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ABSTRACT

For a sequence of classification tasks that arrive over time, lifelong learning
methods can boost the effective sample size of each task by leveraging informa-
tion from preceding and succeeding tasks (forward and backward learning). How-
ever, backward learning is often prone to a so-called catastrophic forgetting in
which a task’s performance gets worse while trying to repeatedly incorporate in-
formation from succeeding tasks. In addition, current lifelong learning techniques
are designed for i.i.d. tasks and cannot capture the usual higher similarities be-
tween consecutive tasks. This paper presents lifelong learning methods based on
minimax risk classifiers (LMRCs) that effectively exploit forward and backward
learning and account for time-dependent tasks. In addition, we analytically char-
acterize the increase in effective sample size provided by forward and backward
learning in terms of the tasks’ expected quadratic change. The experimental eval-
uation shows that LMRCs can result in a significant performance improvement,
especially for reduced sample sizes.

1 INTRODUCTION

In practical scenarios, classification problems (tasks) often have limited sample sizes and arrive
sequentially over time. Lifelong learning (also known as continual learning) can boost the effective
sample size (ESS) of each task by leveraging information from preceding and succeeding tasks
(forward and backward learning) (Ruvolo & Eaton, 2013; Lopez-Paz & Ranzato, 2017; Chen & Liu,
2018). The general goal of such approaches is to replicate the humans’ ability to continually improve
the performance of each task exploiting information acquired from other tasks.

The development of lifelong learning techniques is hindered by the continuous arrival of samples
from tasks characterized by different underlying distributions. In particular, backward learning (also
known as reverse transfer) is often prone to a so-called catastrophic forgetting in which a task’s
performance gets worse while trying to repeatedly incorporate information from the succeeding
tasks (Kirkpatrick et al., 2017; Hurtado et al., 2021; Henning et al., 2021). More generally, lifelong
learning methods face a so-called stability-plasticity dilemma: the excessive usage of information
from different tasks can result in a performance decrease while a moderate usage does not fully
exploit the potential of lifelong learning (Rolnick et al., 2019; Ke et al., 2021).

Most of lifelong learning techniques are designed for tasks sampled i.i.d. from a task environment
(Baxter, 2000; Maurer et al., 2016; Denevi et al., 2019), and current methods cannot capture the
usual higher similarities between consecutive tasks. For a sequence of tasks that arrive over time,
it is common that the tasks are time-dependent and consecutive tasks are significantly more similar.
For instance, if each task corresponds to the classification of portraits from a specific time period
(Ginosar et al., 2015), the similarity between tasks is markedly higher for consecutive tasks (see
Figure 1). In the current literature of lifelong learning, only Pentina & Lampert (2015) considers
scenarios with time-dependent tasks and analyzes the feasibility of transferring information from the
preceding tasks. On the other hand, methods designed for concept drift adaptation (Zhao et al., 2020;
Tahmasbi et al., 2021; Álvarez et al., 2022) account for time-dependent underlying distributions but
only aim to learn the last task in the sequence.

This paper presents lifelong learning methods based on minimax risk classifiers (LMRCs). The pro-
posed techniques effectively exploit forward and backward learning and account for time-dependent
tasks. Specifically, the main contributions presented in the paper are as follows.
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Figure 1: For tasks that arrive over time, consecutive tasks are often more similar. Forward and backward
learning can exploit such similarities and extract information from preceding and succeding tasks.

• The presented LMRCs minimize the worst-case error probabilities over uncertainty sets
obtained using information from all the tasks.

• We propose learning techniques that can effectively incorporate information from the ever-
increasing sequence of tasks and provide performance guarantees for forward and back-
ward learning.

• We analytically characterize the increase in ESS provided by forward and backward learn-
ing in terms of the expected quadratic change between consecutive tasks.

• We numerically quantify the performance improvement provided by the presented learning
techniques in comparison with existing methods using multiple datasets, different sample
sizes, and number of tasks.

Notations Calligraphic letters represent sets; ‖ · ‖1 and ‖ · ‖∞ denote the 1-norm and the infinity
norm of its argument, respectively; � and � denote vector inequalities; I{·} denotes the indicator
function; and Ep{ · } and Varp{·} denote the expectation and the variance of its argument with
respect to distribution p. For a vector v, v(i) and v

T denote the i-th component and the transpose of
v. Non-linear operators acting on vectors denote component-wise operations. For instance, |v| and
v
2 denote the vector formed by the absolute value and the square of each component, respectively.

2 PRELIMINARIES

In the following, we denote by X the set of instances or attributes, Y the set of labels or classes,
∆(X × Y) the set of probability distributions over X × Y , and T(X ,Y) the set of classification
rules. A classification task is characterized by an underlying distribution p∗ ∈ ∆(X × Y) and
supervised classification methods use a sample set D = {(xi, yi)}ni=1 formed by n i.i.d samples
from distribution p∗ to find a classification rule h ∈ T(X ,Y) with small expected loss ℓ(h, p∗).

In lifelong learning, sample sets D1, D2, . . . arrive over time steps 1, 2, . . . corresponding with dif-
ferent classification tasks characterized by underlying distributions p1, p2, . . .. At each time step
k, lifelong learning methods aim to obtain classification rules h1, h2, . . . , hk with small expected
losses ℓ(h1, p1), ℓ(h2, p2), . . . , ℓ(hk, pk) for the current sequence of k tasks. For instance, overall
performance is usually assessed by the averaged error 1

k

∑k
i=1 ℓ(hi, pi). As depicted in Fig. 1, for

each j-th task with j ∈ {1, 2, . . . , k}, lifelong learning methods obtain the classification rule hj
leveraging information obtained from sample sets D1, D2, . . . , Dj (forward learning) and from sam-
ple sets Dj+1, Dj+2, . . . , Dk (backward learning). Most existing lifelong learning techniques are
designed for tasks characterized by distributions p1, p2, . . . such that the tasks’ distributions pi are
independent and identically distributed (i.i.d.) random probability measures for i = 1, 2, . . .. In
the following, we propose lifelong learning techniques designed for time-dependent tasks that are
characterized by distributions p1, p2, . . . such that the changes between consecutive distributions
pi+1 − pi are independent and zero-mean random signed measures for i = 1, 2, . . .. Such assump-
tion can account for usual higher similarities between consecutive tasks; for instance, it implies that
pi+t−pi is a zero-mean random variable with Var{pi+t−pi} =

∑t
j=1 Var{pi+j−pi+j−1}, while
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the i.i.d. case would imply that pi+t − pi is a zero-mean random variable with Var{pi+t − pi} =
Var{pi+1 − pi} = 2Var{p1} for any t and i.

As described above, lifelong learning methods consider tasks characterized by different distribu-
tions. The methods presented below are based on the framework of minimax risk classifiers
(MRCs) (Mazuelas et al., 2020; 2022a;b) since MRCs can utilize general expectation estimates ob-
tained from samples with different distributions. MRCs learn classification rules by minimizing
the worst-case expected loss against an uncertainty set that can include the underlying distribution
with high probability. Such uncertainty sets are given by constraints on the expectation of a feature
mapping Φ : X × Y → R

m as

U = {p ∈ ∆(X × Y) : |Ep{Φ(x, y)} − τ | � λ} (1)

where τ denotes a mean vector of expectation estimates and λ denotes a confidence vector. Fea-
ture mappings are vector-valued functions over X × Y , e.g., one-hot encodings of values from the
last layers in a neural network (Bengio et al., 2013; Kemker & Kanan, 2018; Mohri et al., 2018;
Hurtado et al., 2021).

Given the uncertainty set U , MRC rules are solutions of the optimization problem

R(U) = min
h∈T(X ,Y)

max
p∈U

ℓ(h, p) (2)

where R(U) denotes the minimax risk and ℓ(h, p) denotes the expected loss of classification rule
h for distribution p. In the following, we utilize the 0-1-loss so that ℓ(h, p) = Ep{I{h(x) 6= y}}
and the expected loss with respect to the underlying distribution becomes the error probability of
the classification rule. Deterministic MRCs assign each instance x ∈ X with the label h(x) ∈
argmaxy∈Y Φ(x, y)Tµ∗ where the parameter µ∗ is the solution of the convex optimization problem

min
µ

1− τ Tµ+ max
x∈X ,C⊆Y

∑

y∈C Φ(x, y)
Tµ− 1

|C| + λT|µ| (3)

given by the Lagrange dual of (2).

MRCs provide bounds for the error probability with respect to the minimax risk R(U) and the
smallest minimax risk as described in Mazuelas et al. (2020; 2022a;b). The smallest minimax risk,
denoted by R∞, is the minimax risk corresponding to the ideal case of knowing mean vectors
exactly, that is, R∞ is the minimax risk corresponding with the uncertainty set U∞ = {p ∈ ∆(X ×
Y) : Ep{Φ(x, y)} = Ep∗{Φ(x, y)}}. Such minimax risk coincides with the Bayes risk if the
underlying distribution is the worst-case distribution in uncertainty set given by the true expectation
of feature mapping (Mazuelas et al., 2022a). If the mean vector of expectation estimates is obtained
using a sample set D formed by instance-label pairs from the same underlying distribution, then the
performance bounds of MRCs are of the usual order O (1/

√
n) where n is the sample size of D.

