
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Perennial Semantic Data Terms of Use for Decentralized Web
Anonymous Author(s)∗

ABSTRACT
In today’s digital landscape, the Web has become increasingly cen-
tralized, raising concerns about user privacy violations. Decentral-
ized Web architectures, such as Solid, offer a promising solution by
empowering users with better control over their data in their per-
sonal ‘Pods’. However, a significant challenge remains: users must
navigate numerous applications to decide which application can be
trusted with access to their data Pods. This often involves reading
lengthy and complex Terms of Use agreements, a process that users
often find daunting or simply ignore. This compromises user au-
tonomy and impedes detection of data misuse. We propose a novel
formal description of Data Terms of Use (DToU), along with a DToU
reasoner. Users and applications specify their own parts of the DToU
policy with local knowledge, covering permissions, requirements,
prohibitions and obligations. Automated reasoning verifies compli-
ance, and also derives policies for output data. This constitutes a
“perennial” DToU language, where the policy authoring only occurs
once, and we can conduct ongoing automated checks across users,
applications and activity cycles. Our solution is built on Turtle,
Notation 3 and RDF Surfaces, for the language and the reasoning
engine. It ensures seamless integration with other semantic tools
for enhanced interoperability. We have successfully integrated this
language into the Solid framework, and conducted performance
benchmark. We believe this work demonstrates a practicality of a
perennial DToU language and the potential of a paradigm shift to
how users interact with data and applications in a decentralized
Web, offering both improved privacy and usability.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning; • Security and privacy → Usability in security
and privacy; • Information systems→ Semantic web description
languages.

KEYWORDS
Decentralized Web, Data Terms of Use, Usage Control, Formal Mod-
elling, Automated Reasoning, Notation 3

ACM Reference Format:
Anonymous Author(s). 2018. Perennial Semantic Data Terms of Use for
Decentralized Web. In Proceedings of Make sure to enter the correct conference
title from your rights confirmation emai (Conference acronym ’XX). ACM,
New York, NY, USA, 12 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
After years of development, the Web has become an indispensable
part of people’s life. However, the centralization of the Web has
risen as a pressing challenge, leading to various issues like pervasive
user behavioural manipulation, privacy breaches and an imbalance
of power [34, 40]. Decentralization is viewed as a potential solution
to address these issues [15, 21], and initiatives like Solid (Social
Linked Data) [30] have gained attention for their aim to return data
and control to the user, while respecting the openesss and fairness
of Web standards and infrastructures.

In a decentralizedWeb, users store their data in their own storage
(such as Solid Pods), and applications must request permission to
use and store data there. This shift in data control has the potential
to reduce ‘vendor-lock-in’, as it limits the privileged ownership
of data currently prevalently observed in large platforms. Further-
more, it is also crucial to fostering competition among different
applications. However, one aspect that has received less attention
in the decentralized setting is how users can sensibly decide which
application should be granted permission to access their data.

Assume in the decentralized setting, Alice wants to use a shop-
ping app to buy shoes, which may require access to several types
of data in her Pod, including shoe size, delivery address, and billing
information. She is concerned about how such an app may han-
dle her data ethically. In the meantime, Bob, the developer of a
shopping app, HappyShop, wants to build trust with users and is
willing to provide descriptions on how HappyShop handles users
data through its ‘Terms of Use’. However, users like Alice typi-
cally do not read these terms (aka. “the biggest lie on the Internet”)
because of information overload and their length [20, 24]. The prob-
lem is exacerbated in the decentralized setting with its numerous
apps that may require users’ decision regarding access to their data
Pods. As a result, users autonomy may still be compromised in
the decentralized Web, and can lead to many issues related to data
misuse [8, 35, 39] or loss of trust [13].

Facing these challenges, we propose the concept of “perennial”
Data Terms of Use (DToU), a formal language model that targets at
addressing the following challenges in a decentralized Web context:
1) expressing data provider’s DToU for their data; 2) imparting appli-
cation’s (developer’s) DToU on how they handle data; 3) performing
compliance checking over data usage requests; 4) supporting DToU
policy reusing across applications and data providers; 5) facilitating
apt DToU-compliant cross-application data sharing. With such a
language model, automated reasoning can be performed thus only
exposing distilled important information to users, reducing the
amount of information and numbers of decisions exposed to the
user, thus incentivizing responsible handling of Terms of Use. It is
called “perennial” because a stakeholder only needs to specify the
DToU once in the beginning, and it can be reused across activity
cycles and across stakeholders, just like the plants being implanted
once and kept growing in the future.

The perennial concept is in contrast to sticky policy [22, 26] which
proposed principles for supporting distributed DToU compliance,

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

but, in the core definition, only explicitly discussed requirements
1 and 3. Sticky policy supports DToU-compliant cross-application
data sharing, but suggests the policy staying the same regardless
of data processing history, thus is not apt, leading to the potential
of frequent user disruption. Existing research on policy languages,
often coined as access control [27] and usage control [19, 32], also
proposed formal models for expressing certain parts of DToU. There
are different flavours of them, targeting at different scenarios, with
diverse properties and capacities. Although with a different focus,
they provide many design principles and concepts that are useful
across contexts.

In this paper, drawing upon concepts from existing data policy
languages, we propose a perennial policy language that addresses
challenges from decentralization while maintaining expressiveness,
by using heterogeneous yet interoperable data policy and applica-
tion policy. The language and reasoning mechanism are built on
semantic technologies, namely Turtle [5], Notation 3 [6] and RDF
Surfaces [12]. This facilitates the creation of a common vocabulary,
and enables integration with other semantic tools, particularly on-
tologies and ontological reasoning. Furthermore, our approach is
integrated with Solid, a decentralized user-focused Web architec-
ture, and we evaluate its performance across various workloads.
To the best of our knowledge, we are the first work proposing a
(semantic) perennial policy language that supports stakeholders
expressing their DToU in the context of the decentralized Web. We
believe this work provides a good starting of the paradigm shift for
enhancing user autonomy and control.

2 RELATED RESEARCH
Several explorations have delved into the utilization of computer-
interpretable formal encoding of policies to enable (semi-)automated
decision-making of data usage authorization. These range from the
classical access control to more advanced dynamic usage descrip-
tions. In this section, we examine this body of research and discusses
their relevance to a decentralized Web context, in addition to Table
1 which summarizes their main features.

The most well-known line of research involves various access
control models, each based on different principles. For example,
models such as Mandatory Access Control (MAC) [33], Access Con-
trol List (ACL), Role-Based Access Control (RBAC) [31] or Attribute-
Based Access Control (ABAC), can be based on information ranging
from narrower details like user identity to broader categories such
as user groups, and contextual information. Several languages uses
or implements them, such as E-P3P [18], WAC [4] and P2U [16].
There is also research that falls in the middle ground, such as Label-
Based Access Control (LaBAC) [7], a simplified variant of ABAC
while more expressive than MAC and RBAC, using simple tuples
to express conditions on users, actions and data (objects).

Other policy languages may also use the concepts from access
models, with additional features, such as eXtensible Access Control
Markup Language (XACML) [1], a widely-known XML-based stan-
dard for ABAC with additional constructs like obligations for cloud
services, and ODRL [2], which will be discussed later. In general,
this type of research usually assumes a finite number of personnel
(including applications) engaged in policy checking, and thus pre-
supposes the presence of a ‘supervisor’ with abundant knowledge

to actively compile and maintain policies, particularly when there
are personnel changes. While this assumption is reasonable for
managing data usage at an institutional level, it presents challenges
in contexts with multiple independent stakeholders that engage
and disengage dynamically, as is the case in a decentralized Web.

Some other research also makes similar assumptions, but al-
lows for customized mechanisms within their policies. For instance,
P2U [16], a data-right language akin to a set of contracts, defines
permitted data usage activities for applications, data, users and
meta-information (e.g. “negotiable”). Thoth [9], on the other hand,
uses its own logic-like policy language to express policies not only
for read action, but also for write, update and declassification ac-
tions. It permits intricate evaluations of formulae that involve rich
operators and the incorporation of external sources of information
during policy evaluation. While these approaches vary in terms
of expressiveness and usage contexts, they share a common lim-
itation due to the assumption of a finite number of personnel. In
our example, they can only define the policy after a user like Alice
has determined whether a shopping app like HappyShop should be
granted permission or not, rather than proactively.

In contrast to the approaches mentioned above, some research
recognizes the dynamic nature of data and applications, and offers
different solutions. LoNet [14], for example, employs Information
Flow Control (IFC) for RBAC, along with special transformation
rules for policy evolution. Additionally, it uses custom meta-code
for checking additional policy information like time. However, the
most expressive part, the meta-code, is arbitrary and difficult to stat-
ically verify. CamFlow [25], on the other hand, borrows concepts
from Decentralized IFC (DIFC) [23], and employs homogeneous
policy constructs (tags and labels) to encode the data policy and
application capability, and checks their compatibility. It also allows
the expression of policy evolution by adding or removing tags for
output (policy) based on input (policy). Smart object [29] uses com-
plex constructs to define permitted and prohibited use of data, and
combines this with the application information (using relational
calculus) to derive policies for output data, assuming and leveraging
a tabular structure of data. Dr.Aid [28] focuses on the context of
data-intensive scientific workflows, employing different structures
to express data rules and process rules. It supports policy reasoning
and derivation for workflow graphs involving multiple processes. A
common feature among these approaches is the separation of data
policy from application policy, using pre-defined reasoning mecha-
nisms to facilitate compliance checking. They have demonstrated
that this separation allows the reasoner to verify if an application
complies with the data policy, aligning with our intended goal.

There are also policy languages that utilize semantic technolo-
gies or are tailored for specific use cases within the decentralized
Web. One notable example is the Open Digital Rights Language
(ODRL) [2], a well-known expressive policy language serializable to
JSON-LD. It offers a comprehensive set of concepts, including per-
missions, prohibitions, obligations, remedies, conditions, purposes
and agents. However, originated as a data right expression language,
ODRL primarily focuses on expressing what is (not) permitted for
the data, and lacks a corresponding mechanism for expressing ap-
plication information. While efforts are being made to address this
issue [10], there is still uncertainty regarding the eventual resolu-
tion. The AIR [17] policy language, based on Notation 3 (N3) [6],

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Perennial Semantic Data Terms of Use for Decentralized Web Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 1: Summarization of features under different categories of related policy languages.

