
Image Tokens Matter: Mitigating Hallucination in
Discrete Tokenizer-based Large Vision-Language

Models via Latent Editing

Weixing Wang 1∗, Zifeng Ding 2∗, Jindong Gu 3†, Rui Cao2
Gerard de Melo1, Christoph Meinel4, Haojin Yang1

1Hasso Plattner Institute, University of Potsdam, 2University of Cambridge
3University of Oxford, 4German University of Digital Science

weixing.wang@hpi.de,zd320@cam.ac.uk,jindong.gu@outlook.com

Abstract

Large Vision-Language Models (LVLMs) with discrete image tokenizers unify
multimodal representations by encoding visual inputs into a finite set of tokens.
Despite their effectiveness, we find that these models still hallucinate non-existent
objects. We hypothesize that this may be due to visual priors induced during train-
ing: When certain image tokens frequently co-occur in the same spatial regions
and represent shared objects, they become strongly associated with the verbaliza-
tions of those objects. As a result, the model may hallucinate by evoking visually
absent tokens that often co-occur with present ones. To test this assumption, we
construct a co-occurrence graph of image tokens using a segmentation dataset
and employ a Graph Neural Network (GNN) with contrastive learning followed
by a clustering method to group tokens that frequently co-occur in similar visual
contexts. We find that hallucinations predominantly correspond to clusters whose
tokens dominate the input, and more specifically, that the visually absent tokens in
those clusters show much higher correlation with hallucinated objects compared
to tokens present in the image. Based on this observation, we propose a halluci-
nation mitigation method that suppresses the influence of visually absent tokens
by modifying latent image embeddings during generation. Experiments show our
method reduces hallucinations while preserving expressivity. Code is available at
https://github.com/weixingW/CGC-VTD/tree/main

1 Introduction

Large Vision-Language Models (LVLMs) have achieved remarkable progress in understanding and
generating multimodal content. However, they are still prone to hallucination, often generating
descriptions of non-existent objects. To address this issue, recent efforts have explored decoding-time
interventions—such as Contrastive Decoding [1, 2, 3, 4]—as well as techniques that leverage latent
feature representations to detect and mitigate hallucinations [5, 6].

A promising direction in advancing LVLMs is the integration of discrete image tokenizers [7, 8, 9,
10, 11, 12, 13], which quantize continuous image features into sequences of discrete tokens using a
finite codebook. These tokens are structurally analogous to text tokens, enabling unified token-based
processing across modalities within a single transformer architecture [14]. Despite the potential
of this approach, we find that LVLMs built with discrete image tokenizers remain susceptible to
hallucinations, i.e., generating false or misleading content based on the input image and prompt, such

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

∗Equal contribution
†Corresponding author

as referencing nonexistent objects or producing incoherent responses unrelated to the visual content.
Furthermore, our experiments reveal that directly applying existing hallucination mitigation methods
to these models may not always be effective, underscoring the need for a more tailored investigation
within this emerging paradigm.

We address this problem by analyzing the role of visual priors introduced by image token co-
occurrence. Prior work [15, 16] has shown that object co-occurrence can create language priors
in LVLMs, where models hallucinate objects not present in the current visual or textual input but
frequently co-occurring with seen objects in the training text. We extend this insight to the visual
modality by investigating how discrete image tokens, much like text tokens, may encode similar
co-occurrence patterns. Since image tokenizers are trained on large-scale image datasets, their
learned embeddings inevitably capture co-occurrence relationships among visual patterns, implicitly
introducing visual priors. We hypothesize that these learned associations among image tokens can
drive hallucinations in LVLMs.

To test our hypothesis, we first introduce Context-Guided Clustering (CGC) to capture the visual
priors encoded in discrete image tokens. CGC constructs a co-occurrence graph using a corpus of
segmented images, where each node represents a unique token from the image token vocabulary. The
edges in this graph encode contextually-aware co-occurrence patterns, with edge weights determined
by two factors: the spatial proximity of image tokens within the quantized image representation and
their semantic association, based on whether they are used to represent the same segmented object.
A Graph Neural Network (GNN) is trained on this graph using a contrastive learning objective,
producing graph-based token embeddings that reflect these semantic and spatial co-occurrence
patterns. These embeddings are then used to cluster image tokens using K-means [17] to form groups
of tokens that frequently co-occur in localized visual contexts or correspond to related visual concepts.
This process yields a structured representation of the visual priors embedded in the image token
vocabulary. Using the learned clusters, we analyze how hallucinations in LVLMs are related to token
co-occurrence patterns. Our key finding is that hallucinated objects are often highly related to image
tokens that are absent from the current visual input but belong to the top few dominant clusters (those
most frequently represented in the image). These absent tokens co-occur frequently with the present
ones, and their strong association may lead the LVLM to mistakenly reference them, resulting in
hallucinations.

Motivated by this observation, we propose Visual Token Decontamination (VTD), a latent-space
intervention that reduces the influence of the visually absent tokens identified above during au-
toregressive decoding. VTD projects these tokens into the model’s latent space and subtracts their
contributions from intermediate hidden representations, thereby mitigating their hallucinative effect.

The contribution of our work is summarized as follows.

• We identify and quantify a novel source of hallucination in LVLMs with discrete image
tokenizers, showing that co-occurrence patterns among image tokens introduce visual priors
that can mislead the model. To our knowledge, we are the first to uncover this phenomenon.

• We propose CGC and VTD as a two-step framework that captures visual priors and mitigates
hallucinations by identifying co-occurrence-driven token patterns and suppressing their
influence through targeted latent space editing.

• Extensive experiments demonstrate that our method can effectively reduce LVLM hallucina-
tions while maintaining strong efficiency.

2 Related Work

LVLMs with Discrete Image Tokenizer. Recent advancements in LVLMs have increasingly
adopted discrete image tokenization as a strategy to unify multiple modalities within a shared
representation space. Chameleon [7] was among the first to integrate this paradigm, enabling the
model to interpret and generate images and text in arbitrary sequences. This paradigm has since
evolved, with Emu3 extending the approach by enlarging the image vocabulary and incorporating
video as an additional modality [8]. Janus and Janus-Pro further introduced hybrid architectures that
combine continuous and discrete image encoders for greater representational flexibility [9, 13]. Show-
O also advances this line of work by integrating discrete image tokens into a unified framework that
supports autoregressive text generation alongside iterative masked token prediction for images [11].

2

While these works demonstrate strong multimodal capabilities, they also reveal a new challenge:
LVLMs with discrete image tokenizers remain susceptible to hallucinations. How to effectively
mitigate hallucinations in this new class of models remains an underexplored question.

Hallucination Mitigation Methods for LVLMs. As LVLMs continue to advance, significant re-
search has been devoted to understanding and mitigating their tendency to hallucinate, particularly in
the form of object hallucination—generating descriptions of objects that are not present in the visual
input [18, 19, 1, 15]. A major line of work attributes hallucination to biases in the language modeling
component. For example, OPERA [5] identifies problematic decoding patterns and applies penalty
and retrospection strategies, while LURE [15] explicitly models object co-occurrence, uncertainty,
and positional factors through revision-based algorithms. Though effective, these methods rely on
iterative identify-and-revise procedures and require multiple decoding passes, leading to high compu-
tational overhead. Another group of methods focuses on hallucination arising from the association
between visual and textual modalities. Contrastive decoding (CD) techniques [20, 3, 4] mitigate hallu-
cinations by perturbing the visual input and contrasting the resulting token logits. VCD [1] amplifies
hallucinations via input noise and contrasts them against normal outputs, while SID [2] improves
efficiency and effectiveness by adaptively focusing on part of visual input. PROJECTAWAY [6]
offers a post-hoc alternative by associating hallucinations with visual embeddings and subtracting
possible hallucinative text tokens from intermediate LVLM layer output. These approaches have
shown strong results on earlier models like LLaVA [21], but their effectiveness on newer LVLMs with
discrete image tokenizers remains unproven. In our experiments, CD-based methods often perform
worse in models with unified visual and text token spaces, likely due to incompatibility with discrete
token representations. Compared to these directions, visual prior-driven hallucination mitigation
remains largely underexplored. OHD [22] investigates hallucinations caused by CLIP encoder biases,
but requires full model retraining with dense supervision, which is computationally expensive. In
contrast, our approach focuses specifically on the visual priors embedded in discrete image tokenizers.
We introduce a lightweight GNN-based framework to capture image token co-occurrence patterns
and identify hallucination-prone tokens before generation, enabling efficient and effective mitigation
without retraining the LVLM.

 Transformer Layer

...

Codebook

...
...

The image shows a person sitting on the ground with
their knees drawn up and their hands resting on their
knees.

Context-Guided
Clustering

Visual Token Decontamination

quantization

"Please describe this image"

count

 Transformer Layer

 Transformer Layer
bench

Figure 1: Overview of our proposed method, which consists of two key components: Context-Guided
Clustering (CGC) and Visual Token Decontamination (VTD). CGC organizes image tokens into
clusters according to their co-occurrence patterns. VTD identifies potentially hallucinative tokens
based on visual context and suppresses their influence during autoregressive generation. During
inference, only VTD is applied while CGC is performed only once for every model offline.

3 Method

We propose a two-step approach to mitigate hallucinations in LVLMs with discrete image tokenizers.
First, Context-Guided Clustering (CGC) captures visual priors by constructing a co-occurrence

3

graph of image tokens and clustering them via graph-based embeddings (Sec. 3.1). We show that
hallucinations often correlate closely with the visually absent image tokens in the first few dominant
clusters. (Sec. 3.2). To address this, Visual Token Decontamination (VTD) reduces their influence
by modifying latent representations during autoregressive decoding (Sec. 3.3). See Figure 1 for an
overview.

