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Abstract

Many important computer vision applications are naturally formulated as regression problems.
Within medical imaging, accurate regression models have the potential to automate various
tasks, helping to lower costs and improve patient outcomes. Such safety-critical deployment
does however require reliable estimation of model uncertainty, also under the wide variety of
distribution shifts that might be encountered in practice. Motivated by this, we set out to
investigate the reliability of regression uncertainty estimation methods under various real-
world distribution shifts. To that end, we propose an extensive benchmark of 8 image-based
regression datasets with different types of challenging distribution shifts. We then employ
our benchmark to evaluate many of the most common uncertainty estimation methods, as
well as two state-of-the-art uncertainty scores from the task of out-of-distribution detection.
We find that while methods are well calibrated when there is no distribution shift, they all
become highly overconfident on many of the benchmark datasets. This uncovers important
limitations of current uncertainty estimation methods, and the proposed benchmark therefore
serves as a challenge to the research community. We hope that our benchmark will spur
more work on how to develop truly reliable regression uncertainty estimation methods. Code
is available at https://github.com/fregu856/regression_uncertainty.

1 Introduction

Regression is a fundamental machine learning problem with many important computer vision applications
(Rothe et al., 2016; Law & Deng, 2018; Xiao et al., 2018; Zhu et al., 2018; Shi et al., 2019; Lathuilière et al.,
2019). In general, it entails predicting continuous targets y from given inputs x. Within medical imaging, a
number of tasks are naturally formulated as regression problems, including brain age estimation (Cole et al.,
2017; Jónsson et al., 2019; Shi et al., 2020), prediction of cardiovascular volumes and risk factors (Xue et al.,
2017; Poplin et al., 2018) and body composition analysis (Langner et al., 2020; 2021). If machine learning
models could be deployed to automatically regress various such properties within real-world clinical practice,
this would ultimately help lower costs and improve patient outcomes across the medical system (Topol, 2019).

Real-world deployment in medical applications, and within other safety-critical domains, does however put
very high requirements on such regression models. In particular, the common approach of training a deep
neural network (DNN) to directly output a predicted regression target ŷ = f(x) is not sufficient, as it fails to
capture any measure of uncertainty in the predictions ŷ. The model is thus unable to e.g. detect inputs x
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which are out-of-distribution (OOD) compared to its training data. Since the predictive accuracy of DNNs
typically degrades significantly on OOD inputs (Hendrycks & Dietterich, 2019; Koh et al., 2021), this could
have potentially catastrophic consequences. Much research effort has therefore been invested into various
approaches for training uncertainty-aware DNN models (Blundell et al., 2015; Gal, 2016; Kendall & Gal, 2017;
Lakshminarayanan et al., 2017; Romano et al., 2019), to explicitly estimate the uncertainty in the predictions.

These uncertainty estimates must however be accurate and reliable. Otherwise, if the model occasionally
becomes overconfident and outputs highly confident yet incorrect predictions, providing uncertainty estimates
might just instill a false sense of security – arguably making the model even less suitable for safety-critical
deployment. Specifically, the uncertainty estimates must be well calibrated and properly align with the
prediction errors (Gneiting et al., 2007; Guo et al., 2017). Moreover, the uncertainty must remain well
calibrated also under the wide variety of distribution shifts that might be encountered during practical
deployment (Quionero-Candela et al., 2009; Finlayson et al., 2021). For example in medical applications, a
model trained on data collected solely at a large urban hospital in the year 2020, for instance, should output
well-calibrated predictions also in 2023, for patients both from urban and rural areas. While uncertainty
calibration, as well as general DNN robustness (Hendrycks et al., 2021a), has been evaluated under distribution
shifts for classification tasks (Ovadia et al., 2019), this important problem is not well-studied for regression.

Motivated by this, we set out to investigate the reliability of regression uncertainty estimation methods
under various real-world distribution shifts. To that end, we propose an extensive benchmark consisting of
8 image-based regression datasets (see Figure 1) with different types of distribution shifts. These are all
publicly available and relatively large-scale datasets (6 592 - 20 614 training images), yet convenient to store
and train models on (64 × 64 images with 1D regression targets). Four of the datasets are also taken from
medical applications, with clinically relevant distribution shifts. We evaluate some of the most commonly
used regression uncertainty estimation methods, including conformal prediction, quantile regression and what
is often considered the state-of-the-art – ensembling (Ovadia et al., 2019; Gustafsson et al., 2020b). We also
consider the approach of selective prediction (Geifman & El-Yaniv, 2017), in which the regression model can
abstain from outputting predictions for certain inputs. This enables us to evaluate uncertainty scores from
the rich literature on OOD detection (Salehi et al., 2022). Specifically, we evaluate two recent scores based
on feature-space density (Mukhoti et al., 2021a; Pleiss et al., 2020; Sun et al., 2022; Kuan & Mueller, 2022).

In total, we evaluate 10 different methods. Among them, we find that not a single one is close to being
perfectly calibrated across all datasets. While the methods are well calibrated on baseline variants with
no distribution shifts, they all become highly overconfident on many of our benchmark datasets. Also the
conformal prediction methods suffer from this issue, despite their commonly promoted theoretical guarantees.
This highlights the importance of always being aware of underlying assumptions, assessing whether or not
they are likely to hold in practice. Methods based on the state-of-the-art OOD uncertainty scores perform
well relative to other methods, but are also overconfident in many cases – the absolute performance is arguably
still not sufficient. Our proposed benchmark thus serves as a challenge to the research community, and we
hope that it will spur more work on how to develop truly reliable regression uncertainty estimation methods.

Summary of Contributions We collect a set of 8 large-scale yet convenient image-based regression datasets
with different types of challenging distribution shifts. Utilizing this, we propose a benchmark for testing
the reliability of regression uncertainty estimation methods under real-world distribution shifts. We then
employ our benchmark to evaluate many of the most common uncertainty estimation methods, as well as two
state-of-the-art uncertainty scores from OOD detection. We find that all methods become highly overconfident
on many of the benchmark datasets, thus uncovering limitations of current uncertainty estimation methods.

2 Background

In a regression problem, the task is to predict a target y⋆ ∈ Y for any given input x⋆ ∈ X . To solve this, we
are also given a train set of i.i.d. input-target pairs, Dtrain = {(xi, yi)}N

i=1, (xi, yi) ∼ p(x, y). What separates
regression from classification is that the target space Y is continuous, Y = RK . In this work, we only consider
the 1D case, i.e. when Y = R. Moreover, the input space X here always corresponds to the space of images.
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Prediction Intervals, Coverage & Calibration Given a desired miscoverage rate α, a prediction interval
Cα(x⋆) = [Lα(x⋆), Uα(x⋆)] ⊆ R is a function that maps the input x⋆ onto an interval that should cover the
true regression target y⋆ with probability 1 − α. For any set {(x⋆

i , y⋆
i )}N⋆

i=1 of N⋆ examples, the empirical
interval coverage is the proportion of inputs for which the prediction interval covers the corresponding target,

Coverage(Cα) = 1
N⋆

N⋆∑
i=1

I{y⋆
i ∈ Cα(x⋆

i )}. (1)

If the coverage equals 1 − α, we say that the prediction intervals are perfectly calibrated. Unless stated
otherwise, we set α = 0.1 in this work. The prediction intervals should thus obtain a coverage of 90%.

2.1 Regression Uncertainty Estimation Methods

The most common approach to image-based regression is to train a DNN fθ : X → R that outputs a predicted
target ŷ = fθ(x) for any input x, using e.g. the L2 or L1 loss (Lathuilière et al., 2019). We are interested
in methods which extend this standard direct regression approach to also provide uncertainty estimates for
the predictions. Specifically, we consider methods which output a prediction interval Cα(x) and a predicted
target ŷ(x) ∈ Cα(x) for each input x. The uncertainty in the prediction ŷ(x) is then quantified as the length
of the interval Cα(x) (larger interval - higher uncertainty). Some of the most commonly used regression
uncertainty estimation methods fall under this category, as described in more detail below.

Conformal Prediction The standard regression approach can be extended by utilizing the framework
of split conformal prediction (Papadopoulos et al., 2002; Papadopoulos, 2008; Romano et al., 2019). This
entails splitting the train set {(xi, yi)}N

i=1 into a proper train set I1 and a calibration set I2. The DNN fθ

is trained on I1, and absolute residuals R = {|yi − fθ(xi)| : i ∈ I2} are computed on the calibration set I2.
Given a new input x⋆, a prediction interval Cα(x⋆) is then constructed from the prediction fθ(x⋆) as,

Cα(x⋆) = [fθ(x⋆) − Q1−α(R, I2), fθ(x⋆) + Q1−α(R, I2)], (2)

where Q1−α(R, I2) is the (1−α)-th quantile of the absolute residuals R. Under the assumption of exchangeably
drawn train and test data, this prediction interval is guaranteed to satisfy P{y⋆ ∈ Cα(x⋆)} ≥ 1 − α (marginal
coverage guarantee). The interval Cα(x⋆) has a fixed length of 2Q1−α(R, I2) for all inputs x⋆.

Quantile Regression A DNN can also be trained to directly output prediction intervals of input-dependent
length, utilizing the quantile regression approach (Koenker & Bassett Jr, 1978; Romano et al., 2019; Jensen
et al., 2022). This entails estimating the conditional quantile function qα(x) = inf{y ∈ R : FY |X(y|x) ≥ α},
where FY |X is the conditional cumulative distribution function. Specifically, a DNN is trained to output
estimates of the lower and upper quantiles qαlo(x), qαup(x) at αlo = α/2 and αup = 1 − α/2. Given a new
input x⋆, a prediction interval Cα(x⋆) can then be directly formed as,

Cα(x⋆) = [qαlo
θ (x⋆), q

αup
θ (x⋆)]. (3)

The estimated quantiles qαlo
θ (x⋆), q

αup
θ (x⋆) can be output by a single DNN fθ, trained using the pinball loss

(Steinwart & Christmann, 2011). A prediction ŷ(x⋆) can also be extracted as the center point of Cα(x⋆).

Probabilistic Regression Another approach is to explicitly model the conditional distribution p(y|x), for
example using a Gaussian model pθ(y|x) = N

(
y; µθ(x), σ2

θ(x)
)

(Chua et al., 2018; Gustafsson et al., 2020a).
A single DNN fθ can be trained to output both the mean µθ(x) and variance σ2

θ(x) by minimizing the
corresponding negative log-likelihood. For a given input x⋆, a prediction interval can then be constructed as,

Cα(x⋆) = [µθ(x⋆) − σθ(x⋆)Φ−1(1 − α/2), µθ(x⋆) + σθ(x⋆)Φ−1(1 − α/2)], (4)

where Φ is the CDF of the standard normal distribution. The mean µθ(x⋆) is also taken as a prediction ŷ.

Epistemic Uncertainty From the Bayesian perspective, quantile regression and Gaussian models capture
aleatoric (inherent data noise) but not epistemic uncertainty, which accounts for uncertainty in the model
parameters (Gal, 2016; Kendall & Gal, 2017). This can be estimated in a principled manner via Bayesian
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Figure 1: We propose a benchmark consisting of 8 image-based regression datasets, testing the reliability of
regression uncertainty estimation methods under real-world distribution shifts. Example train (top row) and
test inputs x, along with the corresponding ground truth targets y, are here shown for each of the 8 datasets.

inference, and various approximate methods have been explored (Neal, 1995; Ma et al., 2015; Blundell et al.,
2015; Gal & Ghahramani, 2016). In practice, it has been shown difficult to beat the simple approach of
ensembling (Lakshminarayanan et al., 2017; Ovadia et al., 2019), which entails training M models {fθi

}M
i=1

and combining their predictions. For Gaussian models, a single mean µ̂ and variance σ̂2 can be computed as,

µ̂(x⋆) = 1
M

M∑
i=1

µθi
(x⋆), σ̂2(x⋆) = 1

M

M∑
i=1

((
µ̂(x⋆) − µθi

(x⋆)
)2 + σ2

θi
(x⋆)

)
, (5)

and then plugged into (4) to construct a prediction interval Cα(x⋆) for a given input x⋆.

2.2 Selective Prediction

The framework of selective prediction has been applied both to classification (Herbei & Wegkamp, 2006;
Geifman & El-Yaniv, 2017) and regression problems (Jiang et al., 2020). The general idea is to give a
model the option to abstain from outputting predictions for some inputs. This is achieved by combining the
prediction model fθ with an uncertainty function κf : X → R. Given an input x⋆, the prediction fθ(x⋆) is
output if the uncertainty κf (x⋆) ≤ τ (for some user-specified threshold τ), otherwise x⋆ is rejected and no
prediction is made. The prediction rate is the proportion of inputs for which a prediction is output,

Predition Rate = 1
N⋆

N⋆∑
i=1

I{κf (x⋆
i ) ≤ τ}. (6)

In principle, if high uncertainty κf (x⋆) corresponds to a large prediction error |y⋆ − ŷ(x⋆)| and vice versa,
small errors will be achieved for all predictions which are actually output by the model. Specifically in this
work, we combine selective prediction with the regression methods from Section 2.1. A prediction interval
Cα(x⋆) and predicted target ŷ(x⋆) are thus output if and only if (iff) κf (x⋆) ≤ τ . Our aim is for this to
improve the calibration (interval coverage closer to 1 − α) of the output prediction intervals.

For the uncertainty function κf (x), the variance σ̂2(x) of a Gaussian ensemble (5) could be used, for example.
One could also use some of the various uncertainty scores employed in the rich OOD detection literature (Salehi
et al., 2022). In OOD detection, the task is to distinguish in-distribution inputs x, inputs which are similar to
those of the train set {(xi, yi)}N

i=1, from out-of-distribution inputs. A principled approach to OOD detection
would be to fit a model of p(x) on the train set. Inputs x for which p(x) is small are then deemed OOD
(Serrà et al., 2020). In our considered case where inputs x are images, modelling p(x) can however be quite
challenging. To mitigate this, a feature extractor g : X → RDx can be utilized, modelling p(x) indirectly by
fitting a simple model to the feature vectors g(x). In the classification setting, Mukhoti et al. (2021a) fit a
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Gaussian mixture model (GMM) to the feature vectors {g(xi)}N
i=1 of the train set. Given an input x⋆, it is

then deemed OOD if the GMM density GMM
(
g(x⋆)

)
is small. Pleiss et al. (2020) apply this approach also to

regression problems. Instead of fitting a GMM to the feature vectors and evaluating its density, (Sun et al.,
2022; Kuan & Mueller, 2022) compute the distance kNN

(
g(x⋆)

)
between g(x⋆) and its k nearest neighbors in

the train set {g(xi)}N
i=1. The input x⋆ is then deemed OOD if this kNN distance is large.

3 Proposed Benchmark

We propose an extensive benchmark for testing the reliability of regression uncertainty estimation methods
under real-world distribution shifts. The benchmark consists of 8 publicly available image-based regression
datasets, which are described in detail in Section 3.1. Our complete evaluation procedure, evaluating
uncertainty estimation methods mainly in terms of prediction interval coverage, is then described in Section 3.2.

