
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VISCOP: VISUAL PROBING FOR VIDEO DOMAIN
ADAPTATION OF VISION LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Vision Language Models (VLMs) excel at general visual reasoning tasks,
but their performance degrades sharply when deployed in novel domains with
substantial distribution shifts compared to what was seen during pretraining. Ex-
isting approaches to adapt VLMs to novel target domains rely on finetuning stan-
dard VLM components. Depending on which components are finetuned, these
approaches either limit the VLMs ability to learn domain-specific features, or
lead to catastrophic forgetting of pre-existing capabilities. To address this, we
introduce Vision Contextualized Probing (VISCOP), which augments the VLM’s
vision encoder with a compact set of learnable visual probes, enabling domain-
specific features to be learned with only minimal updates to the pretrained VLM
components. We evaluate VISCOP across three challenging domain adaptation
scenarios: cross-view (exocentric → egocentric), cross-modal (RGB → depth),
and cross-task (human understanding → robot control). Our experiments demon-
strate that VISCOP consistently outperforms existing domain adaptation strategies
, achieving superior performance on the target domain, while better retaining capa-
bilities from the source domain. We will release all code, models, and evaluation
protocols to facilitate future research in VLM domain adaptation.

1 INTRODUCTION

Large Vision Language Models (VLMs) (OpenAI, 2025; Bai et al., 2025; Zhang et al., 2025; Xue
et al., 2025) have achieved strong performance across a wide range of multi-modal understanding
tasks, from open-ended video question answering Zeng et al. (2023); Liu et al. (2023b) to complex
spatial reasoning Lai et al. (2023); Ranasinghe et al. (2024). Existing VLMs work by coupling
Large Language Models (LLMs) (Qwen Team et al., 2025; Meta, 2024) together with pretrained
vision encoders (Radford et al., 2021; Zhai et al., 2023) to enable powerful cross-modal reasoning
capabilities. In practice, these models are primarily trained on large-scale, web-curated image/video-
text corpora that cover broad but largely generic visual concepts (e.g., the human activities seen in
internet videos) (Zhang et al., 2024; Chen et al., 2024b; Maaz et al., 2024; Rawal et al., 2024). As
a result, when deployed in domains that differ significantly in viewpoint, sensing modality, or task
structure, such as egocentric video understanding, depth-based perception, or robotic control, the
performance of these VLMs degrade sharply due to distribution shift.

A common approach to bridge such distributional shift is to adapt a pretrained VLM to a target
domain through finetuning on domain-specific video-QA instruction pairs. Unlike traditional video
models Bertasius et al. (2021); Arnab et al. (2021) that can solely focus on optimizing adaptation to
a target domain, VLMs are expected to adapt and retain the general multi-modal capabilities learned
during their pretraining. For example, consider a VLM pretrained on exocentric video understanding
tasks that we wish to adapt to tasks recorded from the egocentric viewpoint. After adaptation, the
model should still retain its performance on tasks recorded from the exocentric viewpoint.

Existing approaches for domain adaptation in VLMs follow multi-stage training schemes (Li et al.,
2023a) in which different components are trained in each stage. Training only lightweight com-
ponents, such as the vision-language connector, retains pretrained knowledge but limits domain-
specific visual understanding. In contrast, training the vision encoder enables specialized visual un-
derstanding, albeit at the cost of catastrophic forgetting of pretrained knowledge (Yang et al., 2023;
Zang et al., 2024; Li et al., 2024). However, when the dominant shift between the pretraining and tar-
get domains is visual, as is the case in many video settings (e.g., exocentric → egocentric viewpoint,
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RGB → depth modality, visual perception → robotic control), learning domain-specific visual rep-
resentation is necessary. This raises the fundamental question: how can VLMs be adapted to novel
domains to learn domain-specific visual features, without requiring updates to its visual encoder?

Domain Adaptation Strategy
Frozen Vision Encoder Full VLM Finetuning ViSCoP (Ours)

Exocentric RGB 
Human Activity 

Videos

Target domainsSource domain
(of pretrained VLM)

Egocentric
Viewpoint

Depth
Modality

Robot 
Control

Figure 1: Domain adaptation performance
of different adaptation strategies. VISCOP
achieves superior target domain performance
while better retaining source domain knowl-
edge compared to other strategies.

To this end, we introduce Vision Contextualized
Probing, dubbed VISCOP, a mechanism that en-
ables adaptation of pretrained VLMs to a novel
target domain, while retaining its general-purpose
visual representations learned during pretraining.
VISCOP probes a frozen vision encoder via a com-
pact set of learnable tokens that form an alter-
native adaptation pathway for extracting domain-
specific visual signals. Motivated by the progres-
sive emergence of semantics across transformer
depths (Vaswani et al., 2017; Bertasius et al., 2021;
Liu et al., 2021), the visual probes interact layer-
wise with intermediate features of the frozen vi-
sual encoder. This design enables the probes to
capture domain-specific patterns at multiple levels
of abstraction, which can be fed to the LLM to
enhance domain-specific visual reasoning. Unlike
methods (Li et al., 2023b; Alayrac et al., 2022; Ha
et al., 2024; Ryoo et al., 2025) that only leverage
the high-level representations from the final layer of
the VLM’s visual encoder, our multi-layer probing
is able to extract representations from earlier lay-
ers and propagate them forward, surfacing domain-
relevant cues that might have otherwise been dis-
carded by the frozen vision encoder. Empirically, we find that the representations learned via the
VISCOP adaptation pathway enable effective cross-view, cross-modal, and cross-task adaptation
of VLMs, while retaining their broad capabilities learned during pretraining. Metaphorically, the
name VISCOP reflects its role as a “traffic cop”, directing gradient flows away from the visual en-
coder and towards an alternative pathway for learning domain-specific visual features, avoiding the
“crash” (catastrophic forgetting) that would otherwise occur if gradients flowed through the visual
encoder.

To summarize, our contributions:
1. We propose VISCOP (Vision Contextualized Probing), a novel domain adaptation strategy

for VLMs that learns domain-specific visual representations through probing of a frozen
vision encoder, enabling effective domain transfer and preventing catastrophic forgetting
of multi-modal capabilities learned during pretraining.

2. We establish a comprehensive evaluation setting for domain adaptation in VLMs, spanning
three challenging target domains: cross-view (exocentric → egocentric), cross-modality
(RGB → depth), and cross-task (action understanding → robotic control), along with stan-
dardized metrics to evaluate performance. We will release code and data to facilitate future
research on domain adaptation in VLMs.

3. Our experiments show that post-adaptation, VLMs trained with VISCOP outperform al-
ternative domain adaptation strategies across diverse target domains, while retaining more
knowledge of the source domain, as illustrated in Figure 1.