Paradigm of LVLMs with Discrete Image Tokenizer. We begin by defining the paradigm of
LVLMs with discrete image tokenizers as follows. An input image is first encoded into a sequence of
discrete image tokens v = {vi} ⊆ V using an image tokenizer, typically based on a Vector Quantized-
Variational AutoEncoder (VQ-VAE) [23] or VQGAN [24], where the embedding of each image token
corresponds to an entry in a learned codebook of size |V |. Similarly, the text input is tokenized into
a sequence of text tokens t = {ti} ⊆ T , where |T | represents the size of the text vocabulary. For
visual understanding task, the final input to the model is usually given by the concatenated image and
text token sequences x = {v, t}. During inference, this token sequence is processed by a stack of L
transformer layers [25]. Given xi, the i-th input token, we denote its output representation from the
l-th transformer layer as g(l)(xi) ∈ Rd, where d is LVLM’s hidden dimensionality. The probability
distribution over the next token y is computed as P (y|x) = softmax(gL(x−1)

⊤
Wout), where x−1

is the last token in the input and Wout ∈ Rd×(|V |+|T |) is the output projection matrix.

3.1 Model Visual Priors via Context-Guided Clustering

Capturing Visual Priors via Clustering. In an LVLM with a discrete image tokenizer, each
image token is mapped to an entry ID from a learned codebook of finite size. To maintain
high compression efficiency [24], the codebook is typically limited in size (e.g., 8,192 entries
in Chameleon [7]). As a result, each image token is reused to represent a wide range of visual
concepts. Moreover, certain groups of image tokens frequently appear together across different
images or image regions to represent common objects or scenes, depending on the visual con-
tent. These recurring patterns of co-occurrence among tokens form what we refer to as visual
priors, which quantify underlining distribution bias from the image data that is used for training.

...

Codebook

...

Step1: Graph Construction Step2: Learning

Step3: Clustering

+1
+1

Co-occurrence
Graph

Figure 2: Illustration of the CGC pipeline. Code-
book entries are first used to help construct a co-
occurrence graph over image tokens, followed by
a learning process to obtain graph-based embed-
dings, which are then used to cluster image tokens.

To capture visual priors, we cluster image tokens
based on their co-occurrence patterns. We per-
form clustering based on codebook embeddings
rather than directly on image token embeddings,
motivated by three key observations. First, as
discussed earlier, each image token in an LVLM
is directly mapped from a unique codebook en-
try ID. This means that clustering through code-
book entries (each entry in a codebook is an
embedding) is equivalent to clustering image
tokens. For simplicity, we henceforth refer to
the co-occurrence and clustering of image to-
kens, with the understanding that these oper-
ations are potentially performed via their cor-
responding codebook entries. Second, visual
priors emerge when certain groups of image to-
kens frequently co-occur across different images
or visual regions to represent common objects
or scenes. Clustering codebook entries that tend
to co-occur in such contexts allows us to expose
these priors. This enables us to use the image
tokens present in a given input to identify other
tokens—absent from the image but belonging
to the same clusters—that frequently co-occur
with the observed ones and may influence the
model’s behavior due to learned visual priors.
Third, codebook entries typically have much lower dimensionality than the image token embeddings
used within an LVLM, making clustering over them more efficient and lightweight than clustering
directly via image token embeddings. A straightforward approach might involve applying standard

4

clustering algorithms such as K-means [17] directly to the raw codebook embeddings. However,
such methods primarily rely on vector similarity in the embedding space and do not account for how
tokens are actually used together in visual inputs. As a result, they often fail to reveal meaningful
visual priors and can produce misleading clusters that obscure important co-occurrence structures.
This limitation calls for a dedicated method specifically designed to cluster tokens based on their
contextual co-occurrence, in order to accurately capture visual priors.

Context-Guided Clustering. To accurately capture visual priors, we propose CGC, illustrated
in Figure 2. We begin by collecting images from COCO 2017 Panoptic validation set [26], a
segmentation dataset suitable for identifying object-level regions.3 Using the model’s discrete image
tokenizer, we extract tokenized image representations for each image. Based on these representations,
CGC constructs an undirected graph G = (N , E), where each node n ∈ N corresponds to an image
token, and each edge e ∈ E connects a pair of tokens that frequently co-occur across the dataset.
CGC first computes the co-occurrence strength between each pair of image tokens based on two
complementary contexts: (1) spatial proximity, where tokens that appear within the same local
region of the quantized image representation (e.g., within a 3× 3 grid cell in our implementation)
lead to greater strength, and (2) semantic coherence, where tokens located within the same object
segmentation mask are given greater strength. These two signals together capture both fine-grained
spatial context and broader semantic relationships. To retain only the most informative connections,
CGC constructs the graph G by linking the top 10% of token pairs based on co-occurrence strength,
with edge weights sij given by their normalized values.

After constructing G, we employ a GNN to learn node representations. We initialize node representa-
tions by projecting codebook embeddings Z ∈ R|V |×dcodebook to a latent dimension: H(0) = ZWproj,
where Wproj ∈ Rdcodebook×dGNN . Inspired by Brody et al. [27], we define the computation of the l′-th
GNN layer as an attentional aggregation function

h
(l′)
i = σ

(∑
j∈Nei(ni)∪{ni} α

(l′)
ij W(l′)h

(l′−1)
j

)
. (1)

h
(l′)
i and h

(l′−1)
j denote the node representation of node ni and nj from the l′-th and (l′− 1)-th layer,

respectively. Nei(ni) is the neighborhood of node ni. W(l′) ∈ RdGNN×dGNN is a weight matrix and
σ(·) is an activation function. The attentional coefficient α(l′)

ij between ni and nj is computed by
incorporating their edge weight sij . Due to space constraints, we provide the detailed computation in
Appendix C.2. After L′ layers of GNN aggregation, we train node representations on a contrastive
learning objective inspired by InfoNCE [28]

Lcontrast = − log

∑
eij∈E sij exp(sim(h

(L′)
i ,h

(L′)
j)/τ)∑

emu|nm,nu∈N exp(sim(h
(L′)
m ,h

(L′)
u)/τ)

. (2)

sim(·) denotes cosine similarity and τ is a temperature parameter. For each batch of nodes, connected
pairs are treated as positives and all others as negatives. The contrastive objective encourages positive
pairs to be pulled closer, i.e., more tightly clustered, while pushing apart negative pairs. By weighting
positive pairs according to their co-occurrence strength, the model learns to reflect visual priors
in clustering, drawing together tokens that frequently co-occur in similar visual contexts. To
improve clustering quality, we add a positive pair similarity loss that enforces a minimum similarity
between connected nodes, scaled proportionally to their edge weight sij . Our core intuition is that
while Lcontrast uses co-occurrence weights for relative optimization, Lpps enforces absolute similarity
thresholds that ensure adequate separation between positive and negative pairs regardless of batch
composition. We provide additional analysis in Appendix C.3 regarding the importance of this extra
loss term.

Lpps =

∑
eij∈E sij ·max(0, β · sij − sim(h

(L′)
i ,h

(L′)
j))∑

eij∈E 1[β · sij > sim(h
(L′)
i ,h

(L′)
j)]

. (3)

3COCO 2017 Panoptic provides fine-grained segmentation with 133 diverse segment labels (i.e., objects).
The segment labels covers both "things" (countable objects like people, cars) and "stuff" (uncountable regions
like sky, grass), which includes the objects considered in LVLM hallucination detection benchmarks. Capturing
visual priors from this dataset will not introduce a loss of generality in our context.

5

β is a scaling factor, and the complete training objective thus becomes L = Lcontrast + Lpps. With
trained node representations, we then apply K-means to the nodes in G to achieve codebook token
clustering. We present further details of CGC in Appendix C.

3.2 Visual Priors Induce Hallucinations

We assume that the visual priors captured in Sec. 3.1 may induce hallucination. To validate this, we
conduct the following analyses. We first sample 1,000 images from the AMBER benchmark [29] and
tokenize them using the discrete image tokenizer from Janus-Pro-7B (Results on other models are
presented in Appendix C.4). For each tokenized image, we record the set of image tokens present
and determine their corresponding clusters using CGC. For each image, we assign its image tokens
to their respective clusters and count the frequency of each cluster. The clusters with the highest
token counts are defined as the dominant clusters, representing the most prevalent visual elements in
the image. From the most dominant cluster, we divide the tokens into two groups: C1, consisting
of tokens that appear in the image (present tokens), and C2, consisting of those that do not (absent
tokens). The remaining tokens in the image that do not belong to the most dominant cluster form a
third group, denoted as C3. We use Janus-Pro-7B to generate a detailed description for each image
and identify hallucinated objects using the ground-truth annotations provided by AMBER.

To quantify the association between a token group and an object, we count how often tokens from
that group appear within the object’s segmentation masks. The segmentation masks are obtained
from the COCO 2017 Panoptic dataset, which we also use for CGC. To evaluate how strongly
each group is linked to hallucinated content, we introduce a metric: HitRate@K =

∑
obj′ 1(obj′ ∈

top-K(C))/|{obj′}|. obj′ denotes a hallucinated object, |{obj′}| is the number of all hallucinated
objects, and top-K(C) is the set of top-K objects most frequently associated with the token group C.
1(·) denotes the indicator function. This metric reflects the proportion of hallucinated objects that
fall within the most strongly associated object categories for a given token group.

