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Abstract

End-to-end learning has emerged as a transformative paradigm for autonomous
driving. However, the inherently multimodal nature of driving behaviors remains a
fundamental challenge to robust deployment. We propose DiffE2E, a diffusion-
based end-to-end autonomous driving framework. The architecture first performs
multi-scale alignment of perception features from multiple sensors via a hierar-
chical bidirectional cross-attention mechanism. Subsequently, we design a hybrid
diffusion-regression-classification decoder based on the Transformer architecture,
adopting a collaborative training paradigm to seamlessly fuse the strengths of
diffusion and explicit strategies. DiffE2E conducts structured modeling in the
latent space: diffusion captures the multimodal distribution of future trajectories,
while regression and classification act as explicit strategies to precisely model key
control variables such as velocity, enhancing both the precision and controllability
of the model. A global condition integration module further enables deep fusion of
perception features with high-level goals, significantly improving the quality of tra-
jectory generation. The subsequent cross-attention mechanism facilitates efficient
interaction between integrated features and hybrid latent variables, promoting joint
optimization of diffusion and explicit strategies for structured output generation
and thereby yielding more robust control. Experimental results demonstrate that
DiffE2E achieves state-of-the-art performance on both CARLA closed-loop bench-
marks and NAVSIM evaluations. The proposed unified framework that integrates
diffusion and explicit strategies provides a generalizable paradigm for hybrid action
representation and shows substantial potential for extension to broader domains,
including embodied intelligence.

1 Introduction

End-to-end autonomous driving frameworks directly map sensor data to control commands, effectively
avoiding error accumulation inherent in traditional modular pipelines and significantly enhancing both
decision-making efficiency and scenario adaptability [21, 27, 6, 47, 5, 48]. Most existing approaches
adopt explicit policy architectures based on direct regression [42, 9, 53, 23, 62, 43], learning the
mapping between environmental observations and vehicle actions from large-scale driving datasets.
However, due to the inherently multimodal nature of driving behaviors, these methods are prone to
producing suboptimal solutions [34] and often fail to generate the diverse trajectories consistent with
real-world driving strategies.

The multimodal nature of driving decisions means multiple plausible actions may exist for the
same scenario. Conventional regression-based approaches tend to average over this diversity, often
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Figure 1: Comparison of end-to-end training paradigms. (a) Explicit Policy. Directly predicts trajectories
through regression after sensor input processing. (b) Explicit Policy with Diffusion Refinement. Uses diffusion
models to replace traditional explicit policy trajectory output heads. (c) Diffusion Policy. Uses diffusion models
to directly generate trajectories based on perception encoder features.

resulting in suboptimal or even unsafe behaviors [12]. This issue exacerbates safety risks and limits
the reliability of regression-based policies in real-world autonomous driving systems. To address
these limitations, recent research [6, 33, 31, 41] has explored explicitly modeling multimodality via
predefined discrete sets of trajectory candidates. However, such hard-coded schemes undermine
the continuity of policy generation, reduce model adaptability, and ultimately degrade continuous
decision making into a fixed mode selection problem, thereby weakening generalization capability.

Diffusion models have demonstrated strong capabilities in modeling complex multimodal distributions
and generating high-quality outputs, making them increasingly prominent in computer vision [18, 44,
45, 13]. This generation paradigm based on gradual denoising provides a new solution for addressing
multimodal modeling and generalization problems in end-to-end autonomous driving. The successful
application of diffusion models in robotic motion planning has already demonstrated their advantages
in multimodal action sequence generation and long-term sequence prediction [7, 57, 24]. However,
applying diffusion models to autonomous driving systems faces unique challenges: autonomous
driving needs to simultaneously meet multiple stringent requirements in open road environments,
dealing with the uncertainty of highly dynamic traffic participants while ensuring real-time response;
generating feasible trajectories that conform to road topology while ensuring traffic efficiency.

Recent works have explored diffusion models in autonomous driving planning [61] and end-to-end
control [34, 54], applying Denoising Diffusion Implicit Model (DDIM) [44], DPM-Solver [36], and
Rectified Flow [35] for trajectory generation, revealing the strong potential of generative approaches.
However, most integrate diffusion models only after planning decoders, using them to replace
explicit policy heads (see Figure 1(b)). This setup risks losing key perception features and constrains
generation due to pre-processed decoder outputs. While some methods [34] use trajectory anchors to
enhance real-time performance, anchor-based designs can limit trajectory diversity. A more effective
architecture is needed to fully harness the generative power of diffusion models.

To address the aforementioned challenges, we introduce DiffE2E, an innovative end-to-end au-
tonomous driving framework, as illustrated in Figure 2. DiffE2E first performs multi-scale alignment
of LiDAR and image features via a hierarchical bidirectional cross-attention mechanism, thereby
enabling high-precision environmental perception [9, 23]. Building upon this, we design a hybrid
diffusion-regression-classification decoder based on the Transformer architecture and employ a col-
laborative training paradigm to seamlessly integrate the strengths of diffusion and explicit strategies.
By combining diffusion models with explicit strategies, we structurally partition the latent space:
on the one hand, diffusion models are leveraged to capture the distribution, diversity, and higher-
order uncertainty of future trajectories; on the other hand, explicit strategies are utilized to achieve
fine-grained modeling of key control variables such as velocity. The cross-attention mechanism
facilitates efficient interaction between integrated features and hybrid latent variables, supporting
the joint optimization of diffusion and explicit strategies for structured output generation. DiffE2E
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achieves state-of-the-art performance on both the CARLA closed-loop benchmark and the NAVSIM
evaluation, demonstrating enhanced safety and traffic efficiency in complex scenarios, as well as
strong generalization capability.

In summary, our contributions are as follows:

1. We propose DiffE2E, an end-to-end autonomous driving framework that uses diffusion models for
trajectory generation and is the first to evaluate them in closed-loop tests within CARLA.

2. We propose a hybrid diffusion-regression-classification decoder based on the Transformer ar-
chitecture, employing a collaborative training paradigm to achieve seamless integration of the
advantages of diffusion and explicit strategies.

3. We conduct dual-platform benchmark testing, achieving state-of-the-art performance across
multiple benchmarks in the CARLA simulator, and attaining a PDMS of 92.7 in the non-reactive
simulation NAVSIM, while maintaining higher real-time performance compared to other methods.

2 Preliminaries

Problem Definition: This research focuses on end-to-end autonomous driving closed-loop control
strategies based on diffusion models. The system directly takes multi-modal raw perception data as
input, including front-view camera RGB images It ∈ RH×W×3, LiDAR point clouds P3D

t ∈ RN×3,
and vehicle state information st ∈ Rds . The system predicts the ego vehicle’s future trajectory x0,
where the generative process is modeled as:

pθ(x0|C) =
∫
x1:T

p(xT )

T∏
t=1

pθ(xt−1|xt, C) dx1:T (1)

In diffusion modeling, xt represents the intermediate variable at step t in the diffusion process, with
the final predicted trajectory being x0 ∈ RK×dc . Here, each waypoint pi ∈ Rdc represents position
information in the predicted trajectory. The condition information C is encoded from multi-modal
sensor data through a cross-modal feature fusion module. Unlike traditional open-loop control, in
closed-loop control, the trajectory decision at the current moment directly affects the perception input
at the next moment, forming a dynamic feedback loop. This coupled relationship requires the model
to have strong temporal consistency and robustness.

Diffusion Models: Denoising Diffusion Probabilistic Models (DDPM) [18] are powerful generative
models that capture complex multimodal distributions via a two-phase process: forward diffusion
gradually adds noise, while the reverse process reconstructs the data through iterative denoising. This
framework naturally models the multimodality of driving behaviors. The forward process follows a
Markov chain that transforms data x0 into noise over T steps:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (2)

where {βt}Tt=1 controls noise levels. Through reparameterization, we can sample xt directly:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I) (3)

where ᾱt =
∏t

i=1(1 − βi). While DDPM generates high-quality samples, its sequential process
is computationally expensive. DDIM [44] addresses this with a non-Markovian process that accel-
erates generation while maintaining quality, making diffusion models more practical for real-time
autonomous driving applications.