2 RELATED WORKS

Domain adaptation in vision-language encoders. Domain adaptation of contrastively trained
vision-language encoders, such as CLIP (Radford et al., 2021; Rasheed et al., 2023), is typically
achieved through prompt tuning or adapter-based approaches. Both strategies aim to learn domain-
specific features while keeping the pretrained vision and text encoders frozen. To accomplish this,
prompt tuning approaches (Zhou et al., 2022; Zhu et al., 2023; Yao et al., 2023) introduce learnable
prompt vectors as additional input to the text encoder, steering the model toward target domain.
Adapter-based approaches (Yang et al., 2023; Gao et al., 2023) insert lightweight trainable modules
directly into the encoder space, thus updating their pretrained representations. In contrast to these
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approaches, VISCOP addresses the setting of domain adaptation in generative VLMs, enabling them
to learn domain-specific features without requiring updates to the pretrained encoder representations.

Domain adaptation in VLMs. Domain adaptation in VLMs has largely been achieved through
data-centric strategies rather than through architectural changes (Cheng et al., 2025). Existing ap-
proaches typically leverage automated pipelines (Mohbat & Zaki, 2024; Reilly et al., 2025a) or
closed-source VLMs (Li et al., 2023a; Chen et al., 2024a) to curate visual-instruction pairs from
existing datasets in the target domain. Their adaptation strategy usually follows a multi-stage train-
ing scheme similar to LLaVA (Liu et al., 2023a), where different VLM components are selectively
trained at each stage. However, the choice of trainable components creates a trade-off between ex-
tracting domain-specific features and retaining pretrained knowledge. Training only lightweight
connectors retains pretrained knowledge but limits domain-specific visual understanding, while
training the vision encoder enables specialized visual understanding at the cost of catastrophic for-
getting. VISCOP avoids this trade-off through the introduction of visual probes that extract domain-
specific features from a frozen vision encoder, enabling adaptation without disrupting the pretrained
visual representations.

Visual probing vs. visual compression. Several approaches employ learnable tokens to bridge
vision and language modalities (Ha et al., 2024; Ryoo et al., 2025; Zohar et al., 2025) through ar-
chitectures leveraging the Q-Former and Perceiver Resampler modules. Q-Former (Li et al., 2023b)
leverages learnable queries that cross-attend to representations from the final layer of the vision
encoder, aggregating visual information into a reduced set of tokens for computational efficiency.
Perceiver Resampler (Alayrac et al., 2022) operates similarly, aiming to compress the visual repre-
sentations into a fixed number of learnable tokens. The visual probes proposed in VISCOP differ
fundamentally, as they are designed to extract novel domain-specific visual representations rather
than to simply compress pretrained ones. This is enabled by their interaction with intermediate rep-
resentations of the vision encoder, allowing the probes to extract domain-specific representations
that are not propagated to the final representation of the pretrained vision encoder (Radford et al.,
2021; Zhai et al., 2023).

3 PROBLEM FORMULATION

Let S denote the source domain, on which the vision-language model fθ0 has been pretrained, and
let T denote the target domain, the domain of interest for adaptation. The two domains differ
in their underlying distributions (e.g., viewpoint, modality, or task), which causes fθ0 to perform
poorly when directly applied to T .

Training supervision in these domains is provided as video-QA pairs (v, q, a), where v is a video,
q is an instruction or question, and a is the corresponding response. While fθ0 has been pretrained
on samples (v, q, a) ∼ S, at adaptation time we only assume availability of target domain samples
(v, q, a) ∼ T . The objective of domain adaptation is to update the pretrained parameters θ0 to obtain
θ⋆ that improves performance on domain T , while retaining performance on domain S. Formally,

RT (θ
⋆) < RT (θ

0) and RS(θ
⋆) ≈ RS(θ

0)

where RD denotes the VLM’s expected autoregressive next-token prediction loss under domain
D. In summary, our problem statement considers adaptation of a pretrained VLM to a novel domain
using only video-QA pairs from that domain. The objective is to improve target-domain performance
while minimizing catastrophic forgetting of source-domain capabilities. In the next section, we
introduce our proposed method, which enables balanced domain adaptation under these constraints.

4 METHOD: VIDEO DOMAIN-ADAPTIVE VLM
Given a video input V = {It}Tt=1 consisting of T frames, the goal of the VLM is to generate the
response corresponding to the input instruction in an autoregressive manner.

4.1 PRELIMINARY

Existing VLMs for video representation learning (Zhang et al., 2025; Bai et al., 2025) consist of
three standard components: (i) a vision encoder that maps visual inputs into a sequence of spatio-
temporal tokens, (ii) a vision-language connector that projects the visual tokens to the embedding
space of a language model, and (iii) an LLM that processes the projected visual tokens jointly with
language tokens to enable multi-modal reasoning. For the input video V, each frame It is processed
independently by the vision encoder through a stack of L transformer layers. The visual tokens after
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Q: Where does the 
person place the    

knife after cutting?

Vision Encoder

Layer ℓ

⋯

Interaction Module 𝝓ℓ

⋯

LLM

A: The person moves it to their left hand and places it on the counter

ViSCoP

Visual Probes

/

V-L ConnectorV-L Connector

Language 

Embedding

Layer ℓ − 𝟏 

visual features
Layer ℓ − 𝟏 

visual probes

Layer ℓ visual 

features

Layer ℓ visual 

probes

Spatial Self-attention

Feed-forward

Vision-probe

Cross-attention

FrozenTrainable / LoRA Trained

Figure 2: Architecture of our proposed VISCOP. Learnable visual probes are conditioned on
intermediate representations of a frozen vision encoder through vision-probe cross-attention, which
extracts domain-specific features that may have otherwise been discarded by the frozen encoder.

the ℓ-th layer are denoted as
Xℓ

t ∈ RN×dv , ℓ = 1, . . . , L

where N is the number of spatial patch tokens per frame and dv is the embedding dimension of the
vision encoder. Concatenating these tokens over time yields Xℓ ∈ R(TN)×dv which represents the
sequence of spatio-temporal visual tokens at the ℓ-th layer of the vision encoder. The final layer
outputs XL are then projected to the language embedding space via a vision-language connector C
to obtain the visual embeddings used as input to the LLM

E = C(XL) ∈ R(TÑ)×dlm

where Ñ is the number of visual tokens input to the LLM after spatial downsampling (Zhang et al.,
2025). and dlm is the embedding dimension of the LLM.

The VLM is then trained to optimize a standard autoregressive next token prediction loss. Specifi-
cally, given the visual embeddings E and the tokenized QA pair (Q,A), we optimize the likelihood
of predicting A conditioned on the visual embeddings and the question

P (A | E,Q) =

Len∏
j=1

Pθ(aj | E,Q,A<j)

where θ are the trainable parameters of the VLM, Len indicates the token length of A, and A<j

represents the subsequence of answer tokens preceding position j.

For domain-adaptive post training of VLMs, finetuning the vision encoder of a pretrained VLM
for a target domain T often leads to overfitting on T and catastrophic forgetting of the source
domain (Yang et al., 2023; Zang et al., 2024; Li et al., 2024). To mitigate this trade-off, a domain-
adaptive pathway is required that adapts the VLM to T while retaining performance on S.

