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Perennial Semantic Data Terms of Use for Decentralized Web
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ABSTRACT
In today’s digital landscape, the Web has become increasingly cen-
tralized, raising concerns about user privacy violations. Decentral-
ized Web architectures, such as Solid, offer a promising solution by
empowering users with better control over their data in their per-
sonal ‘Pods’. However, a significant challenge remains: users must
navigate numerous applications to decide which application can be
trusted with access to their data Pods. This often involves reading
lengthy and complex Terms of Use agreements, a process that users
often find daunting or simply ignore. This compromises user au-
tonomy and impedes detection of data misuse. We propose a novel
formal description of Data Terms of Use (DToU), along with a DToU
reasoner. Users and applications specify their own parts of the DToU
policy with local knowledge, covering permissions, requirements,
prohibitions and obligations. Automated reasoning verifies compli-
ance, and also derives policies for output data. This constitutes a
“perennial” DToU language, where the policy authoring only occurs
once, and we can conduct ongoing automated checks across users,
applications and activity cycles. Our solution is built on Turtle,
Notation 3 and RDF Surfaces, for the language and the reasoning
engine. It ensures seamless integration with other semantic tools
for enhanced interoperability. We have successfully integrated this
language into the Solid framework, and conducted performance
benchmark. We believe this work demonstrates a practicality of a
perennial DToU language and the potential of a paradigm shift to
how users interact with data and applications in a decentralized
Web, offering both improved privacy and usability.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning; • Security and privacy → Usability in security
and privacy; • Information systems→ Semantic web description
languages.
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1 INTRODUCTION
After years of development, the Web has become an indispensable
part of people’s life. However, the centralization of the Web has
risen as a pressing challenge, leading to various issues like pervasive
user behavioural manipulation, privacy breaches and an imbalance
of power [34, 40]. Decentralization is viewed as a potential solution
to address these issues [15, 21], and initiatives like Solid (Social
Linked Data) [30] have gained attention for their aim to return data
and control to the user, while respecting the openesss and fairness
of Web standards and infrastructures.

In a decentralizedWeb, users store their data in their own storage
(such as Solid Pods), and applications must request permission to
use and store data there. This shift in data control has the potential
to reduce ‘vendor-lock-in’, as it limits the privileged ownership
of data currently prevalently observed in large platforms. Further-
more, it is also crucial to fostering competition among different
applications. However, one aspect that has received less attention
in the decentralized setting is how users can sensibly decide which
application should be granted permission to access their data.

Assume in the decentralized setting, Alice wants to use a shop-
ping app to buy shoes, which may require access to several types
of data in her Pod, including shoe size, delivery address, and billing
information. She is concerned about how such an app may han-
dle her data ethically. In the meantime, Bob, the developer of a
shopping app, HappyShop, wants to build trust with users and is
willing to provide descriptions on how HappyShop handles users
data through its ‘Terms of Use’. However, users like Alice typi-
cally do not read these terms (aka. “the biggest lie on the Internet”)
because of information overload and their length [20, 24]. The prob-
lem is exacerbated in the decentralized setting with its numerous
apps that may require users’ decision regarding access to their data
Pods. As a result, users autonomy may still be compromised in
the decentralized Web, and can lead to many issues related to data
misuse [8, 35, 39] or loss of trust [13].

Facing these challenges, we propose the concept of “perennial”
Data Terms of Use (DToU), a formal language model that targets at
addressing the following challenges in a decentralized Web context:
1) expressing data provider’s DToU for their data; 2) imparting appli-
cation’s (developer’s) DToU on how they handle data; 3) performing
compliance checking over data usage requests; 4) supporting DToU
policy reusing across applications and data providers; 5) facilitating
apt DToU-compliant cross-application data sharing. With such a
language model, automated reasoning can be performed thus only
exposing distilled important information to users, reducing the
amount of information and numbers of decisions exposed to the
user, thus incentivizing responsible handling of Terms of Use. It is
called “perennial” because a stakeholder only needs to specify the
DToU once in the beginning, and it can be reused across activity
cycles and across stakeholders, just like the plants being implanted
once and kept growing in the future.

The perennial concept is in contrast to sticky policy [22, 26] which
proposed principles for supporting distributed DToU compliance,
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but, in the core definition, only explicitly discussed requirements
1 and 3. Sticky policy supports DToU-compliant cross-application
data sharing, but suggests the policy staying the same regardless
of data processing history, thus is not apt, leading to the potential
of frequent user disruption. Existing research on policy languages,
often coined as access control [27] and usage control [19, 32], also
proposed formal models for expressing certain parts of DToU. There
are different flavours of them, targeting at different scenarios, with
diverse properties and capacities. Although with a different focus,
they provide many design principles and concepts that are useful
across contexts.

In this paper, drawing upon concepts from existing data policy
languages, we propose a perennial policy language that addresses
challenges from decentralization while maintaining expressiveness,
by using heterogeneous yet interoperable data policy and applica-
tion policy. The language and reasoning mechanism are built on
semantic technologies, namely Turtle [5], Notation 3 [6] and RDF
Surfaces [12]. This facilitates the creation of a common vocabulary,
and enables integration with other semantic tools, particularly on-
tologies and ontological reasoning. Furthermore, our approach is
integrated with Solid, a decentralized user-focused Web architec-
ture, and we evaluate its performance across various workloads.
To the best of our knowledge, we are the first work proposing a
(semantic) perennial policy language that supports stakeholders
expressing their DToU in the context of the decentralized Web. We
believe this work provides a good starting of the paradigm shift for
enhancing user autonomy and control.

2 RELATED RESEARCH
Several explorations have delved into the utilization of computer-
interpretable formal encoding of policies to enable (semi-)automated
decision-making of data usage authorization. These range from the
classical access control to more advanced dynamic usage descrip-
tions. In this section, we examine this body of research and discusses
their relevance to a decentralized Web context, in addition to Table
1 which summarizes their main features.

The most well-known line of research involves various access
control models, each based on different principles. For example,
models such as Mandatory Access Control (MAC) [33], Access Con-
trol List (ACL), Role-Based Access Control (RBAC) [31] or Attribute-
Based Access Control (ABAC), can be based on information ranging
from narrower details like user identity to broader categories such
as user groups, and contextual information. Several languages uses
or implements them, such as E-P3P [18], WAC [4] and P2U [16].
There is also research that falls in the middle ground, such as Label-
Based Access Control (LaBAC) [7], a simplified variant of ABAC
while more expressive than MAC and RBAC, using simple tuples
to express conditions on users, actions and data (objects).

Other policy languages may also use the concepts from access
models, with additional features, such as eXtensible Access Control
Markup Language (XACML) [1], a widely-known XML-based stan-
dard for ABAC with additional constructs like obligations for cloud
services, and ODRL [2], which will be discussed later. In general,
this type of research usually assumes a finite number of personnel
(including applications) engaged in policy checking, and thus pre-
supposes the presence of a ‘supervisor’ with abundant knowledge

to actively compile and maintain policies, particularly when there
are personnel changes. While this assumption is reasonable for
managing data usage at an institutional level, it presents challenges
in contexts with multiple independent stakeholders that engage
and disengage dynamically, as is the case in a decentralized Web.

Some other research also makes similar assumptions, but al-
lows for customized mechanisms within their policies. For instance,
P2U [16], a data-right language akin to a set of contracts, defines
permitted data usage activities for applications, data, users and
meta-information (e.g. “negotiable”). Thoth [9], on the other hand,
uses its own logic-like policy language to express policies not only
for read action, but also for write, update and declassification ac-
tions. It permits intricate evaluations of formulae that involve rich
operators and the incorporation of external sources of information
during policy evaluation. While these approaches vary in terms
of expressiveness and usage contexts, they share a common lim-
itation due to the assumption of a finite number of personnel. In
our example, they can only define the policy after a user like Alice
has determined whether a shopping app like HappyShop should be
granted permission or not, rather than proactively.

