the consensus is contained
x⋆ ∈ X ⋆. This can naturally lead to the combination of multi-objective BO, where we use private
vote u to estimate the Pareto Front X ⋆, then we search the consensus x⋆ within the estimated Pareto
Front set.

Let vol(X ) be the volume of the domain. Then, we have vol(X ⋆) ≤ vol(X ) since X ⋆ ⊆ X . As
shown in Kandasamy et al. (2016), the maximum information gain (MIG) depends on the domain
volume. Let Ψt(X ) be the MIG at t-th iteration over the domain X . For instance, with the squared
exponential kernel, MIG can be expressed as Ψt(X ) ∝ vol(X ) log(t)d+1. This means that the regret
of our algorithm should improve by a factor of Ψt(X g)/Ψt(X ) = vol(X g)/vol(X ). Thus, in this
case, we can provably better regret convergence bound when individual votes are available. This is
actually what our OpenReview system does.

I HYPERPARAMETERS

We summarized the comprehensive list of hyperparameters used in this work and their settings in
Table 4. Most of these are standard in typical GP-UCB approaches. The newly introduced hyperpa-
rameters are primarily tunable in a data-driven manner, and we provided a sensitivity analysis in the
experiment section for those that are not.

I.1 UPDATE KERNEL HYPERPARAMETERS

By Assumption 2.6, there exists a large enough constant Lv that upper bounds the norm of the
ground-truth latent black-box utility function u, v. However, a tight estimate of this upper bound
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may be unknown to us in practice, while the execution of our algorithm explicitly relies on knowing
a bound Lv (in Prob. (5), Lv is a key parameter).

So it is necessary to estimate the norm bound Lv using the online data. Suppose our guess is
L̂. It is possible that L̂ is even smaller than the ground-truth function norm ∥v∥. To detect this
underestimate, we observe that, with the correct setting of Lv such that Lv ≥ ∥v∥, we have that by
Lemma 3.6 and the definition of MAP estimate,

LMAP
t (ût|L̂, Ât|L̂, v̂t|L̂) ≥ LMAP

t (u,A, v) ≥ LMAP
t (ût|L̂, Ât|L̂, v̂t|L̂)− βt|L̂,

where ût|L̂ is the MAP estimate function with function norm bound L̂ and βt is the corresponding

parameter as defined in Lemma 3.6 with norm bound L̂. We also have 2L̂ is a valid upper bound on
∥v∥ and thus,

LMAP
t (ût|2L̂, Ât|2L̂, v̂t|2L̂) ≥ LMAP

t (u,A, v) ≥ LMAP
t (ût|2L̂, Ât|2L̂, v̂t|2L̂)− βt|2L̂,

Therefore,

LMAP
t (ût|L̂, Ât|L̂, v̂t|L̂) ≥ LMAP

t (u,A, v) ≥ LMAP
t (ût|2L̂, Ât|2L̂, v̂t|2L̂)− βt|2L̂,

That is to say, LMAP
t (ût|L̂, Ât|L̂, v̂t|L̂) needs to be greater than or equal to

LMAP
t (ût|2L̂, Ât|2L̂, v̂t|2L̂)− βt|2L̂ when L̂ is a valid upper bound on ∥v∥.

Therefore, we can use the heuristic: every time we find that

LMAP
t (ût|L̂, Ât|L̂, v̂t|L̂) < LMAP

t (ût|2L̂, Ât|2L̂, v̂t|2L̂)− βt|2L̂,

we double the upper bound guess L̂.

I.2 OPTIMIZE THE KERNEL HYPERPARAMTERS

Unlike the GP, our likelihood model does not have the analytical form of marginal likelihood. Thus,
we adopt the leave-one-out cross-validation (LOO-CV) as the optimization loss (See Section 5.3 in
Williams & Rasmussen (2006)). That is, we leave one out from the observed dataset and compute
the negative log posterior of the left one dataset, and averaging all samples. We optimize the kernel
hyperparameters by minimizing this LOO-CV.

J EXPERIMENTS

J.1 TOY EXAMPLE 1

The instrinsic utilities of the influencer (u(1)) and the follower (u(2)) are defined as follows:

u(1) := 0.3N (x; 0.35, 0.05) + 1.2N (x; 0.45, 0.18) + 0.8N (x; 0.75, 0.1), (168)

u(2) := 0.5N (x; 0.25, 0.1) + 0.8N (x; 0.65, 0.15) + 0.4N (x; 0.85, 0.05), (169)

The social-influence graph is defined as A :=

(
0.9 0.1
0.6 0.4

)
, and the aggregation function is utilitar-

ian A :=
∑2

i=1
1
2u

(i).