1 2 3 4 5 6 7 8 9 10
K

5

10

15

20

25

Hi
tR

at
e

(%
)

C2
C1
C3

1 2 3 4 5 6 7 8 9 10
K

0

5

10

15

20

25

Hi
tR

at
e

(%
)

C2 - CGC
C2 - K-means

1 2 3 4 5 6 7 8 9 10
Cluster Ranking

0

5

10

15

20

Hi
tR

at
e

(%
)

Figure 3: Left: Hallucination HitRate for K from 1-10. Middle: Comparison between C2 tokens
identified by our CGC method versus naive K-means. Right: HitRate@5 of C2 tokens from the ten
most dominant clusters.

We plot HitRate@K for K = 1 to 10 for the three token groups C1, C2, and C3 in Figure 3 (left).
Among them, C2—tokens that do not appear in the image but belong to the most dominant clus-
ter—consistently achieves significantly higher HitRate values (5–10% higher) than both C1 (present
tokens from the dominant cluster) and C3 (tokens from other clusters). This indicates that absent to-
kens from dominant visual clusters are more strongly associated with hallucinated objects. To further
assess the effectiveness of CGC, we compare the HitRate@K for C2 against a baseline using solely
K-means for clustering. As shown in Figure 3 (middle), CGC consistently outperforms K-means,
indicating its superiority in capturing the link between visual priors and hallucination. While these
results highlight the impact of the most dominant cluster, it remains unclear whether less dominant
clusters also contribute significantly to hallucination. To explore this, we plot the HitRate@5 for
the top 10 dominant clusters in Figure 3 (right). We observe a sharp decline in HitRate as cluster
dominance decreases, suggesting that hallucinations are primarily associated with the most dominant
clusters. In summary, our analysis shows that hallucinations are closely linked to visual priors
that can evoke absent tokens from dominant clusters and CGC provides an effective means of
uncovering these associations. We provide the same analysis on other LVLMs in Appendix C.4 to
further confirm our conclusion.

6

3.3 Mitgate Hallucination via Visual Token Decontamination

Motivated by our findings, we propose VTD, a hallucination mitigation method designed to address
hallucinations induced by visual priors in LVLMs with discrete image tokenizers. Given a tokenized
input image, VTD first identifies the dominant clusters and then locates tokens from these clusters
that are absent from the image. For each such token vabs, VTD performs a targeted modification of the
intermediate layer output during autoregressive generation. Inspired by PROJECTAWAY [6], VTD
achieves decontamination by subtracting a projection of the embedding g(l)(vabs) from the hidden
representations of all image tokens present in the input:

g(l)(vi) := g(l)(vi)− γ · g
(l)(vi) · g(l)(vabs)

||g(l)(vabs)||22
· g(l)(vabs). (4)

where vi denotes an image token. The layer index l and the magnitude coefficient γ serve as
hyperparameters controlling the editing position and intensity of decontamination. For each LVLM,
we employ different editing layer and magnitude coefficient. We also select different numbers of
dominant clusters for hallucination mitigation. See Appendix B.1 for detailed discussion on selecting
suitable values for these hyperparameters.

4 Experiments

In Section 4.2, we begin by evaluating CGC+VTD against recent hallucination mitigation baselines
across three benchmarks to assess its effectiveness. We then explore its compatibility by combining it
with other methods and analyzing the resulting performance. In Section 4.3, we assess the efficiency
of our method through runtime and memory comparisons with existing baselines, and perform
ablation studies to validate our design choices. Due to space constraints, additional experiments
are presented in the Appendix, including a comparative study on the Polling-based Object Probing
Evaluation [19] benchmark (Appendix D.5) and several representative cases as qualitative results
(Appendix D.3).

4.1 Experimental Settings

Benchmarks and Evaluation Metrics. We evaluate on three popular benchmarks: (1) AM-
BER [29], which assesses object existence, attribute, and relation hallucination across both generative
and discriminative tasks; (2) Object HalBench [30], which uses large language model (LLM)-assisted
evaluation on 300 carefully designed visual understanding questions; and (3) MME [31], a widely
adopted benchmark for evaluating LVLMs’ general perception and cognition abilities across 14
subtasks. We use the first two datasets to evaluate hallucination mitigation performance, and the last
to assess whether the methods affect the model’s general capabilities. Additional dataset details are
provided in Appendix A. We employ the evaluation metrics coupled with benchmarks and the metric
details are presented in Appendix A.1.1, A.2.1, and A.3.1.

LVLMs & Hallucination Mitigation Baselines. We evaluate our method on three state-of-the-art
LVLMs that utilize discrete image tokenizers: Chameleon-7B [7], Emu3-13B [8], and Janus-Pro-
7B [13]. For baselines, we include both naive and dedicated hallucination mitigation methods. We
begin with Nucleus Sampling (top-P with P = 0.9), a standard decoding strategy not designed to
reduce hallucinations, but used here to illustrate the default hallucination level of LVLMs with discrete
image tokenizers. In addition, we evaluate several recent hallucination mitigation methods, including
contrastive decoding approaches VCD and SID [2], the latent editing method PROJECTAWAY [6],
and OPERA [5], which focuses on biases in language modeling. Finally, we compare against an
additional baseline, Cluster-Base, which performs clustering using only K-means without CGC. For
VCD, SID and OPERA, we use their default hyperparameters. For PROJECTAWAY and our method,
we conduct a hyperparameter search on an AMBER subset to identify optimal configurations. We let
Cluster-Base use the same configuration as our method. See Appendix B for implementation details.

7

Table 1: Experimental results (average of three runs with error bar in parenthesis) on benchmarks.
Best/second best results are marked bold/underlined. Metrics with ↑/↓ means the higher/lower the
better. Disc. means discrimination task.

Model Method AMBER Generative Task AMBER Disc. Task Object HalBench MME
CHAIR↓ Cover↑ Hal↓ Cog↓ Acc. F1 CHAIR-s↓ CHAIR-i↓

C
ha

m
el

eo
n-

7B

Nucleus Sampling 19.34(1.23) 49.43(1.71) 65.31(3.13) 5.73(0.79) 43.85(2.78) 49.05(1.15) 46.15(2.9) 26.61(1.01) 873.04(14.11)
VCD 20.74(1.52) 51.36(2.52) 72.03(2.51) 6.67(0.57) 44.10(2.12) 49.99(0.82) 44.32(2.55) 26.66(1.01) 963.13(12.5)
SID 19.9(2.33) 52.61(4.64) 71.41(3.22) 7.48(1.25) 43.68(1.12) 49.53(1.48) 46.79(2.64) 26.18(1.98) 975.60(10.6)

PROJECTAWAY 14.71(1.23) 55.69(2.54) 61.33(3.54) 5.86(0.94) 44.63(1.54) 47.95(2.15) 43.67(2.52) 26.47(1.06) 947(9.2)
OPERA 15.61(0.87) 53.7(1.13) 58.6(2.11) 3.2(0.12) 45.1(1.64) 49.5(0.98) 39.56(1.67) 25.26(0.78) 928.93(8.2)

Cluster-Base 18.65(1.34) 48.95(1.23) 63.94(2.60) 5.52(0.84) 44.78(2.63) 47.34(1.47) 43.66(2.74) 26.42(0.92) 935.6(7.3)
CGC+VTD 13.88(0.98) 52.75(1.76) 54.49(2.33) 3.04(0.34) 46.83(1.67) 50.02(2.12) 38.58(1.09) 23.69(0.99) 969.45(13.9)

Ja
nu

s-
Pr

o-
7B

Nucleus Sampling 4.95(0.56) 58.31(1.62) 23.26(0.96) 1.18(0.06) 84.24(1.85) 88.06(2.01) 19.33(1.15) 10.68(0.79) 1796.62(13.21)
VCD 7.47(0.85) 64.02(1.25) 49.64(1.09) 3.13(0.26) 85.53(1.98) 87.97(1.61) 19.66(1.01) 9.68(0.97) 1279.23(10.41)
SID 6.36(0.73) 63.52(1.23) 41.1(1.60) 2.29(0.25) 85.41(1.9) 88.32(1.04) 18.53(1.15) 10.95(0.69) 1335.87(15.73)

PROJECTAWAY 4.51(0.21) 59.26(1.26) 19.01(0.99) 1.09(0.1) 83.73(1.62) 86.55(1.32) 13.09(0.96) 6.73(0.45) 1790.82(13.21)
OPERA 4.32(0.39) 59.33(1.2) 15.8(0.67) 1.0(0.11) 85.1(1.93) 88.5(0.98) 12.33(0.4) 6.93(0.26) 1777.41(6.11)

Cluster-Base 5.03(0.15) 57.61(1.82) 22.82(0.56) 1.25(0.26) 84.73(1.83) 87.28(2.01) 17.67(0.96) 9.96(0.35) 1735.06(10.51)
CGC+VTD 4.17(0.22) 59.04(0.96) 17.8(0.46) 0.96(0.05) 87.58(1.28) 89.24(1.01) 10.43(0.84) 5.81(0.35) 1813.93(14.27)

E
m

u3
-1

3B

Nucleus Sampling 10.32(1.01) 65.85(1.45) 60.40(1.26) 4.51(0.1) 79.93(2.74) 84.78(1.95) 23.67(1.67) 13.85(0.99) 1606.44(10.2)
VCD 11.43(1.56) 66.45(3.44) 60.09(2.54) 5.21(0.36) 78.95(0.98) 83.98(1.84) 21.33(0.75) 13.87(0.82) 1520.48(11.63)
SID 10.82(0.86) 66.78(2.46) 64.45(1.49) 5.83(0.3) 80.36(2.01) 85.34(1.42) 22.33(1.11) 12.75(0.79) 1562.05(12.55)

PROJECTAWAY 9.57(0.83) 68.45(2.68) 57.12(1.63) 5.90(0.09) 80.88(3.46) 82.18(2.41) 19.67(1.5) 11.09(0.89) 1625.67(9.15)
OPERA 8.93(0.67) 66.91(1.68) 58.82(1.69) 4.27(0.09) 81.75(1.68) 86.65(2.01) 18.73(1.54) 11.21(0.85) 1611.51(5.72)

Cluster-Base 10.12(1.10) 65.70(2.22) 60.64(1.63) 4.77(0.38) 80.29(2.51) 85.01(1.54) 21.33(1.59) 12.94(1.01) 1578.62(6.8)
CGC+VTD 9.01(0.53) 68.85(1.66) 56.88(1.27) 4.25(0.09) 82.86(1.53) 87.73(1.99) 17.25(0.99) 10.33(0.73) 1635.71(8.01)

Table 2: Results of combining our method with baselines (model name with +). Numbers in
parentheses indicate performance difference. Green denotes improvement and Red indicates a drop,
relative to baseline results in Table 1. We provide combination details in Appendix B.2.