3.1 Datasets

In an attempt to create a standard benchmark for image-based regression under distribution shifts, we collect
and modify 8 datasets from the literature. Two of them contain synthetic images while the remaining six are
real-world datasets, four of which are taken from medical applications. Examples from each of the 8 datasets
are shown in Figure 1. We create two additional variants of each of the synthetic datasets, thus resulting in
12 datasets in total. They are all relatively large-scale (6 592 - 20 614 train images) and contain input images
x of size 64 × 64 along with 1D regression targets y. Descriptions of all 12 datasets are given below (further
details are also provided in Appendix A), starting with the two synthetic datasets and their variants.

Cells Given a synthetic fluorescence microscopy image x, the task is to predict the number of cells y in the
image. We utilize the Cell-200 dataset from Ding et al. (2021; 2020), consisting of 200 000 grayscale images of
size 64 × 64. We randomly draw 10 000 train images, 2 000 val images and 10 000 test images. Thus, there is
no distribution shift between train/val and test. We therefore use this as a baseline dataset.

Cells-Tails A variant of Cells with a clear distribution shift between train/val and test. For train/val, the
regression targets y are limited to ]50, 150]. For test, the targets instead lie in the original range [1, 200].

Cells-Gap Another variant of Cells with a clear distribution shift between train/val and test. For train/val,
the regression targets y are limited to [1, 50[∪]150, 200]. For test, the targets instead lie in the original [1, 200].

ChairAngle Given a synthetic image x of a chair, the task is to predict the yaw angle y of the chair. We
utilize the RC-49 dataset (Ding et al., 2021; 2020), which contains 64 × 64 images of different chair models
rendered at yaw angles ranging from 0.1◦ to 89.9◦. We randomly split their training set and obtain 17 640
train images and 4 410 val images. By sub-sampling their test set we also get 11 225 test images. There is no
clear distribution shift between train/val and test, and we therefore use this as a second baseline dataset.

ChairAngle-Tails A variant of ChairAngle with a clear distribution shift between train/val and test. For
train/val, we limit the regression targets y to ]15, 75[. For test, the targets instead lie in the original ]0, 90[.

ChairAngle-Gap Another variant of ChairAngle with a clear distribution shift. For train/val, the
regression targets y are limited to ]0, 30[∪]60, 90[. For test, the targets instead lie in the original ]0, 90[.

AssetWealth Given a satellite image x, the task is to predict the asset wealth index y of the region. We
utilize the PovertyMap-Wilds dataset from (Koh et al., 2021), which is a variant of the dataset collected
by Yeh et al. (2020). We use the training, validation-ID and test-OOD subsets of the data, giving us 9 797
train images, 1 000 val images and 3 963 test images. We resize the images from size 224 × 224 to 64 × 64.
Train/val and test contain satellite images from disjoint sets of African countries, creating a distribution shift.

VentricularVolume Given an echocardiogram image x of a human heart, the task is to predict the volume
y of the left ventricle. We utilize the EchoNet-Dynamic dataset (Ouyang et al., 2020), which contains 10 030
echocardiogram videos. Each video captures a complete cardiac cycle and is labeled with the left ventricular
volume at two separate time points, representing end-systole (at the end of contraction) and end-diastole
(just before contraction). For each video, we extract just one of these volume measurements along with the
corresponding video frame. To create a clear distribution shift between train/val and test, we select the end
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systolic volume (smaller volume) for train and val, but the end diastolic volume (larger volume) for test. We
utilize the provided dataset splits, giving us 7 460 train images, 1 288 val images and 1 276 test images.

BrainTumourPixels Given an image slice x of a brain MRI scan, the task is to predict the number of
pixels y in the image which are labeled as brain tumour. We utilize the brain tumour dataset of the medical
segmentation decathlon (Simpson et al., 2019; Antonelli et al., 2022), which is a subset of the data used in
the 2016 and 2017 BraTS challenges (Bakas et al., 2018; 2017; Menze et al., 2014). The dataset contains
484 brain MRI scans with corresponding tumour segmentation masks. We split these scans 80%/20%/20%
into train, val and test sets. The scans are 3D volumes of size 240 × 240 × 155. We convert each scan into
155 image slices of size 240 × 240, and create a regression target for each image by counting the number of
labeled brain tumour pixels. This gives us 20 614 train images, 6 116 val images and 6 252 test images.

SkinLesionPixels Given a dermatoscopic image x of a pigmented skin lesion, the task is to predict the
number of pixels y in the image which are labeled as lesion. We utilize the HAM10000 dataset by Tschandl
et al. (2018), which contains 10 015 dermatoscopic images with corresponding skin lesion segmentation masks.
HAM10000 consists of four different sub-datasets, three of which were collected in Austria, while the fourth
sub-dataset was collected in Australia. To create a clear distribution shift between train/val and test, we use
the Australian sub-dataset as our test set. After randomly splitting the remaining images 85%/15% into
train and val sets, we obtain 6 592 train images, 1 164 val images and 2 259 test images.

HistologyNucleiPixels Given an H&E stained histology image x, the task is to predict the number of pixels
y in the image which are labeled as nuclei. We utilize the CoNSeP dataset by Graham et al. (2019), along
with the pre-processed versions they provide of the Kumar (Kumar et al., 2017) and TNBC (Naylor et al.,
2018) datasets. The datasets contain large H&E stained image tiles, with corresponding nuclear segmentation
masks. The three datasets were collected at different hospitals/institutions, with differing procedures for
specimen preservation and staining. By using CoNSeP and Kumar for train/val and TNBC for test, we thus
obtain a clear distribution shift. From the large image tiles, we extract 64 × 64 patches via regular gridding,
and create a regression target for each image patch by counting the number of labeled nuclei pixels. In the
end, we obtain 10 808 train images, 2 702 val images and 2 267 test images.

AerialBuildingPixels Given an aerial image x, the task is to predict the number of pixels y in the image
which are labeled as building. We utilize the Inria aerial image labeling dataset (Maggiori et al., 2017), which
contains 180 large aerial images with corresponding building segmentation masks. The images are captured
at five different geographical locations. We use the images from two densely populated American cities for
train/val, and the images from a more rural European area for test, thus obtaining a clear distribution shift.
After preprocessing, we obtain 11 184 train images, 2 797 val images and 3 890 test images.

Constructing these custom datasets is one of our main contributions. This is what enables us to propose
an extensive benchmark of large-scale yet convenient datasets (which are all publicly available), containing
different types of challenging distribution shifts, specifically for image-based regression.

3.2 Evaluation

We propose to evaluate regression uncertainty estimation methods mainly in terms of prediction interval
coverage (1): if a method outputs a prediction ŷ(x) and a 90% prediction interval C0.1(x) for each input x,
does the method actually achieve 90% coverage on the test set? I.e., are the prediction intervals calibrated?

Motivation Regression uncertainty estimation methods can be evaluated using various approaches. One
alternative is sparsification (Ilg et al., 2018), measuring how well the uncertainty can be used to sort predictions
from worst to best. Perfect sparsification can however be achieved even if the absolute scale of the uncertainty
is consistently underestimated. Therefore, a lot of previous work has instead evaluated methods in terms of
calibration (Gneiting et al., 2007; Guo et al., 2017). Specifically for regression, a common form of calibration
is based on quantiles (Kuleshov et al., 2018; Cui et al., 2020; Chung et al., 2021). Essentially, a model is
there said to be calibrated if the interval coverage (1) equals 1 − α for all miscoverage rates α ∈]0, 1[. This is
measured by the expected calibration error, ECE = 1

m

∑m
j=1

∣∣Coverage(Cαj
) − (1 − αj)

∣∣, αj ∼ U(0, 1). Our
proposed evaluation metric is thus a special case of this approach, considering just one specific miscoverage
rate α = 0.1. We argue that this results in a simpler and more interpretable metric, which also is motivated
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by how prediction intervals actually are used in real-world applications. There, one particular value of α is
selected (α = 0.1 is a common choice), and the corresponding intervals Cα are then expected to achieve a
coverage of 1 − α on unseen test data. Recent alternative calibration metrics directly measure how well the
uncertainty aligns with the prediction errors (Levi et al., 2022; Pickering & Sapsis, 2022). While these enable
relative comparisons of different methods, they are not easily interpretable in terms of absolute performance.

Implementation Details For each dataset and method, we first train a DNN on the train set Dtrain. Then,
we run the method on the val set Dval, resulting in a prediction interval Cα(x) = [Lα(x), Uα(x)] for each
input x (α = 0.1). Importantly, we then calibrate these prediction intervals on val using the procedure in
(Romano et al., 2019). This gives calibrated prediction intervals C̃α(x), for which the interval coverage on val
exactly equals 1 − α. Specifically, C̃α(x) is constructed from the original interval Cα(x) = [Lα(x), Uα(x)],

C̃α(x) = [Lα(x) − Q1−α(E, Dval), Uα(x) + Q1−α(E, Dval)], (7)

where E ={max
(
Lα(xi)−yi, yi−Uα(xi)

)
: i∈Dval} are conformity scores computed on Dval, and Q1−α(E, Dval)

is the (1 − α)-th quantile of these scores. Finally, we then run the method on the test set Dtest, outputting
a calibrated prediction interval C̃α(x⋆) for each input x⋆. Ideally, the interval coverage of C̃α(x⋆) does not
change from val to test, i.e. Coverage(C̃α) = 1 − α should be true also on test. If Coverage(C̃α) ̸= 1 − α, a
conservative method (> 1 − α) is preferred compared to an overconfident method (< 1 − α). For methods
based on selective prediction (Section 2.2), the only difference is that prediction intervals C̃α(x⋆) are output
only for some test inputs x⋆ (iff κf (x⋆) ≤ τ). The interval coverage is thus computed only on this subset of
test. This is similar to the notion of “selective calibration” discussed for the classification setting by Fisch
et al. (2022). We set α = 0.1 since this is a commonly used miscoverage rate in practice.

Secondary Metrics We also evaluate methods in terms of mean absolute error (MAE) and average interval
length on the val set. This measures the quality of the prediction ŷ(x) and the prediction interval Cα(x),
respectively (Gneiting et al., 2007). The average interval length is a natural secondary metric, since a
method that achieves a coverage close to 1 − α but outputs extremely large intervals for all inputs x, not
would be particularly useful in practice. Moreover, if two different methods both are perfectly calibrated, i.e.
Coverage(Cα) = 1 − α, the method producing smaller prediction intervals would be preferred. For methods
based on selective prediction (which output predictions only for certain inputs x), the proportion of inputs
for which a prediction actually is output is another natural secondary metric. For these methods, we thus
also evaluate in terms of the prediction rate (6) on test. If a coverage close to 1 − α is achieved with a very
low prediction rate, the method might still not be practically useful in certain applications. For two perfectly
calibrated methods, one with a higher prediction rate would be preferred.

4 Evaluated Methods

We evaluate five common regression uncertainty estimation methods from Section 2.1, which all output
a prediction interval Cα(x) and a predicted target ŷ(x) ∈ Cα(x) for each input x. Two of these we also
combine with selective prediction (Section 2.2), utilizing four different uncertainty functions κf (x). In total,
we evaluate 10 different methods. For all methods, we train models based on a ResNet34 (He et al., 2016)
backbone DNN. This architecture is chosen because of its simplicity and widespread use. The ResNet takes
an image x as input and outputs a feature vector g(x) ∈ R512. Below we specify and provide implementation
details for each of the 10 evaluated methods, while we refer back to Section 2 for more general descriptions.

Conformal Prediction We create a standard direct regression model by feeding the ResNet feature vector
g(x) into a network head of two fully-connected layers, outputting a scalar prediction fθ(x). The model is
trained using the L2 loss. We then utilize conformal prediction to create prediction intervals Cα(x) according
to (2). Instead of splitting the train images into I1 and I2, we use the val images as the calibration set I2.

Ensemble We train an ensemble {fθ1 , . . . , fθM
} of M = 5 direct regression models and compute the ensemble

mean µ̂(x) = 1
M

∑M
i=1 fθi(x) and ensemble variance σ̂2(x) = 1

M

∑M
i=1

(
µ̂(x) − fθi(x)

)2. By inserting these
into equation 4, prediction intervals Cα(x) of input-dependent length are then constructed.
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Gaussian We create a Gaussian model pθ(y|x) = N
(
y; µθ(x), σ2

θ(x)
)

by feeding the ResNet feature vector
g(x) into two separate network heads of two fully-connected layers. These output the mean µθ(x) and variance
σ2

θ(x), respectively. Prediction intervals Cα(x) are then constructed according to (4).

Gaussian Ensemble We train an ensemble of M = 5 Gaussian models, compute a single mean µ̂(x) and
variance σ̂2(x) according to (5), and plug these into (4) to construct prediction intervals Cα(x).

Quantile Regression We create a quantile regression model by feeding the ResNet feature vector g(x) into
two separate network heads. These output the quantiles qαlo

θ (x), q
αup
θ (x), directly forming prediction intervals

Cα(x) according to (3). The model is trained by minimizing the average pinball loss of qαlo
θ (x) and q

αup
θ (x).

Gaussian + Selective GMM We combine the Gaussian method with a selective prediction mechanism.
After training a Gaussian model, we run it on each image in train to extract ResNet feature vectors {g(xi)}N

i=1.
We then utilize scikit-learn (Pedregosa et al., 2011) to fit a GMM (4 components, full covariance) to these
train feature vectors. To compute an uncertainty score κf (x) for a given input x, we extract g(x) and evaluate
its likelihood according to the fitted GMM, κf (x) = −GMM

(
g(x)

)
. The prediction µθ(x) and corresponding

prediction interval Cα(x) of the Gaussian model are then output iff κf (x) ≤ τ . To set the user-specified
threshold τ , we compute κf (x) on all images in val and pick the 95% quantile. This choice of τ is motivated
by the commonly reported FPR95 OOD detection metric, but τ could be set using other approaches.

Gaussian + Selective kNN Identical to Gaussian + Selective GMM, but κf (x) = kNN
(
g(x)

)
.

Specifically, the uncertainty score κf (x) is computed by extracting g(x) and computing the average distance
to its k = 10 nearest neighbors among the train feature vectors {g(xi)}N

i=1. Following Kuan & Mueller (2022),
we utilize the Annoy1 approximate neighbors library, with cosine similarity as the distance metric.

Gaussian + Selective Variance Identical to Gaussian + Selective GMM, but κf (x) = σ2
θ(x) (the

variance of the Gaussian model). This is used as a simple baseline for the two previous methods.