J.2 REAL-WORLD TASKS

J.2.1 THERMAL COMFORT

We compute the utility function using the PMV (predicted mean vote), which is the estimation from
the large collection of human preference dataset that predicts the values from [−3, 3], where −3
means very cold, and 3 means very hot, and 0 means comfortable at the current condition. We take
the minus absolute PMV, with 0 is the maximum for each agent’s utility. The input values are two
dimensional continuous values x ∈ R2, where the first dimension denotes the temperature [15, 35]
with degrees Celcius, and the second dimension is the air velocity [0.3, 1.5].
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The agents has different conditions of the garments and activity conditions, resulting in the relative
air velocity difference. The conditions are as follows:

Activity

(agent 1) Seated, heavy limb movement
(agent 2) House cleaning
(agent 3) Writing

Garments

(agent 1) ’Executive chair’, ’Thick trousers’, ’Long-sleeve long gown’, ”Boots”, ’Ankle socks’
(agent 2) ”Thin trousers”, ”T-shirt”, ”Shoes or sandals”
(agent 3) ’Standard office chair’, ’Long sleeve shirt (thin)’, ’Long-sleeve dress shirt’, ’Slippers’

Then PyThermalComfort (Tartarini & Schiavon, 2020) computes the corresponding metabolic gen-
eration and thermal insulation based on ASHRAE industrial standard. The social-influence graph is

defined as A :=

(
0.8 0.1 0.1
0.6 0.1 0.3
0.4 0.3 0.3

)
, and the aggregation function is egalitarian ρ = 0.1.

J.2.2 TEAMOPT

We have modified the setting from Wan et al. (2023); Adachi et al. (2024a). Each team is repre-
sented by graphs with 8 members from 11 candidates. Such teams are positioned on the node of the
supergraph, of which edge is the similarity between teams defined as the Jaccord index. There are
two additional information on nodes; skills and inter-member compatibility. Both are represented
as continuous values, generated from row-wise Dirichlet distribution, resulting in n × n square
matrices. There are four agents who has the different utility function.

Utility functions

(agent 1) Skill set diversity: this is measured by the entropy of the skill set matrix, assuming the op-
timal team is when each member is specialised in one skill, and the whole skill distribution
is close to uniform.

(agent 2) mean compatibility: averaging the compatibility matrix.
(agent 3) minimax compatibility: take minimum element of the compatibility matrix.
(agent 4) flat compatibility: take minimum variance of the compatibility matrix.

The social-influence graph is defined asA :=

0.7 0.1 0.1 0.1
0.4 0.4 0.1 0.1
0.3 0.2 0.3 0.2
0.3 0.2 0.2 0.3

, and the aggregation function

is egalitarian ρ = 0.1.

J.2.3 TRIPADVISER:

We used the TripAdvisor New Zealand Hotel dataset (Rahman, 2023) which consists of three di-
mensional data, price, number of review, and review rank. We denote p(x) as price, r(x) as number
of review, and R(x) as the review rank. There are three agents who has the different utility function.

Utility functions

(agent 1) luxury: 0.5 p(x) + 0.5 R(x)
(agent 2) budget: -0.5 p(x) + r(x) + 0.5 r(x)
(agent 3) review: R(x)

The social-influence graph is defined as A :=

(
0.5 0.3 0.2
0.1 0.8 0.1
0.2 0.1 0.7

)
, and the aggregation function is

egalitarian ρ = 0.5.

49



2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

tru
th

fu
l |

Q
t |u

SR
T

1.5

1.0

0.5

GP-UCB (v) OursGP-UCB (u) MT-GP-UCB (u)

Influencer

iteration t
MT-GP-UCB (u,v)

C
R

T

10

5

10

5

15

100 100

Egoist Altruist

100
iteration t iteration t

Figure 6: Simple regret, cumulative regret, and cumulative queries on different social influence
graph.