Metric VCD+ SID+ PROJECTAWAY+ OPERA+

CHAIR-s ↓ 45.10 (+0.78) 42.90 (-3.84) 39.02 (-4.64) 33.50 (-6.06)
CHAIR-i ↓ 31.15 (+4.49) 25.10 (-1.18) 22.83 (-3.65) 22.70 (-2.56)

4.2 Experimental Results

Main Results. We present our experimental results in Table 1 and highlight several key findings.
(1) Without dedicated hallucination mitigation, as in the case of Nucleus Sampling, LVLMs with
discrete image tokenizers exhibit a high tendency to hallucinate across all benchmarks. (2) CGC+VTD
achieves the best performance in 22 out of 27 metrics (top-2 in 25), demonstrating strong hallucination
reduction while preserving generation quality. On the AMBER benchmark, our method significantly
reduces hallucinations in both generative and discriminative tasks—for example, on Chameleon,
it improves CHAIR by 5.46 points and accuracy by 2.98 points compared to Nucleus Sampling.
On Object HalBench, it achieves the best performance on both sentence-level and object-level
metrics; for Janus-Pro-7B, CHAIR-s drops by 8.9 points (from 19.33 to 10.43) and CHAIR-i by
4.87 points (from 10.68 to 5.81). Additionally, our method maintains or enhances general perception
capabilities, outperforming all baselines on MME with Janus-Pro-7B and Emu3-13B—confirming
that hallucination reduction does not come at the expense of model’s perception and cognition
abilities. (3) Cluster-Base shows no consistent improvement, reinforcing the necessity of CGC
for capturing meaningful visual priors. Unlike CGC, K-means clusters tokens purely based on
embedding similarity, which does not reflect co-occurrence patterns, and thus fails to model visual
priors effectively. (4) CD methods, VCD and SID, tend to underperform across tasks—for example,
they consistently yield higher CHAIR scores than even Nucleus Sampling on generative tasks for
all evaluated LVLMs—indicating their limitations when applied to models with discrete image
tokenizers. We provide a more detailed analysis on this point in Appendix D.4.

Combination with Existing Methods. While our method shows strong performance in reducing
hallucinations across multiple benchmarks, it specifically targets visual priors introduced by discrete
image tokenization. Given that hallucinations in LVLMs can arise from various sources, we investigate
whether our approach can be effectively combined with existing methods that address other causes.
To this end, we combine our method with several baselines, each with a tailored strategy. The
implementation details can be found in Appendix B.2. We report the results for Chameleon-7B on
Object HalBench in Table 2. Overall, our approach enhances the performance of prior methods in
most cases. We highlight several observations. (1) OPERA achieves substantial gains when combined

8

with our method, even outperforming CGC+VTD alone (as reported in Table 1). This is likely because
the two methods target different modalities—ours mitigates hallucinations via the visual pathway,
while OPERA focuses on the language modality. As a result, hallucinations can be addressed from
both perspectives without mutual interference. (2) We also observe improvements when combining
with SID and PROJECTAWAY, both of which aim to reduce hallucination based on vision-and-text
association. This suggests that addressing visual priors via our method complements their strategies,
leading to further reductions in hallucination. (3) In contrast, combining our method with VCD does
not yield additional benefits. We conjecture that this is because VCD applies contrastive decoding
uniformly across all image tokens by corrupting large portions of the input image with noise, without
considering each token’s relevance to generation. This broad perturbation may interfere with the
targeted latent space suppression in CGC+VTD, resulting in unstable or conflicting effects.

4.3 Further Analysis

Table 3: CGC+VTD achieves the best efficiency on Time and Memory while maintaining a reasonable
generation length.

Metric VCD SID PROJECTAWAY OPERA CGC+VTD

Time (s) ↓ 359 245 470 941 188
Memory (MB) ↓ 17,228 15,119 14,482 24,767 14,478
Token 282 269 185 173 180

Efficiency Analysis. To gain a more comprehensive understanding of our method relative to
baselines, we conduct an efficiency analysis. Table 3 compares computational efficiency across
methods based on average generation time and GPU memory usage (evaluated on AMBER generative
and Object HalBench tasks with Chameleon-7B). While OPERA and PROJECTAWAY demonstrate
strong performance, our observations show that they are significantly less efficient. Our method is the
fastest—5× faster than OPERA and 2.5× faster than PROJECTAWAY—and consumes the least GPU
memory. We also find that CD-based methods tend to generate longer responses, which may increase
object coverage but also lead to more hallucinations, as reflected by higher CHAIR and Cover scores
in Table 1. Overall, our method delivers top performance with minimal computational overhead,
making it both efficient and effective. We provide analysis on other LVLMs in Appendix D.2.

Ablation Study. To validate the contribution of different design choices, we conduct a series of
ablation studies. Specifically, we test three variants: removing semantic coherence in co-occurrence
computation (w.o. Semantic), removing spatial proximity (w.o. Spatial), and removing the loss used
to enforce similarity among positive pairs (w.o. Lpps). As shown in Table 4, incorporating both spatial
and semantic signals consistently yields the best performance across all models, highlighting the
importance of capturing both spatial and semantic context for modeling visual priors. Additionally,
the positive pair similarity loss proves crucial for enhancing the clustering of co-occurring tokens,
leading to more effective hallucination mitigation.

Table 4: Ablation study results.

Chameleon-7B Janus-Pro-7B Emu3-13B

Variant CHAIR-s ↓ CHAIR-i ↓ CHAIR-s ↓ CHAIR-i ↓ CHAIR-s ↓ CHAIR-i ↓

w.o. Semantic 42.15 23.84 14.38 7.91 19.73 10.62
w.o. Spatial 43.67 24.86 14.95 8.95 19.01 11.13
w.o. Lpps 41.74 25.15 13.33 8.03 18.47 11.01

CGC+VTD 38.58 23.69 10.43 5.81 17.25 9.24

5 Conclusion

In this work, we identify visual priors as a previously underexplored source of hallucination in
LVLMs with discrete image tokenizers, and propose a two-step mitigation approach. Context-
Guided Clustering captures visual priors by modeling co-occurrence patterns among image tokens,
while Visual Token Decontamination suppresses potentially hallucinative tokens during generation.
Compared to recent state-of-the-art hallucination mitigation methods, our approach outperforms them

9

across multiple benchmarks on three widely used discrete-token-based LVLMs. Furthermore, our
method is computationally efficient and complementary to existing techniques, enabling additional
gains when combined.

6 Limitations & Future Directions

Despite the promising results, we observe a slight drop in coverage scores (Cover ↑ in Table 1)
with our proposed method, suggesting a trade-off between reducing hallucinations and maintaining
comprehensive object recognition. This indicates that future work should aim to balance hallucination
mitigation with visual coverage preservation. Another limitation is that our method is specifically
designed for LVLMs with discrete image tokenizers and is not directly applicable to earlier models
such as LLaVA [21], which rely on continuous visual features. Extending our approach to bridge this
gap and generalize across different visual encoding paradigms presents an important direction for
future research.

7 Acknowledgement

Zifeng Ding receives funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 Research and Innovation programme grant AVeriTeC (Grant agreement No.
865958).

The project on which this report is based was funded by the Federal Ministry of Research, Tech-
nology and Space under the funding code “KI-Servicezentrum Berlin-Brandenburg” 16IS22092.
Responsibility for the content of this publication remains with the author.

References
[1] Sicong Leng, Hang Zhang, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, and Lidong

Bing. Mitigating object hallucinations in large vision-language models through visual contrastive
decoding. arXiv preprint arXiv:2311.16922, 2023.

[2] Fushuo Huo, Wenchao Xu, Zhong Zhang, Haozhao Wang, Zhicheng Chen, and Peilin Zhao.
Self-introspective decoding: Alleviating hallucinations for large vision-language models, 2024.

[3] Junho Kim, Hyunjun Kim, Yeonju Kim, and Yong Man Ro. Code: Contrasting self-generated
description to combat hallucination in large multi-modal models, 2024.

[4] Lanyun Zhu, Deyi Ji, Tianrun Chen, Peng Xu, Jieping Ye, and Jun Liu. Ibd: Alleviating
hallucinations in large vision-language models via image-biased decoding, 2024.

[5] Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang, Conghui He, Jiaqi Wang, Dahua Lin,
Weiming Zhang, and Nenghai Yu. Opera: Alleviating hallucination in multi-modal large
language models via over-trust penalty and retrospection-allocation, 2024.

[6] Jiang Nick, Kachinthaya Anish, Petryk Suzie, and Gandelsman Yossi. Interpreting and editing
vision-language representations to mitigate hallucinations. arXiv preprint arXiv:2410.02762,
2025.

[7] ChameleonTeam. Chameleon: Mixed-modal early-fusion foundation models, 2024.