In lifelong learning, the baseline approach of single-task learning obtains a classification rule hj for
each j-th task leveraging information only from the sample set Dj = {(xj,i, yj,i)}nj

i=1 of size nj . In
that case, LMRCs coincide with MRCs for standard supervised classification that obtain the mean
and confidence vectors as

τ j =
1

nj

nj
∑

i=1

Φ (xj,i, yj,i) , λj =
√
sj , sj = σ2

j/nj (4)

with σ2
j an estimate of Varpj

{Φ(x, y)}, e.g., the sample variance of the nj samples. The vector sj
describes the mean squared errors (MSEs) of the mean vector components and directly gives the
confidence vector λj as shown in (4).

In the following sections, we describe techniques that obtain the mean and MSE vectors using
forward and backward learning. Once such vectors are obtained, LMRC methods take the con-
fidence vector λj as in (4) and obtain the classifier parameter µj for each j-th task solving the
convex optimization problem in (3) that can be efficiently addressed using conventional methods
(Nesterov & Shikhman, 2015; Tao et al., 2019).
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3 FORWARD LEARNING WITH PERFORMANCE GUARANTEES

This section presents the recursions that allow to obtain mean and MSE vectors for each task retain-
ing information from preceding tasks. In addition, it characterizes the increase in ESS provided by
forward learning in terms of the tasks’ expected quadratic change and the number of tasks.

3.1 FORWARD LEARNING

The proposed techniques for forward learning account for time-dependent tasks and obtain classifi-
cation rules for each task leveraging information from preceding tasks. Let τ⇀

j and s⇀j denote the
mean and MSE vectors for forward learning corresponding to the j-th task for j ∈ {1, 2, . . . , k}.
The following recursions allow to obtain τ⇀

j and s⇀j for each j-th task using those vectors for the
preceding task τ⇀

j−1, s
⇀
j−1 as

τ⇀
j = τ j +

sj

s⇀j−1 + sj + d2
j

(

τ⇀
j−1 − τ j

)

(5)

s⇀j =

(

1

sj
+

1

s⇀j−1 + d
2
j

)−1

(6)

with τ j and sj given by (4) and τ⇀
1 = τ 1, s⇀1 = s1.

The vector d2
j assesses the expected quadratic change between consecutive tasks. In the following,

the change between consecutive tasks is described by wj = τ∞
j − τ∞

j−1 for any j ∈ {2, 3, . . . , k}
where τ∞

j = Epj
{Φ(x, y)} is the expectation of the feature mapping with respect to the underlying

distribution. If pj − pj−1 are independent and zero-mean for j = 2, 3, . . ., then vectors wj are also
independent and zero-mean for any feature mapping.

Taking d2
i = E{w2

i } = E{(τ∞
i − τ∞

i−1)
2} and σ2

i = Varpi
{Φ (x, y)} for any i, the recursion

in (5) provides the unbiased linear estimator of the mean vector τ∞
j based on D1, D2, . . . , Dj that

has the minimum MSE, while the recursion in (6) provides its MSE (see Appendix A for a detailed
derivation). Vectors σ2

i and d2
i can be estimated online using the sample sets. In particular, σ2

i can
be estimated as the sample variance, while d2

i can be estimated using sample averages as

d2
i =

1

W

W
∑

l=1

(τ il − τ il−1
)2 (7)

where i0, i1, . . . , iW are the W + 1 closest indexes to i in {1, 2, . . . , k}.

Recursions (5)-(6) obtain mean and MSE vectors for the j-th task by acquiring information from
the j-th sample set Dj and retaining information from preceding tasks. Specifically, recursion (5)
obtains the mean vector τ⇀

j by adding a correction to the sample average τ j . This correction is
proportional to the difference between τ j and τ⇀

j−1 with a proportionality constant that depends on

the MSE vectors sj , s⇀j−1 and the expected quadratic change d2
j . In particular, if sj ≪ s⇀j−1 + d2

j ,

the mean vector is given by the sample average as in single-task learning, and if sj ≫ s⇀j−1 + d
2
j ,

the mean vector is given by that of the preceding task. Note that for forward learning, at each step k,
only the vectors for the last task τ⇀

k and s⇀k need to be obtained from those of the (k − 1)-th task.
The vectors for the remaining j-th tasks with j ∈ {1, 2, . . . , k − 1} stay the same as at step k − 1
(see also Fig. 2 and Alg. 1 below).

3.2 PERFORMANCE GUARANTEES AND EFFECTIVE SAMPLE SIZES

The following result provides bounds for the minimax risk for each task with respect to the smallest
minimax risk. For each j-th task, we denote by R∞

j the smallest minimax risk and by µ∞
j the

classifier parameter that determines the optimal minimax rule, as described in Section 2. In addition,
we denote by R(U⇀

j ) the minimax risk over uncertainty set U⇀
j determined as in (1) using the mean

and confidence vectors τ⇀
j and λ⇀

j =
√

s⇀j provided by (5) and (6).
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Theorem 1. Let M and κ be such that M ≥ ‖Φ(x, y)‖∞ ∀(x, y) ∈ X × Y and

κ ≥
σ
(

Φ
(i)
j

)

σ
(i)
j

, κ ≥
σ
(

w
(i)
j

)

d
(i)
j

for j = 1, 2, . . . , k and i = 1, 2, . . . ,m

where Φ(i)
j denotes the r.v. given by the i-th component of the feature mapping of samples from the

j-th task, σ(z) denotes the sub-Gaussian parameter of a r.v. z, i.e., E{et(z−E{z})} ≤ eσ(z)
2t2/2 ∀t.

For any j ∈ {1, 2, . . . , k}, we have that

R(U⇀
j ) ≤ R∞

j +
M(κ+ 1)

√

2 log (2m/δ)
√

n⇀
j

∥

∥µ∞
j

∥

∥

1
with prob. at least 1− δ (8)

with n⇀
1 = n1 and n⇀

j ≥ nj + n⇀
j−1

‖σ2
j‖∞

‖σ2
j
‖∞+n⇀

j−1‖d2
j
‖∞

for j ≥ 2.

Proof. See Appendix B.

The excess risk in inequality (8) decreases as O(1/
√

n⇀
j ) using the forward learning methods pro-

posed, while such difference would decrease as O(1/
√
nj) using only the information of the j-th

task. Therefore, n⇀
j in (8) is the ESS of the proposed LMRC method with forward learning. The

ESS of each task is obtained by adding a fraction of the ESS for the preceding task to the sample
size. In particular, if d2

j is large, the ESS is given by the sample size, while if d2
j is small, the ESS

is given by the sum of the sample size and the ESS of the preceding task.

Other existing methods provide comparable performance bounds (Mohri & Medina, 2012;
Pentina & Lampert, 2015). Such bounds decrease with the number of tasks and increase with the
change between consecutive distributions. Specifically, bounds in Proposition 1 of Mohri & Medina
(2012) and in Theorem 7 of Pentina & Lampert (2015) are proportional to the discrepancy and to
the Kullback-Leibler divergence between consecutive distributions. The bound in Theorem 1 above
decreases with the number of tasks and increases with the expected quadratic change d2

j between
consecutive distributions. Note that the coefficient κ in (8) can be taken to be small as long as the
values used for σj and dj are not much lower than the sub-Gaussian parameters of Φj and wj , re-

spectively. In particular, κ is smaller than the maximum of M/minj,i{σ(i)
j } and 2M/minj,i{d(i)j }

due to the bound for the sub-Gaussian parameter of bounded random variables (see e.g., Section
2.1.2 in Wainwright (2019)).

Theorem 1 shows the increase in ESS in terms of the ESS of the preceding task. The following result
allows to directly quantify the ESS in terms of the sample size and the expected quadratic change.

Theorem 2. Let d, σj and n be such that d2 ≥ ‖d2
j‖∞, ‖σ2

j‖∞ ≤ 1, and n ≤ nj for j = 1, 2, . . . , k.
For any j ∈ {1, 2, . . . , k}, we have that the ESS in (8) can be taken so that it satisfies

n⇀
j ≥ n

(

1 +
(1 + α)2j−1 − 1− α

α(1 + α)2j−1 + α

)

with α =
2

√

1 + 4
nd2 − 1

. (9)

In particular, for j ≥ 2, we have that

n⇀
j ≥ n

(

1 +
j − 1

3

)

if nd2 <
1

j2

n⇀
j ≥ n

(

1 +
1

5
√
nd2

)

if
1

j2
≤ nd2 < 1

n⇀
j ≥ n

(

1 +
1

3nd2

)

if nd2 ≥ 1.

Proof. See Appendix C.