4.2 VISCOP: VISION CONTEXTUALIZED PROBING

To capture the relevant visual context that would otherwise be lost by freezing the vision encoder, we
propose Vision Contextualized Probing (VISCOP), a mechanism that augments the vision encoder
with a compact set of learnable tokens, called visual probes, and an interaction module that acts
as a semantic interface between the probes and intermediate visual representations, as illustrated in
Figure 2. In this section, we introduce how domain-adaptive VLMs are trained with VISCOP.

VISCOP augments the frozen vision encoder of a VLM with a compact set of M learnable visual
probes P ∈ RM×dv . The probes are trained to extract domain-specific spatio-temporal cues from
intermediate representations of the vision encoder. To enable this extraction, a learnable interaction
module Φℓ inserted at each layer of the vision encoder conditions the probes on the hierarchical
representations of the vision encoder at layer ℓ:

Pℓ+1 = Φℓ(Pℓ,Xℓ).

4
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Concretely, Φℓ is implemented as a vision-probe cross-attention between the visual embeddings and
the probes at layer ℓ. Let (Wq,Wk,Wv) be the projection matrices in Φℓ, then the probe update is

Pℓ = softmax

(
PℓW ℓ

q(X
ℓW ℓ

k)
⊤

√
dv

)
(XℓW ℓ

v),

Each Φℓ is parameterized independently, enabling layer-specific aggregation of low- to high-level
visual semantics. While self-attention in the vision encoder operate independently over each frame
in the visual sequence, the visual probes attend to all spatio-temporal tokens; in some settings, such
as robotic control, we restrict vision-probe cross-attention to spatial tokens only.

After the final layer, the updated probes PL are projected to the language embedding space via a
dedicated connector Cprobe,

Z = Cprobe(P
L) ∈ RM×dlm ,

and the VLM is trained with the standard autoregressive objective additionally conditioned on Z:

P (A | E,Q,Z) =

Len∏
j=1

Pθ(aj | E,Q,Z,A<j) .

Thus, the probes act as low-dimensional control knobs that bias learning toward domain-relevant
structure and away from spurious artifacts. This is reinforced by applying updates through the
probe connector, and through LoRA Hu et al. (2021) updates in the LLM embedding space, which
confine parameter changes to a low-rank, probe-defined visual subspace that preserves generalizable
behavior while enabling targeted specialization.

5 EXPERIMENTS

We evaluate VISCOP for effective domain adaptation and minimal forgetting. Section 5.1 details the
setup (architecture, training, metrics); Section 5.2 reports results on egocentric, depth, and robotic-
control targets; Section 5.3 presents ablations and representation analyses of the probes and interac-
tion modules.

5.1 EXPERIMENTAL SETTING

VLM Architecture. We consider a VLM architecture consisting of a SigLIP (Zhai et al., 2023)
vision encoder, Qwen 2.5 (Qwen Team et al., 2025) LLM, and a 2-layer MLP vision-language
connector, with all modules initialized from the pretrained weights of VideoLLaMA3 (Zhang et al.,
2025). The embedding dimension of the vision encoder is dv = 1152, and the embedding dimension
of the LLM is dlm = 3584. We refer to this pretrained model as the base VLM, and to models
adapted to a target domain as expert VLMs. To adapt the base VLM to a target domain, we perform
finetuning on the target domain with a learning rate of 1 × 10−5 for the LLM and vision-language
connector, and a learning rate of 2 × 10−6 for the vision encoder (when trainable). The model is
finetuned on 4 NVIDIA H200 GPUs for 3 epochs when adapting to video domains, or 2 epochs
when adapting to robotic control domains.

VISCOP Details. By default, VISCOP operates at every layer of the vision encoder and em-
ploys M = 16 visual probes unless otherwise stated. The visual probes are initialized from the
normal distribution N (0, 0.02). Each interaction module Φℓ is implemented as a multi-head cross-
attention (Vaswani et al., 2017), and its weights are initialized from the self-attention weights of the
vision encoder at layer ℓ. During domain adaptation, we freeze the vision encoder and update only
the visual probes, interaction modules, vision–language connectors, and the LLM’s LoRA param-
eters. For adaptation to video understanding domains, we update the LLM using LoRA (r = 16),
while the entire LLM is updated when adapting to the robotic control domain.

Adaptation Metrics. We evaluate the domain adaptation of VLMs across two dimensions: (i)
their “improvement” on the target domain T , and (ii) their “retention” on the source domain S.
Improvement on the target domain is measured as the performance difference between the expert
and base VLMs on target domain benchmarks; retention is the corresponding difference on source
domain benchmarks. If AccD denotes the average accuracy over all benchmarks within the domain
D, then the metrics are computed by:

∆target = Accexpert
target − Accbase

target ∆source = Accexpert
source − Accbase

source

5
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5.2 SOURCE AND TARGET DOMAINS

The source domain S is fixed throughout this paper: exocentric RGB videos of human actions
reflecting the samples used to train generic VLMs for video representation learning. Our target
domains T deliberately shift the input distribution (1) egocentric video understanding, (2) depth-
modality video understanding, and (3) robotic control. Accordingly, we evaluate VISCOP’s adapta-
tion to each target while measuring retention of source domain competencies: (i) when adapting to
egocentric video, exocentric understanding should be preserved; (ii) when adapting to depth video,
RGB understanding should be preserved; and (iii) when adapting to robotic control, human-action
understanding should be preserved.

Training datasets. For ego and depth video understanding domains, we adapt using
EgoExo4D (Grauman et al., 2025), a large-scale multi-view dataset containing time-synchronized
egocentric and exocentric videos of skilled human activities. We utilize a total of 24,688 videos
from the keystep recognition subset to generate 74,064 video instruction pairs. These instructions
are recaptioned from the instruction pairs provided in Reilly et al. (2025b). For the egocentric tar-
get domain, we adapt on 45,888 egocentric video-instruction pairs. For the depth target domain,
we convert all exocentric RGB videos to depth using DepthAnythingV2 (Yang et al., 2024) while
keeping the language instructions unchanged, yielding 28,176 depth instruction pairs.

We perform adaptation to the robotic control domain in both simulated and real-world robot envi-
ronments. In the simulated environment, we leverage the training set of VIMA-Bench (Jiang et al.,
2023). VIMA-Bench contains 17 object manipulation tasks with an action space comprising two
2D coordinates (for pick and place positions) and two quaternions (for rotation). Since the train-
ing set of VIMA-Bench lacks natural language instructions by default, we leverage the instruction
pairs generated in LLaRA (Li et al., 2025), resulting in 13,922 instruction pairs across 7,995 action
trajectories. In the real-world environment, we collect a dataset using a 6-DoF xArm 7 robot arm
deployed in a tabletop manipulation setting. This dataset, which we refer to as xArm-Det, contains
1,007 instruction pairs depicting novel objects and spatial configurations not present in simulation.
During adaptation, we train jointly on VIMA-Bench and xArm-Det, resulting in a total of 14,929 in-
struction pairs. The large-scale simulated data enables the model to learn manipulation skills, while
xArm-Det exposes the model to our novel robot environment. Illustrations of our real-world robot
environment and examples from VIMA-Bench are provided in Appendix A.1.