C1 - C5 refers to the Challenges 1 - 5 identified for perennial language. For column C1, A means authorization, O means obligation. For column C2, C means capacity, I means
multi-input, M means use mode, P means purpose, T means data type/category. For column C3 & C4, T means true, T(e) means true if using same environmental information
schema. For column C5, O means multi-output, T means transformation. For column Condition, A means application, C means capacity, E means (common) environmental

information, E means Entire environmental information exposed in knowledge base, M means use mode, P means purpose, T means data type/category, U means user, X means
external information.

Language C1 C2 C3 C4 C5 Condition Policy Author Format

E-P3P[18] AO T T(e) UEP Supervisor Custom
XACML[1]/ODRL[2] AO+ T T(e) EPU Owner XMl/JSON-LD
WAC[4]/ACP[3] A T AU/AUX Owner Turtle

P2U[16] A T AU Owner XML
LaBAC[7] A T AU Supervisor Custom
AIR[17] A T T(e) UE Owner N3
Thoth[9] A T EUX Owner Logic-like
Eddy[8] AO MP T(e) T MPU Supervisor OWL-DL
LoNet[14] A T T T EU Supervisor Custom

CamFlow[25] A C T T T C Owner Custom
Smart object[29] A IPT T T T PT Owner Custom

Dr.Aid[28] AO IP T T OT EPU Owner Custom
Ours AO CIPT T T OT CEPU Owner Turtle

specifies permitted and prohibited actions for data processing. It
allows for the expression of custom rules directly on the contextual
knowledge base of data processing. However, in the absence of gen-
eral agreements across applications, this requires the policy author
to have the knowledge of the information available in the knowl-
edge base, resulting in a high level of coupling with the application.
Eddy [8] examined real-life terms of use from online services and
proposed a policy language based on OWL-DL to express key data
requirements, including permissions, obligations and prohibitions.
The language distinguishes between different types of data actions
(collect, use, retain and transfer) and demonstrated compliance
checking between two policy sets of two services. However, there
is no clear demonstration of how data providers can utilize this
language, as it necessitates highly detailed descriptions. Solid, a
decentralized Web architecture based on Linked Data, has its own
policy languages, mainly for access control purposes. This includes
WAC [4], a policy language for expressing ACL, and ACP [3], an
advanced policy language that supports a broad range of conditions,
such as Verifiable Credentials. WAC and ACP leverage contextual
information exposed by Solid but are less expressive compared to
ODRL and AIR. In general, these languages cannot be directly ap-
plied to support data usage expressions in the decentralized setting
we target at due to their individual limitations.

3 OUR LANGUAGE
3.1 Language design
Broadly speaking, our language model consists two parts: the data
policy and the application policy. This design is crucial to enable
automated data access negotiation between a data owner and a data
consumer (e.g. applications). The data policy enables data providers
to define policy-related metadata and expectations for the data
consumers. The application policy allows application developers to

encode the promises and expectations for accessing the data by the
application.

The reasoner performs three types of tasks: a) conformance
check: deciding whether the application can use the data; b) obliga-
tion check, assessing what obligations are activated by the appli-
cation; and c) policy derivation: determining the policy for output
data and saving a data owner to define data usage policy in every
data access use case. Figure 1 gives an overview of the language
and the relation between different concepts.

In the following, we provide more detailed descriptions about the
language, with all examples expressed in Turtle [5]. For simplicity,
we omit the prefixes, and only use : for named nodes.

3.1.1 Data Policy. Conceptually, the data policy consists of two
layers: attributes and semantics. Attributes form the base layer,
expressing information about the data and/or the policy. On top of
that is the semantic layer, providing semantic concepts like tags,
prohibitions and obligations, to support reasoning of information
expressed in the attribute layer. In the Turtle syntax of the policy
encoding, each tuple is expressed as a node with corresponding
type and properties.

More precisely, each attributes is a simple tuple: (name, class,

value). While they do not carry any semantics, they are designed
with a flexible structure to describe information about data and
policy. For example, attributes can be used to define Alice as an
author, e.g. (:author, :string, "Alice"), or encode a textual descrip-
tion (e.g. (:ack-text, :string, "This dataset is by Alice")), or specify
the data fields (e.g. (:col-2, :field, :column-2)). This concept of at-
tributes is borrowed fromDr.Aid [28], which has been demonstrated
as a powerful structure for supporting policy derivation. The follow-
ing example shows howAlice defines her email address information
as an attribute – the attribute is a kind of ‘string’ and has the value
of “alice@b.c.”
:attr1 a :Attribute;

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

name
class

value

Attribute

attribute_ref

1

validity_binding

*

Tagging

validity_binding

*
1

new_class

mode

1..*

Prohibition

argument

*

validity_binding

*

1

activation_condition

Obligation

Requirement Tag

Semantic
Layer

Base
Layer

purpose

*

app_name

*

user *
Activation
Condition

App

User

Use
Mode

Shared
knowledge

Class

Purpose

Tag
Class

Action
Class

Name

Value ...

...

RefinementFilter

InputSpecProvide

Data
URI

PortName

PurposePurpose Integrity

Expect

OutputSpec

Security *

purpose

* provide

*

expect

Downstream
*

downstream

1

data

1

port

1

name

1

name

1

name

Delete Edit

1
filter

0..1

name
0..1

class0..1

value

1

new_value

*

app_name

*

purpose

Data Poliicy App Policy

*

from
*

refinement

Legend

Concept

Secondary
Concept

Entity
Domain

Ontology /
Vocabulary

Composition

Subclass

Finite
subclass

Figure 1: Language design and relation between concepts

:name :alice -email;

:class :string;

:value "alice@b.c".

Tags, from the semantics layer of our model, can be used to specify
the requirements or available resources. Two typical types of tags
are security and integrity: security specifies which security level(s)
an application needs to possess to use the data; and integrity iden-
tifies the integrity level(s) this dataset has, to be requested by the
application (policy). Inspired by the structure of CamFlow [25] (see
Section 2), tags can be used to facilitate conformance check, see
later Sec 3.2.2.

The name of a tag (i.e. which tag it is) is associated with the
class of an attribute using attribute_ref; other information in the
attribute are not used by a tag. Our policy language also allows
expressing additional types of tags, such as Purposes.

The following shows how tags are used to define that Alice
requires any application to respect banking security level, and permit
make-payment and verify-ownership purposes (for payment info):
:attr -tag2 a :Attribute;

:name :tag -2;

:class :banking;

:value :nil.

:attr -tag3 a :Attribute;

:name :tag -3;

:class :make -payment;

:value :nil.

:attr -tag4 a :Attribute;

:name :tag -4;

:class :verify -ownership;

:value :nil.

:tag2 a :SecurityTag;

:attribute_ref :attr -tag2.

:tag3 a :PurposeTag;

:attribute_ref :attr -tag3.

:tag4 a :PurposeTag;

:attribute_ref :attr -tag4.

A tag may have validity bindings, meaning that the validity of the
tag is dependent on the existence of referenced attribute(s). As an
example, the tags in the payment info policy may have validity

bindings to (an attributing denoting) the exact content of :payment-
details:

:attr2 a :Attribute;

:name :det;

:class :data -content;

:value :payment -details.

:tag2 a :SecurityTag;

:attribute_ref :attr -tag2;

:validity_binding :attr2.

:tag3 a :PurposeTag;

:attribute_ref :attr -tag3;

:validity_binding :attr2.

:tag4 a :PurposeTag;

:attribute_ref :attr -tag4;

:validity_binding :attr2.

Prohibitions specify additional restrictions on the data consumer,
independent of the capacity (i.e. tags) of the application. The core of
a prohibition is the activation condition, which is a matcher against
user, application and purpose. If the condition matches the usage
context, the usage is deemed prohibited. Validity bindings are also
supported. Additionally, our model also offers an extension point,
allowing users to specify the :mode when a match is considered.
Currently, we only support the :Use mode, denoting the reading or
processing of the data. We plan to explore other types of use modes
to be integrated.

For example, Alice dislikes a payment processor, <http://duckpay.
com/>, and does not want it to use her payment information, either
directly or indirectly. This can be encoded as:
:pr1 a :Prohibition;

:mode :Use;

:activation_condition [

:app_name <http :// duckpay.com/>

];

:validity_binding :attr2.

Obligations denote a potential obligation that will be triggered un-
der certain conditions. Its core is an obligation definition, specifying
what the triggered obligation will be, and an activation condition,
specifying the condition to trigger this obligation. An obligation

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Perennial Semantic Data Terms of Use for Decentralized Web Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

definition contains an obligation class, and a list of arguments –
references to attributes. Upon activation / instantiation of the obli-
gation, the actual value of these attributes will be used, rather than
the reference. The activation condition and validity bindings are the
same as those defined for prohibition.

The following example shows that Alice expects any application
to email her when it accesses her shoe size for research purposes:
:ob1 a :Obligation;

:obligation_class :send -email;

:args (:attr1);

:activation_condition [:purpose :research].

Policy set. Finally, the policy terms explained above should be
put together as a policy set. A policy set contains a Policy node
which contains the relevant policy terms, and a Data node which
pairs the policy and the data IRI that this policy applies to. For
example, the policy set for Alice’s payment information looks like:
:data -payment a :Data;

:uri <http ://a.b/payment -info >;

:policy :policy -1.

:policy -1 a :Policy;

:attribute :attr -tag2 , :attr -tag3;

:security :tag2;

:purpose :tag3;

:prohibition :pr1.

3.1.2 Application Policy. An application policy (abbreviated as app
policy) contains basic information about the application, and the
policy specification for the inputs and outputs. In addition, it also
specifies relevant downstream data consumers (e.g. third-party APIs
to send data to) that this application will use.

An application may have multiple inputs, and thus multiple
input specifications (:InputSpec). Normally, each input specification
describes basic information about that input (name and data) and
its capacity: the tags it conforms to, including the security levels,
the integrity it expects, and the purpose it will use the (input) data
for. If the application sends the input data to an external location
for processing (e.g. an API call), a downstream should be specified as
a simplified app policy for that downstream stakeholder, specifying
the (application) name, user and purpose of that downstream1.

For example, Bob states this input specification for reading the
payment information for HappyShop:
:input1 a :InputSpec;

:data <http ://a.b/payment -info >;

:port "payment -info -in";

:security :banking;

:purpose :making -payment;

:downstream [

:app_name <http :// goodpay.com/>;

:purpose :making -payment

].

It says an input port named "payment-info-in" reads data from <http

://a.b/payment-info>, and promises to comply with security level
:banking, and will use the data only for purpose of :making-payment; it
will send the data to a downstream, named <http://goodpay.com/>, for
purpose of :making-payment. It is compatible with Alice’s data policy
for payment info.
1The app developer should verify that the downstream capacity is in line with that of
the input specification, so its tags do not need to be explicitly expressed.