The above theorem characterizes the increase in ESS provided by forward learning in terms of the
tasks’ expected quadratic change. Such increase grows monotonically with the number of preceding
tasks j as shown in (9) and becomes proportional to j when the expected quadratic change is smaller
than 1/(j2n). Figure 3 below further illustrates the increase in ESS with respect to the sample size
(n⇀

j /n) due forward learning in comparison with forward and backward learning.
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4 FORWARD AND BACKWARD LEARNING WITH PERFORMANCE GUARANTEES

This section presents the recursions that allow to obtain mean and MSE vectors for each task retain-
ing information from preceding tasks and acquiring information from succeeding tasks. In addition,
it characterizes the increase in ESS provided by forward and backward learning in terms of the tasks’
expected quadratic change and the number of tasks.

Backward learning is more challenging than forward learning since, for each task, the sequence of
succeeding tasks is ever-increasing due to the continuous arrival of tasks, while the sequence of
preceding tasks is always the same. The repeated usage of information from the succeeding tasks
can result in a so-called catastrophic forgetting in which the tasks’ performance gets worse over
time. The techniques proposed below for backward learning effectively increase the ESS over time
by carefully accounting for the new information at each step.

4.1 FORWARD AND BACKWARD LEARNING

The proposed techniques for forward and backward learning account for time-dependent tasks and
obtain classification rules for each task leveraging information from preceding and succeeding tasks.
From preceding tasks, we obtain the forward mean and MSE vectors τ⇀

j , s⇀j using recursions (5)-
(6), while from succeeding tasks, we obtain the backward mean and MSE vectors τ↽k

j , s↽k
j using

recursions (5)-(6) in retrodiction. Specifically, vectors τ↽k
j and s↽k

j are obtained using the same

recursion as for τ⇀
j and s⇀j in (5)-(6) with s↽k

j+1,d
2
j+1, and τ↽k

j+1 instead of s⇀j−1,d
2
j , and τ⇀

j−1.

Let τ⇋k
j and s⇋k

j denote the mean and MSE vectors for forward and backward learning correspond-
ing to the j-th task for j ∈ {1, 2, . . . , k}. The following recursions allow to obtain, at each step k,
the mean and MSE vectors τ⇋k

j and s⇋k
j for each j-th task using those vectors for forward learning

τ⇀
j , s⇀j and backward learning τ↽k

j+1, s
↽k
j+1 as τ⇋k

k = τ⇀
k , s⇋k

k = s⇀k and

τ⇋k
j = τ⇀

j +
s⇀j

s⇀j + s↽k
j+1 + d2

j+1

(

τ↽k
j+1 − τ⇀

j

)

(10)

s⇋k
j =

(

1

s⇀j
+

1

s↽k
j+1 + d

2
j+1

)−1

(11)

with τ↽k
k = τ k and s↽k

k = sk. Analogously to the case of forward learning in Section 3.1, taking
d2
i = E{w2

i } and σ2
i = Varpi

{Φ (x, y)} for any i, the recursion in (10) provides the unbiased
linear estimator of the mean vector τ∞

j based on D1, D2, . . . , Dj and Dj+1, Dj+2, . . . , Dk that has
the minimum MSE, while the recursion in (11) provides its MSE (see Appendix A for a detailed
derivation).

Recursions (10)-(11) obtain at step k the mean and MSE vectors for the j-th task by retaining
information from preceding tasks and acquiring information from succeeding tasks. Specifically,
recursion (10) obtains the mean vector τ⇋k

j by adding a correction to the mean vector of the corre-
sponding task τ⇀

j obtained for forward learning. This correction is proportional to the difference
between τ⇀

j and τ↽k
j+1 with a proportionality constant that depends on the MSE vectors s⇀j , s↽k

j+1

and the expected quadratic change d2
j+1. In particular, if s⇀j ≪ s↽k

j+1 + d2
j+1, the mean vector is

given by that of the corresponding task for forward learning, and if s⇀j ≫ s↽k
j+1 + d2

j+1, the mean
vector is given by that of the succeeding task for backward learning.

4.2 IMPLEMENTATION

This section describes the implementation of the proposed LMRCs with forward and backward
learning and its computational and memory complexities.

Figure 2 depicts the flow diagram for the proposed LMRC methodology. The proposed techniques
carefully avoid the repeated usage of the same information from the sequence of succeeding tasks.
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τ j−1 τ j τ j+1τ⇋k
j

τ⇀
j−1 τ⇀

j τ⇀
j+1

τ↽k
j+1τ↽k

j−1 τ↽k
j

τ
⇋j
j−1

Figure 2: Diagram for LMRC methodology.

At each step k, new backward mean vectors
τ↽k
j+1 for j = k − 1, k − 2, .., k − b are ob-

tained for b backward steps, then the forward
and backward mean vectors τ⇋k

j given by (10)
are obtained from the forward mean vectors
τ⇀
j and the backward mean vectors τ↽k

j+1. In
particular, τ⇀

j provides the information from
the preceding tasks 1, 2, . . . , j, while τ↽k

j+1 pro-
vides the information from the succeeding tasks
j + 1, j + 2, . . . , k.

Algorithm 1 details the implementation of the proposed LMRCs at each step. For k steps, LMRCs
have computational complexity O((b + 1)Kmk) and memory complexity O((b + k)m) where K
is the number of iterations used for the convex optimization problem (3), m is the length of the
feature vector, and b is the number of backward steps. In particular, if b = 0, LMRC carries out only
forward learning. The complexity of forward and backward learning increases proportionally to the
number of backward steps that can be taken to be rather small, as shown in the following. Even more
efficient implementations can be obtained using Rauch-Tung-Striebel recursions (see e.g., Section
7.2 in Anderson & Moore (1979)) that can obtain τ⇋k

j from τ⇋k
j+1 as shown in Appendix D.

Algorithm 1 LMRC at step k

Input: Dk from new task and τ j , sj , τ
⇀
j , s⇀

j for k − b ≤ j < k from previous b− 1 steps
Output: µj for k − b ≤ j ≤ k, τk, sk, τ

⇀
k , s⇀

k

Obtain sample average and MSE vectors τ↽k
k = τk, s

↽k
k = sk using the sample set Dk ⊲ Single-task

Estimate the tasks’ expected quadratic change d2
k using (7)

Obtain the forward mean and MSE vectors τ⇀
k , s⇀k using (5)-(6) ⊲ Forward

Take λ⇀
k =

√
s⇀
k and obtain classifier parameter µk solving the optimization problem (3)

for j = k − 1, k − 2, . . . , k − b do
Estimate the tasks’ expected quadratic change d2

j using (7)
Obtain backward mean and MSE vectors τ↽k

j+1, s
↽k
j+1 using (5)-(6) in retrodiction ⊲ Backward

Obtain mean and MSE vectors τ⇋k
j , s⇋k

j using (10)-(11) ⊲ Forward and backward

Take λ⇋k
j =

√

s⇋k
j and obtain classifier parameters µj solving the optimization problem (3)

4.3 PERFORMANCE GUARANTEES AND EFFECTIVE SAMPLE SIZES

The following result provides bounds for the minimax risk for each task with respect to the smallest
minimax risk. For each j-th task and step k, we denote by R(U⇋k

j ) the minimax risk over uncer-

tainty set U⇋k
j determined as in (1) using the mean and confidence vector τ⇋k

j and λ⇋k
j =

√

s⇋k
j

provided by (10) and (11).

Theorem 3. Let M , κ, and n⇀
j be as in Theorem 1. For any j ∈ {1, 2, . . . , k}, we have that

R(U⇋k
j ) ≤ R∞

j +
M(κ+ 1)

√

2 log (2m/δ)
√

n⇋k
j

∥

∥µ∞
j

∥

∥

1
with prob. at least 1− δ (12)

with n⇋k
k = n⇀

k and n⇋k
j ≥ n⇀

j + n↽k
j+1

‖σ2
j‖∞

‖σ2
j
‖∞+ n↽k

j+1‖d2
j+1‖∞

for j ≤ k − 1, where the backward

ESSs satisfy n↽k
k = nk and n↽k

j ≥ nj + n↽k
j+1

‖σ2
j‖∞

‖σ2
j
‖∞+n↽k

j+1‖d2
j+1‖∞

.

Proof. See Appendix E.

To the best of our knowledge, Theorem 3 provides the first performance guarantees for lifelong
learning that show positive backward transfer. In particular, the bounds for forward and backward
learning provided by inequality (12) are significantly lower than those for forward learning in The-
orem 1. The ESS of each task is obtained by adding a fraction of the ESS for the succeeding task
to the ESS of the corresponding task using forward learning. In particular, if d2

j is large, the ESS

is given by that with forward learning, while if d2
j is small, the ESS is given by the sum of the ESS

using forward learning and the ESS of the succeeding task.

7
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Theorem 3 shows the increase in ESS in terms of the ESS with forward learning and the ESS of the
succeeding task. The following result allows to directly quantify the ESS in terms of the sample size
and the expected quadratic change.