3 Methodology

Overview: DiffE2E is an end-to-end autonomous driving framework, as illustrated in Figure 2. In
the perception stage, it introduces a multimodal spatiotemporal fusion module, which employs a
hierarchical bidirectional cross-attention mechanism to align LiDAR and camera features and establish
a structured representation of the driving scene. During the decoding stage, a Transformer-based
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Figure 2: Overall architecture of DiffE2E. The main architecture consists of a Transformer-based perception
module and a hybrid diffusion-regression-classification decoder. The blue arrows (→) indicate the data flow
exclusively used for the CARLA benchmark, while the black arrows (→) represent the data flow shared
between both the CARLA and NAVSIM benchmarks.

hybrid diffusion-regression-classification decoder is adopted, in conjunction with a collaborative
training strategy that seamlessly integrates diffusion and explicit policy paradigms. The global
condition integration module fuses scene representations with goal-oriented global context, while the
cross-attention mechanism enables efficient interaction between integrated features and hybrid latent
variables, thereby facilitating the joint generation of diffusion-based trajectories and explicit outputs.

3.1 Multimodal Fusion Perception Module

The perception module aims to fuse multimodal sensor data to construct structured environmental
representations. This paper adopts the TransFuser architecture as the basic perception backbone
network [23], with inputs including wide-angle front-view RGB images It ∈ RH×W×3 and BEV
representations P2D

t ∈ RH×W×C constructed from raw LiDAR point clouds P3D
t ∈ RN×3. After

extracting initial features from both branches, they enter a multi-scale cross-fusion module composed
of multiple Transformer layers, achieving deep alignment and information interaction between
LiDAR and image features through cross-modal attention mechanisms. Finally, the module outputs
high-dimensional fusion features C, global semantic representations, and image feature grids to
support the fine-grained modeling requirements of downstream decision modules.

3.2 Hybrid Diffusion-Regression-Classification Module

After the multimodal fusion perception module integrates information from diverse sensors, the
DiffE2E framework introduces an innovative architecture. By incorporating a Transformer-based
hybrid diffusion-regression-classification decoder and adopting a collaborative training paradigm,
DiffE2E effectively combines the strengths of both diffusion-based and explicit policy strategies, as
illustrated in Figure 2. This section provides a comprehensive exposition of the global condition
integration, hybrid diffusion-regression-classification decoding process, and decoder output module.

Global Condition Integration: To enhance the influence of target points in trajectory generation,
they are used as global conditions [23]. Original target points g are first projected via a linear layer
fgoal into a shared high-dimensional space of dimension d, forming representations g ∈ Rℓg×d.
Meanwhile, diffusion timesteps t are encoded into temporal embeddings temb ∈ Rℓt×d to help the
model adapt across denoising stages. Finally, perception features C ∈ Rℓc×d, goal features, and
timestep embeddings are fused, and combined with learnable positional encoding EC

pos to form a
contextual representation for trajectory decoding, where ℓc, ℓg , and ℓt denote the sequence lengths of
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conditional features, goal representations, and timestep embeddings:

C̃ =
[
Concat(C,g, temb) +EC

pos

]
∈ R(ℓc+ℓg+ℓt)×d (4)

This global condition integration mechanism incorporates target point information and timestep
embeddings into perception features, enhancing the model’s awareness of navigation goals and
enabling dynamic adjustment of feature representations during denoising for more precise trajectory
generation.

Hybrid Diffusion-Regression-Classification Decoding: Let ℓk and ℓs denote the sequence lengths
of the noisy trajectory and explicit policy queries, respectively. The proposed hybrid decoder first
encodes the noisy trajectory τt into high-dimensional feature representations via a linear projection
layer fenc. These are then concatenated with the initial query vectors for explicit policy decoding,
q0 ∈ Rℓs×d, and augmented with learnable positional embeddings EZ

pos ∈ R(ℓk+ℓs)×d. This yields
the decoder’s initial input vector:

Zin =
[
Concat(fenc(τt),q0) +EZ

pos

]
∈ R(ℓk+ℓs)×d, t ∈ R (5)

At each time step t of the entire diffusion process, the input first passes through a multi-head
self-attention layer to process the internal feature relationships of Zin:

Zmid = SelfAttn(Zin), Zmid ∈ R(ℓk+ℓs)×d (6)

Then, through a cross-attention mechanism, Zmid interacts with the conditional features C̃, producing
the final output:

Zout = CrossAttn(Zmid, C̃, C̃), Zout ∈ R(ℓk+ℓs)×d, C̃ ∈ R(ℓc+ℓg+ℓt)×d (7)

Here, Zout denotes the feature vectors output by the decoder, t is the current diffusion timestep, and C̃
represents the conditional feature vectors that integrate the goal points. ℓc denotes the feature length
from the multimodal perception module, ℓg is the length of the goal point features, and ℓt is the
length of the diffusion timestep features. Similarly, in the output feature Zout, the first ℓk positions
correspond to the latent features for diffusion-based trajectory generation, while the remaining ℓs
positions correspond to the latent features for explicit policy outputs.

Decoder Output Module: The decoder output module further processes the hybrid features Zout ∈
R(ℓk+ℓs)×d to realize joint decoding of both diffusion-based and explicit policy strategies. This
module employs a feature separation and task-specific decoding approach, decomposing the output
features structurally in semantic space:

Zdiff = Zout[: ℓk] ∈ Rℓk×d

Zsup = Zout[ℓk : ℓk + ℓs] ∈ Rℓs×d
(8)

Here, Zdiff represents the high-dimensional latent representations for the diffusion trajectory, and
Zsup contains structured feature information for explicit policy outputs.

3.3 Diffusion-Regression-Classification Collaborative Training Strategy

Building upon the aforementioned hybrid diffusion-regression-classification decoder architecture, we
propose a collaborative training paradigm that synergistically integrates diffusion-based generative
modeling with explicit policy learning. The core objective of this strategy is to combine the generative
capabilities of diffusion models with the precision of explicit policies, achieving complementary
advantages from both approaches.

Diffusion Loss Function: DiffE2E employs a trajectory reconstruction-based loss function for
diffusion generation, which directly optimizes the model’s ability to recover the original trajectory
from noisy inputs. Using Mθ to represent the entire model, the loss function is formulated as:

Ldiff = Et∼U(1,T ),x0,xt∼qt(xt|x0)

[∥∥∥x0 −Mθ(xt, t, C̃)
∥∥∥2
2

]
(9)
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Explicit Policy Loss Function: The explicit policy loss adopts a multi-task composite optimization
strategy, enabling precise control of gradient flows and prioritization through task-specific weighting
coefficients. Specifically, Lsup =

∑
i∈Ω λi · Li(yi, ŷi; θi), where Ω denotes the set of all explicit

policy tasks, λi is the weight for task i, and Li(yi, ŷi; θi) represents the objective for task i, with yi

and ŷi denoting ground-truth labels and predictions, and θi the corresponding network parameters.

For instance, in the velocity prediction task, we construct a multi-class classification model based on
semantic stratification, covering four velocity states with clear physical meanings: brake, walking
speed, low speed, and high speed. The accuracy of classification prediction is optimized via a
weighted cross-entropy loss function:

Lspeed(y, p̂;w) = − 1

N

N∑
n=1

4∑
i=1

wi · yn,i log(p̂n,i + eps), s.t.
4∑

i=1

p̂n,i = 1, p̂n,i ≥ 0 (10)

where N denotes the batch size, yn,i ∈ {0, 1} indicates the ground-truth label (with one-hot encoding)
of the n-th sample under the i-th velocity class, p̂n,i ∈ [0, 1] is the predicted normalized classification
probability, wi > 0 is the class-balancing weight coefficient, and eps is a constant for numerical
stability. Further details on explicit policy loss formulations are provided in Appendix A.

4 Experiments

Experiment Setup: This research is primarily evaluated using the CARLA simulator closed-loop
benchmark [14] and the NAVSIM non-reactive simulation benchmark [12]. CARLA offers diverse
urban scenes and sensor emulation, with its closed-loop mechanism providing real-time feedback
to assess decision quality over long horizons. NAVSIM, built on OpenScene [11] (a streamlined
version of the nuPlan [1] dataset), provides 360◦ coverage via 8 cameras and 5 LiDARs, with 2Hz
annotations of maps and object bounding boxes. Additional details are provided in Appendix B.