Similarly, an application may wish to store data into user’s Pods,
so it may need to specify multiple output specifications. Apart from
the name, each output specification describes the related input that
this output data is derived from, and the refinements that the data
policies are subject to.

The from statement, (during reasoning) associates the output
with a set of data policies, each pertinent to the input used to derive
the output. In a higher level, this reflects the general information
flow in the application. The removal or change of information
is captured by a refinement, which expresses how (the attributes
of) the data policies should be modified to reflect the processing
that has been applied to the data. Two types of refinements are
supported: delete and edit. A delete has a filter, meaning that all
attributes matching the filter should be deleted, and the filter is
used to specify the matching attribute information: name, class and
value. Similarly, an edit means that any attribute matching the filter
will be assigned a new class and value.

The following example output specification shows how Hap-
pyShop may record purchase histories in their Pod, which contains
the copy of the delivery address, and a declassified version of pay-
ment details:
:out1 a :OutputSpec;

:from "address -in", "payment -info -in";

:refinement :refine -no-payment -details.

:refine -no-payment -details a :Delete;

:filter [

:class :data -content;

:value :payment -details

].

This policy snippet means this output is related to the data from
the inputs named "address-in" and "payment-info-in", and has one
refinement, which will delete all attributes of class :data-content

and value :payment-details, reflecting a fact that the output data will
not contain payment details even though it uses payment data.

The refinements directly operate on attributes, but references to
attributes (bindings) in the semantic layer ensure that all operations
will be inferred to related semantic concepts too. For instance, if an
attribute is deleted, any tags, prohibitions and attributes that has a
binding to this attribute will also be deleted.

3.1.3 Shared vocabulary. It is worth noting that shared vocabu-
laries are assumed in all related research, with different levels of
difficulties to achieve. In our work, this is achieved by making con-
cepts explicit and using IRIs. This allows easy and decentralized
provision of them, such as using OWL ontologies [38] as vocabu-
laries. There are five sorts of vocabularies to be shared, as seen in
the middle of Figure 1. They are centred around the data provider’s
wills, and thus is most natural to be provided by them, or some
intermediaries. We mainly identify this mechanism, and leave this
to the practitioners to consolidate the vocabularies. Relatedly, OWL
reasoning may be integrated and performed before policy reasoning
to maximize interoperability.

3.2 Reasoning
Our language accommodates three types of reasoning tasks: confor-
mance check, obligation check, and policy derivation. This section
explains the reasoning mechanism in more details.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

In general, the reasoning rules can be expressed using first-order
logic, encoded using RDF Surfaces [12] and Notation 3 (N3) [6] in
our implementation. N3 is a language supporting the expression
of both semantic data and reasoning rules with a rich syntax; RDF
Surfaces, building onN3, provides a (direct) translation of first-order
logic (FOL), including representing negations. Some of these rules
contain explicit negations, which are implemented using N3 built-
ins like log:collectAllIn, enabling scoped negation-as-failure (SNAF)
[6]. For the sake of brevity, we only introduce the foundational
principles here, and present the axioms in Appendix A.

3.2.1 Context preparation. Before embarking on the three reason-
ing tasks, it is essential to inject the contextual information and
link the application policy with data policy.

The contextual information is represented as a 𝑈𝑠𝑎𝑔𝑒𝐶𝑜𝑛𝑡𝑒𝑥𝑡 ,
specifying the relevant application policy 𝑎𝑝𝑝_𝑝𝑜𝑙 , the𝑢𝑠𝑒𝑟 and the
𝑡𝑖𝑚𝑒 of data usage. These parameters are only known during actual
application requests and should be provided to the reasoner dynami-
cally each time. Each reasoning task involves a distinct𝑈𝑠𝑎𝑔𝑒𝐶𝑜𝑛𝑡𝑒𝑥𝑡 .

Furthermore, all relevant policy content is added to the same
knowledge base. This leverages the fact that Turtle is a sub-language
of N3, making all policy specifications in Turtle valid N3 statements.
The linkage between data policy and app policy is established by
identifying the data URIs as specified in their respective fields. This
is achieved through our reasoning rules, removing the need for
additional injection of data policy into the corresponding inputs.

3.2.2 Conformance check. The fundamental purpose of our policy
language is to determine whether a data usage should be permitted,
which is essentially conformance checking. In our language, there
are three types of conflicts to be checked: unsatisfied requirements,
unmatched expectations, and prohibited uses.

An unsatisfied requirement occurs when a requirement tag (e.g. se-
curity) in the data policy is absent in the app policy. Therefore, the
reasoning process involves determining all corresponding inputs
and data, and verifying their requirement tags.

Conversely, an unmatched expectation arises when a tag expecta-
tion (e.g. integrity) in the app policy is missing in the data policy.
This task also covers the verification of whether all purposes are
permitted. Both the reasoning about unsatisfied requirement and
unmatched expectation require a ’close-world assumption,’ as it’s
essential to establish whether a tag does not exist. We utilize scoped
negation-as-failure (SNAF) provided by N3 built-ins, considering
the policy documents as the sole reliable source of information.

A prohibited use is identified when a prohibition is triggered. Pro-
hibitions have their own semantics, including activation conditions,
and should be checked in accordance with these conditions.

3.2.3 Obligation check. Our policy language can also reason about
the obligations triggered during data use. This process is similar
to checking prohibitions and involves verifying the activation con-
ditions. But obligations contain arguments that are references to
attributes and these attributes need to be returned from the query
for further assessment.

3.2.4 Policy derivation. When the application produces output data
(i.e. storing data to users’ Pods), policy derivation becomes crucial
to produce derived data policy for the output, based on the output
specification. This aspect is central to (addressing challenge 5 of)

the perennial nature of our language. Policy derivation involves
merging the data policies from all corresponding from inputs and
performing refinements.

The derivation of output attributes is a primary focus because
these attributes are vital for handling output policies for the seman-
tics layer, particularly for bindings. Because of refinements, each
input attribute will either have a copy, be edited, or cease to exist in
the output. This process creates new nodes for the output attributes
in the RDF graph, corresponding to the existential quantifier in the
conclusions. The linkage between the input and output attributes
is also recorded, which will be used for policy derivation of the
semantic layer. SNAF plays a crucial role here as it determines
what ‘happens’ to the rest of the input attributes that do not have
a matching refinement – there should be an output attribute with
identical name, class and value.

The tags in an output are based on the collection of all tags of
related inputs, while removing those tags with deleted attribute
bindings. Because tags have types, they can be treated uniformly
when reasoning about their existence, and the reasoner can make
use of the types afterwards.

The output obligations and output prohibitions are derived simi-
larly. We first check if any binding is deleted, like for output tags. If
not, a new node for obligation (or prohibition) is created, replicat-
ing all fields of the original obligation (or prohibition) in input. For
obligations, that covers the obligation definition (obligated action
class and arguments), validity binding and activation condition;
for prohibitions, that covers the use mode, validity binding and
activation condition.

Intuitively, the attribute references for the output policies will be
the corresponding output attributes, instead of the input attributes.

4 SOLID INTEGRATION
To test and demonstrate the language, we integrated the language
into Solid, a decentralized Web architecture based on Linked Data
that emphasizes on user autonomy. This allowed us to express data
policies and application policies and perform reasoning, in a realistic
context, and also serving as the foundation for our benchmark.

To achieve this, we extended the Community Solid Server [11]
v6.0, a modular and extensible Solid server implementation written
in TypeScript. For policy reasoning, we use an off-the-shelf reasoner,
EYE [36], which supports RDF Surfaces and N3 reasoning. In par-
ticular, we used the eyereasoner package available on npm2, which
is a WebAssembly distribution of EYE with a JavaScript interface.

In the sequence diagram depicted in Figure 2, we illustrate the key
components and actions related to policy reasoning for applications,
assuming that the data already have DToU policies associated.

Before reasoning, the application needs to register its application
policy. The DToU handler, located behind the API endpoint on the
server, processes the request and creates a temporary policy record.

Subsequently, the application requests a conformance check
before utilizing the data. The DToU handler retrieves the corre-
sponding policy, establishes the UsageContext, identifies the input
data from the application policy, retrieves the relevant data policy,
and calls the policy engine to perform the conformance check. The
results are then provided to the application for further action, such

2https://www.npmjs.com/package/eyereasoner

6

https://www.npmjs.com/package/eyereasoner

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Perennial Semantic Data Terms of Use for Decentralized Web Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Data
Data
Policy

Policy
Reasoner

API Endpoint

(DToU handler)

Data Store

Solid Pod

App
Policy

App

App

Reasoning

Get Data Policy

Reasoning

Post-process

Do Business Logic

Do Obligations

Acknowledge

Write Data

Save Record

Register

Check Compliance

Check Compliance

Return Results
Return Results

Check Obligation

Check Obligation

Derive Policy

Derive Policy

Return Policy

Assign Policy

Acknowledge

App User

Get Policy Record

Gen Usage Context

Get Policy Record

Gen Usage Context

Figure 2: Sequence diagram for the Solid integration of the
DToU language

as user display. Optionally, the DToU handler may restrict data
access request by the application, in the presence of conflicts, or
when data lacks a policy.

Similarly, the application can request an obligation check and
then processes the information accordingly, including displaying
it to the user at the appropriate time or automatically fulfilling
obligations when applicable. Our language distinguishes between
UserObligation and ProcessObligation classes to facilitate this distinc-
tion, leaving the specific obligations up to policy authors.

Finally, when the application intends to write output data to the
Pod, it should send a policy derivation request along with the
data. The DToU handler will then perform policy derivation and
store the policy with the data. This allows subsequent applications
to automatically carry out DToU reasoning when they request this
data as input. As mentioned, the DToU handler may deny usage of
data without policies, thus effectively enforcing policy derivation –
if it does not perform it, the stored data will not be usable.

DToU reasoning is performed by the policy engine and DToU
handler in the modified Solid service, reducing the burden on the
application developers and Pod owners. From the Pod owner’s
perspective, supporting DToU requires expressing relevant data
policies for input data. For the applications, DToU support involves
preparing app policies and sending policy-related requests to the
(modified) Solid servicewhile handling responses. These application
policies can be statically attached to the project, or dynamically
generated from a template, offering flexibility for different users.
The optimal method for authoring app and data policies remains
an open question, outside the scope of this paper.