Table 1: Egocentric Video Understanding Experts. Performance of adaptation strategies on the
egocentric target domain and exocentric source domain. Adaptation strategy correspond to the train-
able components of the VLM: VL-C = Vision Language Connector, VE = Vision Encoder, and LLM
= Large Language Model. ∆target and ∆source denote relative gains over the Base VLM.

Adaptation Strategy Egocentric Benchmarks Exocentric Benchmarks Adaptation Metrics

VL-C VE LLM
Ego-in-Exo PerceptionMCQ (Ego RGB)

EgoSchema Avg NeXTQA VideoMME ADL-X
MCQ

ADL-X
Desc Avg

∆target

(↑)
∆source
(↑)Action

Und.
Task

Regions HOI Hand
Ident.

Base VLM 75.37 74.88 75.56 65.38 60.98 70.43 84.32 65.37 77.36 70.65 74.42 - -
✓ ✗ ✗ 73.00 76.71 72.85 65.51 60.43 69.70 84.21 62.67 76.56 75.51 74.74 -0.74 +0.31
✓ ✓ ✗ 76.13 82.93 73.32 64.86 61.14 71.68 83.87 61.41 77.05 76.09 74.61 +1.24 +0.18
✓ ✓ ✓ 73.28 82.68 72.96 65.77 60.31 71.00 82.34 64.26 78.21 70.89 73.93 +0.57 -0.50
✓ ✗ LoRA 73.49 74.27 74.50 64.99 61.52 69.75 84.24 64.41 77.42 74.36 75.11 -0.68 +0.68
✓ VISCOP LoRA 81.28 82.80 78.75 64.86 62.11 73.96 84.31 64.70 78.97 76.78 76.19 +3.53 +1.77

5.2.1 EGOCENTRIC VIDEO UNDERSTANDING

Target and source benchmarks. For evaluation on the target domain, we evaluate on the Ego-
in-Exo PerceptionMCQ (Reilly et al., 2025b) and EgoSchema (Mangalam et al., 2023) benchmarks.
Ego-in-Exo PerceptionMCQ is derived from EgoExo4D and comprises 3,991 video question-answer
(video-QA) pairs spanning four categories: action understanding (Action Und.), task-relevant re-
gion understanding (Task Regions), human-object interactions (HOI), and hand identification (Hand
Ident.). Because it is derived from EgoExo4D, Ego-in-Exo PerceptionMCQ can be evaluated from
either the egocentric or the exocentric viewpoint. For the ego target domain experiments, we report
results using the egocentric videos, denoted as Ego-in-Exo PerceptionMCQ (Ego RGB). EgoSchema
consists of 5,031 egocentric video-QA pairs derived from the Ego4D dataset (Grauman et al., 2022).

For evaluation on the source domain, we select benchmarks that measure exocentric video under-
standing capability. Specifically, we evaluate on the NeXTQA (Xiao et al., 2021), VideoMME (Fu
et al., 2025), and ADL-X (Reilly et al., 2025a) benchmarks. NeXTQA and VideoMME are general-
purpose video-QA benchmarks built from web-scraped videos (e.g., from YouTube), with 8,564 QA
pairs in NeXTQA and 2,700 QA pairs in VideoMME. ADL-X is a video-QA benchmark built from
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videos of activities of daily living, it contains a total of 10,561 multiple-choice questions (ADL-X
MCQ) and 1,862 video description questions (ADL-X Desc) derived from various activities of daily
living datasets (Das et al., 2019; Sigurdsson et al., 2016; Jia et al., 2020; Dai et al., 2022).

Results. Table 1 reports results of adaptation to the egocentric viewpoint. Training only the vision-
language connector or the connector together with LLM LoRA adapters does not lead to effective
adaptation to the target domain (∆target < 1). Updating all three modules (connector, vision encoder,
and LLM) improves performance on the target domain by ∆target = +0.57, but the large number of
trainable parameters results in forgetting on the source benchmarks (∆source = −0.50). In contrast,
updating the connector and vision encoder alone slightly improves performance on the target domain
and does not lead to forgetting on the source domain. Our proposed VISCOP achieves the strongest
adaptation performance, with the highest improvement on the target domain (∆target = +3.5) while
simultaneously maintaining retention on the source benchmarks (∆source = +1.8). Interestingly,
VISCOP not only avoids catastrophic forgetting but also improves performance on some source
benchmarks (e.g., ADL-X). We attribute this positive transfer to a multi-axis domain shift: although
source and target differ in viewpoint (exocentric vs. egocentric), their action distributions over-
lap. ADL-X, while exocentric, encapsulates activities of daily living that closely aligns with the
EgoExo4D action distribution, enabling beneficial cross-domain generalization.

Table 2: Depth Video Understanding Experts. Performance of adaptation strategies on the depth
target domain and RGB source domain. Adaptation strategy notation follows Table 1 (✓ = trainable,
✗ = frozen). ∆target and ∆source denote relative gains over the Base VLM.

Adaptation Strategy Depth Benchmarks RGB Benchmarks Adaptation Metrics

VL-C VE LLM
Ego-in-Exo PerceptionMCQ (Exo Depth) Ego-in-Exo

(Exo RGB) NeXTQA VideoMME ADL-X
MCQ

ADL-X
Desc Avg

∆target

(↑)
∆source
(↑)Action

Und.
Task

Regions HOI Hand
Ident.

Avg

Base VLM 34.73 50.61 35.06 63.06 45.86 66.27 84.32 65.37 77.36 70.65 72.79 - -
✓ ✗ ✗ 55.67 66.59 62.46 64.49 62.30 71.36 83.15 62.41 70.90 69.05 71.37 16.44 -1.42
✓ ✓ ✗ 57.20 69.63 54.43 64.48 61.44 60.97 82.89 62.00 71.48 67.26 68.92 15.57 -3.87
✓ ✗ LoRA 42.94 53.54 43.92 63.96 51.09 60.97 83.73 64.19 72.19 72.49 70.71 5.23 -2.08
✓ VISCOP LoRA 56.78 73.17 66.23 64.35 65.13 71.89 83.91 64.30 76.59 76.47 74.63 +19.27 +1.84

5.2.2 DEPTH VIDEO UNDERSTANDING
Target and source benchmarks. For evaluation on the target domain, we evaluate on the Ego-in-
Exo PerceptionMCQ (Reilly et al., 2025b) benchmark. In the depth-adaptation setting, we train on
depth maps of exocentric videos extracted with DepthAnythingV2 (Yang et al., 2024) and evaluate
on exocentric depth videos following Reilly et al. (2025b), denoted Ego-in-Exo PerceptionMCQ
(Exo Depth). For the source domain, we use RGB benchmarks of exocentric understanding: Ego-
in-Exo PerceptionMCQ (Exo RGB), NeXTQA, VideoMME, and ADL-X.