Theorem 4. Let d, σj and n be such that d2 ≥ ‖d2
j‖∞, ‖σ2

j‖∞ ≤ 1, and n ≤ nj for j = 1, 2, . . . , k.
For any j ∈ {1, 2, . . . , k}, we have that the ESS in (12) can be taken so that it satisfies

n⇋k
j ≥ n

(

1 +
(1 + α)2j−1 − 1− α

α(1 + α)2j−1 + α
+

(1 + α)2(k−j)+1 − 1− α

α(1 + α)2(k−j)+1 + α

)

with α =
2

√

1 + 4
nd2 − 1

.

(13)
In particular, for j ≥ 2, we have that

n⇋k
j ≥ n⇀

j + n
j(k − j)

j + 2(k − j)
≥ n

(

1 +
j − 1

3
+

j(k − j)

j + 2(k − j)

)

if nd2 <
1

j2

n⇋k
j ≥ n⇀

j +
1

5

√

n

d2
≥ n

(

1 +
2

5
√
nd2

)

if
1

j2
≤ nd2 < 1

n⇋k
j ≥ n⇀

j +
1

3d2
≥ n

(

1 +
2

3nd2

)

if nd2 ≥ 1.

Proof. See Appendix F.

The above theorem characterizes the increase in ESS provided by forward
and backward learning in terms of the tasks’ expected quadratic change.

E
S

S
/n

100

10−4

10

5

2

20

110−2

n⇀
10/n

n⇋13
10 /n

n⇋20
10 /n

n⇀
100/n

n⇋103
100 /n

n⇋110
100 /n

nd2

Figure 3: ESS increase provided by forward and back-
ward learning.

Such increase grows monotonically with the
number of preceding tasks j and with the num-
ber of succeeding tasks k − j as shown in (13).
In addition, it becomes proportional to the total
number of tasks k when the expected quadratic
change is smaller than 1/(j2n) and j ≥ k/2.
Figure 3 further illustrates the increase in ESS
with respect to the sample size (n⇋k

j /n) due
to forward and backward learning in compari-
son with forward learning. Such figure displays
the three intervals that are discussed in Theo-
rems 2 and 4. In particular, the ESS signifi-
cantly increases when nd2 decreases between
1 and 1/j2. Note also that in most of the sit-
uations, the benefits of backward learning are
achieved using only b = k − j = 3 backward
steps.

5 NUMERICAL RESULTS
This section first compares the classification performance of LMRCs with state-of-the-art techniques
using multiple datasets, then we show the performance improvement of the presented LMRCs due
forward and backward learning. In the supplementary materials, we provide the code for LMRCs
together with additional implementation details and numerical results in Appendix G.

The proposed method is evaluated using 6 public datasets: “Yearbook” (Ginosar et al., 2015), “Im-
ageNet noise” (Mai et al., 2022), “UTKFaces” (Zhang et al., 2017), “Rotated MNIST” (Jin et al.,
2021), “DomainNet” (Peng et al., 2019), and “CLEAR” (Lin et al., 2021). These datasets are
composed by time-dependent tasks (images with characteristics/quality/realism that change over
time). The last two datasets are multi-class problems and the rest are binary (see further details
in Appendix G). For all methods, instances are represented by pixel values in "Rotated MNIST"
dataset, and by the last layer of the ResNet18 pre-trained network (He et al., 2016) in the re-
maining datasets. The proposed LMRC method is compared with 4 lifelong learning techniques:
gradient episodic memory (GEM) (Lopez-Paz & Ranzato, 2017), meta-experience replay (MER)
(Riemer et al., 2018), efficient lifelong learning algorithm (ELLA) (Ruvolo & Eaton, 2013), and
elastic weight consolidation (EWC) (Kirkpatrick et al., 2017). The hyper-parameters in these meth-
ods are set to the default values provided by the authors. LMRCs are implemented using b = 3

8
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Table 1: Classification error and standard deviation of the proposed LMRC method in comparison with the
state-of-the-art techniques.

Dataset Yearbook ImageNet noise DomainNet UTKFaces Rotated MNIST CLEAR
n 10 100 10 100 10 100 10 100 10 100 10 100

GEM .18 ± .03 .17 ± .03 .39 ± .08 .13 ± .07 .69 ± .05 .53 ± .10 .12 ± .00 .12 ± .00 .36 ± .06 .28 ± .02 .57 ± .10 .09 ± .02
MER .16 ± .03 .10 ± .01 .17 ± .03 .10 ± .01 .38 ± .04 .26 ± .04 .17 ± .09 .11 ± .01 .37 ± .09 .45 ± .10 .10 ± .03 .05 ± .02
ELLA .45 ± .09 .43 ± .10 .48 ± .05 .47 ± .04 .67 ± .05 .67 ± .05 .19 ± .12 .17 ± .11 .48 ± .05 .47 ± .05 .61 ± .06 .60 ± .05
EWC .47 ± .05 .27 ± .06 .47 ± .04 .46 ± .06 .75 ± .04 .74 ± .05 .12 ± .00 .12 ± .00 .48 ± .01 .40 ± .01 .65 ± .03 .62 ± .04

LMRC .13 ± .04 .08 ± .02 .15 ± .03 .09 ± .01 .34 ± .06 .28 ± .01 .10 ± .01 .10 ± .00 .36 ± .01 .21 ± .00 .09 ± .03 .05 ± .02
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(a) Classification error per number of tasks in
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(b) Classification error per sample size in “Year-
book” dataset.

Figure 4: Forward and backward learning can sharply boost performance and ESS as tasks arrive.

backward steps and the expected quadratic change d2
j is estimated using W = 2 in (7). We use the

same hyper-parameters for all the results in this section for fair comparison with the state-of-the-art
and to show that the techniques presented do not require a careful fine-tuning. In Appendix G, among
other additional results, we study the change in classification error and processing time achieved by
varying the number b of backward steps.

In the first set of numerical results, we compare the performance of the proposed LMRCs with the
state-of-the-art techniques for n = 10 and n = 100 samples per task. These numerical results are
obtained computing the average classification error over all the tasks in 50 random instantiations
of data samples. As can be observed in Table 1, LMRCs can significantly improve performance in
time-dependent tasks with respect to the state-of-the-art.

In the second set of numerical results, we analyze the contribution of forward and backward learn-
ing to the final performance of LMRCs. In particular, we show the relationship among classification
error, number of tasks, and sample size for single-task, forward, and forward and backward learn-
ing. These numerical results are obtained averaging, for each number of tasks and sample size, the
classification errors achieved with 10 random instantiations of data samples in "Yearbook" dataset
(see Appendix G for further details). Figure 4a shows the classification error of LMRC method
divided by the classification error of single-task learning for different number of tasks with n = 10
and n = 100 sample sizes. Such figure shows that forward and backward learning can significantly
improve performance as tasks arrive. In addition, Figure 4b shows the classification error of LMRC
method for different sample sizes with k = 10 and k = 100 tasks. Such figure shows that forward
and backward learning for k = 100 tasks using n = 10 samples achieves significantly better results
than single-task learning using n = 100 samples. In particular, the methods proposed can effectively
exploit backward learning that results in enhanced classification error in all the experimental results.

6 CONCLUSION
The paper proposes LMRCs that effectively perform forward and backward learning and account
for time-dependent tasks. LMRCs carefully avoid the repeated usage of the same information from
the ever-increasing sequence of succeeding tasks. In addition, the paper analytically characterizes
the increase in ESS achieved by the proposed forward and backward learning techniques in terms
of the tasks’ expected quadratic change and number of tasks. The numerical results assess the
performance improvement of LMRC methodology with respect to the state-of-the-art using multiple
datasets, sample sizes, and number of tasks. The proposed methodology for lifelong learning with
time-dependent tasks can lead to techniques that further approach the humans’ ability to learn from
few examples and to continuously improve on tasks that arrive over time.
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A DERIVATION OF RECURSIONS (5) AND (6) FOR FORWARD LEARNING AND

RECURSIONS (10) AND (11) FOR FORWARD AND BACKWARD LEARNING

This section shows how recursions in (5), (6) and recursions in (10), (11) are obtained using those
for filtering and smoothing in linear dynamical systems.

The mean vectors evolve over time steps through the linear dynamical system
τ∞
j = τ∞

j−1 +wj (14)

where, as described in Section 3.1, vectors wj for j ∈ {2, 3, . . . , k} are independent and zero-mean
because pj − pj−1 are independent and zero-mean. In addition, each state variable τ∞

j is observed
at each step j through τ j that is the sample average of i.i.d. samples from pj , so that we have

τ j = τ∞
j + vj (15)

where vj for j ∈ {1, 2, . . . , k} are independent and zero mean, and independent of wj for
j ∈ {1, 2, . . . , k}. Therefore, equations (14) and (15) above describe a linear dynamical system
(state-space model with white noise processes) (Bishop, 2006; Anderson & Moore, 1979). For such
systems, the Kalman filter recursions provide the unbiased linear estimator with minimum MSE
based on samples corresponding to preceding steps D1, D2, . . . , Dj , and fixed-lag smoother recur-
sions provide the unbiased linear estimator with minimum MSE based on samples corresponding to
preceding and succeeding steps D1, D2, . . . , Dk (Bishop, 2006; Anderson & Moore, 1979). Then,
equations (5), (6) and equations (10), (11) are obtained after some algebra from the Kalman filter
recursions and fixed-lag smoother recursions, respectively.

