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Abstract

Accurate, high-resolution ocean forecasting is crucial for maritime operations and
environmental monitoring. While traditional numerical models are capable of
producing sub-daily, eddy-resolving forecasts, they are computationally intensive
and face challenges in maintaining accuracy at fine spatial and temporal scales. In
contrast, recent data-driven approaches offer improved computational efficiency
and emerging potential, yet typically operate at daily resolution and struggle with
sub-daily predictions due to error accumulation over time. We introduce FuXi-
Ocean, the first data-driven global ocean forecasting model achieving six-hourly
predictions at eddy-resolving 1/12◦ spatial resolution, reaching depths of up to
1500 meters. The model architecture integrates a context-aware feature extraction
module with a predictive network employing stacked attention blocks. The core
innovation is the Mixture-of-Time (MoT) module, which adaptively integrates
predictions from multiple temporal contexts by learning variable-specific reliability
, mitigating cumulative errors in sequential forecasting. Through comprehensive
experimental evaluation, FuXi-Ocean demonstrates superior skill in predicting key
variables, including temperature, salinity, and currents, across multiple depths.

1 Introduction

Ocean forecasting systems play a vital role in maritime operations, providing critical information
for navigation, search and rescue, fisheries management, and offshore energy production. These
applications require increasingly accurate predictions at finer temporal and spatial resolution to
capture rapidly evolving oceanic phenomena. For instance, high-resolution forecasts of ocean
currents are indispensable for maritime search and rescue and oil spill tracking, where accurate
backtracking and source identification are critical [41]. Despite notable advances in numerical
modeling and computational capacity, achieving both high temporal resolution and global coverage
remains challenging [16, 13].

Operational ocean forecasting traditionally relies on physics-based numerical models that solve the
governing equations of ocean dynamics [15]. While based on well-established physical laws, these
models are computationally expensive, particularly when resolving mesoscale eddies, which require
grid resolutions of 1/12◦ or finer. Even after decades of development, ocean general circulation
models (OGCMs) still exhibit substantial uncertainties, due to numerical discretization errors [1] and
uncertainties in parameterizing unresolved subgrid processes [34].
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Recently, deep learning approaches emerge as promising alternatives to traditional OGCMs. Studies
[45, 43, 46, 2, 11] demonstrate that such models can achieve comparable or even superior accuracy at
daily temporal resolution compared to operational numerical systems, and their operational efficiency
can be improved by a thousand times. However, extending these models to sub-daily resolutions
presents unique challenges. Ocean variables exhibit diverse temporal dynamics that vary significantly
across depths and spatial regions. Surface variables, such as sea surface temperature, often follow
pronounced diurnal cycles similar to atmospheric variables, whereas deeper ocean currents evolve
on considerably slower timescales. Unlike atmospheric forecasting, which is dominated by high-
frequency variability, ocean prediction must accommodate a broad spectrum of temporal behaviors,
from fast-changing surface processes to slowly evolving deep-ocean processes. A key limitation
of existing deep learning-based ocean forecasting models lies in their predominant focus on daily
forecasts, which restricts their ability to adaptively model variable-specific temporal dynamics at
sub-daily intervals. Lacking mechanisms to adaptively process temporal information across multiple
timescales, these models often struggle with the complexity of high-frequency sub-daily predictions.
Moreover, designing effective sub-daily models requires architectures capable of learning efficiently
from limited historical data while avoiding overfitting to spurious correlations.

In this work, we present FuXi-Ocean, the first deep learning-based global ocean forecasting model
to achieve six-hour temporal resolution at eddy-resolving 1/12◦ spatial resolution. Our approach
explicitly addresses the challenges of sub-daily ocean prediction through three key innovations:
First, we design an autoregressive architecture specifically tailored to capture multi-scale temporal
dependencies of different oceanic variables across an unprecedented depth range (0-1500 m). Unlike
previous models that treat all variables uniformly, our model adaptively learns temporal context
appropriate for each variable and region, effectively distinguishing between fast-evolving surface
processes (e.g., diurnal warming) and slowly varying deep-ocean dynamics. Second, we introduce
the Mixture-of-Time (MoT) module that adaptively integrates predictions from multiple temporal
windows based on their empirical reliability for each variable. This mechanism enables the model
to select the most informative temporal context, thereby mitigating the accumulation of forecast
errors typically encountered in sequential prediction tasks. Third, we demonstrate remarkable data
efficiency, achieving state-of-the-art performance with only 9 years of training datasignificantly
less than required by comparable models. This efficiency stems from our architecture’s ability to
effectively leverage physical constraints and spatial coherence in the learning process. Our key
contributions are as follows:

• We propose FuXi-Ocean, the first data-driven global ocean forecasting model to achieve
six-hour temporal resolution, 1/12◦ spatial resolution, and 0-1500 m depth coverage.