Gaussian Ensemble + Selective GMM We combine Gaussian Ensemble with a selective prediction
mechanism. After training an ensemble of M = 5 Gaussian models, we run each model on each image in
train to extract M sets of ResNet feature vectors. For each model, we then fit a GMM to its set of train
feature vectors. I.e., we fit M different GMMs. To compute an uncertainty score κf (x) for a given input x,
we extract a feature vector and evaluate its likelihood according to the corresponding GMM, for each of the
M models. Finally, we compute the mean of the GMM likelihoods, κf (x) = 1

M

∑M
i=1 −GMMi

(
gi(x)

)
.

Gaussian Ensemble + Selective Ensemble Variance Identical to Gaussian Ensemble + Selective
GMM, but κf (x) = 1

M

∑M
i=1

(
µ̂(x) − µθi

(x)
)2, where µ̂(x) = 1

M

∑M
i=1 µθi

(x). Hence, the variance of the
ensemble means is used as the uncertainty score. This constitutes a simple baseline for the previous method.

All models are trained for 75 epochs using the ADAM optimizer (Kingma & Ba, 2014). The same hyperpa-
rameters are used for all datasets, and neither the training procedure nor the models are specifically tuned
for any particular dataset. All experiments are implemented using PyTorch (Paszke et al., 2019), and our
complete implementation is made publicly available. All models were trained on individual NVIDIA TITAN
Xp GPUs. On one such GPU, training 20 models on one dataset took approximately 24 hours. We chose to
train all models based on a ResNet34 backbone because it is widely used across various applications, yet
simple to implement and quite computationally inexpensive. The proposed benchmark and the evaluated
uncertainty estimation methods are however entirely independent of this specific choice of DNN backbone
architecture. Exploring the use of other more powerful models and evaluating how this affects the reliability
of uncertainty estimation methods is an interesting direction which we leave for future work.

5 Related Work

Out-of-distribution robustness of DNNs is an active area of research (Hendrycks & Dietterich, 2019; Hendrycks
et al., 2021b;a; Izmailov et al., 2021; Yao et al., 2022; Schwinn et al., 2022; Wiles et al., 2022; Zhang et al.,
2022). All these previous works do however focus exclusively on classification tasks. Moreover, they consider
no uncertainty measures but instead evaluate only in terms of accuracy. While (Zaidi et al., 2021; Hendrycks

1https://github.com/spotify/annoy
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Figure 2: Results for the five common regression uncertainty estimation methods (which output predictions
and corresponding 90% prediction intervals for all inputs), on the six synthetic datasets. Top: Results in
terms of our main metric test coverage. A perfectly calibrated method would achieve a test coverage of
exactly 90%, as indicated by the solid line. Bottom: Results in terms of average val interval length.

et al., 2022) evaluate uncertainty calibration, they also just consider the classification setting. In contrast,
evaluation of uncertainty estimation methods is our main focus, and we do this specifically for regression.

The main sources of inspiration for our work are (Koh et al., 2021) and (Ovadia et al., 2019). While Koh et al.
(2021) propose an extensive benchmark with various real-world distribution shifts, it only contains a single
regression dataset. Moreover, methods are evaluated solely in terms of predictive performance. Ovadia et al.
(2019) perform a comprehensive evaluation of uncertainty estimation methods under distribution shifts, but
only consider classification tasks. Inspired by this, we thus propose our benchmark for evaluating reliability
of uncertainty estimation methods under real-world distribution shifts in the regression setting. Most similar
to our work is that of Malinin et al. (2021). However, their benchmark contains just two regression datasets
(tabular weather prediction and a complex vehicle motion prediction task), they only evaluate ensemble-based
uncertainty estimation methods, and these methods are not evaluated in terms of calibration.

6 Results

We evaluate the 10 methods specified in Section 4 on all 12 datasets from Section 3.1, according to the
evaluation procedure described in Section 3.2. For each method we train 20 models, randomly select 5 of
them for evaluation and report the averaged metrics. For the ensemble methods, we construct an ensemble
by randomly selecting M = 5 out of the 20 trained models, evaluate the ensemble and then repeat this 5
times in total. To ensure that the results do not depend on our specific choice of α = 0.1, we also evaluate
methods with two alternative miscoverage rates. While the main paper only contains results for α = 0.1, we
repeat most of the evaluation for α = 0.2 and α = 0.05 in Appendix B, observing very similar trends overall.

6.1 Common Uncertainty Estimation Methods

We start by evaluating the first five methods from Section 4, those which output predictions and corresponding
90% prediction intervals for all inputs. The results in terms of our main metric test coverage are presented in
the upper part of Figure 2 for the synthetic datasets, and in Figure 3 for the six real-world datasets. In the
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Figure 3: Results for the five common regression uncertainty estimation methods (which output predictions
and corresponding 90% prediction intervals for all inputs), on the six real-world datasets. Top: Results in
terms of our main metric test coverage. Bottom: Results in terms of average val interval length.

lower parts of Figure 2 & 3, results in terms of average val interval length are presented. The complete results,
including our other secondary metric val MAE, are provided in Table A1 - Table A12 in the appendix. Please
note that, because we utilize a new benchmark consisting of custom datasets, we are not able to directly
compare the MAE of our models with that of any previous work from the literature.

In Figure 2, the test coverage results on the first synthetic dataset Cells are found in the upper-left. As
there is no distribution shift between train/val and test for this dataset, we use it as a baseline. We observe
that all five methods have almost perfectly calibrated prediction intervals, i.e. they all obtain a test coverage
very close to 90%. This is exactly the desired behaviour. On Cells-Tails however, on which we introduced
a clear distribution shift, we observe in Figure 2 that the test coverage drops dramatically from the desired
90% for all five methods. Even the state-of-the-art uncertainty estimation method Gaussian Ensemble
here becomes highly overconfident, as its test coverage drops down to ≈ 59%. On Cells-Gap, the test
coverages are slightly closer to 90%, but all five methods are still highly overconfident. On the other synthetic
dataset ChairAngle, we observe in Figure 2 that all five methods have almost perfectly calibrated prediction
intervals. However, as we introduce clear distribution shifts on ChairAngle-Tails and ChairAngle-Gap,
we can observe that the test coverage once again drops dramatically for all methods.

The results on the six real-world datasets are found in Figure 3. In the upper part, we observe that all
five methods have quite well-calibrated prediction intervals on AssetWealth and BrainTumourPixels,
even though they all are consistently somewhat overconfident (test coverages of 82%-89%). On the four
remaining datasets, the methods are in general more significantly overconfident. On VentricularVolume,
we observe test coverages of 60%-80% for all methods, and on SkinLesionPixels the very best coverage
is ≈ 82%. On HistologyNucleiPixels, most methods only obtain test coverages of 55%-70%, and on
AerialBuildingPixels the very best coverage is ≈ 81%. In fact, not a single method actually reaches the
desired 90% test coverage on any of these real-world datasets.

In terms of average val interval length, we observe in the lower parts of Figure 2 & 3 that Ensemble
consistently produces smaller prediction intervals than Conformal Prediction. Moreover, the intervals of
Gaussian Ensemble are usually smaller than those of Gaussian. When comparing the interval lengths
of Quantile Regression and Gaussian, we observe no clear trend that is consistent across all datasets.
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Figure 4: Test coverage results for the five common regression uncertainty estimation methods, on synthetic
datasets with increasing degrees of distribution shifts. Top: From Cells (no distribution shift) to Cells-
Tails (maximum distribution shift). Bottom: From ChairAngle to ChairAngle-Gap.

Since the average interval lengths vary a lot between different datasets, Figure 2 & 3 only show relative
comparisons of the methods. For absolute numerical scales, see Table A1 - Table A12.

To further study how the test coverage performance is affected by distribution shifts, we also apply the five
methods to three additional variants of the Cells dataset. Cells has no difference in regression target
range between train/val and test, whereas for Cells-Tails the target range is ]50, 150] for train/val and
[1, 200] for test. By creating three variants with intermediate target ranges, we thus obtain a sequence of five
datasets with increasing degrees of distribution shifts, starting with Cells (no distribution shift) and ending
with Cells-Tails (maximum distribution shift). The test coverage results on this sequence of datasets are
presented in the upper part of Figure 4. We observe that as the degree of distribution shift is increased
step-by-step, the test coverage also drops accordingly. The lower part of Figure 4 presents the results of
a similar experiment, in which we construct a sequence of five datasets starting with ChairAngle (no
distribution shift) and ending with ChairAngle-Gap (maximum distribution shift). Also in this case, we
observe that the test coverage drops step-by-step along with the increased degree of distribution shift.

A study of the relative performance of the five methods on the real-world datasets, in terms of all three metrics
(test coverage, average val interval length, val MAE), is finally presented in Figure A1 - Figure A3 in the
appendix. One can clearly observe that Ensemble and Gaussian Ensemble achieve the best performance,
thus indicating that ensembling multiple models indeed helps to improve the performance.

6.2 Selective Prediction Methods

Next, we evaluate the methods with an added selective prediction mechanism. We start with the three
methods based on Gaussian. The results in terms of test coverage and test prediction rate are available
in Figure 5 for the synthetic datasets, and in Figure 6 for the six real-world datasets. While a complete
evaluation of these methods also should include the average val interval length, we note that the selective
prediction mechanism does not modify the intervals of the underlying Gaussian method (which already has
been evaluated in terms of interval length in Section 6.1). Here, we therefore focus on the test coverage and
test prediction rate. Complete numerical results are provided in Table A1 - Table A12 in the appendix.
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Figure 5: Results for the three selective prediction methods based on Gaussian, on the six synthetic datasets.
Top: Results in terms of our main metric test coverage. Bottom: Results in terms of test prediction rate
(the proportion of test inputs for which a prediction actually is output).

In the upper part of Figure 5, we observe that selective prediction based on feature-space density significantly
improves the test coverage of Gaussian on the synthetic datasets. While Gaussian has well-calibrated
prediction intervals only on Cells and ChairAngle, which are baseline datasets without any distribution
shift, Gaussian + Selective GMM is almost perfectly calibrated across all six datasets. On Cells-Tails,
for example, it improves the test coverage from ≈ 54% up to ≈ 89%. Gaussian + Selective kNN also
significantly improves the test coverages, but not quite to the same extent. In the lower part of Figure 5, we
can observe that when Gaussian + Selective GMM significantly improves the test coverage, there is also
a clear drop in its test prediction rate. For example, the prediction rate drops from ≈ 0.95 on Cells down to
≈ 0.54 on Cells-Tails. By rejecting nearly 50% of all inputs as OOD in this case, Gaussian + Selective
GMM can thus remain well-calibrated on the subset of test it actually outputs predictions for. In Figure 5,
we also observe that Gaussian + Selective Variance only marginally improves the test coverage.

While Gaussian + Selective GMM significantly improves the test coverage of Gaussian and has well-
calibrated prediction intervals across the synthetic datasets, we observe in Figure 6 that this is not true for
the six real-world datasets. Gaussian + Selective GMM does consistently improve the test coverage, but
only marginally, and it still suffers from significant overconfidence in many cases. On VentricularVolume,
for example, the test prediction rate of Gaussian + Selective GMM is as low as ≈ 0.71, but the test
coverage only improves from ≈ 73% to ≈ 75% compared to Gaussian.

For the two methods based on Gaussian Ensemble, the results are presented in Figure A4 & A5 in the
appendix. Overall, we observe very similar trends. Gaussian Ensemble + Selective GMM significantly
improves the test coverage of Gaussian Ensemble and is almost perfectly calibrated across the synthetic
datasets. However, when it comes to the real-world datasets, it often remains significantly overconfident.

Finally, Figure A6 presents a relative comparison of the five selective prediction methods across all 12 datasets,
in terms of average test coverage error (absolute difference between empirical and expected interval coverage)
and average test prediction rate. We observe that Gaussian Ensemble + Selective GMM achieves the
best test coverage error, but also has the lowest test prediction rate. In fact, each improvement in terms of
test coverage error also corresponds to a decrease in test prediction rate for these five methods, meaning that
there seems to be an inherent trade-off between the two metrics.

12



Published in Transactions on Machine Learning Research (09/2023)

te
st

C
ov

er
ag

e

AssetWealth Ventricular
Volume

BrainTumour
Pixels

SkinLesion
Pixels

Histology
NucleiPixels

AerialBuilding
Pixels

0.5
0.6
0.7
0.8

1
0.9

Pr
ed

ic
tio

n
R

at
e

(↑
)

AssetWealth Ventricular
Volume

BrainTumour
Pixels

SkinLesion
Pixels

Histology
NucleiPixels

AerialBuilding
Pixels

0
0.2
0.4
0.6
0.8

1

Gaussian Gaussian + Selective GMM Gaussian + Selective kNN Gaussian + Selective Variance

Figure 6: Results for the three selective prediction methods based on Gaussian, on the six real-world datasets.
Top: Results in terms of test coverage. Bottom: Results in terms of test prediction rate.

7 Discussion

Let us now analyze the results from Section 6 in more detail, and discuss what we consider the most important
findings and insights. First of all, we can observe that among the 10 considered methods, not a single one was
close to producing perfectly calibrated prediction intervals across all 12 datasets. We thus conclude that our
proposed benchmark indeed is challenging and interesting. Moreover, the results in Figure 2 & 3 demonstrate
that while common uncertainty estimation methods are well calibrated when there is no distribution shift
(Cells and ChairAngle), they can all break down and become highly overconfident in many realistic
scenarios. This highlights the importance of employing sufficiently realistic and thus challenging benchmarks
when evaluating uncertainty estimation methods. Otherwise, we might be lead to believe that methods will
be more reliable during practical deployment than they actually are.

Coverage Guarantees Might Instill a False Sense of Security We also want to emphasize that
Conformal Prediction and Quantile Regression2 have theoretical coverage guarantees, but still are
observed to become highly overconfident for many datasets in Figure 2 & 3. Since the guarantees depend on
the assumption that all data points are exchangeable (true for i.i.d. data, for instance), which generally does
not hold under distribution shifts, these results should actually not be surprising. The results are however a
good reminder that we always need to be aware of the underlying assumptions, and whether or not they are
likely to hold in common practical applications. Otherwise, such theoretical guarantees might just instill a
false sense of security, making us trust methods more than we actually should.

Clear Performance Differences between Synthetic and Real-World Datasets We find it interesting
that selective prediction based on feature-space density, in particular Gaussian + Selective GMM, works
almost perfectly in terms of test coverage across the synthetic datasets (Figure 5), but fails to give significant
improvements on the real-world datasets (Figure 6). The results on VentricularVolume are particularly
interesting, as the prediction rate drops quite a lot without significantly improving the test coverage. This
means that while a relatively large proportion of the test inputs are deemed OOD and thus rejected by
the method, the test coverage is barely improved. On the synthetic datasets, there is a corresponding
improvement in test coverage whenever the prediction rate drops significantly (Figure 5). It is not clear

2Since all prediction intervals are calibrated on val, we are using Conformalized Quantile Regression (Romano et al., 2019).
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why such an obvious performance difference between synthetic and real-world datasets is observed. One
possible explanation is that real-world data requires better models for p(x), i.e. that the relatively simple
approaches based on feature-space density not are sufficient. Properly explaining this performance difference
is an important problem, but we will here leave this as an interesting direction for future work.