[8] Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
Zhang, Yueze Wang, Zhen Li, Qiying Yu, Yingli Zhao, Yulong Ao, Xuebin Min, Tao Li, Boya
Wu, Bo Zhao, Bowen Zhang, Liangdong Wang, Guang Liu, Zheqi He, Xi Yang, Jingjing Liu,
Yonghua Lin, Tiejun Huang, and Zhongyuan Wang. Emu3: Next-token prediction is all you
need, 2024.

[9] Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu,
Zhenda Xie, Xingkai Yu, Chong Ruan, and Ping Luo. Janus: Decoupling visual encoding for
unified multimodal understanding and generation, 2024.

10

[10] Jian Jia, Jingtong Gao, Ben Xue, Junhao Wang, Qingpeng Cai, Quan Chen, Xiangyu Zhao,
Peng Jiang, and Kun Gai. From principles to applications: A comprehensive survey of discrete
tokenizers in generation, comprehension, recommendation, and information retrieval. arXiv
preprint arXiv:2502.12448, 2025.

[11] Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong
Lin, Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single
transformer to unify multimodal understanding and generation, 2024.

[12] Jun Zhan, Junqi Dai, Jiasheng Ye, Yunhua Zhou, Dong Zhang, Zhigeng Liu, Xin Zhang, Ruibin
Yuan, Ge Zhang, Linyang Li, Hang Yan, Jie Fu, Tao Gui, Tianxiang Sun, Yugang Jiang, and
Xipeng Qiu. Anygpt: Unified multimodal llm with discrete sequence modeling, 2024.

[13] Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu,
and Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and
model scaling, 2025.

[14] Liang Chen, Zekun Wang, Shuhuai Ren, Lei Li, Haozhe Zhao, Yunshui Li, Zefan Cai,
Hongcheng Guo, Lei Zhang, Yizhe Xiong, et al. Next token prediction towards multimodal
intelligence: A comprehensive survey. arXiv preprint arXiv:2412.18619, 2024.

[15] Yiyang Zhou, Chenhang Cui, Jaehong Yoon, Linjun Zhang, Zhun Deng, Chelsea Finn, Mohit
Bansal, and Huaxiu Yao. Analyzing and mitigating object hallucination in large vision-language
models, 2024.

[16] Tan Wang, Jianqiang Huang, Hanwang Zhang, and Qianru Sun. Visual commonsense r-cnn,
2020.

[17] J. MacQueen. Some methods for classification and analysis of multivariate observations. 1967.

[18] Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor Darrell, and Kate Saenko. Object
hallucination in image captioning, 2019.

[19] Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
object hallucination in large vision-language models, 2023.

[20] Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori Hashimoto,
Luke Zettlemoyer, and Mike Lewis. Contrastive decoding: Open-ended text generation as
optimization, 2023.

[21] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual
instruction tuning, 2024.

[22] Yufang Liu, Tao Ji, Changzhi Sun, Yuanbin Wu, and Aimin Zhou. Investigating and mitigating
object hallucinations in pretrained vision-language (clip) models, 2024.

[23] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation
learning, 2018.

[24] Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution
image synthesis, 2021.

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023.

[26] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays,
Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common
objects in context, 2015.

[27] Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks?, 2022.

[28] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding, 2019.

11

[29] Junyang Wang, Yuhang Wang, Guohai Xu, Jing Zhang, Yukai Gu, Haitao Jia, Jiaqi Wang,
Haiyang Xu, Ming Yan, Ji Zhang, and Jitao Sang. Amber: An llm-free multi-dimensional
benchmark for mllms hallucination evaluation, 2024.

[30] Tianyu Yu, Haoye Zhang, Qiming Li, Qixin Xu, Yuan Yao, Da Chen, Xiaoman Lu, Ganqu Cui,
Yunkai Dang, Taiwen He, Xiaocheng Feng, Jun Song, Bo Zheng, Zhiyuan Liu, Tat-Seng Chua,
and Maosong Sun. Rlaif-v: Open-source ai feedback leads to super gpt-4v trustworthiness,
2024.

[31] Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang,
Xiawu Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive
evaluation benchmark for multimodal large language models, 2024.

[32] Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He, Yifeng Han, Ganqu Cui, Jinyi Hu, Zhiyuan
Liu, Hai-Tao Zheng, Maosong Sun, and Tat-Seng Chua. Rlhf-v: Towards trustworthy mllms via
behavior alignment from fine-grained correctional human feedback, 2024.

[33] Anisha Gunjal, Jihan Yin, and Erhan Bas. Detecting and preventing hallucinations in large
vision language models. arXiv preprint arXiv:2308.06394, 2024.

[34] Teng Hu, Jiangning Zhang, Ran Yi, Jieyu Weng, Yabiao Wang, Xianfang Zeng, Zhucun Xue,
and Lizhuang Ma. Improving autoregressive visual generation with cluster-oriented token
prediction, 2025.

[35] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers:
State-of-the-art natural language processing, 2020.

[36] Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio Caggiano,
Sean Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, Patrick Labatut, Daniel Haziza,
Luca Wehrstedt, Jeremy Reizenstein, and Grigory Sizov. xformers: A modular and hack-
able transformer modelling library. https://github.com/facebookresearch/xformers,
2022.

[37] Sudong Wang, Yunjian Zhang, Yao Zhu, Jianing Li, Zizhe Wang, Yanwei Liu, and Xiangyang
Ji. Towards understanding how knowledge evolves in large vision-language models, 2025.

[38] Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney,
Stella Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the
tuned lens, 2023.

[39] Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024.

[40] Drew A. Hudson and Christopher D. Manning. Gqa: A new dataset for real-world visual
reasoning and compositional question answering, 2019.

12

https://github.com/facebookresearch/xformers

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Sec. 3 for the methods regarding visual prior modeling, hallucination detection
and mitigation. Sec. 4 for experiments about hallucination mitigation.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in Sec. 6. We also provides efficiency analysis in Sec.
4.3, comparing our proposed method with previous methods.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

13

Answer: [NA]
Justification: We provide systematic statistical analysis in Sec. 3.2 to prove our assumptions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide details of methods in Sec. 3 and experimental results in Sec. 4.
We provide details of benchamrk datasets used in our work in Appendix A. We provide
implementation details in Appendix B, including hyperparameter tuning and experimental
configurations of all considered methods in our work. We provide more details of Context766
Guided-Clustering in Appendix C. We also report error bar of experiments in our main result
table (Table 1).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

14

some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The benchmark datasets used in this work are already open-sourced. We
provide the code implementation of our work as Supplementary Material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide corresponding information in Appendix A, B and C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the main results with error bars (standard deviation) calculated from
3 runs with different random seeds in Table 1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide Table 3, 14 and 15 providing statistics of efficiency. We also
discuss computational resource consumption in Section 4.3, Appendix C.2.3 and D.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We fully confirm the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: Our work targets on the ability of Large Vision Language Models, which is
not subject to one specific application.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

16

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: As a decoding method for LVLM, our work does not have such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All contents are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

17

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All code will be released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We haven’t conducted crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

18

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are only used to assist writing in our work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

A Benchmark Details

A.1 AMBER

AMBER consists of 1,004 high-quality images collected from MS-COCO 2014 test set [26] and
Unsplash4. The dataset includes 337 distinct object classes (covering 14 major object categories:
Nature, Architecture, Street View, Vehicles, People, Animals, Furniture, Electronic Devices, Tools,
Stationery & Toys, Kitchen Utensils & Cutlery, Fruits & Vegetables, Food, and Sports), representing
a 4× increase compared to existing benchmarks like COCO (80 objects). It also contains 350 attribute
classes for evaluating hallucination beyond obejct level. The benchmark contains two main task types
with a total of 15,220 samples:

• Generative task: 1,004 samples using prompt: “Describe this image.”
• Discriminative task: 14,216 samples across three subtypes:

– Existence: 4,924 samples using prompt: “Is there a {object} in this image?”
– Attribute: 7,628 samples using prompt: “Is the {object} {state} in this image?”
– Relation: 1,664 samples using prompt: “Is there direct contact between {object1} and

{object2}?”

A.1.1 Evaluation Metrics

Generative Task Metrics:

• CHAIR (Challenging Hallucinations Assessment for Image Captioning):

CHAIR(R) = 1−
len(R′

obj ∩Aobj)

len(R′
obj)

,

measures the frequency of hallucinatory objects in responses, where R′
obj is the set of final

objects extracted from the response and Aobj is the annotated objects list.
• Cover (Coverage):

Cover(R) =
len(R′

obj ∩Aobj)

len(Aobj)
,

quantifies the proportion of annotated objects mentioned in the response.

4https://unsplash.com/

19

https://neurips.cc/Conferences/2025/LLM

• Hal (Hallucination Rate):

Hal(R) =

{
1 if CHAIR(R) ̸= 0

0 otherwise
,

represents the proportion of responses containing hallucinations.
• Cog (Cognitive Similarity):

Cog(R) =
len(R′

obj ∩Hobj)

len(R′
obj)

,

evaluates whether hallucinations are similar to human cognition, where Hobj is a set of
pre-defined hallucinatory target objects.

Discriminative Task Metrics:

• Accuracy: percentage of correct binary predictions across all questions.
• Precision: proportion of true hallucinations among predicted hallucinations.
• Recall: proportion of actual hallucinations that were correctly identified.
• F1 Score: harmonic mean of precision and recall.

The overall AMBER Score is calculated as:

AMBER Score =
1

2
(1− CHAIR + F1).