In contrast to the approaches mentioned above, some research
recognizes the dynamic nature of data and applications, and offers
different solutions. LoNet [14], for example, employs Information
Flow Control (IFC) for RBAC, along with special transformation
rules for policy evolution. Additionally, it uses custom meta-code
for checking additional policy information like time. However, the
most expressive part, the meta-code, is arbitrary and difficult to stat-
ically verify. CamFlow [25], on the other hand, borrows concepts
from Decentralized IFC (DIFC) [23], and employs homogeneous
policy constructs (tags and labels) to encode the data policy and
application capability, and checks their compatibility. It also allows
the expression of policy evolution by adding or removing tags for
output (policy) based on input (policy). Smart object [29] uses com-
plex constructs to define permitted and prohibited use of data, and
combines this with the application information (using relational
calculus) to derive policies for output data, assuming and leveraging
a tabular structure of data. Dr.Aid [28] focuses on the context of
data-intensive scientific workflows, employing different structures
to express data rules and process rules. It supports policy reasoning
and derivation for workflow graphs involving multiple processes. A
common feature among these approaches is the separation of data
policy from application policy, using pre-defined reasoning mecha-
nisms to facilitate compliance checking. They have demonstrated
that this separation allows the reasoner to verify if an application
complies with the data policy, aligning with our intended goal.

There are also policy languages that utilize semantic technolo-
gies or are tailored for specific use cases within the decentralized
Web. One notable example is the Open Digital Rights Language
(ODRL) [2], a well-known expressive policy language serializable to
JSON-LD. It offers a comprehensive set of concepts, including per-
missions, prohibitions, obligations, remedies, conditions, purposes
and agents. However, originated as a data right expression language,
ODRL primarily focuses on expressing what is (not) permitted for
the data, and lacks a corresponding mechanism for expressing ap-
plication information. While efforts are being made to address this
issue [10], there is still uncertainty regarding the eventual resolu-
tion. The AIR [17] policy language, based on Notation 3 (N3) [6],
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Table 1: Summarization of features under different categories of related policy languages.

C1 - C5 refers to the Challenges 1 - 5 identified for perennial language. For column C1, A means authorization, O means obligation. For column C2, C means capacity, I means
multi-input, M means use mode, P means purpose, T means data type/category. For column C3 & C4, T means true, T(e) means true if using same environmental information
schema. For column C5, O means multi-output, T means transformation. For column Condition, A means application, C means capacity, E means (common) environmental

information, E means Entire environmental information exposed in knowledge base, M means use mode, P means purpose, T means data type/category, U means user, X means
external information.

Language C1 C2 C3 C4 C5 Condition Policy Author Format

E-P3P[18] AO T T(e) UEP Supervisor Custom
XACML[1]/ODRL[2] AO+ T T(e) EPU Owner XMl/JSON-LD
WAC[4]/ACP[3] A T AU/AUX Owner Turtle

P2U[16] A T AU Owner XML
LaBAC[7] A T AU Supervisor Custom
AIR[17] A T T(e) UE Owner N3
Thoth[9] A T EUX Owner Logic-like
Eddy[8] AO MP T(e) T MPU Supervisor OWL-DL
LoNet[14] A T T T EU Supervisor Custom

CamFlow[25] A C T T T C Owner Custom
Smart object[29] A IPT T T T PT Owner Custom

Dr.Aid[28] AO IP T T OT EPU Owner Custom
Ours AO CIPT T T OT CEPU Owner Turtle

specifies permitted and prohibited actions for data processing. It
allows for the expression of custom rules directly on the contextual
knowledge base of data processing. However, in the absence of gen-
eral agreements across applications, this requires the policy author
to have the knowledge of the information available in the knowl-
edge base, resulting in a high level of coupling with the application.
Eddy [8] examined real-life terms of use from online services and
proposed a policy language based on OWL-DL to express key data
requirements, including permissions, obligations and prohibitions.
The language distinguishes between different types of data actions
(collect, use, retain and transfer) and demonstrated compliance
checking between two policy sets of two services. However, there
is no clear demonstration of how data providers can utilize this
language, as it necessitates highly detailed descriptions. Solid, a
decentralized Web architecture based on Linked Data, has its own
policy languages, mainly for access control purposes. This includes
WAC [4], a policy language for expressing ACL, and ACP [3], an
advanced policy language that supports a broad range of conditions,
such as Verifiable Credentials. WAC and ACP leverage contextual
information exposed by Solid but are less expressive compared to
ODRL and AIR. In general, these languages cannot be directly ap-
plied to support data usage expressions in the decentralized setting
we target at due to their individual limitations.

3 OUR LANGUAGE
3.1 Language design
Broadly speaking, our language model consists two parts: the data
policy and the application policy. This design is crucial to enable
automated data access negotiation between a data owner and a data
consumer (e.g. applications). The data policy enables data providers
to define policy-related metadata and expectations for the data
consumers. The application policy allows application developers to

encode the promises and expectations for accessing the data by the
application.

The reasoner performs three types of tasks: a) conformance
check: deciding whether the application can use the data; b) obliga-
tion check, assessing what obligations are activated by the appli-
cation; and c) policy derivation: determining the policy for output
data and saving a data owner to define data usage policy in every
data access use case. Figure 1 gives an overview of the language
and the relation between different concepts.

In the following, we provide more detailed descriptions about the
language, with all examples expressed in Turtle [5]. For simplicity,
we omit the prefixes, and only use : for named nodes.

3.1.1 Data Policy. Conceptually, the data policy consists of two
layers: attributes and semantics. Attributes form the base layer,
expressing information about the data and/or the policy. On top of
that is the semantic layer, providing semantic concepts like tags,
prohibitions and obligations, to support reasoning of information
expressed in the attribute layer. In the Turtle syntax of the policy
encoding, each tuple is expressed as a node with corresponding
type and properties.

More precisely, each attributes is a simple tuple: (name, class,

value). While they do not carry any semantics, they are designed
with a flexible structure to describe information about data and
policy. For example, attributes can be used to define Alice as an
author, e.g. (:author, :string, "Alice"), or encode a textual descrip-
tion (e.g. (:ack-text, :string, "This dataset is by Alice")), or specify
the data fields (e.g. (:col-2, :field, :column-2)). This concept of at-
tributes is borrowed fromDr.Aid [28], which has been demonstrated
as a powerful structure for supporting policy derivation. The follow-
ing example shows howAlice defines her email address information
as an attribute – the attribute is a kind of ‘string’ and has the value
of “alice@b.c.”
:attr1 a :Attribute;

3
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Figure 1: Language design and relation between concepts

:name :alice -email;

:class :string;

:value "alice@b.c".

Tags, from the semantics layer of our model, can be used to specify
the requirements or available resources. Two typical types of tags
are security and integrity: security specifies which security level(s)
an application needs to possess to use the data; and integrity iden-
tifies the integrity level(s) this dataset has, to be requested by the
application (policy). Inspired by the structure of CamFlow [25] (see
Section 2), tags can be used to facilitate conformance check, see
later Sec 3.2.2.

The name of a tag (i.e. which tag it is) is associated with the
class of an attribute using attribute_ref; other information in the
attribute are not used by a tag. Our policy language also allows
expressing additional types of tags, such as Purposes.

The following shows how tags are used to define that Alice
requires any application to respect banking security level, and permit
make-payment and verify-ownership purposes (for payment info):
:attr -tag2 a :Attribute;

:name :tag -2;

:class :banking;

:value :nil.

:attr -tag3 a :Attribute;

:name :tag -3;

:class :make -payment;

:value :nil.

:attr -tag4 a :Attribute;

:name :tag -4;

:class :verify -ownership;

:value :nil.

:tag2 a :SecurityTag;

:attribute_ref :attr -tag2.

:tag3 a :PurposeTag;

:attribute_ref :attr -tag3.

:tag4 a :PurposeTag;

:attribute_ref :attr -tag4.

A tag may have validity bindings, meaning that the validity of the
tag is dependent on the existence of referenced attribute(s). As an
example, the tags in the payment info policy may have validity

bindings to (an attributing denoting) the exact content of :payment-
details:

:attr2 a :Attribute;

:name :det;

:class :data -content;

:value :payment -details.