0 500 1000
value

0

25

50

75

100

125

150

175

200

tim
e

type = Conformance

0 500 1000
value

type = Obligation

0 500 1000
value

type = Derivation
variable

data:numAttribute
data:tag:numSecurity
data:tag:numIntegrity
data:tag:numPurpose
data:tag:numBinding
data:obligation:num
data:obligation:numBinding
data:obligation:numArg
app:numSecurity
app:numIntegrity
app:numPurpose
app:output:numDelete
app:output:numOutput
app:output:numInput
app:numData

Figure 3: General benchmark results of different workloads

5 PERFORMANCE BENCHMARK
We conducted benchmark tests to evaluate the performance of our
integration and to gain insights into its scalability across different
reasoning tasks and workloads. This section presents the results
and our discussion.

5.1 Benchmark settings
The benchmark encompasses a wide range of workloads of incor-
porating key variables: the number of different terms in the data
policy and app policy. We varied these numbers, ranging from 10 to
1000, while keeping other variables at a fixed value of 10. There are
two exceptions that are not fixed to 10: the number of attributes,
which is set to 100, and the number of inputs, which is limited
to 4. We chose these values because attributes require references
to them, and handling only 10 would not suffice for distribution
among tags, prohibitions and obligations; the number of inputs
significantly impacts performance, so we opted for a smaller yet
reasonable number.

It is worth noting that the range we benchmarked should be
demonstrable to what usually exists in current real-world policies.
For example, [8] reviewed Facebook, Zynga and AOL policies and
identified a total of 131, 190 and 75 statements. Although not eq-
uitable, each statement roughly corresponds to one term in the
semantic layer and several attributes, or one term in the app policy.

For the benchmark, we utilized the WebAssembly distribution of
the eyereasoner v6.9.5, which is available on NPM. We started the
server using the provided file-storage configuration, without special
parameters. The benchmark tests were conducted on a consumer-
level laptop, with an Intel Core i5-1135G7 (2.4 GHz) and 32GB of
RAM, running on Linux kernel 6.1.55 (x86_64). Each workload was
repeated 10 times, and the time taken from sending requests to
receiving results was recorded.

5.2 Results and discussions
5.2.1 General results. Figure 3 shows the primary results of our
benchmark. Most variables exhibit a linear or sublinear scaling
trend. However, some variables do not reach 1000 because they
encountered time-out or connection resets with further increase.

The three specific variables, namely app:numData, app:numPurpose
and app:numIntegrity, displayed exceptional growing trends in con-
formance checking, resulting in time-outs, which we will discuss

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0 250 500 750 1000
value

0

10

20

30

40

50

60

tim
e

type = Conformance

0 250 500 750 1000
value

type = Obligation

0 250 500 750 1000
value

type = Derivation
variable

data:numAttribute
data:tag:numSecurity
data:tag:numIntegrity
data:tag:numPurpose
data:tag:numBinding
data:obligation:num
data:obligation:numBinding
data:obligation:numArg
app:numSecurity
app:output:numDelete
app:output:numOutput
app:output:numInput

Figure 4: Selective benchmark results for most variables, sub-
tracting the base reasoning time for general axioms

0 200 400 600
value

0

50

100

150

200

250

tim
e

type = UnsatisfiedRequirement

0 200 400 600
value

type = UnmatchedExpectation

0 200 400 600
value

type = ProhibitedUse

variable
app:numIntegrity
app:numPurpose
app:numData

Figure 5: Experiment results for different conformance
checking tasks for exceptional variables, app:numData, app:

numPurpose and app:numIntegrity

separately later. After removing these exceptional cases, and sub-
tracting the base time for policy loading and general reasoning
(e.g. axioms for rdfs:subClassOf), we obtain Figure 4. It demonstrates
a clearer linear growth trend in the remaining variables.

Among them, most variables reached 1000, except for app:output

:numDelete and app:output:numOutput, which stopped at 600 and 500.
This limitation was due to connection resets, caused by the server
encountering JavaScript out-of-heap errors during the 10 repeti-
tions. This indicates a potential area for optimization of the memory
consumption. However, it’s worth noting that having 500 output
ports or 600 delete refinements per output port (thus 6000 in total)
for an application is exceptionally large and likely not an issue in
realistic scenarios.

5.2.2 Unmatched expectations. Now, regarding the exceptional
growths, as shown in Figure 3, two variables, app:numPurpose and
app:numIntegrity, correspond to the checking of unmatched expecta-
tions. We further performed additional experiments to understand
the time spent on different conformance checking (sub-)tasks, as
shown in Figure 5. It verified the intuition that the time was mainly
consumed by checking the unmatched expectations.

However, it’s interesting to note that the time for its symmetric
task, unsatisfied requirements, did not exhibit the same exceptional
growth, as seen in Figure 3 for variable data:tag:numSecurity and
app:numSecurity. This suggests that the issue is likely not due to
a mis-implementation of our axioms, but rather a performance
bottleneck for RDF Surfaces or the EYE reasoner related to specific
rule combinations and orders. Ideally, future work should explore
and address this issue, with the potential to further optimize by
reducing the coefficient for tag matching.

5.2.3 Number of data / inputs. Changing the number of data inputs
led to the most significant growth in reasoning time, displaying a

growth pattern that appears higher than linear, as shown in the
sub-figure for unmatched expectations in Figure 5. This could be
explained because all reasoning tasks depend on the pairing of data
policies and inputs, making the complexity increase faster with
the number of data inputs. However, it’s interesting to note that
obligation checking and policy derivation did not pose the same
exceptional growth trend as conformance checking in Figure 3. A
plausible explanation is that conformance check involves a heavier
workload, making this effect more pronounced. This is supported
by the fact that the time spent on a more complex subtask, such as
unmatched expectation, also grew faster than that of unsatisfied
requirements and prohibited use, as reflected in Figure 5. This
suggests that our usage of RDF Surfaces may be suboptimal and
should be addressed and optimized in future work.

5.3 Conclusion
From our benchmark, it is clear that the reasoning cost for all tasks
shows a linear growth concerning all but one factor. It is important
to note that DToU policy reasoning is not performed frequently
(typically three times in an application’s lifecycle), so real-time per-
formance is not a strict requirement. However, our result highlight
the significant potential for deploying our DToU language on a
large scale with a substantial volume of policies. Additionally, we
delved into the specifics of the suboptimal results and proposed
potential reasons for their behaviour. In a production system, it
is essential to focus on optimizing the reasoning tasks and the
underlying reasoner to ensure efficient and reliable performance.

6 SUMMARY AND FUTUREWORK
In this work, we have undertaken a comprehensive exploration of
the challenges and advantages associated with introducing DToU
into a decentralized Web context, exemplified by Solid, with the
overarching aim of enhancing user autonomy. Our efforts have
included identifying the pertinent challenges and benefits, delin-
eating the specific requirements for a policy language within this
context, and introduced our own DToU policy language, which is
based on semantic technologies. We have also detailed the design
of data policies, application policies and the underlying reasoning
mechanism. Furthermore, we showed how our solution integrates
with Solid, along with benchmark tests that assessed the scalability
of our implementation, highlighting its potential for wider adoption
with a substantial volume of policies. We discussed areas where
further optimization is required.

The next step of our work involves evaluating the language
expressiveness and its understandability for users. We are also
interested in exploring simpler methods for policy authorization,
which could potentially involve leveraging NLP technologies. In
general, our work underscores a paradigm shift in how application
may be selected, permission granted, and interoperability achieved.
This shift is driven by the automated reasoning of perennial DToU
policies. It points out a wide spectrum of challenges and oppor-
tunities, including but not limited to enhancing the language ex-
pressiveness, improving usability, effectively maintaining policies,
and optimizing performance. Effectively addressing these social-
technical challenges will require interdisciplinary collaboration,
and we are committed to contributing to this ongoing effort.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Perennial Semantic Data Terms of Use for Decentralized Web Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] 2013. eXtensible Access Control Markup Language (XACML) Version 3.0. https:

//docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
[2] 2018. ODRL Information Model 2.2. https://www.w3.org/TR/odrl-model/
[3] 2022. Access Control Policy (ACP). https://solid.github.io/authorization-

panel/acp-specification/
[4] 2022. Web Access Control. https://solid.github.io/web-access-control-spec/
[5] David Beckett, Tim Berners-Lee, Eric Prud’hommeaux, and Gavin Carothers.

2014. RDF 1.1 Turtle. https://www.w3.org/TR/turtle/
[6] Tim Berners-Lee, Dan Connolly, Lalana Kagal, Yosi Scharf, and Jim Hendler.

2008. N3Logic: A logical framework for the World Wide Web. Theory and
Practice of Logic Programming 8, 3 (May 2008), 249–269. https://doi.org/10.1017/
S1471068407003213 Publisher: Cambridge University Press.

[7] Prosunjit Biswas, Ravi Sandhu, and Ram Krishnan. 2016. Label-Based Access
Control: An ABAC Model with Enumerated Authorization Policy. In Proceedings
of the 2016 ACM International Workshop on Attribute Based Access Control (ABAC
’16). Association for Computing Machinery, New York, NY, USA, 1–12. https:
//doi.org/10.1145/2875491.2875498

[8] Travis D. Breaux, Hanan Hibshi, and Ashwini Rao. 2014. Eddy, a formal language
for specifying and analyzing data flow specifications for conflicting privacy
requirements. Requirements Engineering 19, 3 (Sept. 2014), 281–307. https:
//doi.org/10.1007/s00766-013-0190-7

[9] Eslam Elnikety, Aastha Mehta, Anjo Vahldiek-Oberwagner, Deepak Garg, and
Peter Druschel. 2016. Thoth: Comprehensive Policy Compliance in Data Retrieval
Systems. In Proceedings of the 25th USENIX Conference on Security Symposium
(SEC’16). USENIX Association, Berkeley, CA, USA, 637–654. https://www.usenix.
org/conference/usenixsecurity16/technical-sessions/presentation/elnikety

[10] Beatriz Esteves, Harshvardhan J. Pandit, and Víctor Rodríguez-Doncel. 2021.
ODRL Profile for Expressing Consent through Granular Access Control Policies
in Solid. In 2021 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW). 298–306. https://doi.org/10.1109/EuroSPW54576.2021.00038 ISSN:
2768-0657.