• We introduce the Mixture-of-Time (MoT) module, which adaptively integrates variable-
specific temporal dependencies to reduce cumulative errors in sequential prediction.

• We validate FuXi-Ocean with reanalysis and observational datasets, demonstrating superior
performance over traditional numerical forecasting models at sub-daily intervals.

2 Related Work

2.1 Numerical Models

Ocean forecasting traditionally relies on OGCMs that solve fundamental physical equations governing
ocean dynamics. State-of-the-art operational systems, such as the HYbrid Coordinate Ocean Model
(HYCOM) [8, 3], Ocean Physical System (PSY4) [27], Global Ice Ocean Prediction System (GIOPS)
[42], Forecast Ocean Assimilation Model (FOAM) [5], BLUElinK OceanMAPS (BLK) [40], Nucleus
for European Modelling of the Ocean (NEMO) [19], Modular Ocean Model (MOM) [17], Real-Time
Ocean Forecast System (RTOFS) [14] and GLORY12 [22], make significant advances in global ocean
prediction capabilities.

Despite their solid theoretical foundations, these models face persistent challenges. The computational
cost increases dramatically with resolution, making global simulations at eddy-resolving scales
particularly expensive [36]. Additionally, uncertainties in parameterizing unresolved processes, such
as vertical mixing and air-sea interactions, introduce systematic model biases [44, 21]. The inherent
chaotic nature of ocean systems further complicates forecasting, as small errors in initial conditions
can rapidly amplify through nonlinear interactions. These limitations become particularly acute for
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high-frequency predictions, where sub-daily forecasts reveal the full spectrum of model deficiencies
that might otherwise be obscured in daily averages.

2.2 Data-Driven Deep Learning Models

Recent advances in deep learning introduce promising new approaches for ocean forecasting and
successfully applied to the global medium-range forecasts [24, 9, 26, 4, 33, 6, 37].At present, deep
learning based ocean forecasting technology is developing rapidly and can predict ocean variables
such as satellite sea surface temperature, sea surface height, wave height, temperature, salinity, U and
V [47, 38], as well as seasonal or interannual ocean phenomena such as Indian Ocean Dipole (IOD)
and ElNiño Southern Oscillation (ENSO) [20, 48, 49]. Wang et al. [43] developed "XiHe", a global
forecasting model based on the Swin-Transformer architecture, incorporating specialized ocean-land
mask mechanisms. Yang et al. [46] introduced "Langya", which mitigates cumulative forecast errors
by employing a Time Embedding module, enabling forecasts for up to 7 days without iterative
steps. Both models achieve state-of-the-art performance for daily predictions at 1/12◦ resolution.
In addition, Cui et al. [11] and Xiong et al. [45] also experimented with autoregressive forecasting
architectures and achieved good performance.

Despite these advances, existing data-driven ocean forecasting approaches face three key limitations
that constrain their practical utility. First, temporal resolution remains limited to daily intervals.
Ocean parameters evolve on markedly different timescales, with surface temperatures exhibiting
pronounced diurnal cycles while deep currents evolving more slowly over extended time periods.
Without mechanisms to adaptively learn these multiscale temporal dependencies, current models are
fundamentally limited in their ability to capture the full spectrum of ocean dynamics at sub-daily
resolutions. Second, vertical coverage in existing models remains severely constrained, typically not
extending beyond 700 m depth. The thermocline structure and deep water mass properties below this
depth play crucial roles in energy transfer and climate dynamics, yet remain largely unaddressed in
current data-driven frameworks. Third, most current approaches rely heavily on atmospheric forcing
as input variables, creating additional computational overhead and external data dependencies.

3 Method

This section details our methodology for high-frequency ocean forecasting. We first describe our data
preparation approach, then present the architecture of FuXi-Ocean, including our novel Mixture-of-
Time module for adaptive temporal modeling, and finally outline our training strategy.

3.1 Problem Formulation

Ocean forecasting requires processing high-dimensional spatiotemporal data that captures the
complex dynamics of global marine systems. FuXi-Ocean addresses the task of predicting fu-
ture oceanic states from sequential historical observations with high spatial and temporal preci-
sion. Formally, given a sequence of historical observations spanning N consecutive time points
{Xt−N+1,Xt−N+2, . . . ,Xt} ∈ RN×C×H×W , we aim to predict the state at the subsequent time step
Xt+1 ∈ RC×H×W . Here, H = 2160 and W = 4320 represent the spatial dimensions of our global
grid at 1/12◦ resolution, providing eddy-resolving capability essential for capturing mesoscale ocean
dynamics.