:tag2 a :SecurityTag;

:attribute_ref :attr -tag2;

:validity_binding :attr2.

:tag3 a :PurposeTag;

:attribute_ref :attr -tag3;

:validity_binding :attr2.

:tag4 a :PurposeTag;

:attribute_ref :attr -tag4;

:validity_binding :attr2.

Prohibitions specify additional restrictions on the data consumer,
independent of the capacity (i.e. tags) of the application. The core of
a prohibition is the activation condition, which is a matcher against
user, application and purpose. If the condition matches the usage
context, the usage is deemed prohibited. Validity bindings are also
supported. Additionally, our model also offers an extension point,
allowing users to specify the :mode when a match is considered.
Currently, we only support the :Use mode, denoting the reading or
processing of the data. We plan to explore other types of use modes
to be integrated.

For example, Alice dislikes a payment processor, <http://duckpay.
com/>, and does not want it to use her payment information, either
directly or indirectly. This can be encoded as:
:pr1 a :Prohibition;

:mode :Use;

:activation_condition [

:app_name <http :// duckpay.com/>

];

:validity_binding :attr2.

Obligations denote a potential obligation that will be triggered un-
der certain conditions. Its core is an obligation definition, specifying
what the triggered obligation will be, and an activation condition,
specifying the condition to trigger this obligation. An obligation

4
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definition contains an obligation class, and a list of arguments –
references to attributes. Upon activation / instantiation of the obli-
gation, the actual value of these attributes will be used, rather than
the reference. The activation condition and validity bindings are the
same as those defined for prohibition.

The following example shows that Alice expects any application
to email her when it accesses her shoe size for research purposes:
:ob1 a :Obligation;

:obligation_class :send -email;

:args (:attr1);

:activation_condition [ :purpose :research ].

Policy set. Finally, the policy terms explained above should be
put together as a policy set. A policy set contains a Policy node
which contains the relevant policy terms, and a Data node which
pairs the policy and the data IRI that this policy applies to. For
example, the policy set for Alice’s payment information looks like:
:data -payment a :Data;

:uri <http ://a.b/payment -info >;

:policy :policy -1.

:policy -1 a :Policy;

:attribute :attr -tag2 , :attr -tag3;

:security :tag2;

:purpose :tag3;

:prohibition :pr1.

3.1.2 Application Policy. An application policy (abbreviated as app
policy) contains basic information about the application, and the
policy specification for the inputs and outputs. In addition, it also
specifies relevant downstream data consumers (e.g. third-party APIs
to send data to) that this application will use.

An application may have multiple inputs, and thus multiple
input specifications (:InputSpec). Normally, each input specification
describes basic information about that input (name and data) and
its capacity: the tags it conforms to, including the security levels,
the integrity it expects, and the purpose it will use the (input) data
for. If the application sends the input data to an external location
for processing (e.g. an API call), a downstream should be specified as
a simplified app policy for that downstream stakeholder, specifying
the (application) name, user and purpose of that downstream1.

For example, Bob states this input specification for reading the
payment information for HappyShop:
:input1 a :InputSpec;

:data <http ://a.b/payment -info >;

:port "payment -info -in";

:security :banking;

:purpose :making -payment;

:downstream [

:app_name <http :// goodpay.com/>;

:purpose :making -payment

].

It says an input port named "payment-info-in" reads data from <http

://a.b/payment-info>, and promises to comply with security level
:banking, and will use the data only for purpose of :making-payment; it
will send the data to a downstream, named <http://goodpay.com/>, for
purpose of :making-payment. It is compatible with Alice’s data policy
for payment info.
1The app developer should verify that the downstream capacity is in line with that of
the input specification, so its tags do not need to be explicitly expressed.

Similarly, an application may wish to store data into user’s Pods,
so it may need to specify multiple output specifications. Apart from
the name, each output specification describes the related input that
this output data is derived from, and the refinements that the data
policies are subject to.

The from statement, (during reasoning) associates the output
with a set of data policies, each pertinent to the input used to derive
the output. In a higher level, this reflects the general information
flow in the application. The removal or change of information
is captured by a refinement, which expresses how (the attributes
of) the data policies should be modified to reflect the processing
that has been applied to the data. Two types of refinements are
supported: delete and edit. A delete has a filter, meaning that all
attributes matching the filter should be deleted, and the filter is
used to specify the matching attribute information: name, class and
value. Similarly, an edit means that any attribute matching the filter
will be assigned a new class and value.

The following example output specification shows how Hap-
pyShop may record purchase histories in their Pod, which contains
the copy of the delivery address, and a declassified version of pay-
ment details:
:out1 a :OutputSpec;

:from "address -in", "payment -info -in";

:refinement :refine -no-payment -details.

:refine -no-payment -details a :Delete;

:filter [

:class :data -content;

:value :payment -details

].

This policy snippet means this output is related to the data from
the inputs named "address-in" and "payment-info-in", and has one
refinement, which will delete all attributes of class :data-content

and value :payment-details, reflecting a fact that the output data will
not contain payment details even though it uses payment data.

The refinements directly operate on attributes, but references to
attributes (bindings) in the semantic layer ensure that all operations
will be inferred to related semantic concepts too. For instance, if an
attribute is deleted, any tags, prohibitions and attributes that has a
binding to this attribute will also be deleted.

3.1.3 Shared vocabulary. It is worth noting that shared vocabu-
laries are assumed in all related research, with different levels of
difficulties to achieve. In our work, this is achieved by making con-
cepts explicit and using IRIs. This allows easy and decentralized
provision of them, such as using OWL ontologies [38] as vocabu-
laries. There are five sorts of vocabularies to be shared, as seen in
the middle of Figure 1. They are centred around the data provider’s
wills, and thus is most natural to be provided by them, or some
intermediaries. We mainly identify this mechanism, and leave this
to the practitioners to consolidate the vocabularies. Relatedly, OWL
reasoning may be integrated and performed before policy reasoning
to maximize interoperability.

3.2 Reasoning
Our language accommodates three types of reasoning tasks: confor-
mance check, obligation check, and policy derivation. This section
explains the reasoning mechanism in more details.

5
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In general, the reasoning rules can be expressed using first-order
logic, encoded using RDF Surfaces [12] and Notation 3 (N3) [6] in
our implementation. N3 is a language supporting the expression
of both semantic data and reasoning rules with a rich syntax; RDF
Surfaces, building onN3, provides a (direct) translation of first-order
logic (FOL), including representing negations. Some of these rules
contain explicit negations, which are implemented using N3 built-
ins like log:collectAllIn, enabling scoped negation-as-failure (SNAF)
[6]. For the sake of brevity, we only introduce the foundational
principles here, and present the axioms in Appendix A.

3.2.1 Context preparation. Before embarking on the three reason-
ing tasks, it is essential to inject the contextual information and
link the application policy with data policy.

The contextual information is represented as a 𝑈𝑠𝑎𝑔𝑒𝐶𝑜𝑛𝑡𝑒𝑥𝑡 ,
specifying the relevant application policy 𝑎𝑝𝑝_𝑝𝑜𝑙 , the𝑢𝑠𝑒𝑟 and the
𝑡𝑖𝑚𝑒 of data usage. These parameters are only known during actual
application requests and should be provided to the reasoner dynami-
cally each time. Each reasoning task involves a distinct𝑈𝑠𝑎𝑔𝑒𝐶𝑜𝑛𝑡𝑒𝑥𝑡 .

Furthermore, all relevant policy content is added to the same
knowledge base. This leverages the fact that Turtle is a sub-language
of N3, making all policy specifications in Turtle valid N3 statements.
The linkage between data policy and app policy is established by
identifying the data URIs as specified in their respective fields. This
is achieved through our reasoning rules, removing the need for
additional injection of data policy into the corresponding inputs.

3.2.2 Conformance check. The fundamental purpose of our policy
language is to determine whether a data usage should be permitted,
which is essentially conformance checking. In our language, there
are three types of conflicts to be checked: unsatisfied requirements,
unmatched expectations, and prohibited uses.

An unsatisfied requirement occurs when a requirement tag (e.g. se-
curity) in the data policy is absent in the app policy. Therefore, the
reasoning process involves determining all corresponding inputs
and data, and verifying their requirement tags.