4.1 Experiment on CARLA

Implementation Details: This study uses RegNetY-3.2GF [39] as the encoder for image and
LiDAR inputs. To optimize computation and training efficiency, a two-stage strategy is adopted:
the first trains the perception module with multi-task losses; the second trains the diffusion decoder
conditioned on the frozen perception outputs. We adopt CARLA Longest6, CARLA Town05 Long,
and CARLA Town05 Short as evaluation benchmarks [9, 38], using the official Driving Score (DS),
Route Completion (RC), and Infraction Score (IS) as metrics. Detailed implementation details and
baseline descriptions are provided in Appendix B.1.

Main Results: As shown in Table 1, our proposed diffusion-based method, DiffE2E, demonstrates
superior performance on the CARLA Longest6 benchmark, consistently outperforming mainstream
existing approaches. Across the three key evaluation metrics, DiffE2E achieves a DS of 79± 4, RC
of 94 ± 2, and IS of 0.84 ± 0.02, each exceeding or closely matching the best results reported to
date. Notably, compared to the strong baseline TF++ (which also utilizes RegNetY-3.2GF as the
backbone for perception and the same input modalities), DiffE2E delivers a 10-point improvement
in DS (79 ± 4 vs. 69 ± 0), a 0.12 increase in IS (0.84 ± 0.02 vs. 0.72 ± 0.01), and comparable
stability in RC (94 ± 2 vs. 94 ± 2), thoroughly validating the dual advantages of our model in
both accuracy and safety. Furthermore, the standard deviation (±) of DiffE2E is similar to other
methods, indicating robust and stable performance across multiple experimental runs. Traditional
explicit-policy-based methods (e.g., LAV v2, TransFuser) generally exhibit lower DS and IS when
facing complex scenarios, revealing their limitations in perceiving and reasoning about multimodal
driving behaviors. In contrast, diffusion decoding significantly enhances the model’s generalization
and decision diversity capabilities. In summary, DiffE2E achieves higher DS and IS, ensuring both
high route completion rates and low infraction rates over long driving horizons, and demonstrates
exceptional end-to-end closed-loop autonomous driving performance.

Visualization: Figure 3 shows a comparison in a typical right-turn scenario. Initially, both TF++ and
DiffE2E plan similar paths by first merging right. When a vehicle appears, TF++ sticks to its preset
path and collides, while DiffE2E adapts by temporarily going forward, then safely merging after the
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Table 1: Comparison on the CARLA Longest6 benchmark. “C & L” denotes the use of both camera and
LiDAR as sensor inputs. “Pri.” indicates the use of privileged information. The best and second best results are
highlighted in bold and underline.
Method Traj. Decoder Img. Encoder Input DS ↑ RC ↑ IS ↑
Expert - - - 81 ± 3 90 ± 1 0.91 ± 0.04

WOR [4] - ResNet-34 [17] C 21 ± 3 48 ± 4 0.56 ± 0.03
LAV v1 [2] Explicit Policy ResNet-18 [17] C&L 33 ± 1 70 ± 3 0.51 ± 0.02
InterFuser [42] Explicit Policy ResNet-50 [17] C&L 47 ± 6 74 ± 1 0.63 ± 0.07
TransFuser [9] Explicit Policy RegNetY-3.2GF [39] C&L 47 ± 6 93 ± 1 0.50 ± 0.06
TCP [53] Explicit Policy ResNet-34 [17] C 48 ± 3 72 ± 3 0.65 ± 0.04
ThinkTwice [26] Explicit Policy ResNet-50 [17] C&L 51 ± 4 64 ± 4 0.80 ± 0.03
LAV v2 [2] Explicit Policy ResNet-18 [17] C&L 58 ± 1 83 ± 1 0.68 ± 0.02
Perception PlanT [40] Explicit Policy RegNetY-3.2GF [39] C&L 58 ± 5 88 ± 1 0.65 ± 0.06
DriveAdapter [25] Explicit Policy ResNet-50 [17] C&L 58 ± 2 73 ± 3 0.79 ± 0.04
TF++ [23] Explicit Policy RegNetY-3.2GF [39] C&L 69 ± 0 94 ± 2 0.72 ± 0.01

DiffE2E (Ours) Diffusion Policy RegNetY-3.2GF [39] C&L 79 ± 4 94 ± 2 0.84 ± 0.02

(a) TransFuser++

(b) DiffE2E

Figure 3: Visualization in CARLA Simulator. In both the LiDAR and scene visualizations, blue points
represent the predicted trajectory, while red points in the LiDAR view denote the target waypoints.

vehicle passes. This demonstrates DiffE2E’s superior multimodal generation capability and real-time
adaptability in dynamic traffic, effectively avoiding collisions.

4.2 Experiment on NAVSIM

Implementation Details: This study builds a model training framework based on NAVSIM’s navtrain
dataset. Unlike the CARLA setup, we adopt VovNetV2-99 [30] as the feature extraction backbone
network in NAVSIM. The Predictive Driver Model Score (PDMS) is used as a comprehensive metric,
combining key driving dimensions via weighted integration: No at-fault Collision (NC), Drivable
Area Compliance (DAC), Time-To-Collision (TTC), Comfort (C), and Ego Progress (EP). Detailed
implementation details and baseline descriptions can be found in Appendix B.2.

Main Results: As shown in Table 2, DiffE2E achieves outstanding performance on the NAVSIM
benchmark, attaining a PDMS score of 92.7—surpassing Hydra-MDP++ (91.0), Hydra-MDP⋄

(91.0), GoalFlow (90.3), and DiffusionDrive (88.1). This result highlights the superiority of our
hybrid diffusion-based end-to-end approach across multiple driving metrics. In terms of safety and
compliance, DiffE2E particularly excels: it achieves a faultless collision rate of 99.9 (compared
with Hydra-MDP++ at 98.6, Hydra-MDP⋄ at 98.7, and GoalFlow at 98.4), and reaches the highest
drivable area compliance score of 98.6, on par with Hydra-MDP++. For the time-to-collision
metric, DiffE2E leads with a score of 99.3, outperforming Hydra-MDP++ by 4.2 points. In terms of
efficiency and comfort, DiffE2E achieves an ego progress of 85.3, just below Hydra-MDP++ (85.7)
and comparable to Hydra-MDP⋄ (86.5). Additionally, its comfort score reaches 99.9, nearly matching
the best-performing methods, demonstrating its ability to generate smooth, human-like trajectories.
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Table 2: Comparison on the Navtest benchmark. “S” denotes using only the ego vehicle state as input. *
indicates that these two methods adopt diffusion models as post-planning decoders, whereas DiffE2E employs a
diffusion model as the full decoder to directly generate trajectories. † and ‡ denote the variants of DiffE2E with
the image encoder replaced by ResNet-34 and with the sensor input restricted to images only, respectively. ⋄

denotes that the result is obtained via sub-score ensembling of three backbones [33].
Method Traj. Decoder Img. Enc. Input PDMS↑ NC↑ DAC↑ EP↑ TTC↑ C↑
Human - - - 94.8 100 100 87.5 100 99.9

AD-MLP [58] Explicit Policy - S 65.6 93.0 77.3 62.8 83.6 100
VADv2 [6] Explicit Policy ResNet-34 [17] C&L 80.9 97.2 89.1 76.0 91.6 100
UniAD [21] Explicit Policy ResNet-34 [17] C 83.4 97.8 91.9 78.8 92.9 100
LTF [9] Explicit Policy ResNet-34 [17] C 83.8 97.4 92.8 79 92.4 100
PARA-Drive [52] Explicit Policy ResNet-34 [17] C 84.0 97.9 92.4 79.3 93 99.8
TransFuser [9] Explicit Policy ResNet-34 [17] C&L 84.0 97.7 92.8 79.2 92.8 100
LAW [32] Explicit Policy ResNet-34 [17] C 84.6 96.4 95.4 81.7 88.7 99.9
DRAMA [56] Explicit Policy ResNet-34 [17] C&L 85.5 98 93.1 80.1 94.8 100
Hydra-MDP [33] Explicit Policy ResNet-34 [30] C&L 86.5 98.3 96.0 78.7 94.6 100
DiffusionDrive [34] Diffusion Policy* ResNet-34 [17] C&L 88.1 98.2 96.2 82.2 94.7 100
GoalFlow [54] Diffusion Policy* V2-99 [30] C&L 90.3 98.4 98.3 85 94.6 100
Hydra-MDP⋄ [33] Explicit Policy ViT-L [15] + V2-99 [30] C&L 91.0 98.7 98.2 86.5 95.0 100
Hydra-MDP++ [31] Explicit Policy V2-99 [30] C 91.0 98.6 98.6 85.7 95.1 100

DiffE2E† Diffusion Policy ResNet-34 [17] C&L 89.8 99.2 96.8 83.6 96.7 100
DiffE2E‡ Diffusion Policy V2-99 [30] C 90.9 99.7 97.1 84.2 98.2 99.9
DiffE2E (Ours) Diffusion Policy V2-99 [30] C&L 92.7 99.9 98.6 85.3 99.3 99.9

(a) DiffusionDrive (b) TransFuser (c) DiffE2EFront View LiDAR View

Figure 4: Visualization in Navtest benchmark. Red trajectories denote the predicted paths of each method,
while green trajectory corresponds to the ground truth.