We focus on five fundamental ocean state variables that collectively characterize the physical state of
the global ocean: temperature (T), salinity (S), zonal and meridional components of ocean currents
(U and V), and sea surface height (SSH). While SSH is inherently a surface variable, the remaining
four variables exhibit substantial vertical variability that necessitates prediction across multiple depth
levels. We discretize the water column into 20 strategically selected depth levels from the surface
(0m) to the deeper ocean (1500 m): 0, 2, 4, 6, 10, 20, 30, 40, 50, 60, 70, 80, 100, 125, 150, 200, 300,
500, 1000, and 1500 m. This vertical resolution is particularly dense near the surface to accurately
capture upper-ocean dynamics that strongly influence air-sea interactions. Consequently, our input
and output tensors comprise C = 81 channels (4 variables × 20 depth levels + SSH).

The temporal resolution of our data is set at 6-hour intervals, aligning with operational oceanic
forecasting standards and balancing computational feasibility with information density. We empiri-
cally determine that N = 4 consecutive time steps (spanning 24 hours) provides sufficient historical
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context to accurately capture diurnal cycles and inertial oscillations while maintaining computational
efficiency. To preserve physical coherence in predictions, we apply a land-sea mask to all variables,
ensuring the model only processes and predicts values for ocean grid points.
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Figure 1: Architecture of our ocean forecasting framework. Our model processes sequential ocean
states Xt−3 through Xt to predict X̂

t+1
. (a) The main pipeline consists of a shared encoder E that

transforms input states into latent representations, modulated by spatiotemporal features FS from
network M. The fused representations feed into the prediction module, whose outputs are processed
by decoders D with skip connections. (b) The prediction module employs stacked attention blocks
with adaptive layer normalization (AdaLN) and feed-forward networks (FFN), capturing complex
temporal dynamics. (c) The Mixture-of-Time (MoT) module performs channel-wise selection across
the four decoder outputs from different temporal skip connections. For each channel, MoT identifies
the top-K temporal dependencies using matrix V (derived from spatially-averaged MAE metrics and
softmax) and computes the optimal weighted average to synthesize the final prediction X̂

t+1
.

3.2 Model Architecture

FuXi-Ocean employs an autoregressive architecture designed to capture the multiscale temporal
dynamics of oceanic variables. The model comprises three primary components: a feature extraction
module that encodes multi-temporal inputs, a prediction module that captures temporal evolution
patterns, and a feature remapping module that reconstructs the target variables. Figure 1 provides an
overview of the model architecture.

3.2.1 Feature Extraction

Ocean forecasting requires robust feature representations that capture both spatial dependencies and
temporal correlations. We design a feature extraction pipeline that combines context-aware encoding
with efficient feature fusion, shown in Fig. 1(a).

Our design employs a shared encoder E for patch embedding. This encoder uses convolutional
layers with matched kernel size and stride for spatial downsampling, followed by layer normalization.
This approach balances computational efficiency with representation power when processing global
ocean data. To leverage spatiotemporal context, we implement a prior information network M that
processes:

FS = M(S) (1)
where S contains temporal information (diurnal, seasonal patterns) and spatial data (coordinates,
bathymetry). The network M uses sinusoidal positional encodings for temporal components and
learnable embeddings for spatial coordinates. We then modulate the encoder weights using these
contextual features through:

Ft = E(Xt,FS) = Norm(Conv(Xt,W � FS)) (2)
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where W represents the learnable convolution parameters and � denotes element-wise multiplication.
This modulation enhances the encoder’s sensitivity to region-specific patterns, such as boundary
currents or seasonal mixed layer dynamics. The encoder processes each input time step t − i

(i ∈ {0, 1, 2, 3}) to produce feature tensors Ft−i ∈ RC′×H′×W ′
. Here, C ′ is the feature dimension

while H ′ and W ′ represent the downsampled spatial dimensions.

Our feature fusion module concatenates these tensors along the channel dimension, preserving
their temporal characteristics. We then apply 1 × 1 convolutions with normalization layers to
integrate information while maintaining spatial coherence. This fusion approach enables the model
to capture complex spatiotemporal patterns essential for accurate forecasting, without compromising
computational efficiency.