J.2.4 ENERGYTRADING:

We used METER dataset, UK-wide energy demand dataset (Grünewald & Diakonova, 2020;
Grünewald & Diakonova, 2019). Due to the privacy reason, we cannot identify which smart meter
id corresponds to the geography in the UK. Therefore, we place the all meter dataset into the hypo-
thetical two-dimensional space, which placed based on the similarity between the time series data.
Intuitively, the energy demand should have some geographical relationship, for instance Scotland is
cooler than England, thereby the heating energy is more necessary. As such estimated two dimen-
sional space locations are further transformed into continuous space, by interpolating by GP model.
We refer to this GP as oracle GP. We also assume three firms use GPs as their demand prediction
model. We refer to these individual GPs as internal models. As we use GP, the maximum informa-
tion gain can be reasonably approximated by the predictive variance (Srinivas et al., 2010). Then,
we allocate different number of datasets to each internal models, resulting in different information
gain functions. We use this predictive variance of each internal model as the utility functions. A
large corporation is assumed to have the largest and diverse data, and a niche startup has handful of
data but is very niche where the large corporation does not have. A joint venture is the mixture of
niche data. These data distribution creates the different maximizers of utility functions.

The social-influence graph is defined as A :=

(
0.8 0.1 0.1
0.6 0.1 0.3
0.4 0.3 0.3

)
, and the aggregation function is

egalitarian ρ = 0.5.

J.3 GAUSSIAN PROCESS BASED MODEL

Now we tested our GP-based algorithm with popular baselines: (a) GP-UCB (Srinivas et al., 2010):
This baseline solves Prob. (1) as a single-objective BO, conditioning a GP on aggregated votes,
yt := A[u(xt, :)]. We compare scenarios where the GP is conditioned on truthful utilities (u)
versus non-truthful ones (v). (b) Multi-task (MT) GP-UCB (Kandasamy et al., 2016): This baseline
models utilities using a simple MTGP without incorporating the graph structure, employing our
acquisition function from Prob. (5) for querying. We compare cases where the GP is conditioned
only on truthful utilities (u) versus both truthful and non-truthful utilities (u, v). If the non-truthful
utilities (v) provide useful low-fidelity information, the convergence rate for (u, v) should improve
relative to (u) alone; otherwise, it might remain the same or deteriorate.

Social-influence graph. To examine the effect of the social-influence graph A, we varied A us-
ing the same funcitons and graph in Figure 3. Figure 6 highlights the robustness and efficacy of
our algorithm. Our approach consistently outperforms the baselines in both simple and cumulative
regret. Notably, the cumulative number of truthful queries |Qu

T | grows logarithmically, requiring

50



2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

GP-UCB (v) OursGP-UCB (u) MT-GP-UCB (u)

Utilitarian (ρ = 1)

MT-GP-UCB (u,v)
iteration t

100 100 100
iteration t iteration t

SR
T

1.5

1.0

0.5

ρ = 0.5 Egalitarian (ρ = 10-10)

Figure 7: Simple regret, cumulative regret, and cumulative queries on different aggregation function.

only a few queries overall, while the baselines require a linear growth in |Qu
T |. This demonstrates

our algorithm’s sample efficiency for expensive u queries. A closer look reveals that GP-UCB often
gets stuck in local maxima. This is a known limitation of GP-UCB under model misspecification
(Berkenkamp et al., 2019), which necessitates additional exploration through an increased β pa-
rameter (Bogunovic & Krause, 2021), requiring more iterations for β to grow. In contrast, our
convolutional kernel GP captures the correlations in corrupted v, providing better extrapolation and
avoiding misspecification issues compared to the vanilla GP model. Contrastingly, a naı̈ve combi-
nation of MT-GP-UCB (u, v) fails to accelerate in most cases because standard correlation learning
in MTGP is not the convolution learning. It often performs worse than using only truthful data (u),
as Mikkola et al. (2023) explains that incorporating unreliable information can actually decelerate
convergence.

Aggregate function. We further tested the effect of the aggregation function by varying ρ ∈
[1, 0.5, 10−10] in Eq. (2), keeping the influencer-follower matrix A fixed. Smaller ρ values lead
to more pronounced differences in our model. This makes sense, as ρ controls the degree to which
minority preferences, such as those of the follower in this case, are prioritized, thereby accentuating
model misspecification issues as ρ decreases.

J.4 COMPUTATION TIME
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Figure 8: Computation time on real-world tasks.

We report the computation time on Figure 8. As we can see, although our algorithm is the slowest,
each query only takes within 30 seconds at iteration t = 50. The complexity is O(n(t + n)), and
the computation time scales linearly as shown in the figure. Taking tens of seconds in multi-agentic
scenario is common as it is inherently expensive computation.
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