A.2 Object HalBench

Object HalBench [32] is widely adopted for evaluating object hallucination in image descriptions. The
benchmark leverages 8 diverse prompts for detailed image description evaluation, with 4 instructions
adapted from M-HalDetect [33] and 4 generated by GPT-4. The full set of prompts are shown in
Table 5. The evaluation uses 300 randomly sampled images from the COCO validation set.

A.2.1 Evaluation Metrics

Instead of using exact-match detection as in previous work, the evaluation in Object HalBench
leverages ChatGPT to extract mentioned objects from generated descriptions (Instructions shown
in Table 6), providing better precision and recall. The evaluation process generates descriptions for
benchmark images and uses these ChatGPT-extracted objects to calculate final scores. The metrics
focus on two hallucination rates:

• Response-level hallucination rate CHAIR-s: Number of responses with object hallucinations
divided by the number of responses that introduce COCO objects

• Instance-level hallucination rate CHAIR-i: number of falsely mentioned COCO objects
divided by the total number of mentioned COCO objects

A.3 MME

The Multimodal Large Language Model Evaluation Benchmark (MME) [31] represents a pioneering
effort to comprehensively assess the capabilities of LVLMs. This benchmark evaluates models
across two fundamental dimensions: perception and cognition. The perception dimension measures a
model’s ability to recognize specific objects, including their existence, count, position, and color, as
well as perform fine-grained recognition tasks. The cognition dimension evaluates a model’s capacity
to integrate perception information with language model knowledge to generate more complex
answers.

MME encompasses 14 distinct subtasks distributed across these two dimensions. The perception
category includes 10 subtasks: four coarse-grained tasks (existence, count, position, color), five
fine-grained recognition tasks (movie poster, celebrity, scene, landmark, artwork), and OCR (text
recognition in images). The cognition category comprises four subtasks: commonsense reasoning,

20

Table 5: List of prompts used in Object HalBench.

Prompts
- Provide a thorough description of the given image.
- What is this photo about? Please answer in great detail.
- Provide a thorough description of the given picture.
- Explain the narrative or story that the image seems to convey, detailing each part that contributes
to it.
- Please provide a detailed description of the image. Describe the visual elements, colors, shapes,
- textures, and any objects or people present along with the overall mood or atmosphere portrayed
in the image.
- Please provide a detailed description of the image, including its visual elements, such as colors,
shapes, textures, objects, and people.
- Provide an intricate description of the image, capturing its visual elements, including colors,
shapes, textures, objects, and any people present.
- Compose a detailed account of the image, encompassing its visual characteristics, like colors,
shapes, textures, objects, and any human subjects, by paying careful attention to the specifics.

Table 6: GPT-4o-mini instruction for object extraction.

GPT-4o-mini Instruction
You are an expert in image objects extraction according to a question answer pair. We asked an
examiner to answer a question about a picture.
[Start of Question] {question} [End of Question]
[Start of Examiner’s Answer] {answer} [End of Examiner’s Answer]

Assume that the answer is correct, please identify all visible objects that are directly shown in
the image. Please following the instructions in below:
1. You should only mention objects that are explicitly mentioned in the examiner’s answer.
2. You should only extract the object names without the attributes of the objects.
3. You should not include the properties of the object, like the color, material, etc. as part of the
object name in your result.
4. Make your answer precise. Present the results in a JSON list format: ["object 1", ..., "object
n"].
5. You should return an empty JSON list ([]) if no visible objects can be found.

numerical calculation, text translation, and code reasoning. This comprehensive approach ensures
a thorough evaluation of LVLMs’ capabilities across various visual understanding and reasoning
scenarios.

MME includes 30 images with 60 instruction-answer pairs for each coarse-grained perception task,
147 to 200 images for fine-grained recognition tasks (147 for movie posters, 170 for celebrities, and
200 each for scenes, landmarks, and artworks), 20 images with 40 instruction-answer pairs for OCR,
70 images with 140 instruction-answer pairs for commonsense reasoning, and 20 images with 40
instruction-answer pairs each for numerical calculation, text translation, and code reasoning. All
instruction-answer pairs are manually constructed to avoid data leakage, even when images from
public datasets are utilized.

A.3.1 Evaluation Metrics

MME employs two evaluation metrics: ccuracy and accuracy+. Accuracy measures the percentage of
questions answered correctly, while accuracy+ is a stricter metric requiring that both questions for a
given image are answered correctly, better reflecting comprehensive understanding. The score for
each subtask is calculated as the sum of accuracy and accuracy+, with a maximum possible score of
200 per subtask. Consequently, the full perception score is 2000 (10 subtasks), and the full cognition
score is 800 (4 subtasks).

21

Table 7 summarizes the statistics of the benchmarks we consider in our work.

Table 7: Statistics of benchmarks used in our work.

Benchmark Images Total Samples Answer Type LLM Evaluation
AMBER 1,004 15,220 Generative & Discriminative No
Object HalBench 300 2,400 Generative Yes
MME 1,127 1457 Discriminative No

B Implementation Details

For constructing the co-occurrence graph, we utilize the COCO 2017 validation set [26], dividing
each image representation into 3× 3 grid cells. When computing semantic coherence co-occurrence
statistics, we employ panoptic segmentation masks while deliberately excluding ubiquitous segments
such as sky-other-merged. To minimize noise in co-occurrence patterns, we retain only the top 10%
of total connections in the final graph. Our GNN architecture comprises two layers and utilizes
neighborhood sampling with a batch size of 2048. Detailed analysis of GNN training, e.g., training
convergence and performance metrics, is presented in Appendix C.2. To ensure balanced-sized clus-
ters, we modify the K-means algorithm to produce more uniform cluster sizes following the previous
work [34], which has been demonstrated to be beneficial for autoregressive image token processing.
We discuss how to tune other other performance-related hyperparameters in Appendix B.1. For
baseline methods (SID, VCD, and OPERA), we maintain their default hyperparameter configurations.
For PROJECTAWAY, due to its model-specific hyperparameter sensitivity, we conduct a comprehen-
sive hyperparameter search on a representative subset of AMBER to identify optimal configurations
for each model. For Chameleon-7B, we use (lI , lT , α) = (20, 18, 3.0). For Janus-Pro-7B, we
use (lI , lT , α) = (25, 23, 1.5). For Emu3-13B, we use (lI , lT , α) = (18, 24, 1.5) We use a single
NVIDIA H100 (80G) GPU for all experiments. We modify the Transformers package [35] to adapt
all baseline methods to the discrete image token-based LVLM architectures. xformers [36] is used
for efficient attention calculation and to save memory.

B.1 Determine Optimal Hyperparameters

We tune four hyperparameters that impact hallucination mitigation performance: (1) cluster size,
(2) number of selected most dominant clusters for hallucination mitigation, (3) editing layer l, and
(4) editing magnitude coefficient γ. We employ a two-stage grid search approach. In the first stage,
we fix the editing parameters at intermediate values (l = 20, γ = 0.5) while exploring cluster
configurations. We evaluate cluster size within {5, 10, 15, 20} and number of selected dominant
clusters within {1, 2, 3, 4, 5} on a subset of the AMBER benchmark. After identifying the optimal
clustering configuration for each model, we proceed to the second stage, where we fix the searched
cluster hyperparameters and conduct searches over editing layers l ∈ {1, 2, ..., 30} and magnitude
coefficient γ ∈ {0.1, 0.2, ..., 3.0}. Performance is evaluated using the CHAIR metric on generative
tasks.

Table 8 summarizes the optimal hyperparameter configurations identified for each model. While the
specific values vary across architectures, we observe that a moderate cluster size (10) consistently
leads to good performance, with the number of selected dominant clusters varying based on model
size and architecture. For editing parameters, intermediate-to-deep layers (21 to 27) with moderate
editing magnitude coefficient (0.2 to 0.6) yield optimal results.

To evaluate the robustness of our method, we plot the performance of LVLMs under different
editing hyperparameter combinations on the AMBER generative task. As shown in Figure 4, many
settings yield substantial improvements over the baseline, demonstrating that CGC+VTD is robust
to hyperparameter choices. This is especially valuable for practical use, as it suggests the method
can be effectively applied to new models without extensive tuning. Figure 5 further demonstrates
how the performance varies with different hyperparameter choices along each layer. The results show
that editing intermediate-to-deep layers (avoiding the last 2) yields optimal results. This aligns with
LVLM knowledge evolution processes where early layers aggregate information while deeper layers
form conceptual representations [37, 38].

22

Table 8: Optimal hyperparameter configurations for each model.

Model Cluster Size # Selected Dominant Clusters Editing Layer (l) Editing Magnitude Coefficient (γ)

Chameleon-7B 10 2 25 0.5
Janus-Pro-7B 10 2 27 0.2
Emu3-13B 10 4 21 0.6

1 5 10 15 20 25 29
Editing layer(l)

0.1

0.5

1.0

1.5

2.0

2.5

3.0

Ed
iti

ng
 w

ei
gh

t

Janus-Pro-7B

3

2

1

0

1

2

3

1 5 10 15 20 25 29
Editing layer(l)

0.1

0.5

1.0

1.5

2.0

2.5

3.0

Ed
iti

ng
 w

ei
gh

t

Chameleon-7B

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

1 5 10 15 20 25 29
Editing layer(l)

0.1

0.5

1.0

1.5

2.0

2.5

3.0

Ed
iti

ng
 w

ei
gh

t

Emu3-13B

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Figure 4: The three heatmaps show CHAIR score difference between our method with the Nucleus
Sampling baseline. Blue means improvement and Red means deterioration. It is shown that our
method benefits from a wide range of parameter combinations.