Results. We present the results for adaptation to the depth modality in Table 2. In contrast to
the results on egocentric viewpoint adaptation, we find that all training strategies achieve improve-
ments on the target domain, reflecting the disparity of the visual embedding space between the
depth and RGB modalities. We find that this disparity leads to different behavior across training
strategies. Jointly updating the vision encoder and the vision-language connector preserves source
performance for egocentric adaptation but causes severe catastrophic forgetting under depth adap-
tation (∆source = −3.87). This arises from the substantial encoder updates required to bridge RGB
and depth, which overwrite RGB representations. In contrast, VISCOP preserves RGB features and
source performance while achieving the largest target domain gains (∆target = +19.27).

Table 3: Robot Control Experts (Simulation). Performance of adaptation strategies on the robotic
control target domain and human understanding source domain. Table notation follows Table 1.

Adaptation Strategy Robotic Control Benchmarks Human Understanding Benchmarks Adaptation Metrics

VL-C VE LLM VIMA Bench Ego-in-Exo
(Exo RGB) NeXTQA VideoMME ADL-X

MCQ
ADL-X

Desc Avg ∆target (↑) ∆source (↑)L1 L2 L3 Avg
Base VLM 0 0 0 0 66.27 84.32 65.37 77.36 70.65 72.79 - -

✓ ✓ ✓ 69.62 60.77 65.00 65.13 56.92 83.24 62.74 52.21 64.50 63.92 +65.13 -8.87
✓ ✗ ✓ 63.46 63.08 68.75 65.10 59.42 83.16 64.41 52.92 64.86 64.95 +65.10 -7.84
✓ VISCOP ✓ 67.69 65.77 70.00 67.82 71.19 83.71 63.67 55.89 66.62 68.22 +67.82 -4.58

5.2.3 ROBOT CONTROL
Target and source benchmarks. For evaluation on the target domain, we consider both sim-
ulated and real-world robotic environments. In simulation, we use the evaluation set of VIMA-
Bench (Jiang et al., 2023), which organizes tasks into three levels of difficulty: L1 (Object Place-
ment), where all objects have been seen during training; L2 (Novel Combination), where objects
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Table 5: Ablation on alternative de-
signs of VISCOP. VE annotations: VP
(visual probes and probe connector with
no interaction modules), Last-4 (train
only the last 4 vision encoder layers),
QFormer Style. (interaction module is
placed only at the last layer of the VE).

Adaptation Strategy Target Source Adaptation Metrics
VL-C VE LLM Avg Avg ∆target (↑) ∆source (↑)

Base VLM 70.43 74.42 – –
✓ VP LoRA 65.57 75.05 -4.86 +0.62
✓ LoRA LoRA 69.85 75.35 -0.59 +0.92
✓ Last-4 LoRA 70.46 72.62 +0.02 -1.80
✓ QFormer Style LoRA 70.99 75.03 0.56 0.61
✓ VISCOP LoRA 73.96 75.74 +3.53 +2.12
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Figure 3: Ablation on the
number of visual probes
in VISCOP.
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Figure 4: Ablation on po-
sitions of interaction mod-
ules in VISCOP.

seen during training appear in new pairings or contexts; and L3 (Novel Objects), where objects
entirely unseen during training are introduced. Together, these levels measure generalization from
familiar training conditions to progressively more challenging distributions. In the real-world set-
ting, we evaluate on three tabletop manipulation tasks: T1) Place the {object} on the plate, T2)
Pick up and rotate {object} by {angle}; and T3) Move all {color} objects onto the plate.
Examples of each task and a list of objects used is provided in Appendix A.2. For source domain
evaluation of VLMs trained on both real and simulated robotic environments, we use the human-
activity video benchmarks Ego-in-Exo (Exo RGB), NeXTQA, VideoMME, and ADL-X.

Table 4: Robot Control Experts (Real-world)
Performance on the robotic control target domain
and human understanding source domain.

Adaptation Strategy Robotic Control Benchmarks Adaptation Metrics
VL-C VE LLM T1 T2 T3 Avg ∆target (↑) ∆source (↑)

Training data: VIMA-Bench
✓ ✓ ✓ 45.00 60.00 15.00 40.00 +40.00 -8.87
✓ VISCOP ✓ 40.00 70.00 20.00 43.33 +43.33 -4.58

Training data: VIMA-Bench + xArm-Det
✓ ✓ ✓ 85.00 85.00 70.00 80.00 +80.00 -11.04
✓ VISCOP ✓ 100.00 100.00 90.00 96.67 +96.67 -11.00

Results. The results of adaptation to the
robotic control domain are presented in Table
3. The base VLM demonstrates weak perfor-
mance on all robot control tasks, as its train-
ing data does not contain robot observations
or action trajectories, resulting in 0% accuracy
across all levels of VIMA-Bench. This high-
lights the extreme domain gap both in the visual
space (robot observations vs. human videos)
and in the language space (control actions vs.
linguistic outputs) between the source and target domains. Similarly to the depth adaptation setting,
we find that training the vision encoder improves performance on the target domain, but results in
the worst source domain retention (∆source = −8.87) of all robot control experts. In contrast, our
proposed VISCOP achieves the best performance on the target domain (∆target = +67.82) while
retaining the most source domain knowledge (∆source = −4.58) compared to other experts, demon-
strating the effectiveness of our method even when the gap between the source and target domains
is very large. Also note that VISCOP operates on per-timestep images in these experiments; thus
the visual probes consume the same visual tokens as the vision encoder, suggesting they extract
domain-specific representations more effectively than the base vision encoder.

We further evaluate adaptation in the real-world setting using the xArm-Det dataset in Table 4.
We consider a transfer setting, where the experts are trained only on VIMA-Bench and directly
evaluated on xArm-Det, and the setting where the experts are jointly trained on both VIMA-Bench
and xArm-Det. In both cases, our proposed VISCOP outperforms the vision encoder trained experts
on target domain adaptation as well as source domain retention.

5.3 MODEL DIAGNOSIS AND ANALYSIS

In this section, we motivate the design of VISCOP through a diagnostic study, and perform an
analysis on the visual representations it learns. We investigate the number of visual probes, as well
as the placement of interaction modules within the vision encoder. We then analyze the domain-
specific representations learned by VISCOP through t-SNE and attention visualizations.

Alternatives to learnable queries. Table 5 compares VISCOP against alternative adaptation
strategies. Visual Probes Only (VP) trains only visual probes with their vision-language connec-
tor (Cprobe) without any interaction modules. Partial Encoder Training (Last-4) makes the final
four layers of the vision encoder trainable. QFormer-Style Compression uses visual probes with
interaction modules only at the vision encoder’s final layer, mimicking Q-Former’s compression
approach (Li et al., 2023b). Training with QFormer-Style compression or only training with visual
probes (VP) underperforms compared to VISCOP, indicating the importance of probe interactions
at intermediate layers of the vision encoder to learn domain-specific features across multiple lev-
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(c) t-SNE visualization of source
and target domain features.

Figure 5: Analysis of the learned representations of VISCOP. (a) Visualization of attentions
between visual features and visual probes. (b) Attention of generated language tokens to visual
embeddings. (c) t-SNE projection of source and target domain features.

els of abstraction. Similarly, training only the last four layers of the vision encoder, or training
it with LoRA, also underperforms, highlighting that even partial parameter updates fail to capture
domain-specific signals as effectively as VISCOP’s visual probes.