3.2.2 Prediction Module

Building upon the extracted features, our prediction process involves a sequence of specialized
components designed to model oceanic dynamics across multiple temporal scales, as illustrated in
Figure 1(b).

The prediction module processes the fused representations to model the nonlinear evolution of
oceanic states, which consists of stacked attention blocks[28] paired with feed-forward networks.
Each attention block captures dependencies across spatiotemporal features, while adaptive layer
normalization (AdaLN)[18] incorporates contextual information FS to modulate normalization
parameters. This design allows the model to focus selectively on relevant oceanic patterns while
maintaining computational efficiency.

For feature reconstruction, we employ a shared decoder D that transforms latent representations
back into the physical variable space. The decoder consists of transposed convolutional layers with
normalization operations. We establish skip connections between encoder features and corresponding
decoder layers, preserving fine-grained spatial details often lost during predictiona critical factor
when modeling mesoscale ocean dynamics.

3.2.3 Mixture-of-Time Module

A key innovation in our framework is the Mixture-of-Time (MoT) module, illustrated in Figure 1(c),
that adaptively integrates predictions from multiple temporal windows. This module addresses a
fundamental challenge in ocean forecastingdifferent oceanic variables exhibit distinct temporal evolu-
tion characteristics, from fast-changing surface processes to the relatively slow and stable subsurface
variability extending down to the twilight zone ( 1500 m). The MoT module performs channel-wise
adaptive selection across predictions derived from different temporal windows. Specifically, we
maintain a selection matrix V ∈ RC×4 that quantifies prediction reliability across temporal scales for
each channel (variable and depth combination). For a given channel c and spatial location (h,w), the
final prediction is computed as:

X̂
t+1

(c, h, w) =
1

K

3∑
i=0

TopKV(c,i) · X
t+1
t−i (c, h, w) (3)

Here, the TopK operator selects the K most reliable temporal windows (corresponding to smallest
values in V) for each channel. Specifically, for each channel c, it assigns a value of 1 to the K

smallest elements in the vector V(c, ·) and 0 to all others. X
t+1
t−i represents the forecast for time t+ 1

generated using historical context beginning at time t− i. This approach enables variable-specific
temporal context selection without increasing model complexity. During training, we update the
selection matrix based on prediction performance:

V(c, i) = α · V(c, i) + (1− α) · softmax(AvgPoolH,W(MAE(X
t+1
t−i ,Xt+1)))c (4)

where α controls update momentum, and MAE measures prediction error. The spatially averaged
MAE captures the reliability of each temporal window for each variable, which is then normalized
through softmax to ensure the selection weights sum to one. This adaptive approach enables FuXi-
Ocean to dynamically adjust its reliance on different temporal windows for each variable and region.
For example, deeper ocean current predictions might benefit from recent observations that capture
immediate flow evolution, while surface temperature predictions might rely more on longer temporal
contexts that effectively represent diurnal cycles and day-night transitions.
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3.3 Training Strategy

Training deep learning models for ocean forecasting presents unique challenges due to Earth’s
spherical geometry. To address the varying grid cell areas across latitudes, we implement a latitude-
weighted Charbonnier loss[7]:

Lpred =
1

C ×H ×W

C∑
c=1

H∑
i=1

W∑
j=1

αi

√
(X̂

t+1

c,i,j − Xt+1
c,i,j)

2 + ε2 (5)

where αi = H × cosΦi∑H
i=1 cosΦi

is the latitude-dependent weighting factor at latitude Φi, and ε is a small
constant ensuring differentiability. This approach prevents bias toward high-latitude regions in error
calculations, which would otherwise be overrepresented in the rectangular grid projection.

Besides, we employ a two-stage training approach to enhance model stability and performance. In
the first stage, we pre-train the model using a single-step prediction objective. In the second stage,
we fine-tune the model with a multi-step loss that penalizes predictions across multiple consecutive
time steps, mitigating error accumulation in autoregressive forecasting. This approach follows recent
advances in autoregressive modeling [10, 11], which demonstrate the effectiveness of multi-step
training for improving long-term forecast stability.