1 5 10 15 20 25 29
Editing layer(l)

4

5

6

7

8

CH
AI

R

Editing weight analysis
=0.1
=0.5
=1.0
=1.5

baseline

1 5 10 15 20 25 29
Editing layer(l)

76

78

80

82

F1

Cluster size analysis

c5
c10
c15
c20
baseline

1 5 10 15 20 25 29
Editing layer(l)

76

78

80

82

F1

GNN layer analysis
2 layers
3 layers
4 layers
baseline

Figure 5: We show how editing weight γ, cluster size, number of GNN layers and editing layer
affect our method. We report CHIAR score for generative tasks and F1 for discriminative tasks using
Janus-Pro-7B. Overall, our method is relatively robust to hyperparameters.

B.2 Combination with Existing Methods

While some methods can be orthogonally combined with our approach, others require special
considerations to ensure effective integration.

OPERA: Since OPERA focuses on biases in language modeling by applying penalty and retro-
spection strategies, it operates on a fundamentally different aspect of the hallucination problem than
our method. When combined, VTD first addresses the visual priors by suppressing visually absent
tokens from dominant clusters, while OPERA subsequently handles potential language modeling
biases. This orthogonal combination yields substantial improvements beyond what either method can
achieve alone.

Contrastive Decoding Methods (VCD and SID): For these approaches, we apply VTD only
on the normal logits branch because otherwise the effect of promoting hallucinative logits through
either noise or specific attentional mechanism might be compromised. Contrastive decoding relies
on comparing original and perturbed inputs, and applying VTD to both branches could dilute the
contrastive signal. Our experiments show that this selective application helps maintain the intended
contrastive mechanism while still addressing visual prior-driven hallucinations.

PROJECTAWAY: This method uses a two-pass inference approach—the first pass calculates
internal confidence to identify hallucinative text tokens, while the second pass incorporates this
information to suppress hallucinations. We apply VTD in both passes to maintain consistency in
the model’s internal representations. This ensures that the internal confidence measurements remain
valid and that the subsequent projection operates on properly decontaminated representations.

23

C More details in Context-Guided-Clustering

C.1 Algorithm

We present the detailed algorithm 1 to construct the co-occurrence graph described in Sec. 3.1. Note
that the notation used in this algorithm is solely for illustrating the graph construction process and
may conflict with the formal notation in the main body of the paper. It is intended for clarity and
should not be interpreted as consistent with the main text.

Algorithm 1 Context-Guided Co-occurrence Graph Construction

Require: Codebook entries Z ∈ R|V |×dcodebook , image dataset D with segmentation masks
Ensure: Graph G = (N , E) with edge weights S

Initialize co-occurrence matrix M ∈ R|V |×|V | with zeros
Initialize node set V = {1, 2, ..., |V |}
for each image I ∈ D with segmentation mask S do

Encode and quantize I to obtain codebook indices {z1, z2, ..., zm}
Determine spatial dimensions h,w such that m = h× w
for index i = 1 to m do
(ri, ci)← 2D position of i in the h× w grid
segi ← segment ID at position (ri, ci)
for index j = i+ 1 to m do
(rj , cj)← 2D position of j in the h× w grid
segj ← segment ID at position (rj , cj)
if (ri, ci) and (rj , cj) are within 3× 3 grid cells or segi = segj then

M[zi, zj]←M[zi, zj] + 1
M[zj , zi]←M[zj , zi] + 1

end if
end for

end for
end for
Normalize M to the range [0, 1]
Nconnections ← count of non-zero entries in M
k ← ⌊0.1×Nconnections⌋ {Determine number of edges to keep}
E ← top-k entries in M with corresponding node pairs
S← weights of edges in E from M

return G = (N , E) with edge weights S

C.2 GNN Training

C.2.1 Attentional Coefficient

The attentional coefficient α(l′)
ij in Eq. 1 is computed by incorporating the edge weight sij , i.e.,

normalized co-occurrence strength, between ni and nj through:

α
(l′)
ij =

exp
(
a(l

′)⊤σ
(
W

(l′)
1 h

(l′−1)
i +W

(l′)
2 h

(l′−1)
j +W

(l′)
3 sij

))
∑

m∈Nei(ni)∪{ni} exp
(
a(l′)

⊤
σ
(
W

(l′)
1 h

(l′−1)
i +W

(l′)
2 h

(l′−1)
m +W

(l′)
3 sim

)) . (5)

W
(l′)
1 , W(l′)

2 and W
(l′)
3 are three weight matrices with size RdGNN×dGNN . a(l

′) ∈ RdGNN is a vector
parameter.

C.2.2 Configurations for GNN Training

Neighborhood Sampling For each node in a batch, we sample neighbors across 2 layers with
sampling sizes [48, 16], meaning we sample up to 48 neighbors in the first layer and 16 neighbors in
the second layer. This approach allows us to capture both immediate and extended neighborhood
information while maintaining computational efficiency.

24

Learning Rate and Optimization We employ the AdamW optimizer with an initial learning rate
of 4 · 10−3 and a cosine annealing scheduler with warmup. The warmup period consists of 10% of
the total training steps, during which the learning rate increases linearly from 0 to the maximum
value. This helps stabilize early training stages, especially for large codebooks.

Regularization Techniques To prevent overfitting and ensure stable training, we implement
multiple regularization strategies: (1) dropout with rate 0.1 on node features, (2) edge dropout with
rate 0.1 applied randomly during training, (3) gradient clipping with maximum norm 0.5, and (4)
weight decay of 0.01 for L2 regularization.

Dynamic Temperature Adjustment We implement dynamic temperature adjustment based on
similarity statistics. The temperature starts at 0.02 and is adjusted during training:

τt+1 =


max(0.05, τt × 0.95) if ∆sim < 0.3

min(0.15, τt × 1.1) if ∆sim > 0.5

τt otherwise
, (6)

where ∆sim = s̄pos − s̄neg is the difference between average positive and negative similarities.

Table 9 summarizes all training configurations, and Table 10 shows the model-specific architectural
dimensions.

Table 9: Training hyperparameters for CGC GNN.

Category Parameter Value

Optimization

Learning rate 4 · 10−3

Scheduler Cosine with warmup
Warmup steps 10% of total steps
Optimizer AdamW
Weight decay 0.01

Training

Batch size 2,048 nodes
Total epochs 100
Early stopping patience 10
Max gradient norm 0.5

Architecture

Number of GNN layers 2
Number of attention heads 2
Dropout rate 0.1
Edge dropout rate 0.1

Sampling Number of neighbors [48, 16]

Table 10: Model-specific dimensional configurations.

Model Initial Dim Hidden Dim Output Dim Codebook Size
Chameleon-7B 256 128 256 8,192
Janus-Pro-7B 8 128 32 16,384
Emu3-13B 4 64 32 32,768

The choice of dimensions reflects the different tokenization strategies used by each model. Chameleon
uses a larger initial dimension due to its VQGAN-based tokenization, while Janus and Emu3
employ more compact representations. The hidden dimension is chosen to balance expressivity
with computational efficiency, while the output dimension is tailored to each model’s downstream
task requirements.

C.2.3 Computational Efficiency

Table 11 summarizes the computational consumption for GNN training.

25

Table 11: Computational efficiency metrics

Metric Time/Memory

Graph construction time ∼3 hours(for 1,000 images)
GNN training time ∼20 minutes (H100 GPU)
Memory requirement 16GB GPU memory
Inference time per image <1ms
Parameters (hidden=32) ∼85K
FLOPS per forward pass ∼15M

C.3 Importance of the absolut similarity constraint

Our core intuition is that while Lcontrast uses co-occurrence weights for relative optimization, Lpps en-
forces absolute similarity thresholds that ensure adequate separation between positive and neg-
ative pairs regardless of batch composition. Concretely, the gradient of Lcontrast w.r.t. sim(hi, hj) is
positively correlated to sij while negatively correlated to the number of negative sample pairs. So the
pressure to improve the similarity between node i and node j towards a high sij could be diminished
by a large number of negative pairs within the batch. Lpps addresses this by setting explicit minimum
similarity targets (β · sij) that must be satisfied independently of other pairs in the batch. Table 12
details the effect of Lpps on GNN representation learning using Janus-Pro-7B on the COCO 2017
validation set.

Table 12: Results of positive sample similarity and negative sample similarity. We use the averaged
consine similarity scores among each partition.

Variant avg. positive similarity avg. negative similarity avg. similarity gap

w/o. Lpps 0.56 0.35 0.21
w. Lpps 0.79 0.46 0.33

Without Lpps, the model achieves only 0.56 average positive similarity with a similarity gap of 0.21
between positive and negative pairs. With Lpps, positive similarity increases substantially to 0.79,
while the similarity gap expands to 0.33 by 57%. This demonstrates that Lpps successfully enforces
the absolute similarity constraints, ensuring that co-occurrence relationships are preserved with
sufficient fidelity for downstream clustering and hallucination mitigation. Furthermore, the ablation
study in Table 4 consistently shows performance degradation when Lpps is removed, confirming that
Lpps is crucial for our method.

C.4 HitRate@K: Further Analysis on Hallucination Detection

Here we present additional analysis on HitRate@K with different image token groups. Figure 6
shows the results on Chameleon-7B, and Figure 7 shows the results on Emu3-13B. We find that the
observations from Sec. 3.2 still hold for the other two models. This confirms that hallucinations are
closely linked to visual priors that can evoke absent tokens from dominant clusters, and CGC
provides an effective means of uncovering these associations.

1 2 3 4 5 6 7 8 9 10
K

0

5

10

15

Hi
tR

at
e

(%
)

C2
C1
C3

1 2 3 4 5 6 7 8 9 10
K

0

5

10

15

Hi
tR

at
e

(%
)

C2 - CGC
C2 - K-means

1 2 3 4 5 6 7 8 9 10
Cluster Ranking

0.0

2.5

5.0

7.5

10.0

12.5

Hi
tR

at
e

(%
)

Figure 6: Left: Hallucination HitRate for K from 1-10. Middle: Comparison between C2 tokens
identified by our CGC method versus naive K-means. Right: HitRate@5 of C2 tokens from the ten
most dominant clusters. The analysis is based on Chameleon-7B.