[11] Joachim Van Herwegen, Ruben Verborgh, Ruben Taelman, Thomas Dupont,
Matthieu Bosquet, Mend Renovate, Jasper Vaneessen, smessie, Arthur Joppart,
wkerckho, Simone Persiani, Wouter Termont, Michiel de Jong, Noel De Martin,
Stijn Taelemans, Wout Slabbinck, Jesse Wright, jaxoncreed, surilindur, zg009,
Aaron Coburn, Adler Faulkner, Brandon Aaron, Charlie Blevins, Dylan Van
Assche, Emelia Smith, Freya, and Gertjan De Mulder. 2023. CommunitySolid-
Server/CommunitySolidServer. https://doi.org/10.5281/zenodo.8410285

[12] Patrick Hochstenbach, Jos De Roo, and Ruben Verborgh. 2023. RDF Surfaces:
Computer Says No. http://arxiv.org/abs/2305.08476 arXiv:2305.08476 [cs].

[13] Jina Huh-Yoo and Emilee Rader. 2020. It’s the Wild, Wild West: Lessons Learned
From IRB Members’ Risk Perceptions Toward Digital Research Data. Proceedings
of the ACM on Human-Computer Interaction 4, CSCW1 (May 2020), 059:1–059:22.
https://doi.org/10.1145/3392868

[14] Håvard D. Johansen, Eleanor Birrell, Robbert van Renesse, Fred B. Schneider,
Magnus Stenhaug, and Dag Johansen. 2015. Enforcing Privacy Policies with
Meta-Code. In Proceedings of the 6th Asia-Pacific Workshop on Systems (APSys
’15). ACM Press, Tokyo, Japan, 1–7. https://doi.org/10.1145/2797022.2797040

[15] Iulia Ion, Niharika Sachdeva, Ponnurangam Kumaraguru, and Srdjan Čapkun.
2011. Home is safer than the cloud! privacy concerns for consumer cloud
storage. In Proceedings of the Seventh Symposium on Usable Privacy and Security
(SOUPS ’11). Association for Computing Machinery, New York, NY, USA, 1–20.
https://doi.org/10.1145/2078827.2078845

[16] Johnson Iyilade and Julita Vassileva. 2014. P2U: A Privacy Policy Specification
Language for Secondary Data Sharing and Usage. In 2014 IEEE Security and
Privacy Workshops. 18–22. https://doi.org/10.1109/SPW.2014.12

[17] Lalana Kagal, Chris Hanson, and Daniel Weitzner. 2008. Using Dependency
Tracking to Provide Explanations for Policy Management. In 2008 IEEE Workshop
on Policies for Distributed Systems and Networks. 54–61. https://doi.org/10.1109/
POLICY.2008.51

[18] Günter Karjoth, Matthias Schunter, and Michael Waidner. 2002. Platform for
Enterprise Privacy Practices: Privacy-Enabled Management of Customer Data.
In Privacy Enhancing Technologies (Lecture Notes in Computer Science). Springer,
Berlin, Heidelberg, 69–84. https://doi.org/10.1007/3-540-36467-6_6

[19] Aliaksandr Lazouski, Fabio Martinelli, and Paolo Mori. 2010. Usage control in
computer security: A survey. Computer Science Review 4, 2 (May 2010), 81–99.
https://doi.org/10.1016/j.cosrev.2010.02.002

[20] Aleecia M McDonald and Lorrie Faith Cranor. 2008. The cost of reading privacy
policies. Isjlp 4 (2008), 543. Publisher: HeinOnline.

[21] Christian Meurisch, Bekir Bayrak, and Max Mühlhäuser. 2020. Privacy-
preserving AI Services Through Data Decentralization. In Proceedings of The Web
Conference 2020. Association for Computing Machinery, New York, NY, USA,
190–200. http://doi.org/10.1145/3366423.3380106

[22] M. C. Mont, S. Pearson, and P. Bramhall. 2003. Towards accountable manage-
ment of identity and privacy: sticky policies and enforceable tracing services. In
14th International Workshop on Database and Expert Systems Applications, 2003.

Proceedings. 377–382. https://doi.org/10.1109/DEXA.2003.1232051
[23] Andrew C. Myers and Barbara Liskov. 1997. A Decentralized Model for In-

formation Flow Control. In Proceedings of the Sixteenth ACM Symposium on
Operating Systems Principles (SOSP ’97). ACM, New York, NY, USA, 129–142.
https://doi.org/10.1145/268998.266669

[24] Jonathan A. Obar and Anne Oeldorf-Hirsch. 2020. The biggest lie on the Internet:
ignoring the privacy policies and terms of service policies of social networking
services. Information, Communication & Society 23, 1 (Jan. 2020), 128–147. https:
//doi.org/10.1080/1369118X.2018.1486870

[25] Thomas F. J.-M. Pasquier, Jatinder Singh, David Eyers, and Jean Bacon. 2017.
CamFlow: Managed Data-sharing for Cloud Services. IEEE Transactions on Cloud
Computing 5, 3 (July 2017), 472–484. https://doi.org/10.1109/TCC.2015.2489211
arXiv: 1506.04391.

[26] S. Pearson and M. Casassa-Mont. 2011. Sticky Policies: An Approach for Man-
aging Privacy across Multiple Parties. Computer 44, 9 (Sept. 2011), 60–68.
https://doi.org/10.1109/MC.2011.225

[27] Jing Qiu, Zhihong Tian, Chunlai Du, Qi Zuo, Shen Su, and Binxing Fang. 2020. A
Survey on Access Control in the Age of Internet of Things. IEEE Internet of Things
Journal 7, 6 (June 2020), 4682–4696. https://doi.org/10.1109/JIOT.2020.2969326
Conference Name: IEEE Internet of Things Journal.

[28] Rui Zhao, Malcolm Atkinson, Petros Papapanagiotou, Federica Magnoni, and
Jacques Fleuriot. 2021. Dr.Aid: Supporting Data-governance Rule Compliance for
Decentralized Collaboration in an Automated Way. In The 24th ACM Conference
on Computer-Supported Cooperative Work and Social Computing (CSCW). https:
//doi.org/10.1145/3479604

[29] Gokhan Sagirlar, Barbara Carminati, and Elena Ferrari. 2018. Decentralizing
privacy enforcement for Internet of Things smart objects. Computer Networks
143 (Oct. 2018), 112–125. https://doi.org/10.1016/j.comnet.2018.07.019

[30] A. Sambra, Essam Mansour, Sandro Hawke, Maged Zereba, Nicola Greco,
Abdurrahman Ghanem, D. Zagidulin, Ashraf Aboulnaga, and T. Berners-Lee.
2016. Solid: A Platform for Decentralized Social Applications Based on Linked
Data. MIT CSAIL & Qatar Computing Research Institute, Tech. Rep. (2016). https:
//www.semanticscholar.org/paper/Solid-%3A-A-Platform-for-Decentralized-
Social-Based-Sambra-Mansour/5ac93548fd0628f7ff8ff65b5878d04c79c513c4

[31] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. 1996. Role-based access
control models. Computer 29, 2 (Feb. 1996), 38–47. https://doi.org/10.1109/2.
485845 Conference Name: Computer.

[32] Ravi Sandhu and Jaehong Park. 2003. Usage Control: A Vision for Next Genera-
tion Access Control. In Computer Network Security (Lecture Notes in Computer
Science), Vladimir Gorodetsky, Leonard Popyack, and Victor Skormin (Eds.).
Springer, Berlin, Heidelberg, 17–31. https://doi.org/10.1007/978-3-540-45215-
7_2

[33] R.S. Sandhu and P. Samarati. 1994. Access control: principle and practice. IEEE
Communications Magazine 32, 9 (Sept. 1994), 40–48. https://doi.org/10.1109/35.
312842 Conference Name: IEEE Communications Magazine.

[34] Jake M L Stein, Vidminas Vizgirda, Max Van Kleek, Reuben Binns, Jun Zhao, Rui
Zhao, Naman Goel, George Chalhoub, Wael S Albayaydh, and Nigel Shadbolt.
2023. ‘You are you and the app. There’s nobody else.’: Building Worker-Designed
Data Institutions within Platform Hegemony. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems (CHI ’23). Association for
Computing Machinery, New York, NY, USA, 1–26. https://doi.org/10.1145/
3544548.3581114

[35] Welderufael B. Tesfay, Peter Hofmann, Toru Nakamura, Shinsaku Kiyomoto,
and Jetzabel Serna. 2018. I Read but Don’t Agree: Privacy Policy Benchmarking
using Machine Learning and the EU GDPR. In Companion Proceedings of the The
Web Conference 2018 (WWW ’18). International World Wide Web Conferences
Steering Committee, Republic and Canton of Geneva, CHE, 163–166. https:
//doi.org/10.1145/3184558.3186969

[36] Ruben Verborgh and Jos De Roo. 2015. Drawing Conclusions from Linked
Data on the Web: The EYE Reasoner. IEEE Software 32, 3 (May 2015), 23–27.
https://doi.org/10.1109/MS.2015.63 Conference Name: IEEE Software.

[37] W3C. 2014. RDF 1.1 Concepts and Abstract Syntax. https://www.w3.org/TR/
rdf11-concepts/

[38] W3C OWL Working Group. 2012. OWL 2 Web Ontology Language Document
Overview (Second Edition). https://www.w3.org/TR/owl2-overview/

[39] Sebastian Zimmeck, Ziqi Wang, Lieyong Zou, Roger Iyengar, Bin Liu, Florian
Schaub, Shomir Wilson, Norman Sadeh, Steven Bellovin, and Joel Reidenberg.
2016. Automated Analysis of Privacy Requirements for Mobile Apps. In 2016
AAAI Fall Symposium Series. https://www.aaai.org/ocs/index.php/FSS/FSS16/
paper/view/14113

[40] Shoshana Zuboff. 2019. The age of surveillance capitalism: The fight for a human
future at the new frontier of power: Barack Obama’s books of 2019. Profile books.