Unlike DiffusionDrive and GoalFlow, which utilize diffusion as post-processing after the planning
decoder, DiffE2E employs a full diffusion decoding paradigm, enabling richer policy space modeling
and greater expressive power. Furthermore, the hybrid design of diffusion and explicit policy
(regression and classification) combines the strengths of both approaches: it captures the multimodal
distribution of future trajectories while maintaining the accuracy and controllability of explicit
policies. To further validate the impact of key design choices, we evaluate two variants: DiffE2E†

(with a ResNet-34 encoder, PDMS 89.8) and DiffE2E‡ (using image input only, PDMS 90.9).
The performance degradation of these variants underscores the importance of high-capacity visual
encoders and multi-modal sensor fusion. Overall, DiffE2E achieves state-of-the-art or near-optimal
results on all critical NAVSIM metrics, demonstrating robust, controllable, and efficient performance,
and offering a new paradigm for end-to-end autonomous driving.

Visualization: To validate the generalization and superiority of DiffE2E, we selected two repre-
sentative complex driving scenarios for comparative analysis (Figure 4). Green trajectories denote
human references, and red ones indicate planned trajectories. In right-turn intersections, baseline
methods often deviate or cross boundaries, while DiffE2E accurately follows lane edges with smooth
turns. In small intersection left-turns, DiffusionDrive misinterprets navigation intent and plans a
straight trajectory, TransFuser incorrectly chooses the right lane, while only DiffE2E accurately
executes the left-turn instruction with a trajectory almost completely matching the reference. This
demonstrates DiffE2E’s accuracy and safety in trajectory planning. More visualizations can be found
in Appendix C.
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4.3 Ablation Studies

To systematically evaluate the contribution of each component in the DiffE2E framework, we
conducted ablation experiments on the CARLA Longest6 benchmark (see Table 4). The results
show that, at the input level, removing the ego vehicle state or navigation command leads to a
significant drop in driving score from 82.9 to 68.9 and 69.6, respectively, confirming the critical
roles of ego state for precise planning and navigation command for intent understanding. At the
architectural level, removing the GRU module reduces the score to 66.8, indicating its indispensability
in modeling temporal dependencies in complex scenarios. Regarding training paradigm, using only
the diffusion strategy (70.1) or the discriminative strategy (70.3) underperforms the hybrid design,
demonstrating the effectiveness of combining both. Notably, single-stage training achieves only
18.2 points, 78% lower than two-stage training, and performs very poorly. This is because direct
coupling of perception and planning in single-stage training makes it difficult for the model to
simultaneously ensure perception accuracy and planning rationality, causing significant conflicts
between optimization objectives. This manifests as the vehicle hardly being able to stay in the lane,
with frequent yawing, deviation or even collisions. For output types, when the diffusion model
predicts noise, the score drops dramatically to 20.1 and the vehicle fails to follow the lane, while
directly predicting trajectories provides the best results. This suggests that, for high-precision driving
tasks, modeling structured trajectory space is clearly more effective. For further discussion on output
mechanisms, please refer to Appendix D.1.

Additionally, we conducted an ablation study on the number of denoising steps in the diffusion model
(see Figure 5). Because the CARLA environment is highly stochastic and the impact of denoising
step count is relatively small, we adopt the more stable Navtest benchmark for analysis. Experimental
results show that PDMS achieves the lowest score at one step (insufficient denoising), peaks at two
steps, and then gradually declines, indicating that two steps are sufficient for denoising. This benefits
from our temporal-spatial decoupled hybrid modeling strategy and directly aligning the diffusion
objective to trajectory error, allowing the model to focus more on learning the spatial distribution
structure. Consequently, high-quality outputs can be produced with fewer iterations.

4.4 Real-time Performance Comparison of DiffE2E

Table 3: Comparison of inference latency and model
parameters between different methods.

Method Latency (ms) ↓ Params Img. Enc.

TransFuser [12] 29.1 55M ResNet-34 [17]
DiffusionDrive [34] 39.1 60M ResNet-34 [17]
GoalFlow [54] 66.8 190M V2-99 [30]
DiffE2E (Ours) 42.8 105M V2-99 [30]

To comprehensively evaluate the real-time per-
formance of DiffE2E, we conducted inference
latency comparisons on the NAVSIM bench-
mark using a single NVIDIA RTX 3090 GPU,
against existing diffusion-based methods (Diffu-
sionDrive and GoalFlow) and the non-diffusion
method TransFuser. Results are presented in Ta-
ble 3. The experiments show that TransFuser,
equipped with the lightweight ResNet-34 image
encoder, achieves the lowest latency (29.1ms),
followed by DiffusionDrive (39.1ms). In contrast, DiffE2E and GoalFlow, both using the larger
VoVNetV2-99 encoder, report latencies of 42.8ms and 66.8ms, respectively. Notably, inference la-
tency exhibits a clear positive correlation with model parameter scale, reflecting the inherent trade-off
between model complexity and computational efficiency. Nevertheless, with an optimized diffusion
sampling strategy, DiffE2E achieves real-time performance comparable to lightweight models while
maintaining a relatively high parameter count (105M), fully validating its balanced optimization
between computational efficiency and model expressiveness.

5 Related Works

End-to-end Autonomous Driving: End-to-end autonomous driving has advanced significantly in
multimodal perception fusion and decision-making. UniAD [21] constructs a full-stack Transformer
to coordinate perception-prediction-planning tasks, VAD [27] designs vectorized scene representation
to improve planning efficiency, VADv2 [6] models action-space distribution through a trajectory
vocabulary library, SparseDrive [47] proposes sparse trajectory representation for efficient driving
without BEV, and the Hydra-MDP series [33, 31] designs a multi-teacher distillation framework
to integrate rule-based systems with human driving knowledge. TransFuser [9] fuses camera and
LiDAR features via Transformer for intersection decisions; TCP [53] jointly trains trajectory and
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Table 4: Ablation results of DiffE2E on CARLA
Longest6 benchmark.

Type Method DS RC IS

Base DiffE2E 82.9 96.2 0.86

w/o ego state 68.9 88.8 0.81Input w/o command 69.6 93.8 0.77

Component w/o GRU 66.8 75.5 0.88

Full Diffusion 70.1 91.1 0.76
Full Discrimination 70.3 83.5 0.86
One-Stage Training 18.2 21.8 0.79Training Paradigm

Two-Stage Training 82.9 96.2 0.86

Noise Prediction 20.1 27.2 0.72Output Trajectory Prediction 82.9 96.2 0.86

92.72315
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92.72330

92.72335

1 2 5 10 25 50 100
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PDMS of Navtest Benchmark

Figure 5: Ablation study of denoising steps on
Navtest benchmark.

control predictions; InterFuser [42] introduces safety thinking maps for multi-view multimodal
fusion, and TF++ [23] enhances the decoder and proposes decoupled speed prediction. However,
such policy-based approaches often compress complex multimodal driving behaviors into a single
deterministic output, which tends to yield averaged, less diverse suboptimal solutions in varied
decision-making scenarios, making it difficult to fully capture the richness and uncertainty inherent
in driving behaviors.