OOD Uncertainty Scores Perform Well, but Not Well Enough Comparing the selective prediction
methods, we observe that Gaussian + Selective GMM consistently outperforms Gaussian + Selective
Variance (Figure 5 & 6) and that Gaussian Ensemble + Selective GMM outperforms Gaussian
Ensemble + Selective Ensemble Variance in most cases (Figure A4 & A5). Relative to common
uncertainty estimation baselines, methods based on feature-space density thus achieve very strong performance.
This is in line with the state-of-the-art OOD detection performance that has been demonstrated recently. In
our results, we can however clearly observe that while feature-space methods perform well relative to common
baselines, the resulting selective prediction methods are still overconfident in many cases – the absolute
performance is still far from perfect. Using our benchmark, we are thus able to not only compare the relative
performance of different OOD uncertainty scores, but also evaluate their performance in an absolute sense.

Performance Differences among Real-World Datasets are Mostly Logical When we compare the
performance on the different real-world datasets in Figure 3, all methods are relatively well-calibrated on
BrainTumourPixels and AssetWealth. For BrainTumourPixels, the train, val and test splits were
created by randomly splitting the original set of MRI scans. The distribution shift between train/val and
test is thus also fairly limited. For AssetWealth (satellite images from different African countries), the
shift is likely quite limited at least compared to AerialBuildingPixels (satellite images from two different
continents). Finally, the results for HistologyNucleiPixels are interesting, as this is the only dataset
where Conformal Prediction clearly obtains the best test coverage. It is not clear why the methods
which output prediction intervals of input-dependent length struggle on this particular dataset.

Finally, we should emphasize that while test coverage is our main metric, this by itself is not sufficient for a
method to be said to “perform well” in a general sense. For example, a perfectly calibrated method with a
low test prediction rate might not be particularly useful in practice. While even very low test prediction
rates likely would be tolerated in many medical applications and other safety-critical domains (as long as
the method stays perfectly calibrated), one can imagine more low-risk settings where this calibration versus
prediction rate trade-off is a lot less clear. Since not a single one of the evaluated methods was close to being
perfectly calibrated across all 12 datasets, we did however mainly focus on analyzing the test coverage in
this paper. If multiple methods had performed well in terms of test coverage, a more detailed analysis and
discussion of the secondary metrics performance would have been necessary.

The main actionable takeaways from our work can be summarized as follows:

• All methods are well calibrated on baseline datasets with no distribution shift, but become highly
overconfident in many realistic scenarios. Uncertainty estimation methods must therefore be evaluated
using sufficiently challenging benchmarks. Otherwise, one might be lead to believe that methods will
be more reliable during real-world deployment than they actually are.

• Conformal prediction methods have commonly promoted theoretical coverage guarantees, but these
depend on an assumption that is unlikely to hold in many practical applications. Consequently, also
these methods can become highly overconfident in realistic scenarios. If the underlying assumptions
are not examined critically by practitioners, such theoretical guarantees risk instilling a false sense of
security – making these models even less suitable for safety-critical deployment.

• The clear performance difference between synthetic and real-world datasets observed for selective
prediction methods based on feature-space density is a very interesting direction for future work.
If the reasons for this performance gap can be understood, an uncertainty estimation method that
stays well calibrated across all datasets could potentially be developed.

• Selective prediction methods based on feature-space density perform well relative to other methods
(as expected based on their state-of-the-art OOD detection performance), but are also overconfident in
many cases. Only comparing the relative performance of different methods is therefore not sufficient.

14



Published in Transactions on Machine Learning Research (09/2023)

To track if actual progress is being made towards the ultimate goal of truly reliable uncertainty
estimation methods, benchmarks must also evaluate method performance in an absolute sense.

8 Conclusion

We proposed an extensive benchmark for testing the reliability of regression uncertainty estimation methods
under real-world distribution shifts. The benchmark consists of 8 publicly available image-based regression
datasets with different types of challenging distribution shifts. We employed our benchmark to evaluate many
of the most common uncertainty estimation methods, as well as two state-of-the-art uncertainty scores from
OOD detection. We found that while all methods are well calibrated when there is no distribution shift, they
become highly overconfident on many of the benchmark datasets. Methods based on the OOD uncertainty
scores performed well relative to other methods, but the absolute performance is still far from perfect. This
uncovers important limitations of current regression uncertainty estimation methods. Our work thus serves
as a challenge to the research community, to develop methods which actually produce calibrated prediction
intervals across all benchmark datasets. To that end, future directions include exploring the use of more
sophisticated models for p(x) within selective prediction – hopefully closing the performance gap between
synthetic and real-world datasets – and employing alternative DNN backbone architectures. We hope that our
benchmark will spur more work on how to develop truly reliable regression uncertainty estimation methods.
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A Dataset Details

More detailed descriptions of the 12 datasets from Section 3.1 are provided below.

Cells Given a synthetic fluorescence microscopy image x, the task is to predict the number of cells y in the
image. We utilize the Cell-200 dataset from Ding et al. (2021; 2020), consisting of 200 000 grayscale images of
size 64 × 64. We randomly draw 10 000 train images, 2 000 val images and 10 000 test images. Thus, there is
no distribution shift between train/val and test. We therefore use this as a baseline dataset.

Cells-Tails We create a variant of Cells with a clear distribution shift between train/val and test. For the
10 000 train images and 2 000 val images, the regression targets y are limited to the range ]50, 150]. For the
10 000 test images, the targets instead lie in the full original range [1, 200].

Cells-Gap Another variant of Cells with a clear distribution shift between train/val and test. For the
10 000 train images and 2 000 val images, the regression targets y are limited to [1, 50[∪]150, 200]. For the
10 000 test images, the targets instead lie in the full original range [1, 200].

ChairAngle Given a synthetic image x of a rendered chair model, the task is to predict the yaw angle
y of the chair. We utilize the RC-49 dataset from Ding et al. (2021; 2020), which contains 64 × 64 RGB
images of different chair models rendered at 899 yaw angles ranging from 0.1◦ to 89.9◦, with step size 0.1◦.
We randomly split their training set and obtain 17 640 train images and 4 410 val images. By sub-sampling
their test set we also get 11 225 test images. There is no obvious distribution shift between train/val and test,
and we therefore use this as a second baseline dataset.

ChairAngle-Tails We create a variant of ChairAngle with a clear distribution shift between train/val
and test. For train and val, we limit the regression targets y to the range ]15, 75[. For test, the targets instead
lie in the full original range ]0, 90[. We obtain 11 760 train images, 2 940 val images and 11 225 test images.

ChairAngle-Gap Another variant of ChairAngle with a clear distribution shift between train/val and
test. For the 11 760 train images and 2 940 val images, the regression targets y are limited to ]0, 30[∪]60, 90[.
For the 11 225 test images, the targets instead lie in the full original range ]0, 90[.

AssetWealth Given a satellite image x (8 image channels), the task is to predict the asset wealth index y
of the region. We utilize the PovertyMap-Wilds dataset (Koh et al., 2021), which is a variant of the dataset
collected by Yeh et al. (2020). We use the training, validation-ID and test-OOD subsets of the data, giving us
9 797 train images, 1 000 val images and 3 963 test images. We resize the images from size 224 × 224 to 64 × 64.
Train/val and test contain satellite images from disjoint sets of African countries, creating a distribution shift.

VentricularVolume Given an echocardiogram image x of a human heart, the task is to predict the volume
y of the left ventricle. We utilize the EchoNet-Dynamic dataset by Ouyang et al. (2020), which contains
10 030 echocardiogram videos. Each video captures a complete cardiac cycle and is labeled with measurements
of the left ventricular volume at two separate time points, representing end-systole (at the end of contraction
- smaller volume) and end-diastole (just before contraction - larger volume). For each video, we extract just
one of these volume measurements along with the corresponding video frame. To create a clear distribution
shift between train/val and test, we select the end systolic volume (smaller volume) for train and val, but the
end diastolic volume (larger volume) for test. We utilize the provided dataset splits, giving us 7 460 train
images, 1 288 val images and 1 276 test images. We resize the images from size 112 × 112 to 64 × 64.

BrainTumourPixels Given an image slice x of a brain MRI scan, the task is to predict the number of
pixels y in the image which are labeled as brain tumour. We utilize the brain tumour dataset of the medical
segmentation decathlon (Simpson et al., 2019; Antonelli et al., 2022), which is a subset of the data used in
the 2016 and 2017 BraTS challenges (Bakas et al., 2018; 2017; Menze et al., 2014). The dataset contains
484 brain MRI scans with corresponding tumour segmentation masks. We split these scans 80%/20%/20%
into train, val and test sets. The scans are 3D volumes of size 240 × 240 × 155. We convert each scan into
155 image slices of size 240 × 240, and create a regression target for each image by counting the number of
labeled brain tumour pixels. We then also remove all images which contain no tumour pixels. The original
image slices have 4 channels (FLAIR, T1w, T1gd, T2w), but we only use the first three and convert the slices
into standard RGB images. This gives us 20 614 train images, 6 116 val images and 6 252 test images. We
also resize the images from size 240 × 240 to 64 × 64.
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SkinLesionPixels Given a dermatoscopic image x of a pigmented skin lesion, the task is to predict the
number of pixels y in the image which are labeled as lesion. We utilize the HAM10000 dataset by Tschandl
et al. (2018), which contains 10 015 dermatoscopic images with corresponding skin lesion segmentation masks.
HAM10000 consists of four different sub-datasets, three of which (ViDIR Legacy, ViDIR Current and ViDIR
MoleMax) were collected in Austria, while the fourth sub-dataset (Rosendahl) was collected in Australia. To
create a clear distribution shift between train/val and test, we use the Australian sub-dataset (Rosendahl) as
our test set. After randomly splitting the remaining images 85%/15% into train and val sets, we obtain 6 592
train images, 1 164 val images and 2 259 test images. We then create a regression target for each image by
counting the number of labeled skin lesion pixels. We also resize the images from size 450 × 600 to 64 × 64.

HistologyNucleiPixels Given an H&E stained histology image x, the task is to predict the number of
pixels y in the image which are labeled as nuclei. We utilize the CoNSeP dataset by Graham et al. (2019),
along with the pre-processed versions they provide of the Kumar (Kumar et al., 2017) and TNBC (Naylor
et al., 2018) datasets. The datasets contain large H&E stained image tiles (of size 1 000 × 1 000 or 512 × 512)
at 40× objective magnification, with corresponding nuclear segmentation masks. The three datasets were
collected at different hospitals/institutions, with differing procedures for specimen preservation and staining.
By using CoNSeP and Kumar for train/val and TNBC for test, we thus obtain a clear distribution shift.
From the large image tiles, we extract 64 × 64 patches via regular gridding, and create a regression target for
each image patch by counting the number of labeled nuclei pixels. We then also remove all images which
contain no nuclei pixels. In the end, we obtain 10 808 train images, 2 702 val images and 2 267 test images.

AerialBuildingPixels Given an aerial image x, the task is to predict the number of pixels y in the image
which are labeled as building. We utilize the Inria aerial image labeling dataset (Maggiori et al., 2017), which
contains 180 large aerial images with corresponding building segmentation masks. The images are of size
5 000 × 5 000, and are captured at five different geographical locations. We use the images from two densely
populated American cities (Austin and Chicago) for train/val, and the images from a more rural European
area (West Tyrol, Austria) for test, thus obtaining a clear distribution shift. We first resize the images to
size 1 000 × 1 000, and then extract 64 × 64 patches via regular gridding. We also create a regression target
for each image patch by counting the number of labeled building pixels. After removal of all images which
contain no building pixels, we finally obtain 11 184 train images, 2 797 val images and 3 890 test images.

The additional variants of Cells and ChairAngle in Figure 4 are specified as follows. Cells: no difference
in regression target range between train/val and test. Cells-Tails: target range ]50, 150] for train/val, [1, 200]
for test. We create three versions with intermediate target ranges (1: [37.5, 163.5], 2: [25, 176], 3: [12.5, 188.5])
for test. ChairAngle: no difference in target range between train/val and test. ChairAngle-Gap: target
range ]0, 30[∪]60, 90[ for train/val, ]0, 90[ for test. We create three versions with intermediate target ranges
(1: ]0, 33.75[∪]56.25, 90[, 2: ]0, 37.5[∪]52.5, 90[, 3: ]0, 41.25[∪]48.75, 90[) for test.

B Additional Results & Method Variations

Please note that the results in Table A1 - Table A42 not are rounded/truncated to only significant digits.

To ensure that the test coverage results do not depend on our specific choice of studying 90% prediction
intervals (α = 0.1), we repeat most of the evaluation for two alternative miscoverage rates α. Specifically, we
redo the evaluation of 6/10 methods on 9/12 datasets with 80% (α = 0.2) and 95% (α = 0.05) prediction
intervals. The results for 80% prediction intervals are given in Figure A7 - Figure A10 and Table A13
- Table A21, while the results for 95% prediction intervals are given in Figure A11 - Figure A14 and
Table A22 - Table A30. We observe very similar trends overall. For example, all methods still have almost
perfectly calibrated prediction intervals on Cells and ChairAngle, i.e. they all obtain a test coverage
very close to 80%/95%, but only Gaussian + Selective GMM remains well-calibrated on Cells-Tails
and ChairAngle-Gap. With the exception of BrainTumourPixels, all methods are also significantly
overconfident on all the real-world datasets.

Figure A15 shows test coverage results for the five common regression uncertainty estimation methods on
the AerialBuildingPixels dataset, and on two versions with different test sets. For all three datasets,
train/val contains images from Austin and Chicago. For AerialBuildingPixels, test contains images from
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West Tyrol, Austria. For AerialBuildingPixels-Kitsap, test instead contains images from Kitsap County,
WA. For AerialBuildingPixels-Vienna, test contains images from Vienna, Austria. Intuitively, the
distribution shift between train/val and test could potentially be smaller for AerialBuildingPixels-Kitsap
and AerialBuildingPixels-Vienna than for the original AerialBuildingPixels, but we observe no
clear trends in Figure A15.

Figure A16 & A17 present a study in which we aim to relate the test coverage performance to a quantitative
measure of distribution shift (“distance” between the distributions of train/val and test), complementing
our qualitative discussion in the Performance Differences among Real-World Datasets are Mostly Logical
paragraph of Section 7. How to quantify the level of distribution shift in real-world datasets is however far
from obvious, see e.g. Appendix E.1 in (Wenzel et al., 2022). We here explore if the difference in regression
accuracy (MAE) on val and test can be adopted as such a measure, extending the approach by Wenzel et al.
(2022) to our regression setting. We compute the average test coverage error for the five common regression
uncertainty estimation methods, whereas the val/test MAE is for the Conformal Prediction method
(standard direct regression models). The results for the six synthetic datasets are presented in Figure A16,
and for the six real-world datasets in Figure A17. We observe that, in general, a larger distribution shift
measure does indeed seem to correspond to worse test coverage performance. Among the 12 datasets,
HistologyNucleiPixels is the only one that quite clearly breaks this general trend.