Conversely, an unmatched expectation arises when a tag expecta-
tion (e.g. integrity) in the app policy is missing in the data policy.
This task also covers the verification of whether all purposes are
permitted. Both the reasoning about unsatisfied requirement and
unmatched expectation require a ’close-world assumption,’ as it’s
essential to establish whether a tag does not exist. We utilize scoped
negation-as-failure (SNAF) provided by N3 built-ins, considering
the policy documents as the sole reliable source of information.

A prohibited use is identified when a prohibition is triggered. Pro-
hibitions have their own semantics, including activation conditions,
and should be checked in accordance with these conditions.

3.2.3 Obligation check. Our policy language can also reason about
the obligations triggered during data use. This process is similar
to checking prohibitions and involves verifying the activation con-
ditions. But obligations contain arguments that are references to
attributes and these attributes need to be returned from the query
for further assessment.

3.2.4 Policy derivation. When the application produces output data
(i.e. storing data to users’ Pods), policy derivation becomes crucial
to produce derived data policy for the output, based on the output
specification. This aspect is central to (addressing challenge 5 of)

the perennial nature of our language. Policy derivation involves
merging the data policies from all corresponding from inputs and
performing refinements.

The derivation of output attributes is a primary focus because
these attributes are vital for handling output policies for the seman-
tics layer, particularly for bindings. Because of refinements, each
input attribute will either have a copy, be edited, or cease to exist in
the output. This process creates new nodes for the output attributes
in the RDF graph, corresponding to the existential quantifier in the
conclusions. The linkage between the input and output attributes
is also recorded, which will be used for policy derivation of the
semantic layer. SNAF plays a crucial role here as it determines
what ‘happens’ to the rest of the input attributes that do not have
a matching refinement – there should be an output attribute with
identical name, class and value.

The tags in an output are based on the collection of all tags of
related inputs, while removing those tags with deleted attribute
bindings. Because tags have types, they can be treated uniformly
when reasoning about their existence, and the reasoner can make
use of the types afterwards.

The output obligations and output prohibitions are derived simi-
larly. We first check if any binding is deleted, like for output tags. If
not, a new node for obligation (or prohibition) is created, replicat-
ing all fields of the original obligation (or prohibition) in input. For
obligations, that covers the obligation definition (obligated action
class and arguments), validity binding and activation condition;
for prohibitions, that covers the use mode, validity binding and
activation condition.

Intuitively, the attribute references for the output policies will be
the corresponding output attributes, instead of the input attributes.

4 SOLID INTEGRATION
To test and demonstrate the language, we integrated the language
into Solid, a decentralized Web architecture based on Linked Data
that emphasizes on user autonomy. This allowed us to express data
policies and application policies and perform reasoning, in a realistic
context, and also serving as the foundation for our benchmark.

To achieve this, we extended the Community Solid Server [11]
v6.0, a modular and extensible Solid server implementation written
in TypeScript. For policy reasoning, we use an off-the-shelf reasoner,
EYE [36], which supports RDF Surfaces and N3 reasoning. In par-
ticular, we used the eyereasoner package available on npm2, which
is a WebAssembly distribution of EYE with a JavaScript interface.

In the sequence diagram depicted in Figure 2, we illustrate the key
components and actions related to policy reasoning for applications,
assuming that the data already have DToU policies associated.

Before reasoning, the application needs to register its application
policy. The DToU handler, located behind the API endpoint on the
server, processes the request and creates a temporary policy record.

Subsequently, the application requests a conformance check
before utilizing the data. The DToU handler retrieves the corre-
sponding policy, establishes the UsageContext, identifies the input
data from the application policy, retrieves the relevant data policy,
and calls the policy engine to perform the conformance check. The
results are then provided to the application for further action, such

2https://www.npmjs.com/package/eyereasoner
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Figure 2: Sequence diagram for the Solid integration of the
DToU language

as user display. Optionally, the DToU handler may restrict data
access request by the application, in the presence of conflicts, or
when data lacks a policy.

Similarly, the application can request an obligation check and
then processes the information accordingly, including displaying
it to the user at the appropriate time or automatically fulfilling
obligations when applicable. Our language distinguishes between
UserObligation and ProcessObligation classes to facilitate this distinc-
tion, leaving the specific obligations up to policy authors.

Finally, when the application intends to write output data to the
Pod, it should send a policy derivation request along with the
data. The DToU handler will then perform policy derivation and
store the policy with the data. This allows subsequent applications
to automatically carry out DToU reasoning when they request this
data as input. As mentioned, the DToU handler may deny usage of
data without policies, thus effectively enforcing policy derivation –
if it does not perform it, the stored data will not be usable.

DToU reasoning is performed by the policy engine and DToU
handler in the modified Solid service, reducing the burden on the
application developers and Pod owners. From the Pod owner’s
perspective, supporting DToU requires expressing relevant data
policies for input data. For the applications, DToU support involves
preparing app policies and sending policy-related requests to the
(modified) Solid servicewhile handling responses. These application
policies can be statically attached to the project, or dynamically
generated from a template, offering flexibility for different users.
The optimal method for authoring app and data policies remains
an open question, outside the scope of this paper.
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Figure 3: General benchmark results of different workloads

5 PERFORMANCE BENCHMARK
We conducted benchmark tests to evaluate the performance of our
integration and to gain insights into its scalability across different
reasoning tasks and workloads. This section presents the results
and our discussion.

5.1 Benchmark settings
The benchmark encompasses a wide range of workloads of incor-
porating key variables: the number of different terms in the data
policy and app policy. We varied these numbers, ranging from 10 to
1000, while keeping other variables at a fixed value of 10. There are
two exceptions that are not fixed to 10: the number of attributes,
which is set to 100, and the number of inputs, which is limited
to 4. We chose these values because attributes require references
to them, and handling only 10 would not suffice for distribution
among tags, prohibitions and obligations; the number of inputs
significantly impacts performance, so we opted for a smaller yet
reasonable number.

It is worth noting that the range we benchmarked should be
demonstrable to what usually exists in current real-world policies.
For example, [8] reviewed Facebook, Zynga and AOL policies and
identified a total of 131, 190 and 75 statements. Although not eq-
uitable, each statement roughly corresponds to one term in the
semantic layer and several attributes, or one term in the app policy.

For the benchmark, we utilized the WebAssembly distribution of
the eyereasoner v6.9.5, which is available on NPM. We started the
server using the provided file-storage configuration, without special
parameters. The benchmark tests were conducted on a consumer-
level laptop, with an Intel Core i5-1135G7 (2.4 GHz) and 32GB of
RAM, running on Linux kernel 6.1.55 (x86_64). Each workload was
repeated 10 times, and the time taken from sending requests to
receiving results was recorded.

5.2 Results and discussions
5.2.1 General results. Figure 3 shows the primary results of our
benchmark. Most variables exhibit a linear or sublinear scaling
trend. However, some variables do not reach 1000 because they
encountered time-out or connection resets with further increase.

The three specific variables, namely app:numData, app:numPurpose
and app:numIntegrity, displayed exceptional growing trends in con-
formance checking, resulting in time-outs, which we will discuss

7
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separately later. After removing these exceptional cases, and sub-
tracting the base time for policy loading and general reasoning
(e.g. axioms for rdfs:subClassOf), we obtain Figure 4. It demonstrates
a clearer linear growth trend in the remaining variables.

Among them, most variables reached 1000, except for app:output

:numDelete and app:output:numOutput, which stopped at 600 and 500.
This limitation was due to connection resets, caused by the server
encountering JavaScript out-of-heap errors during the 10 repeti-
tions. This indicates a potential area for optimization of the memory
consumption. However, it’s worth noting that having 500 output
ports or 600 delete refinements per output port (thus 6000 in total)
for an application is exceptionally large and likely not an issue in
realistic scenarios.