Ablations on probes and interaction modules. We study the effect of the number of visual probes
and the placement of interaction modules (Figure 3, Figure 4). Probes consistently improve perfor-
mance over the base VLM, with the best trade-off at 16 probes (∆target = +3.53, ∆source = +2.12);
larger probe counts offer no further gains and can reduce performance due to redundancy. For inter-
action modules, applying them at every encoder layer yields the strongest adaptation, while sparse
placement (e.g., every 6 or 9 layers) provides weaker or inconsistent gains. These results highlight
the importance of using a small number of probes with dense access to intermediate features.

Visualizing attention in domain-adapted VLMs In Figure 5a, we analyze attention maps of var-
ious VLM adaptation strategies to assess how different components capture domain-specific visual
features. For both the frozen and trainable vision encoders, we visualize attention using attention
rollout (Abnar & Zuidema, 2020), for VISCOP we visualize the attentions of the visual probes, av-
eraged across all probes. The frozen vision encoder fails to focus consistently on relevant regions
under the experimented domains, reflecting its limited ability to capture domain-specific features.
The trained vision encoder yields sharper attention on the relevant regions, indicating its ability to
learn domain-specific features, albeit at the cost of catastrophic forgetting of the source domain as
shown in Section 5.2. In contrast, the visual probes of VISCOP have a sharp focus on the task-
relevant regions, despite the vision encoder being frozen. This indicates that the probes alone are
able to extract the domain-specific visual features necessary for adaptation. In Figure 5b, we visual-
ize the attention of generated language tokens to visual embeddings. We find that VISCOP correctly
responds to the query, with more focus given to tokens corresponding to relevant objects.

Learning domain-specific representations. Figure 5c compares t-SNE embeddings from three
models: the base VLM, a VLM adapted with a frozen vision encoder, and VISCOP. In the egocentric
and depth domains, both the base and frozen-encoder VLMs entangle the embeddings of source and
target domains, indicating that they fail to capture domain-specific structure. In contrast, the visual
probes of VISCOP are able to learn domain-relevant features without requiring updates to the vision
encoder, producing well-separated clusters for the source and target domains, despite using only 16
probes. For robotics, however, the trend reverses: the base and frozen models form distinct robot
clusters, whereas VISCOP learns a more compact, entangled representation.

6 CONCLUSION

We introduced VISCOP, a mechanism that extracts domain-specific visual features through probing
of a frozen vision encoder to enable effective domain adaptation in VLMs and prevent catastrophic
forgetting. VLMs equipped with VISCOP achieve superior target domain performance, while main-
taining strong source domain capabilities across cross-view, cross-modal, and cross-task adaptation
scenarios. We will release all code, models, and evaluation protocols to facilitate future research.
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A APPENDIX

A.1 DETAILS OF SIMULATED ROBOT CONTROL EXPERIMENTS

For our robot control simulation experiments, we use the VIMA-8K instruction set generated from
the VIMA dataset, following (Li et al., 2025). Figure 6 illustrates representative examples of training
tasks - simple visual manipulation (top row) and rotation (middle row).

For evaluation, we adopt the three levels of generalization defined in VIMA-Bench (Jiang et al.,
2023): - L1 (Placement Generalization): tasks where the object placements differ from those
seen in the training set. - L2 (Combination Generalization): tasks requiring new combinations of
objects not paired during training. - L3 (Novel Object Generalization): tasks involving completely
unseen objects that were not present in the training data.

<task>Put the <p>yellow pentagon</p> at 
<b>(0.500, 0.594), {0.094, 0.172}</b> into the 

<p>blue square</p> at <b>(0.500, 0.617), 
{0.234, 0.328}</b></task>

<task>Rotate the <p>yellow and green stripe 
letter T</p> at <b>(0.500, 0.594), {0.102, 

0.188}</b> 150 degrees.</task>

Training Sample Placement
Generalization(L1)

Combination 
Generalization(L2)

Novel Object
Generalization(L3)

Rotate          by 60 degree Rotate          by 60 degree Rotate          by 60 degree Rotate          by 60 degree 

Figure 6: Examples from VIMA and VIMA-Bench. The first two rows show training examples,
including the initial observations, final states, and task instructions. The bottom row illustrates the
evaluation in VIMA-Bench, covering three levels of generalization.

A.2 DETAILS OF REAL-WORLD ROBOTICS EXPERIMENTS

Figure 7: Real robot setup.
Our setup uses an xArm7
robot arm and Intel RealSense
D455 camera.

We provide additional details of the experiments conducted in our
novel robot environment, including the setup, data collection, and
evaluation protocol.

A.2.1 REAL-ROBOT SETUP

Our setup consists of an xArm7 robotic arm with a gripper, table-
top, and an Intel RealSense D455 third person camera mounted in
front of the arm to collect observations as seen in Figure 7. The ac-
tion space of the end effector is two 2D cartesian coordinates repre-
senting the pick and place poses, and two quaternions for rotations
similar to (Jiang et al., 2023). We evaluated the effectiveness of our
method mainly on three robot manipulative tasks:

T1 : Place the {object} on the plate. T2 : Pickup and Rotate the
{object} by {degree} degrees. T3 : Move all the {colour} objects into the plate.

We uniformly sample {object} from a set of 10 toys : green apple, carrot, eggplant, banana,
corn, grape, green pepper, tomato, strawberry, cucumber, clementine, and lemon. For T2, the target

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

rotation angle is randomly selected from {30°, 45°, 60°, 90°, 180°}. For T3, the variable colour
is chosen from four categories: {red, orange, yellow, purple}

A.2.2 REAL-ROBOT DATA COLLECTION

We collected 1,007 images with resolution 640 x 640 of a real-robot setup with multiple objects
scattered on the table. A one-shot object detection using Owlv2 (Matthias Minderer, 2023) is applied
to extract bounding boxes for each object. Based on these images and their corresponding bounding
box annotations, we generate task instructions following the xArm-Det style similar to (Li et al.,
2025)

A.2.3 EVALUATION PROTOCOL

All three tasks are evaluated under two settings: zero-shot and joint training. The observation space
is illustrated in Figure 8. In Zero-shot setting, we use the models trained on Vima data where as in
the joint training setting, we tune VLM jointly on both Vima data and collected xArm-Det data. For
each task, we conduct 20 trials with objects placed at random initial positions on the table. Each
episode is limited to a maximum of 4 steps. We report the average success rate across all trials as
performance metric and below are the success criteria for each task that we follow :

T1 : A trial is considered successful if at least 50% of the object lies inside the plate.

T2 : A trail is successful by visually verifying whether the object has been rotated to the specified
target angle.

T3 : A trial is successful only if all objects of the specified color are placed into the plate; otherwise,
it is a failure.

T1 T2 T3

Figure 8: Visualization of the three real-world tasks. Each column shows the initial state (top)
and the corresponding final state (bottom), along with the robot execution (from left to right): T1
(place the corn on the plate), T2 (rotate the cucumber by 90◦), and T3 (move all purple objects into
the plate).