4 Experiment

4.1 Data

HYCOM-RD. We train and evaluate FuXi-Ocean using the HYCOM Reanalysis Data [8], the
only publicly available ocean dataset with 6-hour temporal resolution. This dataset features 1/12◦

horizontal resolution with up to 40 vertical layers from sea surface to 5000m depth. We selecte
approximately 8.5 years (January 2006 to June 2014) of data for training, a six-month period (July to
December 2014) for validation, and one year (January 2015 to December 2015) for testing, focusing
on 20 strategically chosen vertical layers down to 1500 m that capture essential ocean dynamics.
IV-TT Framework. For evaluation against real-world observations, we employ the GODAE Ocean
View Intercomparison and Validation Task Team (IV-TT) Class 4 framework [39], which is obtained
from publicly available sources. Details are in the appendix. This framework provides observational
datasets from drifting buoys for 2022, alongside interpolated outputs from operational numerical
forecasting systems. In addition, we apply a filter to remove anomalous points. Specifically, we
compare HYCOM reanalysis data with observational data and remove outliers with high MAE from
the observations to ensure fairness in the comparison process. However, after evaluation, the raw
data errors for salinity and temperature were too large to be used directly. We primarily evaluate
sea surface temperature (SST) forecasts, as this variable exhibits high variability and effectively
demonstrates forecasting skill. To ensure consistent comparison, we transform the irregularly
distributed observational data to a regular grid matching FuXi-Ocean’s output format using nearest-
neighbor interpolation. For operational evaluation, FuXi-Ocean is initialized with six-hourly analysis
fields from HYCOM.

4.2 Implementation Details

The FuXi-Ocean employs the PyTorch framework [35] with the AdamW [23, 29] optimizer, config-
ured with β1 = 0.9, β2 = 0.95, and a cosine annealing learning rate schedule [30] that decays from
2.5×10−4 to 10−8. We train on a cluster of 4 NVIDIA H100 GPUs for 60,000 iterations with a batch
size of 1 per GPU, requiring approximately 81 hours to complete. Similar to other autoregressive
models [10, 11], FuXi adopts an autoregressive approach during inference, feeding the output back
into the input to iteratively generate results for the next time step. For further details, please refer to
the supplementary materials.

4.3 Metrics

Following standard practices in operational ocean forecast evaluation[11], we use latitude-weighted
root mean square error (RMSE) as our primary evaluation metrics to account for the varying grid cell
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Figure 2: Global RMSE distribution of sea surface. From top to bottom, the results represent
salinity (psu), temperature (řC), and ocean current U/V components (m/s), and from left to right
correspond to different forecast lead times. Each subplot represents the average RMSE (lower is
better) for the test set.

sizes across different latitudes, formulated as follows:

RMSE(c, τ) =
1

|D|
∑
t0∈D

√√√√ 1

H×W

H∑
i=1

W∑
j=1

ai(X̂
t0+τ
c,i,j −Xt0+τ

c,i,j )
2 (6)

where t0 denotes the forecast initialization time in the testing dataset D, and τ represents the lead
time steps added to t0.

5 Results

We first evaluate FuXi-Ocean on the 2015 HYCOM set derived from HYCOM reanalysis data to
assess its ability to generate high-frequency (6-hourly) predictions. We then compare our model
with operational forecasting systems using 2022 observational data through the GODAE Ocean
View IV-TT framework. This dual evaluation approach allows us to comprehensively assess both
the model’s intrinsic predictive capabilities and its real-world operational performance relative to
established systems.

5.1 Performance testing

Horizontal Spatial Error Analysis. Fig. 2 shows the global spatial distribution of RMSE for
sea surface variables (temperature, salinity, and currents) at different lead times (6, 24, 120, and
240 hours). For temperature (T), the model maintains particularly low errors in the tropical and
subtropical regions across all forecast horizons, with RMSE values typically below 0.3řC for 6-hour
predictions. Error patterns intensify primarily in western boundary current regions (Gulf Stream,
Kuroshio Current) and the Antarctic Circumpolar Current, where intense mesoscale eddy activity
creates inherent predictability challenges [31, 12]. Notably, due to the high uncertainty of changes
in these regions, even observational data from satellites and other sources can be significantly
affected, leading to instability in model results [32, 12]. Salinity (S) forecasts display a similar spatial
pattern but with larger relative errors in regions of significant freshwater influence, such as major
river outflows and high-precipitation zones [25]. The equatorial Pacific shows particularly strong
performance across all lead times, maintaining low error values even at 10-day forecasts. At shorter
forecast times, the error distribution locations of the current velocity components U and V are highly
similar. As the forecast lead time increases, significant differences in U and V near the equator
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emerge, which aligns with the physical phenomenon of the inconsistent rotation directions of warm
currents in the Northern and Southern Hemispheres. Western boundary currents show the highest
error magnitudes, consistent with their intrinsic variability. Nevertheless, FuXi-Ocean maintains
reasonable accuracy in these challenging regions, with errors remaining within operational tolerance
thresholds even at longer lead times. Crucially, our 6-hour predictions show substantially lower errors
than daily forecasts across all variables, validating the model’s ability to capture sub-daily ocean
dynamics.
Vertical Performance Analysis. The vertical profile of the ocean environment is a crucial aspect for