Diffusion Model in Transportation and Autonomous Driving: Diffusion models are profoundly
transforming the transportation and autonomous driving fields with their excellent multimodal gener-
ation capabilities. In transportation, Diffusion-ES [55] innovatively combines evolutionary strategies
with diffusion models, achieving complex driving behavior generation without requiring differen-
tiable reward functions, with its zero-shot performance significantly surpassing traditional methods
in the nuPlan benchmark. VBD [22] uses game theory to guide adversarial scenario generation,
enhancing simulation realism. MotionDiffuser [28] introduces a permutation-invariant architecture
for constrained multi-agent trajectory sampling, ensuring interaction consistency. Diffusion Planner
[61] leverages DPM-Solver [36] and classifier guidance for fast, safe, and personalized trajectory
generation in closed-loop planning. However, most of these methods are based on perfect perception
assumptions, ignoring the impact of state estimation errors caused by perception uncertainties in
practical applications. In the field of end-to-end autonomous driving, although the application of
diffusion models has achieved preliminary results, it still faces many challenges. DiffusionDrive [34]
first introduced diffusion for end-to-end driving with an anchored strategy. HE-Drive [50] uses condi-
tional DDPM [18] and vision-language models for scoring, producing human-like, spatiotemporally
consistent trajectories at high computational cost. GoalFlow [54] addresses trajectory divergence via
goal-driven flow matching and efficient one-step generation. These works demonstrate the enormous
potential of diffusion models in the field of end-to-end autonomous driving.

6 Conclusion

This study presents an innovative end-to-end autonomous driving framework, DiffE2E, which
features a hybrid diffusion-regression-classification decoder based on Transformer architecture and
introduces a collaborative training mechanism to effectively integrate the strengths of diffusion
models and explicit policies. We design a structured latent space modeling approach: the diffusion
model captures the diversity and uncertainty of driving behaviors by modeling the future trajectory
distribution, while the explicit policy precisely models key control variables such as ego-vehicle
speed to enhance controllability and prediction accuracy. This hybrid paradigm not only increases
the model’s fault tolerance through multi-step denoising generation but also leverages the structured
generation mechanism and implicit ensemble reasoning to improve robustness against distribution
shifts. In both CARLA closed-loop testing and NAVSIM non-interactive simulation, DiffE2E
achieves state-of-the-art performance, balancing traffic efficiency and safety, and demonstrates strong
generalization potential.
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of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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to reproduce that algorithm.
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authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code and model checkpoints will be released soon.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provided full details in Section 4 and Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our experiments were randomly initialized multiple times to avoid the impact
of random seeds on the robustness of the experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We detailed the compute resources used for the experiments in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See the conclusion in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: For all the datasets and algorithm baselines used in the paper, we have cited
the original papers and provided the license, copyright information, and terms of use in the
package in our code repository.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: New assets introduced in the paper are well documented and the documentation
is provided alongside the assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Details of Multi-task Loss Function Design

A.1 Loss Function Design

Compared to the deterministic mapping learning paradigm of explicit policies, diffusion models
require denoising at multiple noise levels, which introduces greater optimization complexity and
computational overhead. To improve training efficiency and ensure stable model convergence in the
CARLA simulation environment, we construct a hierarchical two-stage training strategy: the first
stage focuses on optimizing the parameters of the multi-modal perception module, while the second
stage adopts an end-to-end joint training paradigm to optimize both the perception module and the
diffusion decoder parameters.

In the first stage, we adopt a multi-task learning framework and design task-specific objectives for core
perception sub-tasks, including high-precision semantic segmentation, monocular depth estimation,
and 3D object detection [23]. An adaptive weighting mechanism is used to construct a composite loss
function, enabling efficient parameter learning for the perception module. Furthermore, this work
proposes a modular loss function system, with each component defined as follows:

• Image Semantic Segmentation Loss Lsem: Supervises semantic segmentation predictions from
the image perspective, using a class-weighted cross-entropy loss function:

Lsem(y, ŷ;w) = −
C∑

c=1

wc ·
H×W∑
i=1

yi,c log(ŷi,c + eps) (11)

where C is the total number of semantic classes, H ×W is the image resolution, yi,c ∈ {0, 1}
indicates whether pixel i belongs to class c in the ground truth, ŷi,c ∈ [0, 1] is the predicted
probability, wc > 0 is the balancing weight for class c, and eps is a constant for numerical stability.

• Bird’s-Eye View Semantic Segmentation Loss Lbev: For semantic predictions in BEV space,
cross-entropy loss is calculated only within the camera-visible region Mvalid:

Lbev(Sbev, Ŝbev;Mvalid) = − 1

|Mvalid|
∑

(x,y)∈Mvalid

C∑
c=1

Sbev(x, y, c) log(Ŝbev(x, y, c) + eps) (12)

where Mvalid represents the set of valid pixels, |Mvalid| is the number of valid pixels, Sbev(x, y, c)

and Ŝbev(x, y, c) are the ground truth label and predicted probability for class c at BEV coordinate
(x, y), respectively.

• Depth Estimation Loss Ldepth: As an auxiliary task for the image branch, masked ℓ1 loss is used
for depth supervision:

Ldepth(D, D̂;Mdepth) =
1

|Mdepth|
∑

(u,v)∈Mdepth

|D(u, v)− D̂(u, v)| (13)

where Mdepth is the set of valid depth pixels, D(u, v) and D̂(u, v) are the ground truth depth value
and predicted depth value at pixel (u, v), respectively.

• Object Detection Loss Ldet: This loss function combines multiple subtasks to jointly optimize key
attributes of objects, including position, size, orientation, velocity, and braking status, to enhance
overall detection accuracy and temporal consistency. It includes weighted combinations of several
subtask loss functions. Each subloss function is defined as follows:

* Center Heatmap Loss Lhm: Uses Gaussian focal loss to optimize object center point predic-
tion:

Lhm(P, P̂;α, γ) =
1

N

∑
(x,y)∈Ω

{
(1− P̂x,y)

α log(P̂x,y), if Px,y = 1

(1− Px,y)
γ(P̂x,y)

α log(1− P̂x,y), otherwise
(14)

where N is the number of valid objects, Ω is the feature map space, Px,y and P̂x,y are the
ground truth heatmap value and predicted heatmap value at position (x, y), respectively, and
α and γ are focal loss modulation parameters.
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* Object Size Loss Lwh: Uses ℓ1 loss to optimize object width and height prediction:

Lwh(W,Ŵ) =
1

N

N∑
i=1

∥Wi − Ŵi∥1 (15)

where Wi = [wi, hi]
T and Ŵi = [ŵi, ĥi]

T are the ground truth size and predicted size of
the i-th object, respectively.

* Center Point Offset Loss Loff: Also uses ℓ1 loss to optimize fine-grained center point
position:

Loff(O, Ô) =
1

N

N∑
i=1

∥Oi − Ôi∥1 (16)

where Oi = [ox,i, oy,i]
T and Ôi = [ôx,i, ôy,i]

T are the ground truth offset and predicted
offset of the i-th object, respectively.

* Yaw Classification Loss Lcls: Uses cross-entropy loss to optimize yaw angle category
prediction:

Lcls(Y, Ŷ) =
1

N

N∑
i=1

− log

(
exp(Ŷi,ci)∑K
j=1 exp(Ŷi,j)

)
(17)

where ci is the ground truth yaw angle category of the i-th object, K is the total number of
yaw angle categories, and Ŷi,j is the predicted score of the i-th object belonging to the j-th
category.

* Yaw Residual Loss Lres: Uses smooth ℓ1 loss to optimize yaw angle residual prediction:

Lres(R, R̂; δ) =
1

N

N∑
i=1

smoothL1(Ri − R̂i; δ) (18)

where Ri and R̂i are the ground truth yaw angle residual and predicted yaw angle residual of
the i-th object, respectively, and smoothL1 is the smooth ℓ1 loss function. The smooth L1 loss
function is defined as:

smoothL1(z; δ) =

{
0.5 · z2/δ, if |z| < δ

|z| − 0.5 · δ, otherwise
(19)

The above loss functions form the core components of the first-stage training for the perception
module. By adopting a multi-task learning paradigm, the model can simultaneously reconstruct
multiple scene feature representations, including semantic segmentation maps, depth maps, and
bird’s-eye view segmentation. This approach not only achieves efficient and comprehensive scene
understanding but also lays a solid perceptual foundation for subsequent trajectory generation tasks,
ensuring that downstream decision-making modules can perform precise reasoning based on high-
quality scene representations.