A.3 QUALITATIVE RESULTS

In this section, we provide qualitative comparisons of three models—Base VLM, trained vision
encoder (VL-C+VE), and VISCOP across the three domain experts ego-video understanding, depth-
video understanding, and robot control. Figures 9, 10, and 11 show representative examples from
each expert. Each figure shows representative samples from both the target domain and the source
domain.

We demonstrate that VL-C+VE successfully adapts the Base VLM to the target domain, enabling
correct predictions. However, this adaptation comes at the expense of source-domain performance,
where VL-C+VE frequently makes mistakes. In contrast, VISCOP achieves the best of both: it
adapts effectively to the target domain while simultaneously retaining strong performance on the
source domain, thereby avoiding catastrophic forgetting.

We also provide qualitative comparisons of video descriptions on the source domain (ADL-X) us-
ing the ego-video understanding expert and the depth-video understanding expert. As shown in
Figure 12 and Figure 13, our method generates descriptions that are both more accurate and more
detail-oriented compared to the trained vision encoder (VL-C+VE). While VL-C+VE can adapt
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Q: While cooking on the skillet, which object is also present in cooking area ? 

A. Mixer     B. Red Spatula      C. Cutting board     D. Dishwasher

Base VLM : A          VL-C+VE : B          VISCOP (Ours): B  

Q: What action is the person performing in the scene?
A. Washing  carrot   B. Chopping onions  C. Peeling  carrot  D. Cutting carrot stem

Q: What is the correct action being performed in the video?
A. Inserting tea bag      B. Sit down      C. Cutting food     D. Cleaning Dishes 

Q: What is the man next to bed wearing?
A. Hospital gown       B. Pajamas      C. Disney shirt       D. Swimsuit

Target domain Source domain

Base VLM : C          VL-C+VE : D          VISCOP (Ours): D  

Base VLM : D           VL-C+VE : C          VISCOP (Ours): D  

Base VLM : A           VL-C+VE : B          VISCOP (Ours): A  

Figure 9: Qualitative results on Egocentric Video Understanding Experts.

Q: Which object does the person fill with water ? 
A. Pitcher     B. Measuring cup      C. Bowl     D. Bottle

Base VLM : A          VL-C+VE : B          VISCOP (Ours): B  

Q: Which object does the person pour oil from into  skillet ?
A. Washing  carrot   B. Chopping onions  C. Peeling  carrot  D. Cutting carrot stem

Q: What is the correct action being performed in the video?
A. Getting up      B. Eat Snack      C. Drinking from can     D. Sit Down 

Q: How do the duck travel?
A. Attached with a rope       B. Resting on net      C. Walked on land       D. Swim

Target domain Source domain

Base VLM : C          VL-C+VE : D          VISCOP (Ours): D  

Base VLM : A           VL-C+VE : D         VISCOP (Ours): A  

Base VLM : D           VL-C+VE : C          VISCOP (Ours): D  

Q: What does person do with onion?
A.  Peels it B. Dices it  C. Boils it  D. Roasts it

Q: What action does the person do after the action ’Get up and 
before ‘Take something off the table  ?

A. Eat Snack       B. Leave      C. Put something on the table       D. Walk
Base VLM : A          VL-C+VE : B          VISCOP (Ours): B  Base VLM : D           VL-C+VE : C          VISCOP (Ours): D  

Figure 10: Qualitative results on Depth Video Understanding Experts.

to the target domain, on the source domain it often introduces hallucinated details. In contrast,
VISCOP preserves correctness, capturing the scene, actions and object interactions without hallu-
cination.

A.4 EXPANDED EXPERIMENTAL RESULTS

In this section, we present expanded results on the ADL-X benchmark across three target domains:
ego-video understanding Table 6, depth-video understanding Table 7, and robot control Table
8. In addition, we provide comprehensive source-domain results for the real-world domain expert
Table 9, as well as detailed ablation studies Table 10.

For the ADL-X description benchmark, we restrict evaluation to the Charades Charades Description
(Reilly et al., 2025a).
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Q: What does the person do after the action ‘Sit down’ and before 
the action  ‘walk’ ?

A. Eat snack      B. Cut ingredients      C. Get up     D. Pour from can

Q: What are the men wearing helmets doing ?
A. They are skiing     B. Sledding  C. Road repairing   D. Climbing cliff

Target domain Source domain

Task Instruction : “Place the carrot on the plate.”  Base VLM : C           VL-C+VE : D         VISCOP (Ours): C  

Base VLM : B           VL-C+VE : A          VISCOP (Ours): B  

Q: What does the man do after playing with the guitar for a while at the start?

A. Walk to the mic   B. Pass microphone to cameraman   C. Move body  D. Sing

Base VLM : A           VL-C+VE : C          VISCOP (Ours): A  

Task Instruction : “Rotate the eggplant by 180 degrees.”  

Task Instruction : “Move all the red objects into  the plate.”  

Figure 11: Qualitative results on robot control Experts.

Q: Describe the video in detail, keep it within 100 words, Include all 
the actions and object interactions of the person in the scene.

Base VLM: The video shows a woman in a tie-dye shirt and black 
pants standing in front of a closet. She is holding a blue object and 
looking at it. She then bends down and puts the object in the closet. 
She takes a sip from a cup and looks at herself in the mirror. She then 
takes another sip from the cup and looks at herself in the mirror again.

VL-E + VC : The video shows a woman standing in front of a closet, 
looking at her reflection in the mirror. She is holding a small object in 
her hand and appears to be examining it. The woman then bends 
down and places the object on a stool in front of the closet. She 
continues to look at the object in her hand, occasionally glancing at 
her reflection in the mirror. The video ends with the woman still 
standing in front of the closet, holding the object.
.

VISCOP (Ours) : A woman in a tie-dye shirt is seen in front of a closet. 
She holds a blue object and places it inside the closet. She then picks 
up a white cup, takes a sip, and looks at herself in the mirror. She 
continues to drink from the cup while standing in front of the closet.

Q: Describe the video in detail, keep it within 100 words, Include all 
the actions and object interactions of the person in the scene.

Base VLM: A woman is sitting on a red couch, holding a pillow. She 
then picks up a cell phone and starts using it. She lies down on the 
couch and continues using the phone.

VL-E + VC :  The video shows a woman sitting on a red couch, holding 
a pillow and a remote control. She then lies down on the couch, still 
holding the remote. The woman appears to be watching something 
on the TV, as she is holding the remote and looking at the screen. 
She seems to be relaxed and comfortable, as she is lying down on 
the couch.

VISCOP (Ours) : A woman sits on a red couch, holding a pillow. She 
looks around, then picks up a cell phone. She lies down on the couch, 
propping herself up with one arm while using the phone with the 
other. She continues to use the phone while lying down.
.

Figure 12: ADL-X descriptions using Ego Video Understanding Expert.

Table 6: Performance of ego video expert on ADL-X Benchmark.