B PROOF OF THEOREM 1

Proof. To obtain bound in (8) we first prove that the mean vector estimate and the MSE vector given
by (5) and (6), respectively, satisfy

P

{

|τ∞j (i) − τ⇀j
(i)| ≤ κ

√

2s⇀j
(i) log

(

2m

δ

)

}

≥ (1− δ) (16)

for any component i = 1, 2, . . . ,m. Then, we prove that ‖√s⇀j ‖∞ ≤ M/
√

n⇀
j for j ∈

{1, 2, . . . , k}, where the ESSs satisfy n⇀
1 = n1 and n⇀

j ≥ nj + n⇀
j−1

‖σ2
j‖∞

‖σ2
j
‖∞+n⇀

j−1‖d2
j
‖∞

for j ≥ 2.

To obtain inequality (16), we prove by induction that each component i = 1, 2, . . . ,m of the error in

the mean vector estimate z⇀j
(i) = τ∞j

(i)−τ⇀j
(i) is sub-Gaussian with parameter η⇀j

(i) ≤ κ
√

s⇀j
(i).

Firstly, for j = 1, we have that

z⇀1
(i) = τ∞1

(i) − τ⇀1
(i) = τ∞1

(i) − τ
(i)
1 .

Since the bounded random variable Φ
(i)
1 is sub-Gaussian with parameter σ(Φ(i)

1 ), then the error in
the mean vector estimate z⇀1

(i) is sub-Gaussian with parameter that satisfies

(

η⇀1
(i)
)2

=
σ
(

Φ
(i)
1

)2

n1
≤ κ2σ2

1
(i)

n1
= κ2s

(i)
1 .

If z⇀j−1
(i) = τ∞j−1

(i) − τ⇀j−1
(i) is sub-Gaussian with parameter η⇀j−1

(i) ≤ κ
√

s⇀j−1
(i) for any

i = 1, 2, . . . ,m, then using the recursions (5) and (6) we have that

z⇀j
(i) = τ∞j

(i) − τ⇀j
(i) = τ∞j−1

(i) + w
(i)
j − τ

(i)
j −

s
(i)
j

s⇀j−1
(i) + s

(i)
j + d2j

(i)

(

τ⇀j−1
(i) − τ

(i)
j

)

= τ∞j−1
(i) + w

(i)
j − τ⇀j−1

(i) +

(

1−
s
(i)
j

s⇀j−1
(i) + s

(i)
j + d2j

(i)

)

(

τ⇀j−1
(i) − τ

(i)
j

)

= τ∞j−1
(i) + w

(i)
j − τ⇀j−1

(i) −
s⇀j

(i)

s
(i)
j

(

τ
(i)
j − τ⇀j−1

(i)
)
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since wj = τ∞
j − τ∞

j−1. If vj = τ j − τ∞
j , the error in the mean vector estimate is given by

z⇀j
(i) = τ∞j−1

(i) + w
(i)
j − τ⇀j−1

(i) −
s⇀j

(i)

s
(i)
j

(

τ∞j
(i) + v

(i)
j − τ⇀j−1

(i)
)

= τ∞j−1
(i) + w

(i)
j − τ⇀j−1

(i) −
s⇀j

(i)

s
(i)
j

(

τ∞j−1
(i) + w

(i)
j + v

(i)
j − τ⇀j−1

(i)
)

=

(

1−
s⇀j

(i)

s
(i)
j

)

z⇀j−1
(i) +

(

1−
s⇀j

(i)

s
(i)
j

)

(

w
(i)
j

)

−
s⇀j

(i)

s
(i)
j

v
(i)
j

where w
(i)
j and v

(i)
j are sub-Gaussian with parameter σ(w

(i)
j ) and σ

(

Φ
(i)
j

)

/
√
nj , respectively.

Therefore, we have that z⇀j
(i) is sub-Gaussian with parameter η⇀j

(i) that satisfies

(

η⇀j
(i)
)2

=

(

1−
s⇀j

(i)

s
(i)
j

)2
(

η⇀j−1
(i)
)2

+

(

1−
s⇀j

(i)

s
(i)
j

)2

σ
(

w
(i)
j

)2

+

(

s⇀j
(i)

s
(i)
j

)2 σ
(

Φ
(i)
j

)2

nj

since z⇀
j−1, wj , and vj are independent. Using that η⇀j−1

(i) ≤ κ
√

s⇀j−1
(i) and the definition of κ,

we have that

(

η⇀j
(i)
)2

≤
(

1−
s⇀j

(i)

s
(i)
j

)2

κ2s⇀j−1
(i) +

(

1−
s⇀j

(i)

s
(i)
j

)2

κ2d2j
(i)

+

(

s⇀j
(i)

s
(i)
j

)2

κ2
σ2
j
(i)

nj

≤
(

1−
s⇀j

(i)

s
(i)
j

)2

κ2





(

1

s⇀j
(i)

− 1

sj(i)

)−1

+ d2j
(i)



+

(

s⇀j
(i)
)2

s
(i)
j

κ2 (17)

=

(

1−
s⇀j

(i)

s
(i)
j

)

κ2s⇀j
(i) + κ2

(

s⇀j
(i)
)2

s
(i)
j

where (17) is obtained using (6).

The inequality in (16) is obtained using the union bound together with the Chernoff bound (concen-
tration inequality) (Wainwright, 2019) for the random variables z⇀j

(i) that are sub-Gaussian with

parameter η⇀j
(i).

Now, we prove by induction that, for any j, ‖√s⇀j ‖∞ ≤ M/
√

n⇀
j where the ESSs satisfy n⇀

1 = n1

and n⇀
j ≥ nj + n⇀

j−1
‖σ2

j‖∞

‖σ2
j
‖∞+n⇀

j−1‖d2
j
‖∞

for j ≥ 2. For j = 1, using the definition of s⇀j in

equation (6), we have that for any component i
(

s⇀1
(i)
)−1

=
(

s
(i)
1

)−1

=
n1

σ2
1
(i)

≥ n1

M2
.

Then, vector s⇀1 satisfies

‖
√

s⇀1 ‖∞ ≤ M√
n1

=
M√
n⇀
1

.

If ‖√s⇀j−1‖∞ ≤ M/
√

n⇀
j−1, then we have that for any component i

(

s⇀j
(i)
)−1

=
1

s
(i)
j

+
1

s⇀j−1
(i) + d2j

(i)
≥ 1

s
(i)
j

+
1

M2

n⇀
j−1

+ d2j
(i)

≥ 1

M2






nj +

1

1
n⇀
j−1

+
d2
j
(i)

M2







≥ 1

M2






nj +

1

1
n⇀
j−1

+
‖d2

j
‖∞

‖σ2
j
‖∞






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by using the recursion (6) and the induction hypothesis. Then, vector s⇀j satisfies

∥

∥

∥

√

s⇀j

∥

∥

∥

∞
≤ M
√

nj + n⇀
j−1

‖σ2
j
‖∞

‖σ2
j
‖∞+n⇀

j−1‖d2
j
‖∞

. (18)

The inequality in (8) is obtained because the minimax risk is bounded by the smallest minimax risk
as shown in (Mazuelas et al., 2020; 2022a;b) so that

R(U⇀
j ) ≤ R∞

j +
(

‖τ∞
j − τ⇀

j ‖∞ + ‖λ⇀
j ‖∞

) ∥

∥µ∞
j

∥

∥

1

that leads to (8) using (16), (18), and the fact that 1 ≤
√

2 log
(

2m
δ

)

.

C PROOF OF THEOREM 2

Proof. To obtain bound in (9), we proceed by induction. For j = 1, using the expression for the
ESS in (8), we have that

n⇀
1 = n1 ≥ n.

If (9) holds for the (j − 1)-task, then for the j-th task, we have that

n⇀
j ≥ nj + n⇀

j−1

‖σ2
j‖∞

‖σ2
j‖∞ + n⇀

j−1‖d2
j‖∞

≥ n+ n⇀
j−1

1

1 + n⇀
j−1d

2
= n

(

1 +
1

n
n⇀
j−1

+ nd2

)

where the second inequality is obtained because nj ≥ n, ‖σ2
j‖∞ ≤ 1, and ‖d2

j‖∞ ≤ d2. Using that

n⇀
j−1 ≥ n

(

1 + (1+α)2j−3−1−α
α(1+α)2j−3+α

)

, the ESS of the j-th task satisfies

n⇀
j ≥ n






1 +

1
n

n
(

1+ (1+α)2j−3−1−α

α(1+α)2j−3+α

) + nd2






= n



1 +
1

α(1+α)2j−3+α
(1+α)2j−2−1 + nd2





= n



1 +
1

α(1+α)2j−3+α
(1+α)2j−2−1 + α2

α+1



 (19)

= n

(

1 +
(1 + α)2j−1 − 1− α

α(1 + α)2j−2 + α(α+ 1) + α2(1 + α)2j−2 − α2

)

where (19) is obtained because nd2 = α2

α+1 since α = nd2

2

(√

1 + 4
nd2 + 1

)

.