Apart from the main comparison of the 10 methods specified in Section 4, we also evaluate a few method
variations. The results for these experiments are provided in Table A31 - Table A42. For Gaussian +
Selective GMM, we vary the number of GMM mixture components from the standard k = 4 to k = 2
and k = 8, but observe no particularly consistent or significant trends in the results. Similarly, we vary the
number of neighbors from the standard k = 10 to k = 5 and k = 20 for Gaussian + Selective kNN, but
observe no clear trends here either. For Gaussian + Selective kNN, we also explore replacing the cosine
similarity distance metric with L2 distance, again obtaining very similar results. Following Mukhoti et al.
(2021b), we finally add spectral normalization (Miyato et al., 2018) for further feature-space regularization,
but observe no significant improvements for Gaussian + Selective GMM.
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Figure A1: Performance comparison of the five common regression uncertainty estimation methods on the six
real-world datasets, in terms of average test coverage error and average val MAE rank (the five methods are
ranked 1 - 5 in terms of val MAE on each dataset, and then the average rank is computed). Ensemble and
Gaussian Ensemble achieve the best performance.
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Figure A2: Performance comparison of the five common regression uncertainty estimation methods on the
six real-world datasets, in terms of average test coverage error and average val interval length rank (the
five methods are ranked 1 - 5 in terms of val interval length on each dataset, and then the average rank is
computed). Ensemble and Gaussian Ensemble achieve the best performance.
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Figure A3: Performance comparison of the five common regression uncertainty estimation methods on the six
real-world datasets, in terms of average val interval length rank and average val MAE rank. Ensemble and
Gaussian Ensemble achieve the best performance.
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Figure A4: Results for the two selective prediction methods based on Gaussian Ensemble, on the six
synthetic datasets. Top: Results in terms of test coverage. Bottom: Results in terms of test prediction rate.
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Figure A5: Results for the two selective prediction methods based on Gaussian Ensemble, on the real-world
datasets. Top: Results in terms of test coverage. Bottom: Results in terms of test prediction rate.
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Figure A6: Performance comparison of the selective prediction methods across all 12 datasets, in terms of
average test coverage error and test prediction rate. Gaussian Ensemble + Selective GMM achieves the
best coverage error, but also has the lowest prediction rate. For these five methods, each improvement in
terms of coverage error also corresponds to a decrease in prediction rate.
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Figure A7: Miscoverage rate α = 0.2: Results in terms of test coverage for four of the common regression
uncertainty estimation methods (Conformal Prediction, Gaussian, Gaussian Ensemble, Quantile Regression),
on four of the synthetic datasets. See Table A13 - Table A16 for other metrics.
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Figure A8: Miscoverage rate α = 0.2: Results in terms of test coverage for four of the common regression
uncertainty estimation methods (Conformal Prediction, Gaussian, Gaussian Ensemble, Quantile Regression),
on five of the real-world datasets. See Table A17 - Table A21 for other metrics.

26



Published in Transactions on Machine Learning Research (09/2023)

te
st

C
ov

er
ag

e

Cells Cells-Tails ChairAngle ChairAngle-
Gap

0.5
0.6
0.7

0.9
1

0.8

Pr
ed

ic
tio

n
R

at
e

(↑
)

Cells Cells-Tails ChairAngle ChairAngle-
Gap

0
0.2
0.4
0.6
0.8

1

Gaussian Gaussian + Selective GMM Gaussian Ensemble Gaussian Ensemble + Selective Ensemble Var

Figure A9: Miscoverage rate α = 0.2: Results for two of the selective prediction methods, on four of the
synthetic datasets. See Table A13 - Table A16 for other metrics.
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Figure A10: Miscoverage rate α = 0.2: Results for two of the selective prediction methods, on five of the
real-world datasets. See Table A17 - Table A21 for other metrics.
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Figure A11: Miscoverage rate α = 0.05: Results in terms of test coverage for four of the common regression
uncertainty estimation methods (Conformal Prediction, Gaussian, Gaussian Ensemble, Quantile Regression),
on four of the synthetic datasets. See Table A22 - Table A25 for other metrics.
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Figure A12: Miscoverage rate α = 0.05: Results in terms of test coverage for four of the common regression
uncertainty estimation methods (Conformal Prediction, Gaussian, Gaussian Ensemble, Quantile Regression),
on five of the real-world datasets. See Table A26 - Table A30 for other metrics.
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Figure A13: Miscoverage rate α = 0.05: Results for two of the selective prediction methods, on four of the
synthetic datasets. See Table A22 - Table A25 for other metrics.

28



Published in Transactions on Machine Learning Research (09/2023)

te
st

C
ov

er
ag

e

Ventricular
Volume

BrainTumour
Pixels

SkinLesion
Pixels

Histology
NucleiPixels

AerialBuilding
Pixels

0.5
0.6
0.7
0.8
0.9

1

Pr
ed

ic
tio

n
R

at
e

(↑
)

Ventricular
Volume

BrainTumour
Pixels

SkinLesion
Pixels

Histology
NucleiPixels

AerialBuilding
Pixels

0
0.2
0.4
0.6
0.8

1

Gaussian Gaussian + Selective GMM Gaussian Ensemble Gaussian Ensemble + Selective Ensemble Var

Figure A14: Miscoverage rate α = 0.05: Results for two of the selective prediction methods, on five of the
real-world datasets. See Table A26 - Table A30 for other metrics.
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Figure A15: Results for the five common regression uncertainty estimation methods (Conformal Prediction, En-
semble, Gaussian, Gaussian Ensemble, Quantile Regression) on the AerialBuildingPixels dataset, and on
two versions with different test sets. For all three datasets, train/val contains images from Austin and Chicago.
For AerialBuildingPixels, test contains images from West Tyrol, Austria. For AerialBuildingPixels-
Kitsap, test instead contains images from Kitsap County, WA. For AerialBuildingPixels-Vienna, test
contains images from Vienna, Austria.
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Figure A16: Using the difference in regression accuracy (MAE) on val and test as a quantitative measure
of distribution shift in each dataset (inspired by Wenzel et al. (2022), extended to our regression setting),
and comparing this to the test coverage performance. The average test coverage error is computed for the
five common regression uncertainty estimation methods. The val/test MAE is for the Conformal Prediction
method (standard direct regression models). Results for the six synthetic datasets. In general, a larger
distribution shift measure corresponds to worse test coverage performance.
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Figure A17: Exactly the same comparison as in Figure A16, but for the six real-world datasets. A larger
distribution shift measure generally corresponds to worse test coverage performance also in this case. The
HistologyNucleiPixels dataset is somewhat of an outlier.
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Table A1: Complete results on the Cells dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Conformal Prediction 4.03121 ± 2.78375 18.8216 ± 11.8302 0.9117 ± 0.00275173 1.0
Ensemble 2.22525 ± 0.471309 12.2881 ± 2.78795 0.8994 ± 0.00689986 1.0
Gaussian 3.61704 ± 1.13624 14.5492 ± 4.44927 0.90286 ± 0.00594629 1.0
Gaussian Ensemble 2.78757 ± 1.16951 17.1285 ± 4.33367 0.90062 ± 0.0027571 1.0
Quantile Regression 3.70405 ± 0.81647 13.8023 ± 2.19085 0.90486 ± 0.006771 1.0
Gaussian + Selective GMM 3.61704 ± 1.13624 14.5492 ± 4.44927 0.905241 ± 0.00448315 0.95216 ± 0.00290558
Gaussian + Selective kNN 3.61704 ± 1.13624 14.5492 ± 4.44927 0.900069 ± 0.00677637 0.94656 ± 0.00470472
Gaussian + Selective Variance 3.61704 ± 1.13624 14.5492 ± 4.44927 0.904839 ± 0.00795449 0.95712 ± 0.00200938
Gaussian Ensemble + Selective GMM 2.78757 ± 1.16951 17.1285 ± 4.33367 0.899999 ± 0.00311328 0.95066 ± 0.0023105
Gaussian Ensemble + Selective Ens Var 2.78757 ± 1.16951 17.1285 ± 4.33367 0.896465 ± 0.0015705 0.95156 ± 0.00215277

Table A2: Complete results on the Cells-Tails dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Conformal Prediction 3.56733 ± 1.0818 14.2128 ± 4.23582 0.55356 ± 0.0299096 1.0
Ensemble 1.83461 ± 0.178937 9.8697 ± 1.6672 0.50078 ± 0.007608 1.0
Gaussian 4.05446 ± 1.33153 15.4321 ± 4.98796 0.54402 ± 0.0347525 1.0
Gaussian Ensemble 2.40691 ± 0.580524 10.9696 ± 1.70051 0.5874 ± 0.0479263 1.0
Quantile Regression 3.32571 ± 1.24578 13.0848 ± 3.54239 0.52222 ± 0.0284102 1.0
Gaussian + Selective GMM 4.05446 ± 1.33153 15.4321 ± 4.98796 0.889825 ± 0.0193021 0.53654 ± 0.0101012
Gaussian + Selective kNN 4.05446 ± 1.33153 15.4321 ± 4.98796 0.859179 ± 0.0255173 0.56692 ± 0.0127107
Gaussian + Selective Variance 4.05446 ± 1.33153 15.4321 ± 4.98796 0.687475 ± 0.0659807 0.6914 ± 0.0651196
Gaussian Ensemble + Selective GMM 2.40691 ± 0.580524 10.9696 ± 1.70051 0.877068 ± 0.0222502 0.53604 ± 0.0125903
Gaussian Ensemble + Selective Ens Var 2.40691 ± 0.580524 10.9696 ± 1.70051 0.660212 ± 0.0325832 0.74512 ± 0.0438128

Table A3: Complete results on the Cells-Gap dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Conformal Prediction 3.67702 ± 1.33587 17.1152 ± 6.49211 0.64002 ± 0.0620287 1.0
Ensemble 2.7261 ± 0.705274 13.4061 ± 2.40513 0.6771 ± 0.0544788 1.0
Gaussian 3.53089 ± 1.0619 15.6396 ± 6.23458 0.66028 ± 0.114703 1.0
Gaussian Ensemble 3.46118 ± 0.95429 18.707 ± 4.13287 0.7066 ± 0.0317638 1.0
Quantile Regression 4.75328 ± 1.73499 18.108 ± 4.21716 0.64488 ± 0.12875 1.0
Gaussian + Selective GMM 3.53089 ± 1.0619 15.6396 ± 6.23458 0.890569 ± 0.00953089 0.49372 ± 0.0025926
Gaussian + Selective kNN 3.53089 ± 1.0619 15.6396 ± 6.23458 0.874032 ± 0.0432364 0.53646 ± 0.0139864
Gaussian + Selective Variance 3.53089 ± 1.0619 15.6396 ± 6.23458 0.652766 ± 0.117192 0.9748 ± 0.000940213
Gaussian Ensemble + Selective GMM 3.46118 ± 0.95429 18.707 ± 4.13287 0.896848 ± 0.0127879 0.49278 ± 0.00192914
Gaussian Ensemble + Selective Ens Var 3.46118 ± 0.95429 18.707 ± 4.13287 0.68326 ± 0.0299799 0.9147 ± 0.0182427

Table A4: Complete results on the ChairAngle dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Conformal Prediction 0.289127 ± 0.081643 1.08752 ± 0.202247 0.905265 ± 0.00339915 1.0
Ensemble 0.189858 ± 0.0548452 0.788401 ± 0.137465 0.909915 ± 0.00399101 1.0
Gaussian 0.376692 ± 0.171928 1.37757 ± 0.382191 0.901577 ± 0.00308472 1.0
Gaussian Ensemble 0.361834 ± 0.165348 1.2044 ± 0.442422 0.910414 ± 0.00316257 1.0
Quantile Regression 0.851253 ± 0.544717 3.19741 ± 1.9751 0.906209 ± 0.00204038 1.0
Gaussian + Selective GMM 0.376692 ± 0.171928 1.37757 ± 0.382191 0.902482 ± 0.00436054 0.972739 ± 0.00191733
Gaussian + Selective kNN 0.376692 ± 0.171928 1.37757 ± 0.382191 0.90222 ± 0.00459694 0.975465 ± 0.00201785
Gaussian + Selective Variance 0.376692 ± 0.171928 1.37757 ± 0.382191 0.904805 ± 0.00765098 0.961782 ± 0.0193133
Gaussian Ensemble + Selective GMM 0.361834 ± 0.165348 1.2044 ± 0.442422 0.9093 ± 0.00297263 0.969033 ± 0.000940447
Gaussian Ensemble + Selective Ens Var 0.361834 ± 0.165348 1.2044 ± 0.442422 0.905905 ± 0.00336481 0.951359 ± 0.00453556
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Table A5: Complete results on the ChairAngle-Tails dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Conformal Prediction 0.358162 ± 0.168257 1.31102 ± 0.531401 0.615804 ± 0.00527695 1.0
Ensemble 0.21931 ± 0.0596705 1.04074 ± 0.245846 0.611706 ± 0.00345611 1.0
Gaussian 0.241214 ± 0.091736 1.09417 ± 0.382907 0.622592 ± 0.00714065 1.0
Gaussian Ensemble 0.13365 ± 0.0189933 0.769172 ± 0.0814039 0.617016 ± 0.0063698 1.0
Quantile Regression 0.820934 ± 0.653268 2.9815 ± 2.15473 0.660953 ± 0.0379624 1.0
Gaussian + Selective GMM 0.241214 ± 0.091736 1.09417 ± 0.382907 0.901946 ± 0.00382993 0.655448 ± 0.001058
Gaussian + Selective kNN 0.241214 ± 0.091736 1.09417 ± 0.382907 0.860311 ± 0.00617031 0.703038 ± 0.00691227
Gaussian + Selective Variance 0.241214 ± 0.091736 1.09417 ± 0.382907 0.647559 ± 0.0360179 0.924383 ± 0.0751205
Gaussian Ensemble + Selective GMM 0.13365 ± 0.0189933 0.769172 ± 0.0814039 0.904807 ± 0.00394199 0.651314 ± 0.0013893
Gaussian Ensemble + Selective Ens Var 0.13365 ± 0.0189933 0.769172 ± 0.0814039 0.751845 ± 0.0131765 0.772401 ± 0.00878839