5.2.2 Unmatched expectations. Now, regarding the exceptional
growths, as shown in Figure 3, two variables, app:numPurpose and
app:numIntegrity, correspond to the checking of unmatched expecta-
tions. We further performed additional experiments to understand
the time spent on different conformance checking (sub-)tasks, as
shown in Figure 5. It verified the intuition that the time was mainly
consumed by checking the unmatched expectations.

However, it’s interesting to note that the time for its symmetric
task, unsatisfied requirements, did not exhibit the same exceptional
growth, as seen in Figure 3 for variable data:tag:numSecurity and
app:numSecurity. This suggests that the issue is likely not due to
a mis-implementation of our axioms, but rather a performance
bottleneck for RDF Surfaces or the EYE reasoner related to specific
rule combinations and orders. Ideally, future work should explore
and address this issue, with the potential to further optimize by
reducing the coefficient for tag matching.

5.2.3 Number of data / inputs. Changing the number of data inputs
led to the most significant growth in reasoning time, displaying a

growth pattern that appears higher than linear, as shown in the
sub-figure for unmatched expectations in Figure 5. This could be
explained because all reasoning tasks depend on the pairing of data
policies and inputs, making the complexity increase faster with
the number of data inputs. However, it’s interesting to note that
obligation checking and policy derivation did not pose the same
exceptional growth trend as conformance checking in Figure 3. A
plausible explanation is that conformance check involves a heavier
workload, making this effect more pronounced. This is supported
by the fact that the time spent on a more complex subtask, such as
unmatched expectation, also grew faster than that of unsatisfied
requirements and prohibited use, as reflected in Figure 5. This
suggests that our usage of RDF Surfaces may be suboptimal and
should be addressed and optimized in future work.

5.3 Conclusion
From our benchmark, it is clear that the reasoning cost for all tasks
shows a linear growth concerning all but one factor. It is important
to note that DToU policy reasoning is not performed frequently
(typically three times in an application’s lifecycle), so real-time per-
formance is not a strict requirement. However, our result highlight
the significant potential for deploying our DToU language on a
large scale with a substantial volume of policies. Additionally, we
delved into the specifics of the suboptimal results and proposed
potential reasons for their behaviour. In a production system, it
is essential to focus on optimizing the reasoning tasks and the
underlying reasoner to ensure efficient and reliable performance.

6 SUMMARY AND FUTUREWORK
In this work, we have undertaken a comprehensive exploration of
the challenges and advantages associated with introducing DToU
into a decentralized Web context, exemplified by Solid, with the
overarching aim of enhancing user autonomy. Our efforts have
included identifying the pertinent challenges and benefits, delin-
eating the specific requirements for a policy language within this
context, and introduced our own DToU policy language, which is
based on semantic technologies. We have also detailed the design
of data policies, application policies and the underlying reasoning
mechanism. Furthermore, we showed how our solution integrates
with Solid, along with benchmark tests that assessed the scalability
of our implementation, highlighting its potential for wider adoption
with a substantial volume of policies. We discussed areas where
further optimization is required.

The next step of our work involves evaluating the language
expressiveness and its understandability for users. We are also
interested in exploring simpler methods for policy authorization,
which could potentially involve leveraging NLP technologies. In
general, our work underscores a paradigm shift in how application
may be selected, permission granted, and interoperability achieved.
This shift is driven by the automated reasoning of perennial DToU
policies. It points out a wide spectrum of challenges and oppor-
tunities, including but not limited to enhancing the language ex-
pressiveness, improving usability, effectively maintaining policies,
and optimizing performance. Effectively addressing these social-
technical challenges will require interdisciplinary collaboration,
and we are committed to contributing to this ongoing effort.
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axioms for performing reasoning for our language here. Because
our policy language is based on Turtle thus RDF [37], knowledge is
represented as triples in the ABox. We employ some conventions
here for the expression in first-order logic:

(1) 𝐴(𝑥, 𝑆𝑜𝑚𝑒𝑇𝑦𝑝𝑒) denotes that the type of entity𝑥 is 𝑆𝑜𝑚𝑒𝑇𝑦𝑝𝑒 ,
i.e. the triple (𝑥, 𝑟𝑑 𝑓 : 𝑡𝑦𝑝𝑒, 𝑆𝑜𝑚𝑒𝑇𝑦𝑝𝑒) exists in the ABox;

(2) ℎ𝑎𝑠𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 (𝑥,𝑦) denotes that there is a relation 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒
between entity 𝑥 and𝑦, i.e. the triple (𝑥, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒,𝑦) exists
in the ABox;

(3) Other predicates starting with a capital letter refer to a
shorthand, which will be explained individually;

(4) Variables are universally quantified over the scope of the
entire formulae, unless explicitly quantified or stated oth-
erwise;

(5) For clarify, wewrite the conclusion in the beginning, similar
to a Horn clause;

(6) Existential quantified entities in the conclusions denote a
new node in the ABox, which is handled nicely by RDF
Surfaces;

(7) Negations denote scoped negation-as-failure, implemented
using N3’s built-ins;

(8) We use double-line arrows to visually distinguish between
the main premise and conclusions; however, they still rep-
resent material implications, same as the single-line arrows,
and are encoded in RDF Surfaces as such;

(9) Namespaces are dropped from the formulae for clarity.

A.1 Helper axioms
To simplify the axioms for actual reasoning tasks, we extract two
common parts as helper axioms: 𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑝𝑝𝐼𝑛𝑝𝑢𝑡 and
𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦𝐹𝑜𝑟𝑂𝑢𝑡𝑝𝑢𝑡 .

The𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑝𝑝𝐼𝑛𝑝𝑢𝑡 (𝑢𝑠𝑎𝑔𝑒, 𝑑𝑎𝑡𝑎, 𝑎𝑝𝑝, 𝑖𝑛𝑝𝑢𝑡) identifies and
groups data policy (𝑑𝑎𝑡𝑎) and corresponding input specification
(𝑖𝑛𝑝𝑢𝑡 ) together, as well as the usage context 𝑢𝑠𝑎𝑔𝑒 and applica-
tion policy 𝑎𝑝𝑝 . Typically, in a reasoning, there is only one usage
context (𝑢𝑠𝑎𝑔𝑒) and one application (𝑎𝑝𝑝). Conformance checking
often uses this predicate. It is defined as:

𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑝𝑝𝐼𝑛𝑝𝑢𝑡 (𝑢𝑠𝑎𝑔𝑒, 𝑑𝑎𝑡𝑎, 𝑎𝑝𝑝, 𝑖𝑛𝑝𝑢𝑡) ⇐
𝐴(𝑢𝑠𝑎𝑔𝑒,𝑈𝑠𝑎𝑔𝑒𝐶𝑜𝑛𝑡𝑒𝑥𝑡)
∧ ℎ𝑎𝑠𝐴𝑝𝑝 (𝑢𝑠𝑎𝑔𝑒, 𝑎𝑝𝑝𝑠 ) ∧ ℎ𝑎𝑠𝑃𝑜𝑙𝑖𝑐𝑦 (𝑎𝑝𝑝𝑠 , 𝑎𝑝𝑝)
∧ ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑒𝑐 (𝑎𝑝𝑝, 𝑖𝑛𝑝𝑢𝑡) ∧𝐴(𝑑𝑎𝑡𝑎, 𝐷𝑎𝑡𝑎) ∧ ℎ𝑎𝑠𝑈𝑟𝑖 (𝑑𝑎𝑡𝑎,𝑢𝑟𝑖)
∧ ℎ𝑎𝑠𝐷𝑎𝑡𝑎(𝑖𝑛𝑝𝑢𝑡,𝑢𝑟𝑖)

The 𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦𝐹𝑜𝑟𝑂𝑢𝑡𝑝𝑢𝑡 (𝑖𝑛𝑝𝑢𝑡, 𝑝𝑜𝑙𝑖𝑐𝑦, 𝑜𝑢𝑡𝑝𝑢𝑡) identifies which
input (specification) and its corresponding data policy is related
to an output (specification). One input has only one data policy,
while one output may have multiple inputs, leading to several
𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦𝐹𝑜𝑟𝑂𝑢𝑡𝑝𝑢𝑡s. It is defined as:

𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦𝐹𝑜𝑟𝑂𝑢𝑡𝑝𝑢𝑡 (𝑖𝑛𝑝𝑢𝑡, 𝑝𝑜𝑙𝑖𝑐𝑦, 𝑜𝑢𝑡𝑝𝑢𝑡) ⇐
𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑝𝑝𝐼𝑛𝑝𝑢𝑡 (𝑢𝑠𝑎𝑔𝑒, 𝑑𝑎𝑡𝑎, 𝑎𝑝𝑝, 𝑖𝑛𝑝𝑢𝑡)∧
ℎ𝑎𝑠𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑝𝑒𝑐 (𝑎𝑝𝑝, 𝑜𝑢𝑡𝑝𝑢𝑡) ∧ ℎ𝑎𝑠𝐹𝑟𝑜𝑚(𝑜𝑢𝑡𝑝𝑢𝑡, 𝑖𝑛𝑝𝑢𝑡𝑃𝑜𝑟𝑡)∧
ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑖𝑛𝑝𝑢𝑡, 𝑖𝑛𝑝𝑢𝑡𝑃𝑜𝑟𝑡) ∧ ℎ𝑎𝑠𝑃𝑜𝑙𝑖𝑐𝑦 (𝑑𝑎𝑡𝑎, 𝑝𝑜𝑙𝑖𝑐𝑦)

A.2 Conformance check
We have explained them in the main text of the document. There-
fore, this part only presents the formulae, and their explanations
where necessary.

A.2.1 Unsatisfied requirement.

𝑈𝑛𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 (𝑡, 𝑛, 𝑖𝑛𝑝𝑢𝑡) ⇐
𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑝𝑝𝐼𝑛𝑝𝑢𝑡 (𝑢𝑠𝑎𝑔𝑒, 𝑑𝑎𝑡𝑎, 𝑎𝑝𝑝, 𝑖𝑛𝑝𝑢𝑡)∧
ℎ𝑎𝑠𝑃𝑜𝑙𝑖𝑐𝑦 (𝑑𝑎𝑡𝑎, 𝑝𝑜𝑙) ∧ ℎ𝑎𝑠𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 (𝑝𝑜𝑙, 𝑟𝑒𝑞)∧
ℎ𝑎𝑠𝑇𝑦𝑝𝑒 (𝑟𝑒𝑞, 𝑡) ∧ ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑟𝑒𝑞, 𝑛)∧
¬∃𝑝𝑟𝑜𝑣 .(ℎ𝑎𝑠𝑃𝑟𝑜𝑣𝑖𝑑𝑒 (𝑖𝑛𝑝𝑢𝑡, 𝑝𝑟𝑜𝑣)∧

ℎ𝑎𝑠𝑇𝑦𝑝𝑒 (𝑝𝑟𝑜𝑣, 𝑡) ∧ ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑝𝑟𝑜𝑣, 𝑛))

The definition of𝑈𝑛𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 (𝑡, 𝑛, 𝑖𝑛𝑝𝑢𝑡) is:

𝑈𝑛𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 (𝑡, 𝑛, 𝑖𝑛𝑝𝑢𝑡) ≡
∃𝑥 .𝐴(𝑥,𝑈𝑛𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡) ∧ ℎ𝑎𝑠𝑇𝑦𝑝𝑒 (𝑥, 𝑡)∧
ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑥, 𝑛) ∧ ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 (𝑥, 𝑖𝑛𝑝𝑢𝑡)

A.2.2 Unmatched expectation.

𝑈𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛(𝑡, 𝑛, 𝑖𝑛𝑝𝑢𝑡) ⇐
𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑝𝑝𝐼𝑛𝑝𝑢𝑡 (𝑢𝑠𝑎𝑔𝑒, 𝑑𝑎𝑡𝑎, 𝑎𝑝𝑝, 𝑖𝑛𝑝𝑢𝑡)
ℎ𝑎𝑠𝑃𝑜𝑙𝑖𝑐𝑦 (𝑑𝑎𝑡𝑎, 𝑝𝑜𝑙) ∧ ℎ𝑎𝑠𝐸𝑥𝑝𝑒𝑐𝑡 (𝑖𝑛𝑝𝑢𝑡, 𝑒𝑥𝑝)∧
ℎ𝑎𝑠𝑇𝑦𝑝𝑒 (𝑒𝑥𝑝, 𝑡) ∧ ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑒𝑥𝑝, 𝑛)∧
¬∃𝑡𝑎𝑔.(ℎ𝑎𝑠𝑇𝑎𝑔(𝑝𝑜𝑙, 𝑡𝑎𝑔) ∧ ℎ𝑎𝑠𝑇𝑦𝑝𝑒 (𝑡𝑎𝑔, 𝑡) ∧ ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑡𝑎𝑔, 𝑛))

The definition of𝑈𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛(𝑡, 𝑛, 𝑖𝑛𝑝𝑢𝑡) is:

𝑈𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛(𝑡, 𝑛, 𝑖𝑛𝑝𝑢𝑡) ≡
∃𝑥 .𝐴(𝑥,𝑈𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛) ∧ ℎ𝑎𝑠𝑇𝑦𝑝𝑒 (𝑥, 𝑡)∧
ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑥, 𝑛) ∧ ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 (𝑥, 𝑖𝑛𝑝𝑢𝑡)

A.2.3 Prohibited use.

𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑒𝑑𝑈𝑠𝑒 (𝑚,𝑛, 𝑝, 𝑖𝑛𝑝𝑢𝑡) ⇐
𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑝𝑝𝐼𝑛𝑝𝑢𝑡 (𝑢𝑠𝑎𝑔𝑒, 𝑑𝑎𝑡𝑎, 𝑎𝑝𝑝, 𝑖𝑛𝑝𝑢𝑡)∧
ℎ𝑎𝑠𝑃𝑜𝑙𝑖𝑐𝑦 (𝑑𝑎𝑡𝑎, 𝑝𝑜𝑙) ∧ ℎ𝑎𝑠𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛(𝑝𝑜𝑙, 𝑝𝑟𝑜)∧
ℎ𝑎𝑠𝑀𝑜𝑑𝑒 (𝑝𝑟𝑜,𝑈𝑠𝑒) ∧ ℎ𝑎𝑠𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑝𝑟𝑜, 𝑎𝑐)∧
ℎ𝑎𝑠𝐴𝑝𝑝 (𝑎𝑐, 𝑛) ∧ ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒 (𝑎𝑐, 𝑝) ∧ (
(ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑎𝑝𝑝, 𝑛) ∧ ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒 (𝑖𝑛𝑝𝑢𝑡, 𝑝))∨
(ℎ𝑎𝑠𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑖𝑛𝑝𝑢𝑡, 𝑑𝑠) ∧ ℎ𝑎𝑠𝐴𝑝𝑝𝑁𝑎𝑚𝑒 (𝑑𝑠, 𝑛)∧
ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒 (𝑑𝑠, 𝑝))
)

The definition of 𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑒𝑑𝑈𝑠𝑒 (𝑚,𝑛, 𝑝, 𝑖𝑛𝑝𝑢𝑡) is:

𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑒𝑑𝑈𝑠𝑒 (𝑚,𝑛, 𝑝, 𝑖𝑛𝑝𝑢𝑡) ≡
∃𝑥 .𝐴(𝑥, 𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑒𝑑𝑈𝑠𝑒) ∧ ℎ𝑎𝑠𝑀𝑜𝑑𝑒 (𝑥,𝑚) ∧ ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑥, 𝑛)∧
ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒 (𝑥, 𝑝) ∧ ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 (𝑥, 𝑖𝑛𝑝𝑢𝑡)
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A.3 Obligation check