Now, we obtain bounds for the ESS depending on the value of nd2. In the following, the constant φ
represents the golden ratio φ = 1.618 . . ..

1. If nd2 < 1
j2 ⇒

√
nd2 ≤ α ≤

√
nd2φ ≤ φ

j ≤ 1 similarly as in the previous case, then we
have that n⇀

j satisfies

n⇀
j ≥ n

(

1 +
1

α

α(2j − 2)

2 + α(2j − 1)

)

= n

(

1 +
2j − 2

2 + α(2j − 1)

)

where the first inequality follows because (1 +α)2j−2 ≥ 1+α(2j − 2). Using α ≤ φ
j , we

have that

n⇀
j ≥ n

(

1 +
2j − 2

2 + φ
j (2j − 1)

)

≥ n

(

1 +
2j − 2

2 + 2φ− φ
j

)

≥ n

(

1 +
j − 1

1 + φ

)

.
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2. If 1
j2 ≤ nd2 < 1 ⇒ 1

j <
√
nd2 < α <

√
nd2φ because α = nd2

2

(√

1 + 4
nd2 + 1

)

=
√
nd2

√
nd2+4+

√
nd2

2 , then we have that n⇀
j satisfies

n⇀
j ≥ n

(

1 +
1√
nd2

1

φ

(1 + α)2j−2 − 1

(1 + α)2j−2 + 1

)

≥ n

(

1 +
1√
nd2

1

φ

(1 + 1
j )

2j−2 − 1

(1 + 1
j )

2j−2 + 1

)

where the first inequality follows because α <
√
nd2φ and the second inequality follows

because the expression is monotonically increasing for α and 1
j < α. Since (1+ 1

j )
2j−2 ≥

1 + 2j−2
j , we have that

n⇀
j ≥ n

(

1 +
1√
nd2

1

φ

2j−2
j

2 + 2j−2
j

)

≥ n

(

1 +
1√
nd2

1

φ

1

3

)

because j ≥ 2.

3. If nd2 ≥ 1 ⇒ 1 ≤ nd2 ≤ α ≤ nd2φ because α = nd2

2

(√

1 + 4
nd2 + 1

)

, then we have

that n⇀
j satisfies

n⇀
j ≥ n

(

1 +
1

nd2φ

(1 + α)2j−1 − 1− α

(1 + α)2j−1 + 1

)

≥ n

(

1 +
1

nd2φ

(1 + α)2j−2 − 1

(1 + α)2j−2 + 1

)

where the first inequality follows because α ≤ nd2φ and the second inequality follows
multiplying and dividing by 1+α and because 1/(1+α) < 1. Since the above expression
is monotonically increasing for α and α ≥ 1, we have that

n⇀
j ≥ n

(

1 +
1

nd2φ

22j−2 − 1

22j−2 + 1

)

≥ n

(

1 +
1

nd2φ

3

5

)

because j ≥ 2.

D MORE EFFICIENT RECURSIONS FOR FORWARD AND BACKWARD LEARNING

The Rauch-Tung-Striebel smoother recursions (Bishop, 2006; Anderson & Moore, 1979) allow to
obtain forward and backward mean and MSE vectors directly from those vectors for the succeeding
task. Specifically, for each j-th task, the mean vector τ⇋k

j together with the MSE vector s⇋k
j can

be obtained using those vectors for the succeeding task τ⇋k
j+1, s

⇋k
j+1 as

τ⇋k
j = τ⇀

j +
s⇀j

s⇀j + d2
j+1

(

τ⇋k
j+1 − τ⇀

j

)

s⇋k
j =







1

s⇀j
+



d
2
j+1 +

(

1

s⇋k
j+1

− 1

s⇀j + d2
j+1

)−1




−1






−1

.

The above recursions provide the same mean vector estimate as the recursions (10) and (11) in the
paper since they are obtained using the Rauch-Tung-Striebel smoother recursions instead of fixed-
lag smoother recursions (Bishop, 2006; Anderson & Moore, 1979).

E PROOF OF THEOREM 3

Proof. To obtain bound in (12) we first prove that the mean vector estimate and the MSE vector
given by (10) and (11), respectively, satisfy

P

{

|τ∞k (i) − τ⇋k
j

(i)| ≤ κ

√

2s⇋k
j

(i)
log

(

2m

δ

)

}

≥ (1 − δ) (20)

15



Under review as a conference paper at ICLR 2023

for any component i = 1, 2, . . . ,m. Then, we prove that ‖s⇋k
j ‖∞ ≤ M/

√

n⇋k
j for j ∈

{1, 2, . . . , k}, where the ESSs satisfy n⇋k
k = n⇀

k and n⇋k
j ≥ n⇀

j + n↽k
j+1

‖σ2
j‖∞

‖σ2
j‖∞+ n↽k

j+1‖d2
j+1‖∞

for j ≥ 2.

To obtain inequality (20), we prove that each component i = 1, 2, . . . ,m of the error in the mean

vector estimate z⇋k
j

(i)
= τ∞j

(i) − τ⇋k
j

(i)
is sub-Gaussian with parameter η⇋k

j

(i) ≤ κ

√

s⇋k
j

(i)
.

Analogously to the proof of Theorem 1, it is proven that each component in the error of the backward

mean vector τ↽k
j+1 is sub-Gaussian with parameters satisfying η↽k

j+1 � κ
√

s↽k
j+1. The error in the

forward and backward mean vector estimate is given by

z⇋k
j

(i)
= τ∞j

(i) − τ⇋k
j

(i)
= τ∞j

(i) − τ⇀j
(i) −

s⇀j
(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

(

τ↽k
j+1

(i) − τ⇀j
(i)
)

where the second equality is obtained using the recursion for τ⇋k
j

(i)
in (10). Adding and subtracting

s⇀j
(i)

s⇀
j

(i)+s↽k
j+1

(i)+d2
j+1

(i) τ
∞
j+1

(i), we have that

z⇋k
j

(i)
= z⇀j

(i) −
s⇀j

(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

(

τ∞j+1
(i) − τ∞j+1

(i) + τ↽k
j+1

(i) − τ⇀j
(i)
)

= z⇀j
(i) −

s⇀j
(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

(

τ∞j
(i) + w

(i)
j+1 − z↽k

j+1

(i) − τ⇀j
(i)
)

since wj = τ∞
j − τ∞

j−1 and z⇀j
(i) = τ∞j

(i) − τ⇀j
(i). Then, we have that

z⇋k
j

(i)
=z⇀j

(i) −
s⇀j

(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

(

z⇀j
(i) + w

(i)
j+1 − z↽k

j+1

(i)
)

(21)

=

(

1−
s⇀j

(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

)

z⇀j
(i)

−
s⇀j

(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

(

w
(i)
j+1 − z↽k

j+1

(i)
)

where z⇀j
(i), z↽k

j+1
(i)

, and w
(i)
j+1 are sub-Gaussian with parameters η⇀j

(i) ≤ κ
√

s⇀j
(i), η↽k

j+1
(i) ≤

κ

√

s↽k
j+1

(i)
, and σ(w

(i)
j ), respectively. Since z⇀

j , z↽k
j+1, and wj+1 are independent, we have that

z⇋k
j

(i)
given by (21) is sub-Gaussian with parameter that satisfies

(

η⇋k
j

(i)
)2

=

(

1−
s⇀j

(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

)2
(

η⇀j
(i)
)2

+

(

s⇀j
(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

)2
(

σ
(

w
(i)
j

)2

+
(

η↽k
j+1

(i)
)2
)

≤
(

1−
s⇀j

(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

)2

κ2s⇀j
(i)

+

(

s⇀j
(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

)2

κ2
(

dj+1
(i) + s↽k

j+1

(i)
)
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Using (11) we have that the sub-Gaussian parameter satisfies

(

η⇋k
j

(i)
)2

≤



1−
s⇋k
j

(i)

s↽k
j+1

(i)
+ d2j+1

(i)





2

κ2





1

s⇋k
j

(i)
− 1

s↽k2

j+1

(i)
+ d2j+1

(i)





−1

+

(

s⇋k
j

(i)
)2

s↽k
j+1

(i)
+ d2j+1

(i)
κ2

=





s↽k
j+1

(i)
+ d2j+1

(i) − s⇋k
j

(i)

s↽k
j+1

(i)
+ d2j+1

(i)



κ2s⇋k
j

(i)
+

(

s⇋k
j

(i)
)2

s↽k
j+1

(i)
+ d2j+1

(i)
κ2 = κ2s⇋k

j

(i)
.