Additionally, on the NAVSIM benchmark, we use agent detection as an auxiliary task to enhance
the model’s perception capabilities in complex driving scenarios. The agent detection task adopts
a hierarchical loss structure, including two complementary subtasks: existence discrimination and
geometric parameter regression:

• Agent Existence Classification Loss: Through binary cross-entropy loss, the model’s ability to
determine the presence of agents in the scene is optimized:

Lexist(y, p̂;α, β) = − 1

N

N∑
n=1

[
α · yn · (1− p̂n)

β log(p̂n) + (1− α) · (1− yn) · p̂βn log(1− p̂n)
]

(20)
where yn ∈ {0, 1} represents the ground truth label of whether an agent exists in the n-th sample,
p̂n ∈ [0, 1] is the predicted existence probability, and α ∈ [0, 1] and β ≥ 0 are focal loss modulation
parameters used to adjust the gradient contribution ratio of easy and difficult samples, increasing
the model’s attention to difficult samples.
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Table 5: Hyperparameters of DiffE2E on CARLA.
Benchmark Type Parameter Value

CARLA

Non-diffusion

Epochs (One-stage training) 30
Epochs (Two-stage training) 30
Loss weight: diffusion 1.0
Loss weights: semantic, BEV, depth, speed 1.0
Loss weights: center heatmap, size, offset, yaw 1.0
Prediction horizon (Timesteps) 10
Learning rate 3e-4
Batch size (One-stage training) 256
Batch size (Two-stage training) 16
Weight decay 0.01

Diffusion

Noise schedule Square Cosine Schedule
Noise coefficient 0.0001, 0.02
Number of forward diffusion steps 100
Number of reverse denoising steps 2

• Agent Geometry Parameter Regression Loss: For existing agents, an adaptively weighted smooth
L1 loss function is used to accurately regress their spatial position and morphological parameters:

Lbox(b, b̂;µ, δ) =
1

M

M∑
m=1

∑
i∈{x,y,w,h,θ}

µi · smoothL1(bm,i − b̂m,i; δ) (21)

where M is the number of samples with agents in the batch, bm,i and b̂m,i represent the ground
truth value and predicted value of the i-th parameter of the agent bounding box in the m-th sample,
respectively, µ = [µx, µy, µw, µh, µθ]

T is the importance weight vector for each parameter, and δ
is the threshold parameter for the smooth L1 loss. This hierarchical loss design can simultaneously
optimize the classification accuracy and localization precision of agent detection, ensuring accurate
regression of bounding box parameters while maintaining high recall rates.

B Details of Experimental Setup

B.1 CARLA Benchmarks

B.1.1 Implementation Details

This study is based on a dataset constructed using the MPC expert from the TF++ framework [23],
comprising a total of 750,000 frames of high-quality driving data. We employ the RegNetY-3.2GF
network [39] as the encoder for both image and LiDAR inputs. To optimize computational resources
and improve training efficiency, we design a two-stage training strategy: the first stage focuses on the
perception module, utilizing a multi-task loss function that includes semantic segmentation, depth
estimation, object detection bounding boxes, and bird’s-eye view prediction. In the second stage,
the pre-trained perception module from stage one is loaded and further trained, using its outputs as
conditional information to train the diffusion decoder. The entire training is divided into two stages,
each trained for 30 epochs, with an initial learning rate of 3e-4. Batch size is adapted for different
stages—16 for the first stage and 256 for the second stage—to accelerate the convergence of the
diffusion model. The controller used is consistent with that in TF++. The specific hyperparameter
settings are shown in Table 5. All experiments are conducted on four NVIDIA 3090 GPUs.

In the CARLA autonomous driving evaluation system, we use three core metrics to measure model
performance. First is Route Completion (RC), which quantifies the percentage of the predetermined
route completed by the vehicle, calculated as RC = Dtraveled

Dtotal
× 100%, where Dtraveled is the actual

distance traveled and Dtotal is the total route length. Second is the Infraction Score (IS), used to
evaluate driving safety by accumulating penalty coefficients for violations: IS =

∏N
i=1 pi, where pi

is the penalty coefficient for the i-th violation (such as pedestrian collision 0.50, vehicle collision
0.60, static object collision 0.65, running red lights 0.70, running stop signs 0.80, etc.), and N is the
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Table 6: Hyperparameters of DiffE2E on NAVSIM.
Benchmark Type Parameter Value

NAVSIM

Non-diffusion

Epochs 100
Batch size 64
Prediction horizon (Timesteps) 8
Learning rate 1e-4
Ego progress weight 5.0
Time to collision weight 5.0
Comfort weight 2.0
Loss weights: diffusion 10.0
Loss weights: agent class, agent box, BEV 10.0,1.0,10.0
Number of bounding boxes 30

Diffusion

Noise schedule Square Cosine Schedule
Noise coefficient 0.0001, 0.02
Number of forward diffusion steps 100
Number of reverse denoising steps 2

total number of violations. Finally, the Driving Score (DS) serves as a comprehensive evaluation
metric, combining completion and safety: DS = RC × IS. A higher DS value indicates stronger
ability to complete tasks while ensuring safety, making it a key indicator for evaluating the overall
performance of autonomous driving systems.

B.1.2 Benchmarks

Longest6 Benchmark is a high-difficulty, scalable evaluation benchmark designed to verify the
performance of autonomous driving models in complex scenarios. Following [9], we use Longest6 as
an alternative evaluation scheme for local ablation studies and multiple experiments. This benchmark
selects the 6 longest routes from each town among the 76 training routes provided by CARLA,
totaling 36 routes with an average length of 1.5 kilometers (close to the official leaderboard’s 1.7
kilometers). To increase evaluation difficulty, we set the highest traffic density, including numerous
dynamic obstacles (vehicles, pedestrians), combined with 6 weather conditions (such as Cloudy,
Wet, HardRain) and 6 lighting conditions (such as Night, Dawn, Noon), while also including
predefined adversarial scenarios (such as obstacle avoidance, unprotected left turns, pedestrians
suddenly crossing, etc.). Compared to benchmarks like NoCrash and NEAT routes with shorter
routes and lower traffic density, Longest6 more closely resembles the challenges of real scenarios,
providing a more comprehensive validation of model robustness in complex urban environments
(such as multi-lane intersections and dense traffic).

Town05 Benchmark is another important evaluation benchmark in CARLA, divided into Town05
Short and Town05 Long settings. Town05 Short includes 10 short routes (100-500 meters), each with
3 intersections; Town05 Long includes 10 long routes (1000-2000 meters), each with 10 intersections.
These two settings are specifically designed to verify model driving capabilities in high-density
dynamic traffic environments (including vehicles and pedestrians) and complex scenarios (such as
unprotected intersection turns and randomly appearing pedestrians). Typically, models perform
better on the Short benchmark, while performance decreases on the Long benchmark, reflecting the
challenges of handling complex scenarios and long-term planning in long-distance driving. We use
the same evaluation metrics as Longest6 (DS, RC, IS) to measure model performance on the Town05
benchmark.

B.1.3 Baselines

• WOR [4]: A model learning method based on the “world-on-rails” assumption, computing action
value functions through offline dynamic programming to achieve driving policy distillation without
actual interaction.

• LAV [2]: A full-vehicle learning framework that enhances training data diversity through viewpoint-
independent BEV representation and trajectory prediction modules utilizing surrounding vehicle
trajectories. The authors released two versions: LAV v1 and LAV v2.
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Table 7: Comparison on the CARLA Town05 Long benchmark.