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛(𝑜𝑏, 𝑎𝑟𝑔𝑠, 𝑖𝑛𝑝𝑢𝑡) ⇐
𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑝𝑝𝐼𝑛𝑝𝑢𝑡 (𝑢𝑠𝑎𝑔𝑒, 𝑑𝑎𝑡𝑎, 𝑎𝑝𝑝, 𝑖𝑛𝑝𝑢𝑡)∧
ℎ𝑎𝑠𝑃𝑜𝑙𝑖𝑐𝑦 (𝑑𝑎𝑡𝑎, 𝑝𝑜𝑙) ∧ ℎ𝑎𝑠𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛(𝑝𝑜𝑙, 𝑜𝑏𝑙)∧
ℎ𝑎𝑠𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠 (𝑜𝑏𝑙, 𝑜𝑏) ∧ ℎ𝑎𝑠𝐴𝑟𝑔𝑠 (𝑜𝑏𝑙, 𝑎𝑟𝑔𝑠)∧
ℎ𝑎𝑠𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑜𝑏𝑙, 𝑎𝑐) ∧ ℎ𝑎𝑠𝑈𝑠𝑒𝑟 (𝑎𝑐,𝑈 )∧
ℎ𝑎𝑠𝐴𝑝𝑝 (𝑎𝑐, 𝑁 ) ∧ ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒 (𝑎𝑐, 𝑃)∧
ℎ𝑎𝑠𝑈𝑠𝑒𝑟 (𝑢𝑠𝑎𝑔𝑒,𝑈 ) ∧ ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑎𝑝𝑝, 𝑁 ) ∧ ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒 (𝑖𝑛𝑝𝑢𝑡, 𝑃)

The definition of 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛(𝑜𝑏, 𝑎𝑟𝑔𝑠, 𝑖𝑛𝑝𝑢𝑡) is:

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛(𝑜𝑏, 𝑎𝑟𝑔𝑠, 𝑖𝑛𝑝𝑢𝑡) ≡
∃𝑥 .𝐴(𝑥,𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛) ∧ ℎ𝑎𝑠𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠 (𝑥, 𝑜𝑏)∧
ℎ𝑎𝑠𝐴𝑟𝑔𝑠 (𝑥, 𝑎𝑟𝑔𝑠) ∧ ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 (𝑥, 𝑖𝑛𝑝𝑢𝑡)

Slightly different from the conflicts, when querying activated obli-
gations, the corresponding attributes should be returned as well.

A.4 Policy derivation
A.4.1 Output attribute.

𝑂𝑢𝑡𝑝𝑢𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 (𝑛, 𝑡, 𝑣, 𝑝, 𝑎𝑡𝑡𝑟 ) ⇐
𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦𝐹𝑜𝑟𝑂𝑢𝑡𝑝𝑢𝑡 (𝑖𝑛𝑝𝑢𝑡, 𝑝𝑜𝑙𝑖𝑐𝑦, 𝑜𝑢𝑡𝑝𝑢𝑡)∧
ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑜𝑢𝑡𝑝𝑢𝑡, 𝑝) ∧ ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑖𝑛𝑝𝑢𝑡, 𝑝𝑜𝑟𝑡) ∧ (
(ℎ𝑎𝑠𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 (𝑝𝑜𝑙𝑖𝑐𝑦, 𝑎𝑡𝑡𝑟 ) ∧ ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑎𝑡𝑡𝑟, 𝑛)∧
ℎ𝑎𝑠𝐶𝑙𝑎𝑠𝑠 (𝑎𝑡𝑡𝑟, 𝑡) ∧ ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒 (𝑎𝑡𝑡𝑟, 𝑣) ∧ ¬∃𝑟𝑒 𝑓 𝑖, 𝑓 𝑖𝑙𝑡𝑒𝑟 .
ℎ𝑎𝑠𝑅𝑒 𝑓 𝑖𝑛𝑒𝑚𝑒𝑛𝑡 (𝑜𝑢𝑡𝑝𝑢𝑡, 𝑟𝑒 𝑓 𝑖) ∧ ℎ𝑎𝑠𝐹𝑖𝑙𝑡𝑒𝑟 (𝑟𝑒 𝑓 𝑖, 𝑓 𝑖𝑙𝑡𝑒𝑟 )∧
ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 (𝑓 𝑖𝑙𝑡𝑒𝑟, 𝑝𝑜𝑟𝑡) ∧ ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑓 𝑖𝑙𝑡𝑒𝑟, 𝑛)∧
ℎ𝑎𝑠𝐶𝑙𝑎𝑠𝑠 (𝑓 𝑖𝑙𝑡𝑒𝑟, 𝑡) ∧ ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒 (𝑓 𝑖𝑙𝑡𝑒𝑟, 𝑣))∨
(ℎ𝑎𝑠𝐴𝑡𝑡𝑖𝑟𝑏𝑢𝑡𝑒 (𝑝𝑜𝑙𝑖𝑐𝑦, 𝑎𝑡𝑡𝑟 ) ∧ ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑎𝑡𝑡𝑟, 𝑛)∧
ℎ𝑎𝑠𝐶𝑙𝑎𝑠𝑠 (𝑎𝑡𝑡𝑟, 𝑡 ′) ∧ ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒 (𝑎𝑡𝑡𝑟, 𝑣 ′)∧
ℎ𝑎𝑠𝑅𝑒 𝑓 𝑖𝑛𝑒𝑚𝑒𝑛𝑡 (𝑎𝑡𝑡𝑟, 𝑟𝑒 𝑓 𝑖) ∧𝐴(𝑟𝑒 𝑓 𝑖, 𝐸𝑑𝑖𝑡)∧
ℎ𝑎𝑠𝐹𝑖𝑙𝑡𝑒𝑟 (𝑟𝑒 𝑓 𝑖, 𝑓 𝑖𝑙𝑡𝑒𝑟 ) ∧ ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 (𝑓 𝑖𝑙𝑡𝑒𝑟, 𝑝𝑜𝑟𝑡)∧
ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑓 𝑖𝑙𝑡𝑒𝑟, 𝑛) ∧ ℎ𝑎𝑠𝐶𝑙𝑎𝑠𝑠 (𝑓 𝑖𝑙𝑡𝑒𝑟, 𝑡 ′)∧
ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒 (𝑓 𝑖𝑙𝑡𝑒𝑟, 𝑣 ′) ∧ ℎ𝑎𝑠𝑁𝑒𝑤𝐶𝑙𝑎𝑠𝑠 (𝑟𝑒 𝑓 𝑖, 𝑡)∧
ℎ𝑎𝑠𝑁𝑒𝑤𝑉𝑎𝑙𝑢𝑒 (𝑟𝑒 𝑓 𝑖, 𝑣))
)

Same as above, 𝑂𝑢𝑡𝑝𝑢𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 (𝑛, 𝑡, 𝑣, 𝑝, 𝑎𝑡𝑡𝑟 ) is a shorthand.
However, different from them, it involves multiple nodes:

𝑂𝑢𝑡𝑝𝑢𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 (𝑛, 𝑡, 𝑣, 𝑝, 𝑎𝑡𝑡𝑟 ) ≡
∃𝑎𝑡𝑡𝑟 ′ .𝐴(𝑎𝑡𝑡𝑟 ′, 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒) ∧ ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑎𝑡𝑡𝑟 ′, 𝑛) ∧ ∧
ℎ𝑎𝑠𝐶𝑙𝑎𝑠𝑠 (𝑎𝑡𝑡𝑟 ′, 𝑡) ∧ ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒 (𝑎𝑡𝑡𝑟 ′, 𝑣)∧
∃𝑓 𝑙 .𝐴(𝑓 𝑙, 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝐿𝑖𝑛𝑘) ∧ ℎ𝑎𝑠𝑂𝑟𝑖𝑔𝑖𝑛(𝑓 𝑙, 𝑎𝑡𝑡𝑟 )∧
ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑓 𝑙, 𝑝) ∧ ℎ𝑎𝑠𝑅𝑒 𝑓 (𝑓 𝑙, 𝑎𝑡𝑡𝑟 ′)

Thismeans that we create a node𝑎𝑡𝑡𝑟 ′ which is of type𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ,
and assign its corresponding fields; we also create a linking relation
(the node 𝑓 𝑙) between the original attribute 𝑎𝑡𝑡𝑟 and the created
attribute node 𝑎𝑡𝑡𝑟 ′ at output 𝑃 .