Table A6: Complete results on the ChairAngle-Gap dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Conformal Prediction 0.35034 ± 0.161819 1.35 ± 0.547089 0.659546 ± 0.00916108 1.0
Ensemble 0.22898 ± 0.0853825 1.1222 ± 0.174147 0.749951 ± 0.0155327 1.0
Gaussian 0.454516 ± 0.280174 2.09212 ± 0.933756 0.69363 ± 0.0345876 1.0
Gaussian Ensemble 0.226352 ± 0.0677413 1.30588 ± 0.136235 0.731065 ± 0.0126216 1.0
Quantile Regression 0.639151 ± 0.296536 3.29137 ± 1.53269 0.695697 ± 0.0413613 1.0
Gaussian + Selective GMM 0.454516 ± 0.280174 2.09212 ± 0.933756 0.91215 ± 0.00604745 0.649372 ± 0.00334919
Gaussian + Selective kNN 0.454516 ± 0.280174 2.09212 ± 0.933756 0.911574 ± 0.00376608 0.673764 ± 0.0113432
Gaussian + Selective Variance 0.454516 ± 0.280174 2.09212 ± 0.933756 0.690436 ± 0.0366025 0.981292 ± 0.0152406
Gaussian Ensemble + Selective GMM 0.226352 ± 0.0677413 1.30588 ± 0.136235 0.905039 ± 0.00229837 0.648624 ± 0.00094348
Gaussian Ensemble + Selective Ens Var 0.226352 ± 0.0677413 1.30588 ± 0.136235 0.794531 ± 0.014876 0.7711 ± 0.0191172

Table A7: Complete results on the AssetWealth dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Conformal Prediction 0.346532 ± 0.00578306 1.5838 ± 0.0318086 0.87136 ± 0.0090944 1.0
Ensemble 0.320002 ± 0.00264202 1.45568 ± 0.0129312 0.87348 ± 0.00598963 1.0
Gaussian 0.367501 ± 0.0416437 1.597 ± 0.207599 0.844966 ± 0.0456831 1.0
Gaussian Ensemble 0.3295 ± 0.00783906 1.42071 ± 0.0485437 0.866162 ± 0.00711672 1.0
Quantile Regression 0.404279 ± 0.0683226 1.58957 ± 0.161689 0.823921 ± 0.0313343 1.0
Gaussian + Selective GMM 0.367501 ± 0.0416437 1.597 ± 0.207599 0.850824 ± 0.047533 0.93838 ± 0.0170443
Gaussian + Selective kNN 0.367501 ± 0.0416437 1.597 ± 0.207599 0.852107 ± 0.0474734 0.933586 ± 0.0203541
Gaussian + Selective Variance 0.367501 ± 0.0416437 1.597 ± 0.207599 0.846981 ± 0.0430247 0.926874 ± 0.0159098
Gaussian Ensemble + Selective GMM 0.3295 ± 0.00783906 1.42071 ± 0.0485437 0.868444 ± 0.00727312 0.937371 ± 0.0138213
Gaussian Ensemble + Selective Ens Var 0.3295 ± 0.00783906 1.42071 ± 0.0485437 0.85047 ± 0.00397082 0.868282 ± 0.0299149

Table A8: Complete results on the VentricularVolume dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Conformal Prediction 11.2471 ± 0.201399 47.4505 ± 1.556 0.603135 ± 0.0125842 1.0
Ensemble 10.2476 ± 0.113707 41.8445 ± 0.750822 0.707367 ± 0.00877743 1.0
Gaussian 12.7238 ± 1.52197 51.566 ± 3.52739 0.730878 ± 0.0619045 1.0
Gaussian Ensemble 10.1141 ± 0.180661 39.9817 ± 1.91308 0.795768 ± 0.0231243 1.0
Quantile Regression 12.4944 ± 0.676265 49.0448 ± 3.33314 0.710972 ± 0.045171 1.0
Gaussian + Selective GMM 12.7238 ± 1.52197 51.566 ± 3.52739 0.752046 ± 0.0529087 0.707994 ± 0.0208741
Gaussian + Selective kNN 12.7238 ± 1.52197 51.566 ± 3.52739 0.735105 ± 0.0612413 0.911599 ± 0.0447475
Gaussian + Selective Variance 12.7238 ± 1.52197 51.566 ± 3.52739 0.747868 ± 0.0569984 0.691693 ± 0.0341016
Gaussian Ensemble + Selective GMM 10.1141 ± 0.180661 39.9817 ± 1.91308 0.798094 ± 0.0166674 0.646865 ± 0.0366201
Gaussian Ensemble + Selective Ens Var 10.1141 ± 0.180661 39.9817 ± 1.91308 0.763412 ± 0.0286772 0.686207 ± 0.0431835

Table A9: Complete results on the BrainTumourPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Conformal Prediction 21.3163 ± 0.45997 93.7169 ± 2.99061 0.885925 ± 0.00395743 1.0
Ensemble 21.1133 ± 0.210209 90.3825 ± 0.825858 0.878183 ± 0.00318872 1.0
Gaussian 21.0625 ± 0.358012 93.6284 ± 2.29916 0.873544 ± 0.00871896 1.0
Gaussian Ensemble 20.5336 ± 0.211421 87.7414 ± 0.818979 0.868426 ± 0.00328047 1.0
Quantile Regression 22.0348 ± 0.697606 94.3249 ± 3.07265 0.879079 ± 0.00380396 1.0
Gaussian + Selective GMM 21.0625 ± 0.358012 93.6284 ± 2.29916 0.883515 ± 0.0138279 0.973576 ± 0.0187252
Gaussian + Selective kNN 21.0625 ± 0.358012 93.6284 ± 2.29916 0.891264 ± 0.00734602 0.947185 ± 0.0178434
Gaussian + Selective Variance 21.0625 ± 0.358012 93.6284 ± 2.29916 0.878666 ± 0.00735197 0.978791 ± 0.00694672
Gaussian Ensemble + Selective GMM 20.5336 ± 0.211421 87.7414 ± 0.818979 0.873824 ± 0.00466519 0.985349 ± 0.00461984
Gaussian Ensemble + Selective Ens Var 20.5336 ± 0.211421 87.7414 ± 0.818979 0.877211 ± 0.00302057 0.975368 ± 0.00323397
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Table A10: Complete results on the SkinLesionPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Conformal Prediction 107.514 ± 1.87464 492.922 ± 14.1865 0.708012 ± 0.00917777 1.0
Ensemble 99.3156 ± 0.997867 353.842 ± 4.73577 0.742098 ± 0.00852236 1.0
Gaussian 105.417 ± 1.15178 535.139 ± 215.446 0.797255 ± 0.0270734 1.0
Gaussian Ensemble 100.639 ± 0.464183 472.14 ± 85.2654 0.822931 ± 0.0134328 1.0
Quantile Regression 113.076 ± 3.20875 405.904 ± 4.75158 0.719788 ± 0.0213826 1.0
Gaussian + Selective GMM 105.417 ± 1.15178 535.139 ± 215.446 0.821515 ± 0.0137705 0.849579 ± 0.0206181
Gaussian + Selective kNN 105.417 ± 1.15178 535.139 ± 215.446 0.813027 ± 0.0306586 0.927047 ± 0.00830718
Gaussian + Selective Variance 105.417 ± 1.15178 535.139 ± 215.446 0.799821 ± 0.0150855 0.77946 ± 0.059169
Gaussian Ensemble + Selective GMM 100.639 ± 0.464183 472.14 ± 85.2654 0.826921 ± 0.00719649 0.839132 ± 0.0108815
Gaussian Ensemble + Selective Ens Var 100.639 ± 0.464183 472.14 ± 85.2654 0.819129 ± 0.00910128 0.782116 ± 0.0109776

Table A11: Complete results on the HistologyNucleiPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Conformal Prediction 217.887 ± 3.71766 993.665 ± 18.3282 0.841288 ± 0.0128314 1.0
Ensemble 197.078 ± 1.99489 853.361 ± 14.1904 0.812704 ± 0.00664074 1.0
Gaussian 211.795 ± 10.0239 1211.83 ± 396.946 0.588796 ± 0.0912794 1.0
Gaussian Ensemble 196.785 ± 2.14454 1108.53 ± 145.034 0.54936 ± 0.05995 1.0
Quantile Regression 227.895 ± 9.37415 914.909 ± 45.995 0.684076 ± 0.0428704 1.0
Gaussian + Selective GMM 211.795 ± 10.0239 1211.83 ± 396.946 0.59554 ± 0.0956742 0.90569 ± 0.0453555
Gaussian + Selective kNN 211.795 ± 10.0239 1211.83 ± 396.946 0.608929 ± 0.0805954 0.846228 ± 0.0482832
Gaussian + Selective Variance 211.795 ± 10.0239 1211.83 ± 396.946 0.588598 ± 0.0913593 0.998765 ± 0.00134954
Gaussian Ensemble + Selective GMM 196.785 ± 2.14454 1108.53 ± 145.034 0.553725 ± 0.0642274 0.882488 ± 0.0156395
Gaussian Ensemble + Selective Ens Var 196.785 ± 2.14454 1108.53 ± 145.034 0.555149 ± 0.0620052 0.954477 ± 0.0256246

Table A12: Complete results on the AerialBuildingPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Conformal Prediction 235.417 ± 7.16096 1038.45 ± 51.5565 0.637584 ± 0.0691102 1.0
Ensemble 199.206 ± 2.76543 798.312 ± 6.80986 0.772494 ± 0.0227288 1.0
Gaussian 217.877 ± 1.72493 929.562 ± 47.6606 0.698766 ± 0.0662263 1.0
Gaussian Ensemble 208.487 ± 1.03581 885.349 ± 27.8584 0.812339 ± 0.0617386 1.0
Quantile Regression 242.284 ± 6.0122 909.191 ± 24.9528 0.763342 ± 0.0902358 1.0
Gaussian + Selective GMM 217.877 ± 1.72493 929.562 ± 47.6606 0.76535 ± 0.0388677 0.652082 ± 0.0990489
Gaussian + Selective kNN 217.877 ± 1.72493 929.562 ± 47.6606 0.651867 ± 0.0771154 0.840103 ± 0.0463989
Gaussian + Selective Variance 217.877 ± 1.72493 929.562 ± 47.6606 0.725714 ± 0.0779575 0.708226 ± 0.103803
Gaussian Ensemble + Selective GMM 208.487 ± 1.03581 885.349 ± 27.8584 0.847101 ± 0.038266 0.686787 ± 0.0278702
Gaussian Ensemble + Selective Ens Var 208.487 ± 1.03581 885.349 ± 27.8584 0.838352 ± 0.0312236 0.571928 ± 0.0402727

Table A13: Miscoverage rate α = 0.2: Results on the Cells dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.80) test Prediction Rate (↑)
Conformal Prediction 4.03121 ± 2.78375 14.042 ± 10.2791 0.811 ± 0.0100485 1.0
Gaussian 3.61704 ± 1.13624 11.544 ± 3.59513 0.808 ± 0.00859046 1.0
Gaussian Ensemble 2.78757 ± 1.16951 13.1298 ± 3.34997 0.80044 ± 0.00316582 1.0
Quantile Regression 4.40758 ± 1.47411 13.3314 ± 4.39511 0.80152 ± 0.00667005 1.0
Gaussian + Selective GMM 3.61704 ± 1.13624 11.544 ± 3.59513 0.811076 ± 0.00507358 0.95216 ± 0.00280043
Gaussian Ensemble + Selective Ens Var 2.78757 ± 1.16951 13.1298 ± 3.34997 0.793124 ± 0.00576659 0.95156 ± 0.00215277

Table A14: Miscoverage rate α = 0.2: Results on the Cells-Tails dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.80) test Prediction Rate (↑)
Conformal Prediction 3.56733 ± 1.0818 11.3841 ± 3.54242 0.48332 ± 0.0337429 1.0
Gaussian 4.05446 ± 1.33153 12.7086 ± 4.39552 0.47106 ± 0.0319074 1.0
Gaussian Ensemble 2.40691 ± 0.580524 8.62187 ± 1.5177 0.4768 ± 0.0461347 1.0
Quantile Regression 4.20398 ± 1.61554 13.1241 ± 4.61204 0.49358 ± 0.0341114 1.0
Gaussian + Selective GMM 4.05446 ± 1.33153 12.7086 ± 4.39552 0.788228 ± 0.0239896 0.5364 ± 0.0100584
Gaussian Ensemble + Selective Ens Var 2.40691 ± 0.580524 8.62187 ± 1.5177 0.567734 ± 0.0270648 0.74512 ± 0.0438128
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Table A15: Miscoverage rate α = 0.2: Results on the ChairAngle dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.80) test Prediction Rate (↑)
Conformal Prediction 0.289127 ± 0.081643 0.872808 ± 0.205426 0.80212 ± 0.00337798 1.0
Gaussian 0.376692 ± 0.171928 1.14193 ± 0.40832 0.806646 ± 0.00565869 1.0
Gaussian Ensemble 0.361834 ± 0.165348 1.01037 ± 0.399644 0.813452 ± 0.00329742 1.0
Quantile Regression 0.648062 ± 0.181932 1.87322 ± 0.428951 0.807127 ± 0.00380433 1.0
Gaussian + Selective GMM 0.376692 ± 0.171928 1.14193 ± 0.40832 0.807801 ± 0.0066405 0.972829 ± 0.0019256
Gaussian Ensemble + Selective Ens Var 0.361834 ± 0.165348 1.01037 ± 0.399644 0.804719 ± 0.00318856 0.951359 ± 0.00453556

Table A16: Miscoverage rate α = 0.2: Results on the ChairAngle-Gap dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.80) test Prediction Rate (↑)
Conformal Prediction 0.35034 ± 0.161819 1.09877 ± 0.497591 0.588472 ± 0.0119766 1.0
Gaussian 0.454516 ± 0.280174 1.69802 ± 0.840083 0.613951 ± 0.0358797 1.0
Gaussian Ensemble 0.226352 ± 0.0677413 0.972076 ± 0.118477 0.6431 ± 0.0136145 1.0
Quantile Regression 0.692597 ± 0.269476 2.29958 ± 0.738934 0.600606 ± 0.0136385 1.0
Gaussian + Selective GMM 0.454516 ± 0.280174 1.69802 ± 0.840083 0.813442 ± 0.00720691 0.650227 ± 0.00138861
Gaussian Ensemble + Selective Ens Var 0.226352 ± 0.0677413 0.972076 ± 0.118477 0.701301 ± 0.0146886 0.7711 ± 0.0191172

Table A17: Miscoverage rate α = 0.2: Results on the VentricularVolume dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.80) test Prediction Rate (↑)
Conformal Prediction 11.2471 ± 0.201399 33.0996 ± 0.991594 0.457053 ± 0.00583106 1.0
Gaussian 12.7238 ± 1.52197 37.3172 ± 4.91536 0.589342 ± 0.0793156 1.0
Gaussian Ensemble 10.1141 ± 0.180661 29.9914 ± 1.12007 0.678527 ± 0.0277009 1.0
Quantile Regression 12.5465 ± 0.941364 35.8073 ± 1.5139 0.537774 ± 0.0444887 1.0
Gaussian + Selective GMM 12.7238 ± 1.52197 37.3172 ± 4.91536 0.609177 ± 0.0682058 0.709875 ± 0.0232873
Gaussian Ensemble + Selective Ens Var 10.1141 ± 0.180661 29.9914 ± 1.12007 0.640078 ± 0.0277429 0.686207 ± 0.0431835