The inequality in (20) is obtained using the union bound together with the Chernoff bound (concen-

tration inequality) (Wainwright, 2019) for the random variables z⇋k
j

(i)
that are sub-Gaussian with

parameter η⇋k
j

(i)
.

Now, we prove that, for any j, ‖
√

s⇋k
j ‖ ≤ M/

√

n⇋k
j where the ESSs satisfy n⇋k

k = n⇀
k and

n⇋k
j ≥ n⇀

j + n↽k
j+1

‖σ2
j‖∞

‖σ2
j
‖∞+ n↽k

j+1‖d2
j+1‖∞

for j ≥ 2. Analogously to the proof of Theorem 1, we

prove that the backward MSE vector s↽k
j+1 satisfies ‖

√

s↽k
j+1‖∞ ≤ M/

√

n↽k
j+1. Then, using that

‖
√

s↽k
j+1‖∞ ≤ M/

√

n↽k
j+1, we have that for every component i

(

s⇋k
j

(i)
)−1

=
1

s⇀j
(i)

+
1

s↽k
j+1

(i)
+ d2j+1

(i)
≥

n⇀
j

σ2
j
(i)

+
1

M2

n↽k
j+1

+ d2j+1
(i)

≥ 1

M2






n⇀
j +

1

1
n↽k
j+1

+
d2
j+1

M2






≥ 1

M2






n⇀
j +

1

1
n↽k
j+1

+
‖d2

j+1‖∞

‖σ2
j
‖∞






.

Then, we obtain

‖
√

s⇋k
j ‖∞ ≤ M

√

n⇀
j + 1

1

n↽k
j+1

+
‖d2

j+1
‖∞

‖σ2
j
‖∞

. (22)

The inequality in (12) is obtained because the minimax risk is bounded by the smallest minimax risk
as shown in (Mazuelas et al., 2020; 2022a;b) so that

R(U⇋k
j ) ≤ R∞

j +
(

‖τ∞
j − τ⇋k

j ‖∞ + ‖λ⇋k
j ‖∞

)

∥

∥µ∞
j

∥

∥

1

that leads to (12) using (20), (22), and the fact that 1 ≤
√

2 log
(

2m
δ

)

.

F PROOF OF THEOREM 4

Proof. To obtain bound in (13), we use the ESS obtained with forward learning in Theorem 2 and
obtained with backward learning. Analogously to the proof of Theorem 2, we prove that the ESS
obtained at backward learning satisfies

n↽k
j+1 ≥ nj+1 + n↽k

j+2

‖σ2
j+1‖∞

‖σ2
j+1‖∞ + n↽k

j+2‖d2
j+2‖∞

≥ n

(

1 +
(1 + α)2(k−j)−1 − 1− α

α(1 + α)2(k−j)−1 + α

)

.
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Therefore, the ESS obtained with forward an backward learning satisfies

n⇋k
j ≥ n⇀

j + n

(

1 +
(1 + α)2(k−j)−1 − 1− α

α(1 + α)2(k−j)−1 + α

)



1 +
n
(

1 + (1+α)2(k−j)−1−1−α
α(1+α)2(k−j)−1+α

)

nd2





−1

= n⇀
j + n

(1 + α)2(k−j) − 1

α(1 + α)2(k−j)−1 + α

(

1 +
α2

α+ 1

(

1 +
(1 + α)2(k−j)−1 − 1− α

α(1 + α)2(k−j)−1 + α

))−1

where the second equality follows because nd2 = α2

α+1 since α = nd2

2

(√

1 + 4
nd2 + 1

)

. Then, we

have that

n⇋k
j ≥n⇀

j + n
(1 + α)2(k−j) − 1

α(1 + α)2(k−j)−1 + α

·
(

((1 + α)2(k−j)−1 + 1)(α+ 1 + α2) + α((1 + α)2(k−j)−1 − 1− α)

(α+ 1)((1 + α)2(k−j)−1 + 1)

)−1

≥n⇀
j + n

(1 + α)2(k−j) − 1

α(1 + α)2(k−j)−1 + α

(α+ 1)((1 + α)2(k−j)−1 + 1)

(1 + α)2(k−j)+1 + 1
.

Now, we obtain bounds for the ESS depending on the value value of nd2. Such bounds are obtained
similarly as in Theorem 2 and we also denote by φ the golden ratio φ = 1.618 . . ..

1. If nd2 < 1
j2 ⇒

√
nd2 ≤ α ≤

√
nd2φ ≤ φ

j ≤ 1 similarly as in the previous case, then we

have that n⇋k
j satisfies

n⇋k
j ≥ n⇀

j + n
1

α

α(2(k − j))

2 + α2(k − j)
= n⇀

j + n
k − j

1 + α(k − j)
≥ n⇀

j + n
k − j

1 + φ
j (k − j)

where the first inequality follows because (1 + α)2(k−j)−1 ≥ 1 + α(2(k − j)− 1) and the
second inequality is obtained using α ≤ φ

j .

2. If 1
j2 ≤ nd2 < 1 ⇒ 1

j ≤
√
nd2 ≤ α ≤

√
nd2φ because α = nd2

√

1+ 4
nd2

+1

2 =
√
nd2

√
nd2+4+

√
nd2

2 , then we have that n⇋k
j satisfies

n⇋k
j ≥ n⇀

j

n

α

(1 + α)2(k−j) − 1

(1 + α)2(k−j) + 1
≥ n⇀

j

n

α

(1 +
√
nd2)2(k−j) − 1

(1 +
√
nd2)2(k−j) + 1

where the second inequality follows because the ESS is monotonically increasing for α and
α ≥ nd2. Since (1 +

√
nd2)2(k−j) ≥ 1 + 2

√
nd2(k − j) and k − j ≥ 1, we have that

n⇋k
j ≥ n⇀

j +
n

α

√
nd2

1 +
√
nd2

≥ n⇀
j + n

1

φ

1

1 +
√
nd2

because α ≤
√
nd2φ.

3. If nd2 ≥ 1 ⇒ 1 ≤ nd2 ≤ α ≤ nd2φ because α = nd2
√

1+ 4
nd2

+1

2 , then we have that n⇋k
j

satisfies

n⇋k
j ≥ n⇀

j + n
1

α

22(k−j) − 1

22(k−j) + 1
≥ n⇀

j + n
1

nd2
1

φ

3

5

where the first inequality follows because the ESS is monotonically increasing for α and
α ≥ 1 and the second inequality is obtained using k − j ≥ 1 and α ≤ nd2φ.
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Table 2: Datasets characteristics.

Dataset Classes Samples Tasks
Yearbook 2 37,921 126

ImageNet Noise 2 12,000 10
DomainNet 4 6,256 6
UTKFace 2 23,500 94

Rotated MNIST 2 70,000 60
CLEAR 3 10,490 10

G ADDITIONAL NUMERICAL RESULTS AND IMPLEMENTATION DETAILS

In this section we describe the datasets used for the numerical results in Section 5, we provide further
details for the numerical experimentations carried out, and include several additional results. Specif-
ically, in the first set of additional results, we evaluate the classification performance of the proposed
method in comparison with state-of-the-art techniques for different sample sizes; in the second set
of additional results, we further show the performance improvement leveraging information from
preceding and succeeding tasks with additional datasets; in the third set of additional results, we
show the classification error and the running time of LMRCs for different hyper-parameter values;
and in the fourth set of additional results, we evaluate the assumption of change between tasks being
independent and zero-mean. In addition, in the folder Implementation_LMRC in the supplementary
materials we provide the code of the proposed LMRCs with the setting used in the numerical results.

The datasets used in Section 5 are publicly available in Ginosar et al. (2015);
Russakovsky et al. (2015); Zhang et al. (2017); Peng et al. (2019); Lin et al. (2021), and
http://yann.lecun.com/exdb/mnist/. The summary of these datasets is provided
in Table 2 that shows the number of classes, the number of samples, and the number of tasks. In the
following, we further describe the tasks and the time-dependency of each dataset used.

• The “Yearbook” dataset contains portraits’ photographs over time and the goal is to predict
males and females. Each task corresponds to portraits from one year from 1905 to 2013.

• The “ImageNet noise” dataset contains images with increasing noise over tasks and the
goal is to predict if an image is a bird or a snake. The sequence of tasks corresponds to the
noise factors [0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6] (Mai et al., 2022).

• The “DomainNet” dataset contains six different domains with decreasing realism and the
goal is to predict if an image is an airplane, bus, ambulance, or police car. The sequence
of tasks corresponds to the six domains: real, painting, infograph, clipart, sketch, and
quickdraw.

• The “UTKFaces” dataset contains face images in the wild with increasing age and the goal
is to predict males and females. The sequence of tasks corresponds to face images with
different ages from 0 to 116 years.