Method Traj. Decoder Img. Encoder Input DS ↑ RC ↑ IS ↑
CILRS [10] Explicit Policy ResNet-34 [17] C 7.8 10.3 0.75
LBC [3] Explicit Policy ResNet-18,34 [17] C 12.3 31.9 0.66
Roach [60] Explicit Policy ResNet-34 [17] C 41.6 96.4 0.43
ST-P3 [20] Explicit Policy EfficientNet-B4 [49] C 11.5 83.2 -
VAD [27] Explicit Policy ResNet-50 [17] C 30.3 75.2 -
MILE [19] Explicit Policy ResNet-18 [17] C 61.1 97.4 0.63
DriveMLM [51] Explicit Policy ViT-G [59] C&L 76.1 98.1 0.78
VADv2 [6] Explicit Policy ResNet-50 [17] C 85.1 98.4 0.87

DiffE2E (Ours) Diffusion Policy RegNetY-3.2GF [39] C&L 90.8 100 0.91

Table 8: Comparison on the CARLA Town05 Short benchmark.
Method Traj. Decoder Img. Encoder Input DS ↑ RC ↑
CILRS [10] Explicit Policy ResNet-34 [17] C 7.5 13.4
LBC [3] Explicit Policy ResNet-18,34 [17] C 31.0 55.0
TransFuser [9] Explicit Policy RegNetY-3.2GF [39] C&L 54.5 78.4
ST-P3 [20] Explicit Policy EfficientNet-B4 [49] C 55.1 86.7
NEAT [8] Explicit Policy ResNet-34 [17] C 58.7 77.3
Roach [60] Explicit Policy ResNet-34 [17] C 65.3 88.2
WOR [4] - ResNet-18,34 [17] C 64.8 87.5
VAD [27] Explicit Policy ResNet-50 [17] C 64.3 87.3
VADv2 [6] Explicit Policy ResNet-50 [17] C 89.7 93.0
InterFuser [42] Explicit Policy ResNet-50 [17] C&L 95.0 95.2

DiffE2E (Ours) Diffusion Policy RegNetY-3.2GF [39] C&L 95.2 99.7

• InterFuser [42]: A safety-enhanced multi-modal sensor fusion framework that integrates multi-
view camera and LiDAR information through Transformers, outputting interpretable safety mental
maps to constrain control actions.

• TransFuser [9]: A Transformer-based multi-modal fusion architecture that fuses image and LiDAR
features through cross-view attention mechanisms, enabling navigation in complex long-distance
scenarios.

• TCP [53]: A trajectory-control joint prediction framework combining GRU temporal modules and
trajectory-guided attention mechanisms, integrating dual-branch outputs through scene-adaptive
fusion strategies.

• PlanT [40]: An interpretable planning Transformer based on privileged states, achieving global
traffic element reasoning through object-centered representation and self-attention mechanisms,
with attention weights visualizing decision bases.

• DriveAdapter [25]: A perception-planning decoupling framework that aligns student perception
features with teacher planning features through learnable adapters, enhancing policy safety through
action-guided mask learning.

• ThinkTwice [26]: A cascaded decoding paradigm that achieves action iterative optimization through
a three-stage “observe-predict-refine” mechanism, utilizing scene feature retrieval and future state
prediction.

• TF++ [23]: An improved version of TransFuser that eliminates target point following bias through
a Transformer decoder. TF++ uses explicit uncertainty modeling with path and speed classification,
while the TF++WP variant retains waypoint prediction, achieving deceleration decisions through
longitudinal averaging of continuous waypoints.

B.1.4 Other Results

In addition to CARLA Longest6, this research also rigorously evaluated the DiffE2E method on
the CARLA Town05 Long and Town05 Short benchmarks, with detailed results shown in Table 7
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(a) Noise Prediction

(b) Trajectory Prediction

Figure 6: Visualization of output type ablation experiment.

(a) One-Stage Training

(b) Two-Stage Training

Figure 7: Visualization of training stage ablation experiment.

and Table 8. On the Town05 Long benchmark, DiffE2E achieved a DS of 90.8 and an RC of 100,
outperforming existing methods. On the Town05 Short benchmark, where environmental complexity
is relatively lower, all algorithms generally showed improved performance, with the DiffE2E method
still demonstrating excellent results, achieving a DS of 95.2 and an RC of 99.7. The outstanding
performance across Town05 scenarios of varying complexity further validates the robustness and
generalization capability of our method.

B.1.5 Analysis of failure cases

This section provides a systematic visual analysis of the ablation study results from Section 4.3,
with the aim of professionally and intuitively comparing how different design choices affect the
performance of the DiffE2E method. We focus on analyzing two representative types of failure cases:
One-Stage Training and Noise Prediction.

As shown in Figure 6, we systematically compare the performance of the diffusion model when
using noise versus original trajectory as the output target in the same intersection-left-turn scenario.
According to the visualization results, when using noise as the output target, the predicted trajectory
distribution tends to be more concentrated during the straight driving stage, but this does not improve
future trajectory prediction capability. After entering the intersection, the trajectory predicted based
on noise deviates significantly, causing the vehicle to fail to make a correct left turn along the intended
path. In contrast, directly using the original trajectory as the prediction target allows the model to
better adhere to the left-turn route and complete the left turn successfully, demonstrating superior
trajectory generation ability.

Figure 7 systematically compares the performance of one-stage training and two-stage training
strategies in the intersection-left-turn scenario. The visualization shows that one-stage training leads
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to obvious deviations in the ego-vehicle trajectory, making it difficult for the vehicle to smoothly
execute the left-turn maneuver. In contrast, with the two-stage training strategy, the generated
ego-vehicle trajectory is smoother and better aligned with the desired path, significantly improving
decision accuracy and trajectory feasibility in complex intersection scenarios.

B.2 NAVSIM

B.2.1 Implementation Details

This research builds a model training framework based on NAVSIM’s navtrain dataset. Unlike the
image encoding architecture used in the CARLA simulation environment, we adopted VovNetV2-99
[30] as the feature extraction backbone network in our NAVSIM experiments, a choice inspired by
the Hydra-MDP [33] method, which can more effectively capture visual features in complex driving
scenarios. All experiments were conducted on four NVIDIA 3090 GPUs.

The navtrain dataset establishes a highly complex driving environment evaluation system, char-
acterized by carefully selected challenging scenarios with frequently changing driving intentions,
deliberately excluding low-complexity driving situations such as stationary states and constant-speed
cruising. This evaluation system quantitatively analyzes planning algorithm performance through a
combination of non-reactive simulation and closed-loop evaluation mechanisms. This study uses the
Predictive Driver Model Score (PDMS) as a comprehensive performance metric, which integrates
performance across multiple key driving dimensions through weighted integration, including No
at-fault Collision (NC), Drivable Area Compliance (DAC), Time-To-Collision (TTC), Comfort (C),
and Ego Progress (EP). The detailed calculation methods for each metric are as follows:

The PDMS used in this study comprehensively evaluates autonomous driving policy performance by
integrating sub-metrics across multiple key driving dimensions. Below is a detailed explanation of
the definition and calculation method for each sub-metric:

• No at-fault Collision: Measures whether the ego vehicle has responsibility collisions with other
traffic participants during simulation. The calculation adopts a tiered penalty mechanism: if a
responsibility collision occurs (such as active collision in dynamic scenarios), then scoreNC = 0,
resulting in a PDMS of 0 for the entire scenario; if there is a collision with static objects (such
as stationary vehicles), then scoreNC = 0.5; if the ego vehicle is stationary or is rear-ended by a
vehicle from behind (non-responsibility collision), no penalty is counted, scoreNC = 1.

• Drivable Area Compliance: Evaluates whether the ego vehicle always remains within the drivable
area. If the ego vehicle deviates from the drivable area, then scoreDAC = 0, resulting in a PDMS
of 0; if compliant throughout, then scoreDAC = 1.

• Time-To-Collision: Detects whether the minimum collision time between the ego vehicle and
other vehicles is below the safety threshold. Default value scoreTTC = 1; if during the 4-second
simulation, the predicted collision time between the ego vehicle and other vehicles is below the
threshold (typically 2 seconds), then scoreTTC = 0.

• Comfort: Measures trajectory smoothness, based on thresholds for acceleration and jerk. Points
are deducted if acceleration or jerk exceeds predefined thresholds (such as acceleration ≤ 3.0 m/s2,
jerk ≤ 5.0 m/s3). The final score is calculated by comparing the deviation of actual parameters
from thresholds, normalized to the [0, 1] interval.