6 Lead Time (hour)24 120 240

Figure 3: Depth-dependent RMSE Distributions of salinity and temperature varying with lead
time. Each subplot represents the RMSE (lower is better) varying with depth at the current lead time.
Blue represents salinity results, while red represents temperature results.

evaluating the effectiveness of ocean prediction systems. In Fig. 3, we present the variation of RMSE
for salinity and temperature with depth. First, FuXi-Ocean maintains consistent prediction skill
throughout the water column, with RMSE degrading gradually with depth. Second, the thermocline
region (approximately 100-300m) shows relatively higher errors compared to both surface and deep
layers, reflecting the inherent difficulty in predicting this dynamically complex interface. Despite this
challenge, FuXi-Ocean’s RMSE still maintains effective values. Additionally, the error growth with
increasing forecast lead time shows an interesting depth-dependent pattern. Thanks to our Mixture-
of-Time (MoT) approach, which adaptively weights temporal dependencies for each variable, even
though surface layers (0-300m) are sensitive to rapidly changing conditions while deeper layers
(beyond 500m) are not, the error growth across layers remains relatively stable without any layer
performing significantly worse.

5.2 Comparison

R
M
SE
(℃
)

Lead Time (days)

Figure 4: The SST comparison of different methods based on the IV-TT evaluation framework.
The x-axis represents the forecast time, and the y-axis represents the RMSE (lower is better).

To evaluate the actual operational performance, we used sea surface temperature observation data
from 2022 within the IV-TT framework to compare FuXi-Ocean with the HYCOM, BLK, and FOAM
methods. For this comparison, we averaged our 6-hourly outputs to produce daily means that can be
directly compared with the daily forecasts of other methods. To ensure a fair comparison, we also
evaluated the RMSE at the initial time (0 day). As shown in Fig. 4, the RMSE of FuXi-Ocean is

8



lower than that of other methods, and the cumulative error growth is significantly smaller. Note that
the most recent training data for FuXi-Ocean does not exceed 2014, and it uses only oceanic variables
as input information, highlighting that FuXi-Ocean effectively captures the intrinsic patterns of ocean
system changes.

5.3 Ablation

Salinity Temperature

SSH

V-component of ocean currentsU-component of ocean currents

Figure 5: The ablation study of different methods on the HYCOM-RD. The five subplots
respectively show salinity, temperature, ocean current UV components, and sea surface height. The
x-axis represents the forecast lead time, and the y-axis represents the RMSE (lower is better). Note
that for each variable, we average the RMSE over depth.

To evaluate the contribution of our key innovations, we compare FuXi-Ocean with two ablated
variants: (1) "woMoT," which removes the MoT module, and (2) "woMoT(2times)," which removes
MoT and reduces input time steps from four to two.

Figure 5 presents the results across all five forecasted variables. For salinity, temperature, and SSH,
removing the MoT module leads to substantial performance degradation, with the increasing of RMSE
peaked at nearly 40% across forecast lead times. This degradation is particularly pronounced for
short-term forecasts, where adaptive temporal context selection proves critical for capturing rapidly
evolving processes. These findings confirm that variable-specific temporal modeling significantly im-
proves prediction accuracy for thermohaline variables that exhibit complex spatiotemporal dynamics.
Furthermore, reducing the historical context from four to two time steps (woMoT(2times)) causes
additional performance deterioration, especially for temperature and salinity predictions beyond 48
hours. This contrasts with experiences in atmospheric forecasting models, where shorter historical
windows often suffice. Interestingly, ocean current components (U and V) show less sensitivity
to both the removal of MoT and the reduction of temporal context. This observation aligns with
the physical reality that surface currents are largely driven by recent wind forcing and geostrophic
balance rather than their own history. The minimal performance difference between ablated models
for current forecasting suggests that specialized architectures may be warranted for different ocean
variablesa direction we leave for future work.

6 Conclusion

We present FuXi-Ocean, the first data-driven global ocean forecasting system achieving 6-hour
temporal resolution at a 1/12◦ spatial scale with coverage from surface to 1500 m depth. Our
Mixture-of-Time module adaptively captures different temporal dependencies across ocean variables,
addressing a key limitation of previous models. FuXi-Ocean outperforms operational numerical
systems in predicting sea surface temperature while requiring significantly fewer computational
resources and relying only on ocean variables as input. Its 6-hour forecasts demonstrate superior
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accuracy than daily-averaged predictions from state-of-the-art numerical models, confirming the
effectiveness of our approach for high-frequency ocean prediction.