A AXIOMS FOR REASONING
The axioms for reasoning are encoded as RDF Surfaces in our rea-
soner. For simplicity, we present the equivalent first-order logic

9

https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://www.w3.org/TR/odrl-model/
https://solid.github.io/authorization-panel/acp-specification/
https://solid.github.io/authorization-panel/acp-specification/
https://solid.github.io/web-access-control-spec/
https://www.w3.org/TR/turtle/
https://doi.org/10.1017/S1471068407003213
https://doi.org/10.1017/S1471068407003213
https://doi.org/10.1145/2875491.2875498
https://doi.org/10.1145/2875491.2875498
https://doi.org/10.1007/s00766-013-0190-7
https://doi.org/10.1007/s00766-013-0190-7
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/elnikety
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/elnikety
https://doi.org/10.1109/EuroSPW54576.2021.00038
https://doi.org/10.5281/zenodo.8410285
http://arxiv.org/abs/2305.08476
https://doi.org/10.1145/3392868
https://doi.org/10.1145/2797022.2797040
https://doi.org/10.1145/2078827.2078845
https://doi.org/10.1109/SPW.2014.12
https://doi.org/10.1109/POLICY.2008.51
https://doi.org/10.1109/POLICY.2008.51
https://doi.org/10.1007/3-540-36467-6_6
https://doi.org/10.1016/j.cosrev.2010.02.002
http://doi.org/10.1145/3366423.3380106
https://doi.org/10.1109/DEXA.2003.1232051
https://doi.org/10.1145/268998.266669
https://doi.org/10.1080/1369118X.2018.1486870
https://doi.org/10.1080/1369118X.2018.1486870
https://doi.org/10.1109/TCC.2015.2489211
https://doi.org/10.1109/MC.2011.225
https://doi.org/10.1109/JIOT.2020.2969326
https://doi.org/10.1145/3479604
https://doi.org/10.1145/3479604
https://doi.org/10.1016/j.comnet.2018.07.019
https://www.semanticscholar.org/paper/Solid-%3A-A-Platform-for-Decentralized-Social-Based-Sambra-Mansour/5ac93548fd0628f7ff8ff65b5878d04c79c513c4
https://www.semanticscholar.org/paper/Solid-%3A-A-Platform-for-Decentralized-Social-Based-Sambra-Mansour/5ac93548fd0628f7ff8ff65b5878d04c79c513c4
https://www.semanticscholar.org/paper/Solid-%3A-A-Platform-for-Decentralized-Social-Based-Sambra-Mansour/5ac93548fd0628f7ff8ff65b5878d04c79c513c4
https://doi.org/10.1109/2.485845
https://doi.org/10.1109/2.485845
https://doi.org/10.1007/978-3-540-45215-7_2
https://doi.org/10.1007/978-3-540-45215-7_2
https://doi.org/10.1109/35.312842
https://doi.org/10.1109/35.312842
https://doi.org/10.1145/3544548.3581114
https://doi.org/10.1145/3544548.3581114
https://doi.org/10.1145/3184558.3186969
https://doi.org/10.1145/3184558.3186969
https://doi.org/10.1109/MS.2015.63
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/owl2-overview/
https://www.aaai.org/ocs/index.php/FSS/FSS16/paper/view/14113
https://www.aaai.org/ocs/index.php/FSS/FSS16/paper/view/14113

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

axioms for performing reasoning for our language here. Because
our policy language is based on Turtle thus RDF [37], knowledge is
represented as triples in the ABox. We employ some conventions
here for the expression in first-order logic:

(1) 𝐴(𝑥, 𝑆𝑜𝑚𝑒𝑇𝑦𝑝𝑒) denotes that the type of entity𝑥 is 𝑆𝑜𝑚𝑒𝑇𝑦𝑝𝑒 ,
i.e. the triple (𝑥, 𝑟𝑑 𝑓 : 𝑡𝑦𝑝𝑒, 𝑆𝑜𝑚𝑒𝑇𝑦𝑝𝑒) exists in the ABox;

(2) ℎ𝑎𝑠𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 (𝑥,𝑦) denotes that there is a relation 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒
between entity 𝑥 and𝑦, i.e. the triple (𝑥, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒,𝑦) exists
in the ABox;

(3) Other predicates starting with a capital letter refer to a
shorthand, which will be explained individually;

(4) Variables are universally quantified over the scope of the
entire formulae, unless explicitly quantified or stated oth-
erwise;

(5) For clarify, wewrite the conclusion in the beginning, similar
to a Horn clause;

(6) Existential quantified entities in the conclusions denote a
new node in the ABox, which is handled nicely by RDF
Surfaces;

(7) Negations denote scoped negation-as-failure, implemented
using N3’s built-ins;

(8) We use double-line arrows to visually distinguish between
the main premise and conclusions; however, they still rep-
resent material implications, same as the single-line arrows,
and are encoded in RDF Surfaces as such;

(9) Namespaces are dropped from the formulae for clarity.

A.1 Helper axioms
To simplify the axioms for actual reasoning tasks, we extract two
common parts as helper axioms: 𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑝𝑝𝐼𝑛𝑝𝑢𝑡 and
𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦𝐹𝑜𝑟𝑂𝑢𝑡𝑝𝑢𝑡 .

The𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑝𝑝𝐼𝑛𝑝𝑢𝑡 (𝑢𝑠𝑎𝑔𝑒, 𝑑𝑎𝑡𝑎, 𝑎𝑝𝑝, 𝑖𝑛𝑝𝑢𝑡) identifies and
groups data policy (𝑑𝑎𝑡𝑎) and corresponding input specification
(𝑖𝑛𝑝𝑢𝑡) together, as well as the usage context 𝑢𝑠𝑎𝑔𝑒 and applica-
tion policy 𝑎𝑝𝑝 . Typically, in a reasoning, there is only one usage
context (𝑢𝑠𝑎𝑔𝑒) and one application (𝑎𝑝𝑝). Conformance checking
often uses this predicate. It is defined as:

𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑝𝑝𝐼𝑛𝑝𝑢𝑡 (𝑢𝑠𝑎𝑔𝑒, 𝑑𝑎𝑡𝑎, 𝑎𝑝𝑝, 𝑖𝑛𝑝𝑢𝑡) ⇐
𝐴(𝑢𝑠𝑎𝑔𝑒,𝑈𝑠𝑎𝑔𝑒𝐶𝑜𝑛𝑡𝑒𝑥𝑡)
∧ ℎ𝑎𝑠𝐴𝑝𝑝 (𝑢𝑠𝑎𝑔𝑒, 𝑎𝑝𝑝𝑠) ∧ ℎ𝑎𝑠𝑃𝑜𝑙𝑖𝑐𝑦 (𝑎𝑝𝑝𝑠 , 𝑎𝑝𝑝)
∧ ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑒𝑐 (𝑎𝑝𝑝, 𝑖𝑛𝑝𝑢𝑡) ∧𝐴(𝑑𝑎𝑡𝑎, 𝐷𝑎𝑡𝑎) ∧ ℎ𝑎𝑠𝑈𝑟𝑖 (𝑑𝑎𝑡𝑎,𝑢𝑟𝑖)
∧ ℎ𝑎𝑠𝐷𝑎𝑡𝑎(𝑖𝑛𝑝𝑢𝑡,𝑢𝑟𝑖)

The 𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦𝐹𝑜𝑟𝑂𝑢𝑡𝑝𝑢𝑡 (𝑖𝑛𝑝𝑢𝑡, 𝑝𝑜𝑙𝑖𝑐𝑦, 𝑜𝑢𝑡𝑝𝑢𝑡) identifies which
input (specification) and its corresponding data policy is related
to an output (specification). One input has only one data policy,
while one output may have multiple inputs, leading to several
𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦𝐹𝑜𝑟𝑂𝑢𝑡𝑝𝑢𝑡s. It is defined as:

𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦𝐹𝑜𝑟𝑂𝑢𝑡𝑝𝑢𝑡 (𝑖𝑛𝑝𝑢𝑡, 𝑝𝑜𝑙𝑖𝑐𝑦, 𝑜𝑢𝑡𝑝𝑢𝑡) ⇐
𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑝𝑝𝐼𝑛𝑝𝑢𝑡 (𝑢𝑠𝑎𝑔𝑒, 𝑑𝑎𝑡𝑎, 𝑎𝑝𝑝, 𝑖𝑛𝑝𝑢𝑡)∧
ℎ𝑎𝑠𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑝𝑒𝑐 (𝑎𝑝𝑝, 𝑜𝑢𝑡𝑝𝑢𝑡) ∧ ℎ𝑎𝑠𝐹𝑟𝑜𝑚(𝑜𝑢𝑡𝑝𝑢𝑡, 𝑖𝑛𝑝𝑢𝑡𝑃𝑜𝑟𝑡)∧
ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑖𝑛𝑝𝑢𝑡, 𝑖𝑛𝑝𝑢𝑡𝑃𝑜𝑟𝑡) ∧ ℎ𝑎𝑠𝑃𝑜𝑙𝑖𝑐𝑦 (𝑑𝑎𝑡𝑎, 𝑝𝑜𝑙𝑖𝑐𝑦)

A.2 Conformance check
We have explained them in the main text of the document. There-
fore, this part only presents the formulae, and their explanations
where necessary.

A.2.1 Unsatisfied requirement.

𝑈𝑛𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 (𝑡, 𝑛, 𝑖𝑛𝑝𝑢𝑡) ⇐
𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑝𝑝𝐼𝑛𝑝𝑢𝑡 (𝑢𝑠𝑎𝑔𝑒, 𝑑𝑎𝑡𝑎, 𝑎𝑝𝑝, 𝑖𝑛𝑝𝑢𝑡)∧
ℎ𝑎𝑠𝑃𝑜𝑙𝑖𝑐𝑦 (𝑑𝑎𝑡𝑎, 𝑝𝑜𝑙) ∧ ℎ𝑎𝑠𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 (𝑝𝑜𝑙, 𝑟𝑒𝑞)∧
ℎ𝑎𝑠𝑇𝑦𝑝𝑒 (𝑟𝑒𝑞, 𝑡) ∧ ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑟𝑒𝑞, 𝑛)∧
¬∃𝑝𝑟𝑜𝑣 .(ℎ𝑎𝑠𝑃𝑟𝑜𝑣𝑖𝑑𝑒 (𝑖𝑛𝑝𝑢𝑡, 𝑝𝑟𝑜𝑣)∧

ℎ𝑎𝑠𝑇𝑦𝑝𝑒 (𝑝𝑟𝑜𝑣, 𝑡) ∧ ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑝𝑟𝑜𝑣, 𝑛))

The definition of𝑈𝑛𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 (𝑡, 𝑛, 𝑖𝑛𝑝𝑢𝑡) is:

𝑈𝑛𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 (𝑡, 𝑛, 𝑖𝑛𝑝𝑢𝑡) ≡
∃𝑥 .𝐴(𝑥,𝑈𝑛𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡) ∧ ℎ𝑎𝑠𝑇𝑦𝑝𝑒 (𝑥, 𝑡)∧
ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑥, 𝑛) ∧ ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 (𝑥, 𝑖𝑛𝑝𝑢𝑡)

A.2.2 Unmatched expectation.