In addition to that, because we will often refer to the output
attribute, we define this shorthand:

𝐼𝑂𝑃𝑎𝑖𝑟 (𝑖𝑛, 𝑜𝑢𝑡, 𝑝) ≡
𝐴(𝑓 𝑙, 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝐿𝑖𝑛𝑘) ∧ ℎ𝑎𝑠𝑂𝑟𝑖𝑔𝑖𝑛(𝑓 𝑙, 𝑖𝑛)∧
ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑓 𝑙, 𝑝) ∧ ℎ𝑎𝑠𝑅𝑒 𝑓 (𝑓 𝑙, 𝑜𝑢𝑡)

A.4.2 Output tag.

𝑂𝑢𝑡𝑝𝑢𝑡𝑇𝑎𝑔𝑔𝑖𝑛𝑔(𝑡, 𝑎𝑟, 𝑝, 𝑡𝑎𝑔) ⇐
𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦𝐹𝑜𝑟𝑂𝑢𝑡𝑝𝑢𝑡 (𝑖𝑛𝑝𝑢𝑡, 𝑝𝑜𝑙𝑖𝑐𝑦, 𝑜𝑢𝑡𝑝𝑢𝑡)∧
ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑜𝑢𝑡𝑝𝑢𝑡, 𝑝) ∧ ℎ𝑎𝑠𝑇𝑎𝑔𝑔𝑖𝑛𝑔(𝑝𝑜𝑙𝑖𝑐𝑦, 𝑡𝑎𝑔) ∧ ℎ𝑎𝑠𝑇𝑦𝑝𝑒 (𝑡𝑎𝑔, 𝑡)∧
ℎ𝑎𝑠𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑅𝑒 𝑓 (𝑡𝑎𝑔, 𝑎𝑟0) ∧ 𝐼𝑂𝑃𝑎𝑖𝑟 (𝑎𝑟0, 𝑎𝑟, 𝑝)
(∀𝑣𝑏.ℎ𝑎𝑠𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑡𝑎𝑔, 𝑣𝑏) →
∃𝑎𝑡𝑡𝑟 .𝐼𝑂𝑃𝑎𝑖𝑟 (𝑣𝑏, 𝑎𝑡𝑡𝑟, 𝑝))

where the full form of 𝑂𝑢𝑡𝑝𝑢𝑡𝑇𝑎𝑔𝑔𝑖𝑛𝑔 is:

𝑂𝑢𝑡𝑝𝑢𝑡𝑇𝑎𝑔𝑔𝑖𝑛𝑔(𝑡, 𝑎𝑟, 𝑝, 𝑡𝑎𝑔) ≡
∃𝑜𝑡 .𝐴(𝑜𝑡,𝑇𝑎𝑔𝑔𝑖𝑛𝑔) ∧ ℎ𝑎𝑠𝑇𝑦𝑝𝑒 (𝑜𝑡, 𝑡)∧
ℎ𝑎𝑠𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑅𝑒 𝑓 (𝑜𝑡, 𝑎𝑟 ) ∧ ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑜𝑡, 𝑝)∧
(∀𝑣𝑏, 𝑎𝑡𝑡𝑟 .ℎ𝑎𝑠𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑡𝑎𝑔, 𝑣𝑏) ∧ 𝐼𝑂𝑃𝑎𝑖𝑟 (𝑣𝑏, 𝑎𝑡𝑡𝑟, 𝑝)
→ ℎ𝑎𝑠𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑜𝑡, 𝑎𝑡𝑡𝑟 ))

A.4.3 Output prohibition.

𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛(𝑚,𝑎𝑐, 𝑝, 𝑝𝑟 ) ⇐
𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦𝐹𝑜𝑟𝑂𝑢𝑡𝑝𝑢𝑡 (𝑖𝑛𝑝𝑢𝑡, 𝑝𝑜𝑙𝑖𝑐𝑦, 𝑜𝑢𝑡𝑝𝑢𝑡)∧
ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑜𝑢𝑡𝑝𝑢𝑡, 𝑝) ∧ ℎ𝑎𝑠𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛(𝑝𝑜𝑙𝑖𝑐𝑦, 𝑝𝑟 )∧
ℎ𝑎𝑠𝑈𝑠𝑒𝑀𝑜𝑑𝑒 (𝑝𝑟,𝑚) ∧ ℎ𝑎𝑠𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑝𝑟, 𝑎𝑐)∧
∀𝑣𝑏.(ℎ𝑎𝑠𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑝𝑟, 𝑣𝑏) → ∃𝑎𝑡𝑡𝑟 .𝐼𝑂𝑃𝑎𝑖𝑟 (𝑣𝑏, 𝑎𝑡𝑡𝑟, 𝑝))

where the full form of 𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 is:

𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛(𝑚,𝑎𝑐, 𝑝, 𝑝𝑟 ) ≡
∃𝑜𝑝.𝐴(𝑜𝑝, 𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛) ∧ ℎ𝑎𝑠𝑈𝑠𝑒𝑀𝑜𝑑𝑒 (𝑜𝑝,𝑚)∧
ℎ𝑎𝑠𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑜𝑝, 𝑎𝑐) ∧ ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑜𝑝, 𝑝)∧
∀𝑣𝑏, 𝑎𝑡𝑡𝑟 .(ℎ𝑎𝑠𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑝𝑟, 𝑣𝑏) ∧ 𝐼𝑂𝑃𝑎𝑖𝑟 (𝑣𝑏, 𝑎𝑡𝑡𝑟, 𝑝)
→ ℎ𝑎𝑠𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑜𝑝, 𝑎𝑡𝑡𝑟 ))

A.4.4 Output obligation.

𝑂𝑢𝑡𝑝𝑢𝑡𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛(𝑜𝑐, 𝑎𝑟𝑔, 𝑎𝑐, 𝑝, 𝑜𝑏) ⇐
𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦𝐹𝑜𝑟𝑂𝑢𝑡𝑝𝑢𝑡 (𝑖𝑛𝑝𝑢𝑡, 𝑝𝑜𝑙𝑖𝑐𝑦, 𝑜𝑢𝑡𝑝𝑢𝑡)∧
ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑜𝑢𝑡𝑝𝑢𝑡, 𝑝) ∧ ℎ𝑎𝑠𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛(𝑝𝑜𝑙𝑖𝑐𝑦, 𝑜𝑏)∧
ℎ𝑎𝑠𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠 (𝑜𝑏, 𝑜𝑐) ∧ ℎ𝑎𝑠𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡 (𝑜𝑏, 𝑎𝑟𝑔)∧
ℎ𝑎𝑠𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑜𝑏, 𝑎𝑐)∧
∀𝑣𝑏.(ℎ𝑎𝑠𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑜𝑏, 𝑣𝑏) → ∃𝑎𝑡𝑡𝑟 .𝐼𝑂𝑃𝑎𝑖𝑟 (𝑣𝑏, 𝑎𝑡𝑡𝑟, 𝑝))
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where the full form of 𝑂𝑢𝑡𝑝𝑢𝑡𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛 is:

𝑂𝑢𝑡𝑝𝑢𝑡𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛(𝑜𝑐, 𝑎𝑟𝑔, 𝑎𝑐, 𝑝, 𝑜𝑏) ≡
∃𝑜𝑜.𝐴(𝑜𝑜,𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛) ∧ ℎ𝑎𝑠𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠 (𝑜𝑜, 𝑜𝑐)∧
∃𝑎𝑟𝑔′ .ℎ𝑎𝑠𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡 (𝑜𝑜, 𝑎𝑟𝑔′)∧
(∀𝑥 .𝑚𝑒𝑚𝑏𝑒𝑟 (𝑎𝑟𝑔, 𝑥) →𝑚𝑒𝑚𝑏𝑒𝑟 (𝑎𝑟𝑔′, 𝑥))∧
(∀𝑣𝑏, 𝑎𝑡𝑡𝑟 .ℎ𝑎𝑠𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑜𝑏, 𝑣𝑏) ∧ 𝐼𝑂𝑃𝑎𝑖𝑟 (𝑣𝑏, 𝑎𝑡𝑡𝑟, 𝑝)
→ ℎ𝑎𝑠𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑜𝑜, 𝑎𝑡𝑡𝑟 ))

where𝑚𝑒𝑚𝑏𝑒𝑟 (𝑎𝑟𝑔, 𝑥) means 𝑥 is a member of the list (RDF Col-
lection) 𝑎𝑟𝑔.
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