• Ego Progress: Evaluates the efficiency of the ego vehicle’s progress along the predetermined
path, comparing actual progress with theoretical maximum safe progress. The calculated score
scoreEP is the ratio of actual progress to theoretical maximum progress (limited between 0 and 1).
Theoretical maximum progress is calculated by the PDM-Closed planner (based on search strategy
for collision-free trajectories) as a safe upper limit; actual progress is the longitudinal movement
distance of the ego vehicle along the path centerline during simulation. If the theoretical maximum
progress is less than 5 meters, low or negative progress values are ignored.

PDMS integrates these sub-metrics through the following formula:

PDMS =

 ∏
m∈{NC,DAC}

scorem


︸ ︷︷ ︸

penalty term

×
(
5 · scoreEP + 5 · scoreTTC + 2 · scoreC

5 + 5 + 2

)
︸ ︷︷ ︸

weighted average term

(22)
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The key logic of this metric design includes: (1) Safety first: NC and DAC serve as hard penalty terms,
ensuring policy must meet basic safety requirements; (2) Multi-dimensional balance: coordinating
driving efficiency, safety, and comfort through weight allocation (EP and TTC have the highest
weights, followed by C); (3) Scenario adaptability: filtering simple scenarios (such as stationary or
straight driving), focusing on challenging conditions (such as turning, interaction), avoiding metric
domination by trivial samples. This metric design aims to address the limitations of traditional
displacement error (ADE), providing a simulation-driven multi-dimensional assessment that better
reflects actual driving performance.

B.2.2 Baselines

• AD-MLP [58]: A lightweight multi-layer perceptron (MLP) network that uses only vehicle state as
input, without a perception module, performing trajectory prediction only.

• VADv2 [6]: A probability-based planning framework that constructs a vocabulary of 4096 candidate
trajectories through trajectory space discretization.

• UniAD [21]: The first multi-task end-to-end framework that unifies perception, prediction, and
planning tasks, using a query mechanism to achieve module collaboration.

• LTF [9]: A pure vision-based end-to-end driving framework that achieves implicit BEV representa-
tion through cross-modal attention mechanisms using images, replacing LiDAR input.

• PARA-Drive [52]: A fully parallel architecture that simultaneously executes perception, prediction,
and planning tasks, improving inference speed by 3 times.

• TransFuser [9]: A multi-modal end-to-end framework that fuses camera and LiDAR features,
combining cross-modal attention and multi-scale feature interaction.

• LAW [32]: A latent world model that enhances spatiotemporal feature learning through future state
prediction, jointly optimizing scene understanding and trajectory planning.

• DRAMA [56]: A Mamba-based planner combining multi-scale convolutional encoders and state
Dropout, using an efficient Mamba-Transformer decoder to generate long trajectory sequences.

• Hydra-MDP [33]: A multi-teacher knowledge distillation framework that integrates human demon-
strations and rule-based experts (such as traffic lights, lane keeping).

• DiffusionDrive [34]: A truncated diffusion model for real-time sampling, reducing denoising steps
to 2 through anchor-guided noise initialization while maintaining multi-modal coverage.

• GoalFlow [54]: A flow matching model with goal constraints, introducing a feasible region scoring
mechanism and shadow trajectory refinement strategy.

• Hydra-MDP++ [31]: An enhanced version of Hydra-MDP, adopting a V2-99 [30] image encoder
and expanding metric supervision (such as traffic lights, lane keeping, comfort).

C Visualization Comparison of Different Methods on the Navtest Benchmark

We conducted a systematic comparative analysis of the trajectory generation capabilities of DiffE2E,
DiffusionDrive [34], and TransFuser [12] across diverse driving scenarios, with detailed results shown
in Figure 8 and Figure 9.
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(a) DiffusionDrive (b) TransFuser (c) DiffE2EFront View

Figure 8: Visualization on Navtest benchmark.
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(a) DiffusionDrive (b) TransFuser (c) DiffE2EFront View

Figure 9: Visualization on Navtest benchmark.
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D Additional Studies

In this section, we delve into two key research questions: RQ1: Analysis of the impact mechanism of
diffusion model output types, and RQ2: Generalization evaluation in out-of-distribution scenarios.
Through a systematic analysis of these questions, we aim to comprehensively reveal the technical
advantages and potential limitations of the DiffE2E framework in end-to-end autonomous driving
systems.

D.1 RQ1: Impact Mechanism Analysis of Diffusion Model Output Types

Regarding model output parameterization, we conducted an in-depth study of two strategies for
diffusion models: predicting noise versus directly predicting trajectories (original samples), as shown
in Table 4. The results reveal a significant disparity—when the model outputs noise, the driving score
drops to 20.1, a 76% decrease compared to outputting trajectories, with vehicles barely able to follow
lanes in the simulation environment. This substantial difference indicates that directly modeling the
trajectory space is more effective than the noise space for tasks requiring high precision, such as
autonomous driving.

We attribute this primarily to two factors: First, the trajectory space is inherently structured and
semantically rich, with clear temporal correlations, spatial continuity, and a direct mapping to driving
task objectives (e.g., safety and efficiency). This allows the model to more effectively capture
inherent patterns of driving behavior (such as car following, lane changing, turning, and other typical
driving paradigms). In contrast, the noise space lacks clear physical meaning and semantic structure,
requiring the model to learn complex mapping relationships from abstract noise to specific trajectories.
Second, in the noise prediction paradigm, there is a significant error accumulation effect during the
reverse generation process of diffusion models (x(T ) → x(T−1) → · · · → x(0)). Small deviations
in each denoising step are transmitted and amplified in subsequent steps; as iterations progress, this
cumulative error can cause the generated trajectory to deviate severely from the feasible driving space.
This is particularly detrimental in tasks requiring high precision like autonomous driving.

D.2 RQ2: Generalization Evaluation in Out-of-Distribution Scenarios

DiffE2E not only performs excellently on the training set but also demonstrates outstanding gen-
eralization ability in out-of-distribution test scenarios across both the CARLA simulator and the
NAVSIM benchmark. Particularly in the complex traffic scenarios shown in Figure 3, DiffE2E
exhibits highly intelligent contextual adaptation. For instance, when an obstacle vehicle blocks the
regular right-turn route in the right lane, the model dynamically adjusts its decision, temporarily
planning a safe straight path to avoid the vehicle ahead before completing the turn. This precise
response and flexible adjustment to unseen traffic conditions fully demonstrate DiffE2E’s robust
generalization ability and decision-making intelligence when facing complex and variable driving
environments.

This excellent generalization performance stems from the inherent advantages of the diffusion
mechanism. During training, DiffE2E effectively builds robust mapping relationships from “non-ideal
states” to target trajectories through systematic noise perturbation modeling and gradual denoising
learning. This enables the model to handle various perception anomalies, rare behaviors, and unseen
scenarios. More importantly, unlike traditional methods, DiffE2E models the complete trajectory
probability distribution rather than a single deterministic solution. This distribution-based modeling
approach naturally accommodates the inherent multi-modality and uncertainty in autonomous driving
tasks, laying a solid foundation for the model’s deployment in complex real-world environments.

E Limitations & Future Work

In this section, we discuss the main limitations and directions for future research:

• Sampling Algorithm. The current DDIM [44] sampling algorithm faces computational efficiency
bottlenecks during trajectory generation. Although DiffE2E can generate trajectories with just
2 denoising steps, complex driving scenarios may require additional denoising steps to ensure
high-quality and diverse outputs. Additionally, the current generation process in complex traffic
scenarios could benefit from more explicit safety and reliability guidance.
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Future work: We plan to explore more efficient sampling algorithms, such as DPM-Solver [36] and
Elucidated Diffusion Models (EDM) [29]. These methods can significantly reduce the number of
sampling steps while maintaining generation quality through more precise ODE/SDE numerical
approximations. We also aim to incorporate consistency models [46], distillation algorithms [37],
or Shortcut Models [16] to further accelerate sampling efficiency.
Furthermore, we will employ classifier-based or energy-based guidance techniques to constrain the
sampling process. By integrating prior knowledge of traffic rules and collision avoidance, we expect
to enhance the safety and controllability of the generated trajectories. Combining efficient sampling
algorithms with domain-specific guidance mechanisms is expected to significantly improve real-
time performance while ensuring high trajectory quality.
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