Adaptation Strategy ADL-X MCQ ADL-X Descriptions (Charades)
VL-C VE LLM Charades AR Smarthome AR TSU TC LEMMA TC Avg Cor Do Ctu Tu Con Avg

Base VLM 91.95 70.58 78.34 68.56 77.36 73.50 73.74 75.78 68.59 61.61 70.64
✓ ✗ ✗ 93.10 70.34 75.73 67.04 76.55 79.30 80.82 82.43 73.13 61.82 75.50
✓ ✓ ✗ 91.56 71.48 77.16 67.99 77.05 80.55 81.55 83.57 73.56 61.20 76.09
✓ ✗ LoRA 92.39 71.50 77.59 68.18 77.41 78.54 77.34 81.70 73.45 60.74 74.36
✓ VISCOP LoRA 92.83 72.26 82.60 68.18 78.97 79.82 82.65 83.86 74.70 62.82 76.77
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Q: Describe the video in detail, keep it within 100 words, Include all 
the actions and object interactions of the person in the scene.

Base VLM: A man is seen standing on a staircase, holding a picture 
frame. He then proceeds to place the frame on the wall and uses a red 
ribbon to secure it. The man is wearing a black shirt and blue jeans. 
The staircase has a white railing and a wooden handrail. The man is 
focused on his task and appears to be taking his time to ensure that 
the frame is properly secured.

VL-E + VC : A man is seen standing on a staircase, holding a red 
ribbon. He then proceeds to wrap the ribbon around a wall, moving 
up the stairs as he does so. The man continues to wrap the ribbon 
around the wall, eventually reaching the top of the stairs.

VISCOP (Ours) :  A man is standing on a staircase, holding a framed 
picture. He carefully adjusts the picture, ensuring it is properly 
aligned. He then uses a red measuring tape to measure the distance 
between the picture and the wall. After measuring, he steps back and 
observes his work, making final adjustments to the picture's position
.

Q: Describe the video in detail, keep it within 100 words, Include all 
the actions and object interactions of the person in the scene.

Base VLM: The video shows a man in a red and white shirt entering a 
room. He walks towards a window and opens the curtains. The room 
has a bed, a table, and a chair. The man appears to be looking for 
something.

VL-E + VC : A man in a red and white shirt enters a room and walks 
towards the camera. He then moves to a bathroom and looks at 
something in his hand. The man then walks out of the bathroom and 
into another room, where he looks at the camera. He then walks 
towards a window and opens the curtains.

VISCOP (Ours) : A man in a red and white checkered shirt enters a room 
through a door. He walks towards a window with red curtains, opens 
them, and looks outside. The room has a bed with a zebra-patterned 
blanket, a red chair, and a table with books. The man then closes the 
curtains and turns back towards the table.

Figure 13: ADL-X captions from the Depth Video Understanding Expert.

Table 7: Performance of depth video expert on ADL-X Benchmark.

Adaptation Strategy ADL-X MCQ ADL-X Descriptions (Charades)
VL-C VE LLM Charades AR Smarthome AR TSU TC LEMMA TC Avg Cor Do Ctu Tu Con Avg

Base VLM 91.95 70.58 78.34 68.56 77.36 73.50 73.74 75.78 68.59 61.61 70.64
✓ ✗ ✗ 90.84 56.26 71.51 64.96 70.89 71.22 75.31 75.95 65.80 56.96 69.05
✓ ✓ ✗ 90.90 54.87 73.65 66.47 71.47 69.96 73.60 73.83 64.04 54.82 67.25
✓ ✗ LoRA 91.34 57.55 73.94 65.90 72.18 77.50 77.40 79.58 69.35 58.58 72.48
✓ VISCOP LoRA 93.60 63.79 81.71 67.23 76.58 78.51 84.68 84.07 74.67 60.41 76.47

Table 8: Performance of robot control expert on ADL-X Benchmark.

Adaptation Strategy ADL-X MCQ ADL-X Descriptions (Charades)
VL-C VE LLM Charades AR Smarthome AR TSU TC LEMMA TC Avg Cor Do Ctu Tu Con Avg

Base VLM 91.95 70.58 78.34 68.56 77.36 73.50 73.74 75.78 68.59 61.61 70.64
✓ ✓ ✓ 78.05 36.24 36.39 58.14 52.21 66.16 68.30 70.66 61.78 55.6 64.50
✓ ✗ ✓ 78.88 39.81 35.61 57.38 52.95 66.54 68.95 71.03 62.58 55.15 64.85
✓ VISCOP ✓ 90.96 45.77 38.76 48.1 55.89 66.25 71.91 72.49 66.02 56.433 66.62

Table 9: Expanded Robot Control Experts (Real-world)

Adaptation Strategy Robotic Control Benchmarks Human Understanding Benchmarks Adaptation Metrics

VL-C VE LLM T1 T2 T3 Avg Ego-in-Exo
(Exo RGB) NeXTQA VideoMME ADL-X

MCQ
ADL-X

Desc Avg ∆target (↑) ∆source (↑)

Base VLM 0 0 0 0 66.27 84.32 65.37 77.36 70.65 72.79 - -
Training data: VIMA-Bench

✓ ✓ ✓ 45.00 60.00 15.00 40.00 56.92 83.24 62.74 52.21 64.50 63.92 +40.00 -8.87
✓ VISCOP ✓ 40.00 70.00 20.00 43.33 71.19 83.71 63.67 55.89 66.62 68.22 +43.33 -4.58

Training data: VIMA-Bench + xArm-Det
✓ ✓ ✓ 85.00 85.00 70.00 80.00 64.50 83.00 63.00 36.04 62.24 61.76 +80.00 -11.04
✓ VISCOP ✓ 100.00 100.00 90.00 96.67 59.59 82.98 63.26 36.32 66.83 61.79 +96.67 -11.00

Table 10: Comprehensive target-source domain results from the ablation study of VISCOP

Adaptation Strategy Egocentric Benchmarks Exocentric Benchmarks Adaptation Metrics

VL-C VE LLM
Ego-in-Exo PerceptionMCQ (Ego RGB)

EgoSchema Avg NeXTQA VideoMME ADL-X
MCQ

ADL-X
Desc Avg

∆target

(↑)
∆source
(↑)Action

Und.
Task

Regions HOI Hand
Ident.

Base VLM 75.37 74.88 75.56 65.38 60.98 70.43 84.32 65.37 77.36 70.65 74.42 - -
✓ VP LoRA 66.88 75.98 59.62 63.84 61.54 65.57 84.22 64.37 77.86 73.73 75.05 -4.86 0.62
✓ LoRA LoRA 73.76 75.24 73.55 64.99 61.68 69.85 84.22 64.48 77.52 75.17 75.35 -0.59 0.92
✓ last-4 LoRA 73.35 77.93 73.32 65.25 62.43 70.46 84.00 63.78 77.74 76.34 72.62 0.02 -1.80
✓ QFormer-Style LoRA 75.99 77.56 74.50 65.38 61.54 70.99 84.13 64.44 78.43 73.13 75.03 0.56 0.61
✓ VISCOP LoRA 81.28 82.80 78.75 64.86 62.11 73.96 84.31 64.70 78.97 76.78 76.19 +3.53 +1.77
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