𝑈𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛(𝑡, 𝑛, 𝑖𝑛𝑝𝑢𝑡) ⇐
𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑝𝑝𝐼𝑛𝑝𝑢𝑡 (𝑢𝑠𝑎𝑔𝑒, 𝑑𝑎𝑡𝑎, 𝑎𝑝𝑝, 𝑖𝑛𝑝𝑢𝑡)
ℎ𝑎𝑠𝑃𝑜𝑙𝑖𝑐𝑦 (𝑑𝑎𝑡𝑎, 𝑝𝑜𝑙) ∧ ℎ𝑎𝑠𝐸𝑥𝑝𝑒𝑐𝑡 (𝑖𝑛𝑝𝑢𝑡, 𝑒𝑥𝑝)∧
ℎ𝑎𝑠𝑇𝑦𝑝𝑒 (𝑒𝑥𝑝, 𝑡) ∧ ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑒𝑥𝑝, 𝑛)∧
¬∃𝑡𝑎𝑔.(ℎ𝑎𝑠𝑇𝑎𝑔(𝑝𝑜𝑙, 𝑡𝑎𝑔) ∧ ℎ𝑎𝑠𝑇𝑦𝑝𝑒 (𝑡𝑎𝑔, 𝑡) ∧ ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑡𝑎𝑔, 𝑛))

The definition of𝑈𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛(𝑡, 𝑛, 𝑖𝑛𝑝𝑢𝑡) is:

𝑈𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛(𝑡, 𝑛, 𝑖𝑛𝑝𝑢𝑡) ≡
∃𝑥 .𝐴(𝑥,𝑈𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛) ∧ ℎ𝑎𝑠𝑇𝑦𝑝𝑒 (𝑥, 𝑡)∧
ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑥, 𝑛) ∧ ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 (𝑥, 𝑖𝑛𝑝𝑢𝑡)

A.2.3 Prohibited use.

𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑒𝑑𝑈𝑠𝑒 (𝑚,𝑛, 𝑝, 𝑖𝑛𝑝𝑢𝑡) ⇐
𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑝𝑝𝐼𝑛𝑝𝑢𝑡 (𝑢𝑠𝑎𝑔𝑒, 𝑑𝑎𝑡𝑎, 𝑎𝑝𝑝, 𝑖𝑛𝑝𝑢𝑡)∧
ℎ𝑎𝑠𝑃𝑜𝑙𝑖𝑐𝑦 (𝑑𝑎𝑡𝑎, 𝑝𝑜𝑙) ∧ ℎ𝑎𝑠𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛(𝑝𝑜𝑙, 𝑝𝑟𝑜)∧
ℎ𝑎𝑠𝑀𝑜𝑑𝑒 (𝑝𝑟𝑜,𝑈𝑠𝑒) ∧ ℎ𝑎𝑠𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑝𝑟𝑜, 𝑎𝑐)∧
ℎ𝑎𝑠𝐴𝑝𝑝 (𝑎𝑐, 𝑛) ∧ ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒 (𝑎𝑐, 𝑝) ∧ (
(ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑎𝑝𝑝, 𝑛) ∧ ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒 (𝑖𝑛𝑝𝑢𝑡, 𝑝))∨
(ℎ𝑎𝑠𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑖𝑛𝑝𝑢𝑡, 𝑑𝑠) ∧ ℎ𝑎𝑠𝐴𝑝𝑝𝑁𝑎𝑚𝑒 (𝑑𝑠, 𝑛)∧
ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒 (𝑑𝑠, 𝑝))
)

The definition of 𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑒𝑑𝑈𝑠𝑒 (𝑚,𝑛, 𝑝, 𝑖𝑛𝑝𝑢𝑡) is:

𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑒𝑑𝑈𝑠𝑒 (𝑚,𝑛, 𝑝, 𝑖𝑛𝑝𝑢𝑡) ≡
∃𝑥 .𝐴(𝑥, 𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑒𝑑𝑈𝑠𝑒) ∧ ℎ𝑎𝑠𝑀𝑜𝑑𝑒 (𝑥,𝑚) ∧ ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑥, 𝑛)∧
ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒 (𝑥, 𝑝) ∧ ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 (𝑥, 𝑖𝑛𝑝𝑢𝑡)

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Perennial Semantic Data Terms of Use for Decentralized Web Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

A.3 Obligation check

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛(𝑜𝑏, 𝑎𝑟𝑔𝑠, 𝑖𝑛𝑝𝑢𝑡) ⇐
𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑝𝑝𝐼𝑛𝑝𝑢𝑡 (𝑢𝑠𝑎𝑔𝑒, 𝑑𝑎𝑡𝑎, 𝑎𝑝𝑝, 𝑖𝑛𝑝𝑢𝑡)∧
ℎ𝑎𝑠𝑃𝑜𝑙𝑖𝑐𝑦 (𝑑𝑎𝑡𝑎, 𝑝𝑜𝑙) ∧ ℎ𝑎𝑠𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛(𝑝𝑜𝑙, 𝑜𝑏𝑙)∧
ℎ𝑎𝑠𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠 (𝑜𝑏𝑙, 𝑜𝑏) ∧ ℎ𝑎𝑠𝐴𝑟𝑔𝑠 (𝑜𝑏𝑙, 𝑎𝑟𝑔𝑠)∧
ℎ𝑎𝑠𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑜𝑏𝑙, 𝑎𝑐) ∧ ℎ𝑎𝑠𝑈𝑠𝑒𝑟 (𝑎𝑐,𝑈)∧
ℎ𝑎𝑠𝐴𝑝𝑝 (𝑎𝑐, 𝑁) ∧ ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒 (𝑎𝑐, 𝑃)∧
ℎ𝑎𝑠𝑈𝑠𝑒𝑟 (𝑢𝑠𝑎𝑔𝑒,𝑈) ∧ ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑎𝑝𝑝, 𝑁) ∧ ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒 (𝑖𝑛𝑝𝑢𝑡, 𝑃)

The definition of 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛(𝑜𝑏, 𝑎𝑟𝑔𝑠, 𝑖𝑛𝑝𝑢𝑡) is:

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛(𝑜𝑏, 𝑎𝑟𝑔𝑠, 𝑖𝑛𝑝𝑢𝑡) ≡
∃𝑥 .𝐴(𝑥,𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛) ∧ ℎ𝑎𝑠𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠 (𝑥, 𝑜𝑏)∧
ℎ𝑎𝑠𝐴𝑟𝑔𝑠 (𝑥, 𝑎𝑟𝑔𝑠) ∧ ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 (𝑥, 𝑖𝑛𝑝𝑢𝑡)

Slightly different from the conflicts, when querying activated obli-
gations, the corresponding attributes should be returned as well.

A.4 Policy derivation
A.4.1 Output attribute.

𝑂𝑢𝑡𝑝𝑢𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 (𝑛, 𝑡, 𝑣, 𝑝, 𝑎𝑡𝑡𝑟) ⇐
𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦𝐹𝑜𝑟𝑂𝑢𝑡𝑝𝑢𝑡 (𝑖𝑛𝑝𝑢𝑡, 𝑝𝑜𝑙𝑖𝑐𝑦, 𝑜𝑢𝑡𝑝𝑢𝑡)∧
ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑜𝑢𝑡𝑝𝑢𝑡, 𝑝) ∧ ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑖𝑛𝑝𝑢𝑡, 𝑝𝑜𝑟𝑡) ∧ (
(ℎ𝑎𝑠𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 (𝑝𝑜𝑙𝑖𝑐𝑦, 𝑎𝑡𝑡𝑟) ∧ ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑎𝑡𝑡𝑟, 𝑛)∧
ℎ𝑎𝑠𝐶𝑙𝑎𝑠𝑠 (𝑎𝑡𝑡𝑟, 𝑡) ∧ ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒 (𝑎𝑡𝑡𝑟, 𝑣) ∧ ¬∃𝑟𝑒 𝑓 𝑖, 𝑓 𝑖𝑙𝑡𝑒𝑟 .
ℎ𝑎𝑠𝑅𝑒 𝑓 𝑖𝑛𝑒𝑚𝑒𝑛𝑡 (𝑜𝑢𝑡𝑝𝑢𝑡, 𝑟𝑒 𝑓 𝑖) ∧ ℎ𝑎𝑠𝐹𝑖𝑙𝑡𝑒𝑟 (𝑟𝑒 𝑓 𝑖, 𝑓 𝑖𝑙𝑡𝑒𝑟)∧
ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 (𝑓 𝑖𝑙𝑡𝑒𝑟, 𝑝𝑜𝑟𝑡) ∧ ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑓 𝑖𝑙𝑡𝑒𝑟, 𝑛)∧
ℎ𝑎𝑠𝐶𝑙𝑎𝑠𝑠 (𝑓 𝑖𝑙𝑡𝑒𝑟, 𝑡) ∧ ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒 (𝑓 𝑖𝑙𝑡𝑒𝑟, 𝑣))∨
(ℎ𝑎𝑠𝐴𝑡𝑡𝑖𝑟𝑏𝑢𝑡𝑒 (𝑝𝑜𝑙𝑖𝑐𝑦, 𝑎𝑡𝑡𝑟) ∧ ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑎𝑡𝑡𝑟, 𝑛)∧
ℎ𝑎𝑠𝐶𝑙𝑎𝑠𝑠 (𝑎𝑡𝑡𝑟, 𝑡 ′) ∧ ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒 (𝑎𝑡𝑡𝑟, 𝑣 ′)∧
ℎ𝑎𝑠𝑅𝑒 𝑓 𝑖𝑛𝑒𝑚𝑒𝑛𝑡 (𝑎𝑡𝑡𝑟, 𝑟𝑒 𝑓 𝑖) ∧𝐴(𝑟𝑒 𝑓 𝑖, 𝐸𝑑𝑖𝑡)∧
ℎ𝑎𝑠𝐹𝑖𝑙𝑡𝑒𝑟 (𝑟𝑒 𝑓 𝑖, 𝑓 𝑖𝑙𝑡𝑒𝑟) ∧ ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 (𝑓 𝑖𝑙𝑡𝑒𝑟, 𝑝𝑜𝑟𝑡)∧
ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑓 𝑖𝑙𝑡𝑒𝑟, 𝑛) ∧ ℎ𝑎𝑠𝐶𝑙𝑎𝑠𝑠 (𝑓 𝑖𝑙𝑡𝑒𝑟, 𝑡 ′)∧
ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒 (𝑓 𝑖𝑙𝑡𝑒𝑟, 𝑣 ′) ∧ ℎ𝑎𝑠𝑁𝑒𝑤𝐶𝑙𝑎𝑠𝑠 (𝑟𝑒 𝑓 𝑖, 𝑡)∧
ℎ𝑎𝑠𝑁𝑒𝑤𝑉𝑎𝑙𝑢𝑒 (𝑟𝑒 𝑓 𝑖, 𝑣))
)