• The “Rotated MNIST” dataset contains rotated images with increasing angles over tasks
and the goal is to predict if the number in an image is greater than 5 or not. Each j-th task

corresponds to a rotation angle randomly selected from
[

180(j−1)
k , 180jk

]

degrees where

j ∈ {1, 2, . . . , k} and k is the number of tasks.

• The “CLEAR” dataset contains images with a natural temporal evolution of visual concepts
in the real world and the goal is to predict if an image is soccer, hockey, or racing. Each
task corresponds to one year from 2004 to 2014.

The samples in each task are randomly splitted in 100 samples for test and the rest of the samples
for training. The samples used for training in the numerical results are randomly sampled from each
group of training samples in each repetition.

The classifier parameters in the numerical results are obtained using an accelerated subgradient
method based on Nesterov approach (Nesterov & Shikhman, 2015; Tao et al., 2019). Such subgra-
dient method applied to optimization (3) obtains at each step classifier parameters µ from the mean
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Figure 5: Forward and backward learning can sharply boost performance and ESS as tasks arrive.

Table 3: Classification error and standard deviation of the proposed LMRC method in comparison with the
state-of-the-art techniques.

Dataset Yearbook ImageNet noise DomainNet UTKFaces Rotated MNIST CLEAR
n 50 150 50 150 50 150 50 150 50 150 50 150

GEM .16 ± .02 .16 ± .03 .16 ± .06 .12 ± .03 .65 ± .05 .49 ± .10 .12 ± .00 .12 ± .00 .29 ± .04 .27 ± .01 .08 ± .01 .08 ± .01
MER .11 ± .01 .10 ± .01 .10 ± .01 .07 ± .01 .29 ± .02 .28 ± .02 .11 ± .09 .11 ± .01 .41 ± .13 .47 ± .05 .09 ± .04 .05 ± .02
ELLA .43 ± .10 .43 ± .08 .47 ± .05 .47 ± .04 .67 ± .05 .67 ± .05 .18 ± .11 .17 ± .11 .48 ± .05 .47 ± .05 .60 ± .05 .60 ± .04
EWC .38 ± .02 .22 ± .02 .47 ± .05 .45 ± .07 .75 ± .05 .74 ± .05 .12 ± .00 .12 ± .00 .44 ± .01 .38 ± .01 .64 ± .03 .60 ± .04

LMRC .10 ± .02 .08 ± .01 .10 ± .02 .08 ± .01 .28 ± .03 .27 ± .02 .10 ± .00 .10 ± .00 .25 ± .02 .20 ± .01 .05 ± .02 .04 ± .01

and confidence vectors τ ,λ using the iterations for l = 1, 2, . . . ,K

µ̄(l + 1) = µ(l) + al

(

τ − ∂ϕ(µ(l))− λsign(µ(l))
)

(23)

µ(l + 1) = µ̄(l + 1) + θl+1(θ
−1
l − 1) (µ(l)− µ̄(l))

where sign(·) denotes the sign function, µ(l) is the l-th iterate for µ, θl = 2/(l + 1) and
al = 1/(l + 1)3/2 are the step sizes and ∂ϕ(µ(l)) denotes a subgradient of ϕ(·) at µ(l) with

ϕ(µ) = max
x∈X ,C⊆Y

∑

y∈C Φ(x, y)
Tµ− 1

|C| .

In addition, the above subgradient method is implemented using K = 2000 iterations and a warm-
start that initializes the classifier parameters in (23) with the solution obtained for the closest task.

In the first set of additional results, we further compare the classification error of LMRCs with the
state-of-the-art techniques. The results in Table 1 in the paper as well as Table 3 are obtained com-
puting the classification error 50 times for each sample size. Table 1 in the paper shows classification
errors for n = 10 and n = 100 samples, while Table 3 shows the classification error for n = 50
and n = 150 samples. As can be observed in Table 3, the performance improvement of LMRCs in
comparison with the state-of-the-art techniques for n = 50 and n = 150 is similar to that shown in
the paper for n = 10 and n = 100.

In the second set of additional results, we further illustrate the relationship among classification error,
number of tasks, and sample size. Figure 4 in the paper as well as Figure 5 are obtained computing
the classification error over all the sequences of consecutive tasks of length k in the dataset. Then,
we repeat such experiment 10 times with randomly chosen training sets of size n. Figure 5 extends
the results for LMRCs using “DomainNet” dataset completing those in the main paper that show the
results using “Yearbook” dataset. Figure 5a shows the classification error of LMRC method divided
by the classification error of single-task learning for different number of tasks with n = 10 and
n = 100 sample sizes. In addition, Figure 5b shows the classification error of LMRC method for
different sample sizes with k = 10 tasks. Figures 5a and 5b show similar behavior to Figures 4a
and 4b in the paper, respectively. In addition, Figure 6 shows the classification error of LMRCs
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Figure 6: Forward and backward learning can improve performance of preceding tasks.

Table 4: Classification error of the proposed LMRC method varying W and b.

Dataset Yearbook ImageNet noise DomainNet UTKFaces Rotated MNIST CLEAR
n 10 100 10 100 10 100 10 100 10 100 10 100

W = 2 .13 .08 .15 .09 .34 .28 .10 .10 .36 .21 .09 .05
W = 4 .13 .09 .15 .09 .32 .27 .10 .10 .35 .21 .09 .05
W = 6 .13 .09 .15 .09 .33 .28 .10 .10 .36 .21 .09 .06
b = 1 .14 .10 .15 .09 .36 .29 .10 .10 .36 .22 .10 .05
b = 2 .14 .09 .15 .09 .35 .28 .10 .10 .36 .22 .09 .05
b = 3 .13 .08 .15 .09 .34 .28 .10 .10 .36 .21 .09 .05
b = 4 .13 .08 .15 .08 .34 .28 .10 .10 .36 .21 .09 .05
b = 5 .13 .08 .15 .08 .34 .28 .10 .10 .36 .21 .08 .05

per step and task with single-task learning, forward learning, and forward and backward learning
using the “Yearbook” dataset. Such figure shows that forward and backward learning can improve
performance of preceding tasks, while forward learning and single task learning maintain the same
performance over time.

In the third set of additional results, we further assess the change in classification error and the
running time of LMRCs varying the hyper-parameters. Table 4 shows the classification error of
LMRCs varying the values of hyper-parameter for the window size W and the number of backward
steps b, completing those in the paper that show the results for W = 2 and b = 3. As shown in
the table, the proposed LMRCs do not require a careful fine-tuning of hyper-parameters and similar
performances are obtained by using different values. In addition, Table 5 shows the mean running
time per task in seconds of LMRCs for b = 1, 2, . . . , 5 backward steps in comparison with the state-
of-the-art techniques. Such table shows that the methods proposed for backward learning do not
require a significant increase in complexity. In addition, Table 5 shows that the running time of the
proposed method is similar to that of other state-of-the-art methods.

In the fourth set of additional results, we evaluate the assumption of change between tasks being
independent and zero-mean by assessing the partial autocorrelation of mean vectors. In particular,
the partial autocorrelation at any lag would be zero if tasks are i.i.d.; while the partial autocorrelation
at lag 1 is larger than zero if tasks satisfy the assumption of Section 2. Figure 7 shows the averaged
partial autocorrelation of the mean vectors components +/- their standard deviations for different
lags using “Portraits” and “UTKFaces” datasets. Such figure shows a partial autocorrelation clearly
non-zero at lag 1 that reflects dependence between consecutive mean vectors, as described by the
assumption of Section 2.”
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Table 5: Running time in seconds of LMRC method in comparison with the state-of-the-art techniques.

Dataset Yearbook ImageNet noise DomainNet UTKFaces Rotated MNIST CLEAR
n 10 100 10 100 10 100 10 100 10 100 10 100

ELLA 0.066 0.070 0.073 0.073 0.054 0.065 0.059 0.062 0.176 0.198 0.077 0.073
GEM 0.098 0.476 0.010 0.037 0.005 0.020 0.056 0.310 0.180 1.094 0.009 0.034
MER 0.166 3.726 0.079 1.052 0.066 0.900 0.127 3.458 0.211 4.092 0.074 1.063
EWC 0.358 3.031 0.032 0.252 0.018 0.155 0.245 2.246 0.587 5.296 0.031 0.248

LMRC b = 1 0.094 0.324 0.259 0.490 0.518 8.463 0.108 0.348 0.135 0.471 0.235 1.310
LMRC b = 2 0.105 0.397 0.261 0.531 0.543 8.983 0.115 0.401 0.165 0.599 0.252 1.406
LMRC b = 3 0.133 0.487 0.284 0.561 0.542 9.514 0.133 0.488 0.209 0.737 0.255 1.469
LMRC b = 4 0.167 0.582 0.304 0.585 0.559 9.699 0.156 0.573 0.249 0.877 0.271 1.595
LMRC b = 5 0.184 0.664 0.438 0.601 0.571 9.921 0.190 0.664 0.288 1.010 0.360 1.693
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Figure 7: Averaged partial autocorrelation of mean vectors components +/- their standard deviations.
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