Table A18: Miscoverage rate α = 0.2: Results on the BrainTumourPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.80) test Prediction Rate (↑)
Conformal Prediction 21.3163 ± 0.45997 66.146 ± 2.75637 0.824632 ± 0.0128289 1.0
Gaussian 21.0625 ± 0.358012 64.2423 ± 1.9975 0.798113 ± 0.0133438 1.0
Gaussian Ensemble 20.5336 ± 0.211421 62.5706 ± 0.713494 0.796961 ± 0.00658989 1.0
Quantile Regression 21.9545 ± 0.149787 66.2654 ± 1.33091 0.807646 ± 0.0165337 1.0
Gaussian + Selective GMM 21.0625 ± 0.358012 64.2423 ± 1.9975 0.809477 ± 0.0139729 0.973576 ± 0.0187252
Gaussian Ensemble + Selective Ens Var 20.5336 ± 0.211421 62.5706 ± 0.713494 0.806998 ± 0.00641546 0.975368 ± 0.00323397

Table A19: Miscoverage rate α = 0.2: Results on the SkinLesionPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.80) test Prediction Rate (↑)
Conformal Prediction 107.514 ± 1.87464 275.494 ± 5.60123 0.553254 ± 0.0122434 1.0
Gaussian 105.417 ± 1.15178 395.661 ± 174.897 0.689951 ± 0.0406148 1.0
Gaussian Ensemble 100.639 ± 0.464183 351.961 ± 70.4308 0.715272 ± 0.0278757 1.0
Quantile Regression 106.382 ± 2.70593 251.346 ± 8.67954 0.590792 ± 0.0115523 1.0
Gaussian + Selective GMM 105.417 ± 1.15178 395.661 ± 174.897 0.708767 ± 0.0274691 0.849668 ± 0.0189464
Gaussian Ensemble + Selective Ens Var 100.639 ± 0.464183 351.961 ± 70.4308 0.704273 ± 0.0198608 0.782116 ± 0.0109776

Table A20: Miscoverage rate α = 0.2: Results on the HistologyNucleiPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.80) test Prediction Rate (↑)
Conformal Prediction 217.887 ± 3.71766 688.269 ± 13.6761 0.744155 ± 0.0107073 1.0
Gaussian 211.795 ± 10.0239 902.884 ± 295.983 0.454345 ± 0.0986975 1.0
Gaussian Ensemble 196.785 ± 2.14454 840.287 ± 113.005 0.412528 ± 0.0544736 1.0
Quantile Regression 221.136 ± 9.7918 679.117 ± 30.6895 0.580503 ± 0.0463751 1.0
Gaussian + Selective GMM 211.795 ± 10.0239 902.884 ± 295.983 0.462248 ± 0.105935 0.901985 ± 0.0400294
Gaussian Ensemble + Selective Ens Var 196.785 ± 2.14454 840.287 ± 113.005 0.417977 ± 0.0572495 0.954477 ± 0.0256246

34



Published in Transactions on Machine Learning Research (09/2023)

Table A21: Miscoverage rate α = 0.2: Results on the AerialBuildingPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.80) test Prediction Rate (↑)
Conformal Prediction 235.417 ± 7.16096 685.829 ± 31.3669 0.52437 ± 0.0610316 1.0
Gaussian 217.877 ± 1.72493 685.899 ± 43.1749 0.60129 ± 0.0717427 1.0
Gaussian Ensemble 208.487 ± 1.03581 658.243 ± 27.1206 0.683599 ± 0.0674139 1.0
Quantile Regression 229.243 ± 6.21038 662.104 ± 18.5495 0.635733 ± 0.0350343 1.0
Gaussian + Selective GMM 217.877 ± 1.72493 685.899 ± 43.1749 0.679246 ± 0.0462652 0.65018 ± 0.0999173
Gaussian Ensemble + Selective Ens Var 208.487 ± 1.03581 658.243 ± 27.1206 0.743714 ± 0.0354023 0.571928 ± 0.0402727

Table A22: Miscoverage rate α = 0.05: Results on the Cells dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.95) test Prediction Rate (↑)
Conformal Prediction 4.03121 ± 2.78375 22.3973 ± 12.7194 0.95612 ± 0.00460235 1.0
Gaussian 3.61704 ± 1.13624 17.0459 ± 4.98381 0.95402 ± 0.00275928 1.0
Gaussian Ensemble 2.78757 ± 1.16951 20.5445 ± 5.00176 0.9484 ± 0.00331843 1.0
Quantile Regression 3.5478 ± 1.25834 17.8244 ± 3.57608 0.94858 ± 0.00565346 1.0
Gaussian + Selective GMM 3.61704 ± 1.13624 17.0459 ± 4.98381 0.955558 ± 0.0032579 0.95212 ± 0.00276362
Gaussian Ensemble + Selective Ens Var 2.78757 ± 1.16951 20.5445 ± 5.00176 0.946085 ± 0.00337562 0.95156 ± 0.00215277

Table A23: Miscoverage rate α = 0.05: Results on the Cells-Tails dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.95) test Prediction Rate (↑)
Conformal Prediction 3.56733 ± 1.0818 16.3831 ± 4.80611 0.59048 ± 0.0307226 1.0
Gaussian 4.05446 ± 1.33153 17.5443 ± 5.3978 0.59066 ± 0.0417946 1.0
Gaussian Ensemble 2.40691 ± 0.580524 13.1205 ± 1.81604 0.67218 ± 0.0308246 1.0
Quantile Regression 3.34375 ± 0.642763 14.5539 ± 2.01592 0.5666 ± 0.0295055 1.0
Gaussian + Selective GMM 4.05446 ± 1.33153 17.5443 ± 5.3978 0.941551 ± 0.0164539 0.53636 ± 0.0100057
Gaussian Ensemble + Selective Ens Var 2.40691 ± 0.580524 13.1205 ± 1.81604 0.720221 ± 0.0374625 0.74512 ± 0.0438128

Table A24: Miscoverage rate α = 0.05: Results on the ChairAngle dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.95) test Prediction Rate (↑)
Conformal Prediction 0.289127 ± 0.081643 1.27437 ± 0.18759 0.953087 ± 0.000729425 1.0
Gaussian 0.376692 ± 0.171928 1.59112 ± 0.367248 0.949381 ± 0.00143361 1.0
Gaussian Ensemble 0.361834 ± 0.165348 1.38384 ± 0.481345 0.95633 ± 0.0016841 1.0
Quantile Regression 0.888707 ± 0.472522 4.04185 ± 1.50356 0.951608 ± 0.00184683 1.0
Gaussian + Selective GMM 0.376692 ± 0.171928 1.59112 ± 0.367248 0.949963 ± 0.00265095 0.97208 ± 0.00166628
Gaussian Ensemble + Selective Ens Var 0.361834 ± 0.165348 1.38384 ± 0.481345 0.9541 ± 0.00167267 0.951359 ± 0.00453556

Table A25: Miscoverage rate α = 0.05: Results on the ChairAngle-Gap dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.95) test Prediction Rate (↑)
Conformal Prediction 0.35034 ± 0.161819 1.56264 ± 0.582954 0.697817 ± 0.00918537 1.0
Gaussian 0.454516 ± 0.280174 2.39892 ± 1.02472 0.733595 ± 0.0367327 1.0
Gaussian Ensemble 0.226352 ± 0.0677413 1.59703 ± 0.159795 0.780615 ± 0.0141415 1.0
Quantile Regression 1.43807 ± 0.99796 5.57113 ± 1.71783 0.759929 ± 0.034465 1.0
Gaussian + Selective GMM 0.454516 ± 0.280174 2.39892 ± 1.02472 0.95774 ± 0.00281998 0.64882 ± 0.00276083
Gaussian Ensemble + Selective Ens Var 0.226352 ± 0.0677413 1.59703 ± 0.159795 0.844587 ± 0.0165508 0.7711 ± 0.0191172

Table A26: Miscoverage rate α = 0.05: Results on the VentricularVolume dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.95) test Prediction Rate (↑)
Conformal Prediction 11.2471 ± 0.201399 70.211 ± 1.37665 0.776176 ± 0.00853621 1.0
Gaussian 12.7238 ± 1.52197 67.1562 ± 6.31002 0.837931 ± 0.0396691 1.0
Gaussian Ensemble 10.1141 ± 0.180661 51.9065 ± 3.94789 0.876646 ± 0.0140944 1.0
Quantile Regression 12.0793 ± 0.130032 61.623 ± 3.04835 0.843574 ± 0.0243659 1.0
Gaussian + Selective GMM 12.7238 ± 1.52197 67.1562 ± 6.31002 0.854302 ± 0.0279176 0.710188 ± 0.0225912
Gaussian Ensemble + Selective Ens Var 10.1141 ± 0.180661 51.9065 ± 3.94789 0.855053 ± 0.0125036 0.686207 ± 0.0431835
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Table A27: Miscoverage rate α = 0.05: Results on the BrainTumourPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.95) test Prediction Rate (↑)
Conformal Prediction 21.3163 ± 0.45997 123.719 ± 2.07495 0.921113 ± 0.00123648 1.0
Gaussian 21.0625 ± 0.358012 123.587 ± 3.3168 0.910141 ± 0.00537523 1.0
Gaussian Ensemble 20.5336 ± 0.211421 113.592 ± 1.37398 0.905182 ± 0.00359141 1.0
Quantile Regression 24.6897 ± 2.49388 126.788 ± 7.00165 0.915995 ± 0.00956349 1.0
Gaussian + Selective GMM 21.0625 ± 0.358012 123.587 ± 3.3168 0.919455 ± 0.0105219 0.973672 ± 0.0186442
Gaussian Ensemble + Selective Ens Var 20.5336 ± 0.211421 113.592 ± 1.37398 0.910995 ± 0.00267557 0.975368 ± 0.00323397

Table A28: Miscoverage rate α = 0.05: Results on the SkinLesionPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.95) test Prediction Rate (↑)
Conformal Prediction 107.514 ± 1.87464 845.109 ± 31.2572 0.822753 ± 0.0104666 1.0
Gaussian 105.417 ± 1.15178 691.768 ± 232.071 0.866844 ± 0.0166304 1.0
Gaussian Ensemble 100.639 ± 0.464183 582.719 ± 95.3488 0.881009 ± 0.00686587 1.0
Quantile Regression 112.07 ± 5.13986 627.938 ± 68.3371 0.827977 ± 0.017595 1.0
Gaussian + Selective GMM 105.417 ± 1.15178 691.768 ± 232.071 0.889891 ± 0.00940058 0.849225 ± 0.0194809
Gaussian Ensemble + Selective Ens Var 100.639 ± 0.464183 582.719 ± 95.3488 0.881749 ± 0.00534917 0.782116 ± 0.0109776

Table A29: Miscoverage rate α = 0.05: Results on the HistologyNucleiPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.95) test Prediction Rate (↑)
Conformal Prediction 217.887 ± 3.71766 1282.78 ± 25.9915 0.896603 ± 0.0113207 1.0
Gaussian 211.795 ± 10.0239 1491.62 ± 472.378 0.680018 ± 0.0860417 1.0
Gaussian Ensemble 196.785 ± 2.14454 1358.12 ± 174.189 0.66749 ± 0.0522544 1.0
Quantile Regression 251.562 ± 12.244 1191.96 ± 65.3122 0.754566 ± 0.0379023 1.0
Gaussian + Selective GMM 211.795 ± 10.0239 1491.62 ± 472.378 0.68897 ± 0.0895173 0.901191 ± 0.0405698
Gaussian Ensemble + Selective Ens Var 196.785 ± 2.14454 1358.12 ± 174.189 0.673945 ± 0.0533738 0.954477 ± 0.0256246

Table A30: Miscoverage rate α = 0.05: Results on the AerialBuildingPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.95) test Prediction Rate (↑)
Conformal Prediction 235.417 ± 7.16096 1474.93 ± 53.6301 0.731414 ± 0.070291 1.0
Gaussian 217.877 ± 1.72493 1181.55 ± 41.5859 0.773522 ± 0.0548329 1.0
Gaussian Ensemble 208.487 ± 1.03581 1108.87 ± 21.3551 0.88874 ± 0.0490213 1.0
Quantile Regression 294.181 ± 19.9268 1281.37 ± 51.1001 0.888175 ± 0.028968 1.0
Gaussian + Selective GMM 217.877 ± 1.72493 1181.55 ± 41.5859 0.831501 ± 0.0374173 0.650797 ± 0.0987431
Gaussian Ensemble + Selective Ens Var 208.487 ± 1.03581 1108.87 ± 21.3551 0.899838 ± 0.0263409 0.571928 ± 0.0402727

Table A31: Method variation results on the Cells dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Gaussian + Selective GMM 3.61704 ± 1.13624 14.5492 ± 4.44927 0.905241 ± 0.00448315 0.95216 ± 0.00290558
Gaussian + Selective GMM, k = 2 3.61704 ± 1.13624 14.5492 ± 4.44927 0.9044 ± 0.00481955 0.952 ± 0.00270259
Gaussian + Selective GMM, k = 8 3.61704 ± 1.13624 14.5492 ± 4.44927 0.904928 ± 0.00469093 0.9528 ± 0.00331662
Gaussian + Selective GMM, Spectral Norm 4.80289 ± 1.89759 18.5596 ± 9.13391 0.908 ± 0.00703097 0.95118 ± 0.00220672
Gaussian + Selective kNN 3.61704 ± 1.13624 14.5492 ± 4.44927 0.900069 ± 0.00677637 0.94656 ± 0.00470472
Gaussian + Selective kNN, k = 5 3.61704 ± 1.13624 14.5492 ± 4.44927 0.900146 ± 0.00671325 0.94736 ± 0.00395049
Gaussian + Selective kNN, k = 20 3.61704 ± 1.13624 14.5492 ± 4.44927 0.900048 ± 0.00691667 0.94624 ± 0.00248564
Gaussian + Selective kNN, L2 3.61704 ± 1.13624 14.5492 ± 4.44927 0.906295 ± 0.00579854 0.95166 ± 0.00422734