The successful application of deep learning to sub-daily ocean forecasting opens several promising
avenues for future research directions. First, while our current model covers depths up to 1500 m,
extending its range to abyssal depths would provide a more complete representation of the ocean
system. Second, incorporating physical conservation laws as additional constraints could further
improve prediction stability and ensure physical consistency. Third, increasing the forecast frequency
beyond 6 hours toward hourly predictions could enable applications requiring even finer temporal
resolution, such as tidal forecasting and coastal hazard warning systems.
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Justification: this paper does not include theoretical results.
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one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Code, data, and checkpoints will be released publicly upon acceptance.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: as shown in Section 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: No, reporting error bars is too computationally expensive and is not standard
in data-driven ocean forecasting.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify this part in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: : The research conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts of the paper in Section B

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We used and cited HYCOM-RD, an open-source dataset, and the validation
framework IV-TT.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Limitations

Despite these promising results, our approach has several limitations that warrant further investigation.
The reliance on reanalysis data for training, while necessary given data availability constraints,
introduces potential biases from the underlying numerical models. This challenge is compounded by
the scarcity of publicly available high-quality sub-daily ocean reanalysis data. In future work, we plan
to address this limitation by integrating HYCOM analysis fields with Argo observational data and
other in-situ measurements to create a more robust dataset. For subsurface validation, this will involve
a rigorous data matching process, where observational profiles are spatio-temporally collocated with
the model grid points, and quality control filters are applied to remove outliers and inconsistent
measurements before comparison. The filters use HYCOM analysis field data as an anchor to remove
outlier data with high variability. Additionally, our evaluation thus far focus primarily on standard
RMSE metrics, which, while useful for comparing forecast systems, may not fully capture the model’s
ability to represent specific ocean phenomena like mesoscale eddies, western boundary currents, or
seasonal thermocline transitions. Future analysis will incorporate phenomenon-specific evaluation
metrics and physical consistency measures to provide deeper insights for model improvement. Finally,
while our system’s forecast accuracy remains robust through 10 days, performance for longer-term
predictions (seasonal to interannual) remains unexplored, representing another important direction
for future research.

B Broader Impacts

FuXi-Ocean represents a significant advancement with far-reaching implications across multiple
domains. By enabling high-resolution, sub-daily ocean forecasting at global scales, our work creates
opportunities for numerous scientific and societal applications. In the realm of maritime safety
and operations, the 6-hour temporal resolution provides critical advantages for shipping navigation,
offshore energy production, and search and rescue missions. Particularly for emergency response
scenarios such as oil spill tracking and marine accident response, the ability to forecast ocean currents
at 6-hour intervals significantly improves source identification and trajectory prediction, potentially
saving lives and reducing environmental damage. For marine resource management, FuXi-Ocean can
enhance fisheries operations through improved forecasting of ocean conditions that influence fish
migration and aggregation patterns. The comprehensive vertical coverage (0-1500 m) is especially
valuable for this application, as it captures the habitats of commercially important species that undergo
diel vertical migration. For coastal communities and small island nations, FuXi-Ocean provides
enhanced capability for predicting coastal hazards like storm surge, coastal flooding, and harmful
algal blooms, all of which can develop rapidly and require high-frequency forecasting systems for
adequate warning. The eddy-resolving capabilities of our model are particularly important for these
applications, as smaller-scale coastal processes often drive the most damaging impacts. From a
computational efficiency perspective, FuXi-Ocean demonstrates that high-quality forecasts can be
generated with significantly reduced computational resources compared to traditional numerical
models. This efficiency makes sophisticated ocean forecasting more accessible to researchers and
institutions with limited computational infrastructure, potentially democratizing access to advanced
oceanographic tools.

However, our work also presents potential risks that warrant careful consideration. Relying on
deep learning models for critical ocean forecasting applications requires robust verification systems,
particularly when extending predictions to new or unprecedented scenarios not represented in the
training data. The reliance on reanalysis data means that biases in the underlying numerical models
could be perpetuated or even amplified by our approach. Additionally, as with any forecasting system,
there is risk in over-reliance on model outputs for critical decision-making without appropriate
uncertainty quantification.