Same as above, 𝑂𝑢𝑡𝑝𝑢𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 (𝑛, 𝑡, 𝑣, 𝑝, 𝑎𝑡𝑡𝑟) is a shorthand.
However, different from them, it involves multiple nodes:

𝑂𝑢𝑡𝑝𝑢𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 (𝑛, 𝑡, 𝑣, 𝑝, 𝑎𝑡𝑡𝑟) ≡
∃𝑎𝑡𝑡𝑟 ′ .𝐴(𝑎𝑡𝑡𝑟 ′, 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒) ∧ ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑎𝑡𝑡𝑟 ′, 𝑛) ∧ ∧
ℎ𝑎𝑠𝐶𝑙𝑎𝑠𝑠 (𝑎𝑡𝑡𝑟 ′, 𝑡) ∧ ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒 (𝑎𝑡𝑡𝑟 ′, 𝑣)∧
∃𝑓 𝑙 .𝐴(𝑓 𝑙, 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝐿𝑖𝑛𝑘) ∧ ℎ𝑎𝑠𝑂𝑟𝑖𝑔𝑖𝑛(𝑓 𝑙, 𝑎𝑡𝑡𝑟)∧
ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑓 𝑙, 𝑝) ∧ ℎ𝑎𝑠𝑅𝑒 𝑓 (𝑓 𝑙, 𝑎𝑡𝑡𝑟 ′)

Thismeans that we create a node𝑎𝑡𝑡𝑟 ′ which is of type𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ,
and assign its corresponding fields; we also create a linking relation
(the node 𝑓 𝑙) between the original attribute 𝑎𝑡𝑡𝑟 and the created
attribute node 𝑎𝑡𝑡𝑟 ′ at output 𝑃 .

In addition to that, because we will often refer to the output
attribute, we define this shorthand:

𝐼𝑂𝑃𝑎𝑖𝑟 (𝑖𝑛, 𝑜𝑢𝑡, 𝑝) ≡
𝐴(𝑓 𝑙, 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝐿𝑖𝑛𝑘) ∧ ℎ𝑎𝑠𝑂𝑟𝑖𝑔𝑖𝑛(𝑓 𝑙, 𝑖𝑛)∧
ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑓 𝑙, 𝑝) ∧ ℎ𝑎𝑠𝑅𝑒 𝑓 (𝑓 𝑙, 𝑜𝑢𝑡)

A.4.2 Output tag.

𝑂𝑢𝑡𝑝𝑢𝑡𝑇𝑎𝑔𝑔𝑖𝑛𝑔(𝑡, 𝑎𝑟, 𝑝, 𝑡𝑎𝑔) ⇐
𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦𝐹𝑜𝑟𝑂𝑢𝑡𝑝𝑢𝑡 (𝑖𝑛𝑝𝑢𝑡, 𝑝𝑜𝑙𝑖𝑐𝑦, 𝑜𝑢𝑡𝑝𝑢𝑡)∧
ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑜𝑢𝑡𝑝𝑢𝑡, 𝑝) ∧ ℎ𝑎𝑠𝑇𝑎𝑔𝑔𝑖𝑛𝑔(𝑝𝑜𝑙𝑖𝑐𝑦, 𝑡𝑎𝑔) ∧ ℎ𝑎𝑠𝑇𝑦𝑝𝑒 (𝑡𝑎𝑔, 𝑡)∧
ℎ𝑎𝑠𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑅𝑒 𝑓 (𝑡𝑎𝑔, 𝑎𝑟0) ∧ 𝐼𝑂𝑃𝑎𝑖𝑟 (𝑎𝑟0, 𝑎𝑟, 𝑝)
(∀𝑣𝑏.ℎ𝑎𝑠𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑡𝑎𝑔, 𝑣𝑏) →
∃𝑎𝑡𝑡𝑟 .𝐼𝑂𝑃𝑎𝑖𝑟 (𝑣𝑏, 𝑎𝑡𝑡𝑟, 𝑝))

where the full form of 𝑂𝑢𝑡𝑝𝑢𝑡𝑇𝑎𝑔𝑔𝑖𝑛𝑔 is:

𝑂𝑢𝑡𝑝𝑢𝑡𝑇𝑎𝑔𝑔𝑖𝑛𝑔(𝑡, 𝑎𝑟, 𝑝, 𝑡𝑎𝑔) ≡
∃𝑜𝑡 .𝐴(𝑜𝑡,𝑇𝑎𝑔𝑔𝑖𝑛𝑔) ∧ ℎ𝑎𝑠𝑇𝑦𝑝𝑒 (𝑜𝑡, 𝑡)∧
ℎ𝑎𝑠𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑅𝑒 𝑓 (𝑜𝑡, 𝑎𝑟) ∧ ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑜𝑡, 𝑝)∧
(∀𝑣𝑏, 𝑎𝑡𝑡𝑟 .ℎ𝑎𝑠𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑡𝑎𝑔, 𝑣𝑏) ∧ 𝐼𝑂𝑃𝑎𝑖𝑟 (𝑣𝑏, 𝑎𝑡𝑡𝑟, 𝑝)
→ ℎ𝑎𝑠𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑜𝑡, 𝑎𝑡𝑡𝑟))

A.4.3 Output prohibition.

𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛(𝑚,𝑎𝑐, 𝑝, 𝑝𝑟) ⇐
𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦𝐹𝑜𝑟𝑂𝑢𝑡𝑝𝑢𝑡 (𝑖𝑛𝑝𝑢𝑡, 𝑝𝑜𝑙𝑖𝑐𝑦, 𝑜𝑢𝑡𝑝𝑢𝑡)∧
ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑜𝑢𝑡𝑝𝑢𝑡, 𝑝) ∧ ℎ𝑎𝑠𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛(𝑝𝑜𝑙𝑖𝑐𝑦, 𝑝𝑟)∧
ℎ𝑎𝑠𝑈𝑠𝑒𝑀𝑜𝑑𝑒 (𝑝𝑟,𝑚) ∧ ℎ𝑎𝑠𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑝𝑟, 𝑎𝑐)∧
∀𝑣𝑏.(ℎ𝑎𝑠𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑝𝑟, 𝑣𝑏) → ∃𝑎𝑡𝑡𝑟 .𝐼𝑂𝑃𝑎𝑖𝑟 (𝑣𝑏, 𝑎𝑡𝑡𝑟, 𝑝))

where the full form of 𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 is:

𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛(𝑚,𝑎𝑐, 𝑝, 𝑝𝑟) ≡
∃𝑜𝑝.𝐴(𝑜𝑝, 𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛) ∧ ℎ𝑎𝑠𝑈𝑠𝑒𝑀𝑜𝑑𝑒 (𝑜𝑝,𝑚)∧
ℎ𝑎𝑠𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑜𝑝, 𝑎𝑐) ∧ ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑜𝑝, 𝑝)∧
∀𝑣𝑏, 𝑎𝑡𝑡𝑟 .(ℎ𝑎𝑠𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑝𝑟, 𝑣𝑏) ∧ 𝐼𝑂𝑃𝑎𝑖𝑟 (𝑣𝑏, 𝑎𝑡𝑡𝑟, 𝑝)
→ ℎ𝑎𝑠𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑜𝑝, 𝑎𝑡𝑡𝑟))

A.4.4 Output obligation.

𝑂𝑢𝑡𝑝𝑢𝑡𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛(𝑜𝑐, 𝑎𝑟𝑔, 𝑎𝑐, 𝑝, 𝑜𝑏) ⇐
𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦𝐹𝑜𝑟𝑂𝑢𝑡𝑝𝑢𝑡 (𝑖𝑛𝑝𝑢𝑡, 𝑝𝑜𝑙𝑖𝑐𝑦, 𝑜𝑢𝑡𝑝𝑢𝑡)∧
ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑜𝑢𝑡𝑝𝑢𝑡, 𝑝) ∧ ℎ𝑎𝑠𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛(𝑝𝑜𝑙𝑖𝑐𝑦, 𝑜𝑏)∧
ℎ𝑎𝑠𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠 (𝑜𝑏, 𝑜𝑐) ∧ ℎ𝑎𝑠𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡 (𝑜𝑏, 𝑎𝑟𝑔)∧
ℎ𝑎𝑠𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑜𝑏, 𝑎𝑐)∧
∀𝑣𝑏.(ℎ𝑎𝑠𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑜𝑏, 𝑣𝑏) → ∃𝑎𝑡𝑡𝑟 .𝐼𝑂𝑃𝑎𝑖𝑟 (𝑣𝑏, 𝑎𝑡𝑡𝑟, 𝑝))

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

where the full form of 𝑂𝑢𝑡𝑝𝑢𝑡𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛 is:

𝑂𝑢𝑡𝑝𝑢𝑡𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛(𝑜𝑐, 𝑎𝑟𝑔, 𝑎𝑐, 𝑝, 𝑜𝑏) ≡
∃𝑜𝑜.𝐴(𝑜𝑜,𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛) ∧ ℎ𝑎𝑠𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠 (𝑜𝑜, 𝑜𝑐)∧
∃𝑎𝑟𝑔′ .ℎ𝑎𝑠𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡 (𝑜𝑜, 𝑎𝑟𝑔′)∧
(∀𝑥 .𝑚𝑒𝑚𝑏𝑒𝑟 (𝑎𝑟𝑔, 𝑥) →𝑚𝑒𝑚𝑏𝑒𝑟 (𝑎𝑟𝑔′, 𝑥))∧
(∀𝑣𝑏, 𝑎𝑡𝑡𝑟 .ℎ𝑎𝑠𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑜𝑏, 𝑣𝑏) ∧ 𝐼𝑂𝑃𝑎𝑖𝑟 (𝑣𝑏, 𝑎𝑡𝑡𝑟, 𝑝)
→ ℎ𝑎𝑠𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑜𝑜, 𝑎𝑡𝑡𝑟))

where𝑚𝑒𝑚𝑏𝑒𝑟 (𝑎𝑟𝑔, 𝑥) means 𝑥 is a member of the list (RDF Col-
lection) 𝑎𝑟𝑔.

12

	Abstract
	1 Introduction
	2 Related Research
	3 Our language
	3.1 Language design
	3.2 Reasoning

	4 Solid Integration
	5 Performance Benchmark
	5.1 Benchmark settings
	5.2 Results and discussions
	5.3 Conclusion

	6 Summary and Future Work
	References
	A Axioms for reasoning
	A.1 Helper axioms
	A.2 Conformance check
	A.3 Obligation check
	A.4 Policy derivation