Table A32: Method variation results on the Cells-Tails dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Gaussian + Selective GMM 4.05446 ± 1.33153 15.4321 ± 4.98796 0.889825 ± 0.0193021 0.53654 ± 0.0101012
Gaussian + Selective GMM, k = 2 4.05446 ± 1.33153 15.4321 ± 4.98796 0.891933 ± 0.0175265 0.525 ± 0.00829409
Gaussian + Selective GMM, k = 8 4.05446 ± 1.33153 15.4321 ± 4.98796 0.893648 ± 0.0182098 0.53516 ± 0.00975635
Gaussian + Selective GMM, Spectral Norm 4.91114 ± 2.46961 17.3945 ± 7.3177 0.881351 ± 0.021587 0.5331 ± 0.0157885
Gaussian + Selective kNN 4.05446 ± 1.33153 15.4321 ± 4.98796 0.859179 ± 0.0255173 0.56692 ± 0.0127107
Gaussian + Selective kNN, k = 5 4.05446 ± 1.33153 15.4321 ± 4.98796 0.855387 ± 0.0261636 0.57206 ± 0.0129226
Gaussian + Selective kNN, k = 20 4.05446 ± 1.33153 15.4321 ± 4.98796 0.862429 ± 0.0264602 0.56236 ± 0.0122017
Gaussian + Selective kNN, L2 4.05446 ± 1.33153 15.4321 ± 4.98796 0.898932 ± 0.00921808 0.51486 ± 0.00474662
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Table A33: Method variation results on the Cells-Gap dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Gaussian + Selective GMM 3.53089 ± 1.0619 15.6396 ± 6.23458 0.890569 ± 0.00953089 0.49372 ± 0.0025926
Gaussian + Selective GMM, k = 2 3.53089 ± 1.0619 15.6396 ± 6.23458 0.892265 ± 0.00867262 0.48902 ± 0.00420828
Gaussian + Selective GMM, k = 8 3.53089 ± 1.0619 15.6396 ± 6.23458 0.88967 ± 0.0111239 0.50196 ± 0.00492041
Gaussian + Selective GMM, Spectral Norm 2.81679 ± 0.42988 12.194 ± 1.10907 0.883644 ± 0.0167566 0.4991 ± 0.00761236
Gaussian + Selective kNN 3.53089 ± 1.0619 15.6396 ± 6.23458 0.874032 ± 0.0432364 0.53646 ± 0.0139864
Gaussian + Selective kNN, k = 5 3.53089 ± 1.0619 15.6396 ± 6.23458 0.874822 ± 0.0424219 0.5368 ± 0.0137332
Gaussian + Selective kNN, k = 20 3.53089 ± 1.0619 15.6396 ± 6.23458 0.873876 ± 0.0443446 0.536 ± 0.014724
Gaussian + Selective kNN, L2 3.53089 ± 1.0619 15.6396 ± 6.23458 0.887052 ± 0.0144573 0.49576 ± 0.00474578

Table A34: Method variation results on the ChairAngle dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Gaussian + Selective GMM 0.376692 ± 0.171928 1.37757 ± 0.382191 0.902482 ± 0.00436054 0.972739 ± 0.00191733
Gaussian + Selective GMM, k = 2 0.376692 ± 0.171928 1.37757 ± 0.382191 0.902972 ± 0.00540708 0.96392 ± 0.00121759
Gaussian + Selective GMM, k = 8 0.376692 ± 0.171928 1.37757 ± 0.382191 0.901822 ± 0.00328732 0.981238 ± 0.00113892
Gaussian + Selective GMM, Spectral Norm 0.516487 ± 0.227015 1.82929 ± 0.809339 0.903828 ± 0.00534803 0.970993 ± 0.000466666
Gaussian + Selective kNN 0.376692 ± 0.171928 1.37757 ± 0.382191 0.90222 ± 0.00459694 0.975465 ± 0.00201785
Gaussian + Selective kNN, k = 5 0.376692 ± 0.171928 1.37757 ± 0.382191 0.902561 ± 0.00342563 0.983804 ± 0.00152586
Gaussian + Selective kNN, k = 20 0.376692 ± 0.171928 1.37757 ± 0.382191 0.902137 ± 0.00457917 0.966592 ± 0.00129222
Gaussian + Selective kNN, L2 0.376692 ± 0.171928 1.37757 ± 0.382191 0.903183 ± 0.00504343 0.977247 ± 0.00149241

Table A35: Method variation results on the ChairAngle-Tails dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Gaussian + Selective GMM 0.241214 ± 0.091736 1.09417 ± 0.382907 0.901946 ± 0.00382993 0.655448 ± 0.001058
Gaussian + Selective GMM, k = 2 0.241214 ± 0.091736 1.09417 ± 0.382907 0.903353 ± 0.00471599 0.645452 ± 0.00155062
Gaussian + Selective GMM, k = 8 0.241214 ± 0.091736 1.09417 ± 0.382907 0.902103 ± 0.00382668 0.660472 ± 0.00115112
Gaussian + Selective GMM, Spectral Norm 0.375118 ± 0.24509 1.24343 ± 0.611561 0.910147 ± 0.00315697 0.65518 ± 0.00176257
Gaussian + Selective kNN 0.241214 ± 0.091736 1.09417 ± 0.382907 0.860311 ± 0.00617031 0.703038 ± 0.00691227
Gaussian + Selective kNN, k = 5 0.241214 ± 0.091736 1.09417 ± 0.382907 0.88625 ± 0.00498864 0.683742 ± 0.00547083
Gaussian + Selective kNN, k = 20 0.241214 ± 0.091736 1.09417 ± 0.382907 0.809551 ± 0.00764886 0.743287 ± 0.0107676
Gaussian + Selective kNN, L2 0.241214 ± 0.091736 1.09417 ± 0.382907 0.89682 ± 0.00698641 0.662076 ± 0.00289246

Table A36: Method variation results on the ChairAngle-Gap dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Gaussian + Selective GMM 0.454516 ± 0.280174 2.09212 ± 0.933756 0.91215 ± 0.00604745 0.649372 ± 0.00334919
Gaussian + Selective GMM, k = 2 0.454516 ± 0.280174 2.09212 ± 0.933756 0.912708 ± 0.00541793 0.642138 ± 0.00143869
Gaussian + Selective GMM, k = 8 0.454516 ± 0.280174 2.09212 ± 0.933756 0.911374 ± 0.00475979 0.654824 ± 0.00368979
Gaussian + Selective GMM, Spectral Norm 0.294511 ± 0.0861797 1.19904 ± 0.193646 0.910836 ± 0.00442911 0.649996 ± 0.00233428
Gaussian + Selective kNN 0.454516 ± 0.280174 2.09212 ± 0.933756 0.911574 ± 0.00376608 0.673764 ± 0.0113432
Gaussian + Selective kNN, k = 5 0.454516 ± 0.280174 2.09212 ± 0.933756 0.91224 ± 0.00426519 0.670646 ± 0.00691764
Gaussian + Selective kNN, k = 20 0.454516 ± 0.280174 2.09212 ± 0.933756 0.907543 ± 0.00204724 0.680107 ± 0.0162927
Gaussian + Selective kNN, L2 0.454516 ± 0.280174 2.09212 ± 0.933756 0.913383 ± 0.00539352 0.658744 ± 0.00274677

Table A37: Method variation results on the AssetWealth dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Gaussian + Selective GMM 0.367501 ± 0.0416437 1.597 ± 0.207599 0.850824 ± 0.047533 0.93838 ± 0.0170443
Gaussian + Selective GMM, k = 2 0.367501 ± 0.0416437 1.597 ± 0.207599 0.850232 ± 0.0469534 0.933687 ± 0.0176348
Gaussian + Selective GMM, k = 8 0.367501 ± 0.0416437 1.597 ± 0.207599 0.85067 ± 0.0456954 0.932879 ± 0.0102523
Gaussian + Selective GMM, Spectral Norm 0.354647 ± 0.00973911 1.55594 ± 0.0421589 0.872742 ± 0.0250168 0.941812 ± 0.0101895
Gaussian + Selective kNN 0.367501 ± 0.0416437 1.597 ± 0.207599 0.852107 ± 0.0474734 0.933586 ± 0.0203541
Gaussian + Selective kNN, k = 5 0.367501 ± 0.0416437 1.597 ± 0.207599 0.85256 ± 0.0469571 0.933232 ± 0.02149
Gaussian + Selective kNN, k = 20 0.367501 ± 0.0416437 1.597 ± 0.207599 0.851914 ± 0.0460655 0.933636 ± 0.0200087
Gaussian + Selective kNN, L2 0.367501 ± 0.0416437 1.597 ± 0.207599 0.853365 ± 0.0410864 0.897149 ± 0.0162693

Table A38: Method variation results on the VentricularVolume dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Gaussian + Selective GMM 12.7238 ± 1.52197 51.566 ± 3.52739 0.752046 ± 0.0529087 0.707994 ± 0.0208741
Gaussian + Selective GMM, k = 2 12.7238 ± 1.52197 51.566 ± 3.52739 0.745271 ± 0.0582068 0.790752 ± 0.0307666
Gaussian + Selective GMM, k = 8 12.7238 ± 1.52197 51.566 ± 3.52739 0.747625 ± 0.0584117 0.656583 ± 0.0258853
Gaussian + Selective GMM, Spectral Norm 11.6311 ± 0.483357 45.5475 ± 0.747647 0.734907 ± 0.00853342 0.719279 ± 0.0147984
Gaussian + Selective kNN 12.7238 ± 1.52197 51.566 ± 3.52739 0.735105 ± 0.0612413 0.911599 ± 0.0447475
Gaussian + Selective kNN, k = 5 12.7238 ± 1.52197 51.566 ± 3.52739 0.735857 ± 0.0604531 0.916614 ± 0.0419073
Gaussian + Selective kNN, k = 20 12.7238 ± 1.52197 51.566 ± 3.52739 0.734752 ± 0.0616982 0.909404 ± 0.0469634
Gaussian + Selective kNN, L2 12.7238 ± 1.52197 51.566 ± 3.52739 0.740812 ± 0.049802 0.740439 ± 0.0222073
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Table A39: Method variation results on the BrainTumourPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Gaussian + Selective GMM 21.0625 ± 0.358012 93.6284 ± 2.29916 0.883515 ± 0.0138279 0.973576 ± 0.0187252
Gaussian + Selective GMM, k = 2 21.0625 ± 0.358012 93.6284 ± 2.29916 0.881874 ± 0.0118346 0.977863 ± 0.0145103
Gaussian + Selective GMM, k = 8 21.0625 ± 0.358012 93.6284 ± 2.29916 0.880823 ± 0.01273 0.973417 ± 0.01856
Gaussian + Selective GMM, Spectral Norm 22.0729 ± 1.25273 95.0605 ± 3.40124 0.890506 ± 0.0112498 0.9738 ± 0.00857087
Gaussian + Selective kNN 21.0625 ± 0.358012 93.6284 ± 2.29916 0.891264 ± 0.00734602 0.947185 ± 0.0178434
Gaussian + Selective kNN, k = 5 21.0625 ± 0.358012 93.6284 ± 2.29916 0.891103 ± 0.00680399 0.949392 ± 0.0173229
Gaussian + Selective kNN, k = 20 21.0625 ± 0.358012 93.6284 ± 2.29916 0.891759 ± 0.00804523 0.94453 ± 0.0188456
Gaussian + Selective kNN, L2 21.0625 ± 0.358012 93.6284 ± 2.29916 0.879639 ± 0.0084247 0.981862 ± 0.0068585

Table A40: Method variation results on the SkinLesionPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Gaussian + Selective GMM 105.417 ± 1.15178 535.139 ± 215.446 0.821515 ± 0.0137705 0.849579 ± 0.0206181
Gaussian + Selective GMM, k = 2 105.417 ± 1.15178 535.139 ± 215.446 0.825054 ± 0.0122698 0.844799 ± 0.0191092
Gaussian + Selective GMM, k = 8 105.417 ± 1.15178 535.139 ± 215.446 0.815696 ± 0.010454 0.862683 ± 0.0259293
Gaussian + Selective GMM, Spectral Norm 107.531 ± 2.11824 607.435 ± 407.758 0.821797 ± 0.0350093 0.837273 ± 0.0205022
Gaussian + Selective kNN 105.417 ± 1.15178 535.139 ± 215.446 0.813027 ± 0.0306586 0.927047 ± 0.00830718
Gaussian + Selective kNN, k = 5 105.417 ± 1.15178 535.139 ± 215.446 0.812763 ± 0.0309198 0.928375 ± 0.0100103
Gaussian + Selective kNN, k = 20 105.417 ± 1.15178 535.139 ± 215.446 0.812419 ± 0.0306294 0.929172 ± 0.0109976
Gaussian + Selective kNN, L2 105.417 ± 1.15178 535.139 ± 215.446 0.808667 ± 0.0112832 0.831784 ± 0.0181658

Table A41: Method variation results on the HistologyNucleiPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Gaussian + Selective GMM 211.795 ± 10.0239 1211.83 ± 396.946 0.59554 ± 0.0956742 0.90569 ± 0.0453555
Gaussian + Selective GMM, k = 2 211.795 ± 10.0239 1211.83 ± 396.946 0.597998 ± 0.094508 0.912836 ± 0.0323147
Gaussian + Selective GMM, k = 8 211.795 ± 10.0239 1211.83 ± 396.946 0.595718 ± 0.0973458 0.943449 ± 0.0409511
Gaussian + Selective GMM, Spectral Norm 206.492 ± 7.82601 896.779 ± 61.4921 0.65672 ± 0.0824111 0.855668 ± 0.0632114
Gaussian + Selective kNN 211.795 ± 10.0239 1211.83 ± 396.946 0.608929 ± 0.0805954 0.846228 ± 0.0482832
Gaussian + Selective kNN, k = 5 211.795 ± 10.0239 1211.83 ± 396.946 0.610025 ± 0.0809455 0.842258 ± 0.046231
Gaussian + Selective kNN, k = 20 211.795 ± 10.0239 1211.83 ± 396.946 0.607876 ± 0.0817183 0.858491 ± 0.0496696
Gaussian + Selective kNN, L2 211.795 ± 10.0239 1211.83 ± 396.946 0.588514 ± 0.0914286 0.975562 ± 0.0190356

Table A42: Method variation results on the AerialBuildingPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Gaussian + Selective GMM 217.877 ± 1.72493 929.562 ± 47.6606 0.76535 ± 0.0388677 0.652082 ± 0.0990489
Gaussian + Selective GMM, k = 2 217.877 ± 1.72493 929.562 ± 47.6606 0.751721 ± 0.0454772 0.634602 ± 0.122618
Gaussian + Selective GMM, k = 8 217.877 ± 1.72493 929.562 ± 47.6606 0.850213 ± 0.025791 0.617738 ± 0.0879951
Gaussian + Selective GMM, Spectral Norm 220.763 ± 7.23119 1014.77 ± 164.155 0.817517 ± 0.0505544 0.638149 ± 0.046255
Gaussian + Selective kNN 217.877 ± 1.72493 929.562 ± 47.6606 0.651867 ± 0.0771154 0.840103 ± 0.0463989
Gaussian + Selective kNN, k = 5 217.877 ± 1.72493 929.562 ± 47.6606 0.654256 ± 0.0771566 0.846067 ± 0.0456245
Gaussian + Selective kNN, k = 20 217.877 ± 1.72493 929.562 ± 47.6606 0.647779 ± 0.0795474 0.832596 ± 0.0542738
Gaussian + Selective kNN, L2 217.877 ± 1.72493 929.562 ± 47.6606 0.815075 ± 0.0278439 0.641851 ± 0.11347
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