C Additional results

C.1 Performance Test Supplement

We present our test results for ocean current UV in Fig.6 and 7. Similar to Fig.3 in the main text, the
RMSE here is tested on the HYCOM reanalysis data for 2015. From the results, it can be seen that
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Figure 6: Depth-dependent RMSE Distributions of ocean current UV components varying with
lead time (6 - 24 hours). Each subplot represents the RMSE (lower is better) varying with depth at
the current lead time.
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Figure 7: Depth-dependent RMSE Distributions of ocean current UV components varying with
lead time (48 - 240 hours). Each subplot represents the RMSE (lower is better) varying with depth
at the current lead time.

the RMSE values for ocean current UV maintain high accuracy and exhibit high stability in error
accumulation. As lead time increases, the error growth is gradual and uniform, without significant
differences between intra-day and daily intervals. Notably, in the 6-hour forecast, the stratification of
change characteristics near the ocean surface is evident, indicating that the changes in ocean currents
are more easily influenced by recent changes, such as sea surface winds.

C.2 Performance Test Supplement

To comprehensively evaluate the model’s performance, we conducted tests on ocean current UV
components under the observation data (Buoy data on CMEMS). The WenHai* and Glory* shown in
the fig.8 and 9 are direct comparisons based on descriptions from paper[11]. Although this comparison
may not be entirely fair (mainly due to inconsistent testing years), FuXi-Ocean’s performance can
still serve as a simple reference.

D Data

As shown in the Tab.1, compared with the long-term training data used by mainstream ocean models
such as Xihe, Wenhai, Langya, etc., we used shorter time range data for training and achieved
better prediction results. For data-driven deep learning methods, we can accurately capture ocean
phenomena and features by relying solely on pure ocean variables such as T, S, U, V and SSH.
Observation Data. For the IV-TT data, we list the available public links in Fig.2, which include
salinity, temperature, and SST variables. Through experimentation, it was found that due to practical
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Figure 8: The ocean current U comparison of different methods based on the observation data.
The x-axis represents the forecast time, and the y-axis represents the RMSE (lower is better). Note
that the results of WenHai and Glory are derived from their papers, hence marked with an asterisk (*).

Lead Time (hour)

Figure 9: The ocean current V comparison of different methods based on the observation data.
The x-axis represents the forecast time, and the y-axis represents the RMSE (lower is better). Note
that the results of WenHai and Glory are derived from their papers, hence marked with an asterisk (*).

issues, only partial data is available. Firstly, due to the presence of outliers in the temperature and
salinity vertical profile data from IV-TT, these anomalies significantly impact the evaluation results,
causing the errors to be abnormally large. Secondly, because the ocean contains thermoclines and
haloclines, where temperature and salinity change rapidly and non-linearly, using IV-TT to perform
linear interpolation in the vertical direction to align with the model grid introduces excessive errors,
thereby reducing the reliability of the evaluation results. Therefore, we ultimately use SST for

Table 1: Comparison of Training Data for Existing Ocean Models

Name of the Model Training Data Time Range Input Variables
Xihe 1993-2020 SST, U10, V10, T, S, U, V, SSH

Langya 1993-2021 SST, U10, V10, T, S, U, V, SSH
WenHai 1993-2020 SST, U10, V10, T, S, U, V, SSH

FuXi-Ocean 2006-2015 T, S, U, V, SSH
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Table 2: The source of observation data

Variable Data type Source of data
T In situ Argo profiles Argo GDAC (from http://www.usgodae.org/argo/

argo.html or http://www.coriolis.eu.org/)
S In situ Argo profiles Argo GDAC (as above)

U/V In situ Argo profiles Argo, Ocean Sites, GOSUD, EGO https:
//data.marine.copernicus.eu/product/INSITU_
GLO_PHYBGCWAV_DISCRETE_MYNRT_013_030

SLA Satellite altimeter from Jason-1, Jason-2 and Envisat CLS Aviso Level 3 data
SST In situ surface drifter data From USGODAE server: http://www.usgodae.org/

cgi-bin/datalist.pl?dset=fnmoc_obs_sfcobs&
summary=Go

evaluation and comparison.
The observational data from ARGO is not gridded, and its degree of discreteness is shown in Fig.10.
Globally, the distribution of stations at key locations is relatively uniform and comprehensive.

Figure 10: Global distribution map of ARGO and other buoys.

E Supplementary details

In practice, we set K = 1 to achieve the best performance of the MoT module. In the module
design, we assume that there will always be an optimal moment of information that can optimize the
results. Of course, if the number of historical moments involved, N , increases significantly, K = 1 is
unlikely to be a good choice.
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