26

1 2 3 4 5 6 7 8 9 10
K

0

10

20

30

Hi
tR

at
e

(%
)

C2
C1
C3

1 2 3 4 5 6 7 8 9 10
K

0

10

20

30

Hi
tR

at
e

(%
)

C2 - CGC
C2 - K-means

1 2 3 4 5 6 7 8 9 10
Cluster Ranking

0

5

10

15

20

Hi
tR

at
e

(%
)

Figure 7: Left: Hallucination HitRate for K from 1-10. Middle: Comparison between C2 tokens
identified by our CGC method versus naive K-means. Right: HitRate@5 of C2 tokens from the ten
most dominant clusters. The analysis is based on Emu3-13B.

D Additional results

D.1 Combination with Existing Methods: Further Results

Table 13 and Table 14 provide combined methods’ results on Object HalBench with Janus-Pro-7B
and Emu3-13B. We have the same observations as we have discussed about Table 2.

Table 13: Janus-Pro-7B results when combining CGC+VTD with baselines.

Metric VCD+ SID+ PROJECTAWAY+ OPERA+

CHAIR-s ↓ 19.67(+0.01) 18.33(-2.34) 12.03(-1.06) 11.94(-0.39)
CHAIR-i ↓ 11(+1.32) 10.65(-1.28) 7.56(-0.83) 6.01(-0.72)

Table 14: Emu3-13B results when combining CGC+VTD with baselines.

Metric VCD+ SID+ PROJECTAWAY+ OPERA+

CHAIR-s ↓ 21.03(-0.3) 24.98(+2.65) 1966(-0.02) 17.21(-1.61)
CHAIR-i ↓ 13.99(+0.12) 14.31(+1.56) 12.42(+1.33) 10.23(-0.88)

D.2 Efficiency Analysis: Further Results

Table 15 and Table 16 compare the efficiency of different hallucination mitigation methods on Janus-
Pro-7B and Emu3-13B, evaluated on AMBER generative and Object HalBench tasks. The results
show that our method consistently achieve the best performance.

Table 15: Efficiency analysis on Janus-Pro-7B

Metric VCD SID PROJECTAWAY OPERA CGC+VTD
Time (s) ↓ 488 387 521 853 166
Memory (MB) ↓ 18,736 17,583 15,880 29,462 15780
Token 414 395 193 175 169

Table 16: Efficiency analysis on Emu3-13B. To perform OPERA, we might need to offload some
computation to CPU.

Metric VCD SID PROJECTAWAY OPERA CGC+VTD
Time (s) ↓ 797 770 935 - 472
Memory (MB) ↓ 20,583 19,358 17,593 - 17,489
Token 285 268 198 186 190

27

D.3 Qualitative Results

We present three representative cases in Figure 8 to illustrate our qualitative results. These examples
show that CGC+VTD enables LVLMs with discrete image tokenizers to generate coherent and
expressive image descriptions while demonstrating greater robustness to hallucinations.

Nucleus Sampling:The image shows a young child taking a bath. The child is sitting in a bathtub filled with soapy water. The child is
holding a yellow spout and pouring water over their hands. There's a bottle of purple soap or shampoo on the edge of the bathtub, and a
small toy pineapple floating in the soapy water.

SID: A young child is taking a bath in a bathtub filled with soapy water. The child is holding a yellow cup from which water is pouring into
the water. There are bubbles in the water. In the background, there is purple bottle hanging on the wall, which appears to be shampoo or
conditioner.\nThe image displays a scene of bath time. The child is sitting up in the bathtub filled with bubbles and there are other toys
including a yellow stuffed butterfly and a green toy floating in the tub...

Ours:The image shows a young child taking a bath. The child is sitting in a bathtub filled with bubbles and soap suds. The child is holding a
yellow cup from which water is flowing. The background includes white tiled walls and a purple bottle placed on the edge of the bathtub.

OPERA:The image shows a young child taking a bath in a bathtub filled with soapy water. The child is holding a yellow cup from which
water is flowing into the tub. There is a purple bottle of bath product on the edge of the tub, and a small toy can be seen floating in the
water. The background consists of white tiled walls.

Max_new_tokens=512 VCD: The image shows a young child taking a bath in a bathtub filled with water and soap bubbles. The child is holding a yellow
cup and pouring water over their face. There is a purple bottle of Liril moisturizer on the wall of the bathtub. What is the child's
hair color? Blond.The child is taking a bath in a bathtub that is filled with water and soap bubbles, and there are tiled walls and a
purple bottle of Liril moisturizer on the wall. Additionally, there is a a small toy resembling a lemon is floating in the water...
PROJECTAWAY: The image shows a young child taking a bath in a bathtub. The child is sitting in the water, holding a yellow cup from
which water is flowing. There is a purple bottle of shampoo on the edge of the bathtub, and some toys can be seen floating in the water.
The background consists of tiled walls.

Ground truth
objects:

bath, shampoo, toy,
child, bottle, water,

wall, cup

Nucleus Sampling:The image is a photograph of a stop sign with a black border and white text in front of a tree with red and
yellow leaves. The tree in the image has a large canopy of red and yellow leaves. In the background, the sky is visible and a
white van is partially visible on the right side of the image.

SID: This image is a picture of a stop sign in front of falling autumn leaves. The red stop sign is hung by a pole that is attached
to a wooden tree trunk by two wooden posts. The sign has a black border around the white text and a black overlay with
illegible text. The leaves are predominantly red, with some green and brown leaves scattered throughout.

Ours: The image is of a stop sign displayed in the center. The sign is red with white text. There is a green leafy tree with red and
yellow leaves behind the sign. The leaves have autumnal hues, with shades of yellow and brown, indicating the season is likely
fall.

OPERA:The image is a photograph of a stop sign in front of a tree with red and yellow leaves. The stop sign is red with a white
border and white text. The sign is attached to a pole that is attached to a tree by a metal bracket. The tree has red and yellow
leaves and is in front of a white house with a black front door.

Max_new_tokens=512

VCD: The image shows a stop sign on a street corner behind a tree with red and yellow leaves. The stop sign is red with a
white border and the word \"STOP\" written on it. It is mounted on a metal pole that angles up and toward the right. The pole
passes behind the tree, which casts a shadow on the far side of the sign. The trunk of the tree is on the left side of the image,
and the branches extend to the right and upward. This image is a picture of a stop sign taken in autumn...
PROJECTAWAY:This is an image of a stop sign with a picture of a bird superimposed on it. The stop sign has a red
background with a white border around the picture of the bird. The bird is in the center of the sign and is facing left. It is black
and white with a red beak and yellow eyes.

Ground truth
objects:

sky, tree, sign,
sticker

Nucleus Sampling: This is an image of a pizza on a paper tray on a table. The pizza is placed on the left side of the tray. It is a
thin crust pizza with a red sauce and cheese. There is also a small bowl of cheese on the table next to the pizza.

SID: The image portrays a close-up, overhead view of a Neapolitan-style pizza on a cutting board atop a tan doormat-like
material, with the focal pizza partially obscured by a nearby coffee mug. The pizza is a deep red-orange with a thin, crispy base
and a generous layer of green herbs, likely cilantro or parsley. On top of the herbs is a mixture of tomato sauce, white and
yellow cheese, and thin, circular ham slices. The background consists of a silver tray lined with more doormat material, upon
which a second pizza...

Ours: The image shows a close-up view of a slice of pizza on a cardboard tray. The pizza is on a thin crust and is topped with
tomato sauce, cheese, and a green herb. The pizza is sitting on a beige cloth napkin. There is a small brown ceramic cup on the
table next to the pizza. The table is made of light brown wood.

OPERA:The image shows a close-up view of a slice of pizza on a cardboard tray. The pizza is on a thin crust and is topped with
tomato sauce, cheese, and a green herb. The pizza is sitting on a beige cloth napkin. There is a small brown ceramic vase on
the table next to the pizza. The vase has a small amount of water in it. The table is made of light brown wood. The background
is a beige carpet.

Max_new_tokens=512

VCD: In the image is a close up of a slice of pizza on a paper plate. The pizza is a thick crust with a white sauce, olives,
pineapple, ham and red onions. The plate is on a grey woven mat and a tan wall

PROJECTAWAY:The image is a close-up view of a freshly made pizza on a cardboard box. The pizza is on a thin crust, topped
with various ingredients like cheese and red sauce, with a sprinkle of herbs. There are also red sauce and cheese on the pizza
in the background. The pizza is placed on a beige cloth, and there is a dark brown and white striped rug underneath. In the
background, there is a wooden bowl and a small pot of red sauce. The background is a beige wall with a white textured
surface.The image is a close-up view of a freshly made pizza on a cardboard box. .

Ground truth
objects:

tablecloth,knife,
fork,cup,plate,

pizza,table,
baconic,cheese,

napkin,
pineapple

Figure 8: Cases as qualitative results. Comparison of applying different types of hallucination mitiga-
tion methods on Chameleon-7B. Red words are hallucinated objects and green words correspond to
correctly mentioned objects. Note that CD-based methods (SID and VCD) tend to continue generating
until reaching the maximum output length.

28

200

220
223%

Average Answering Length Change

Chameleon Janus-Pro Emu3 LLAVA-v1.610

0

10

20

30

40

50

Le
ng

th
 C

ha
ng

e
(%

) 35%

24%

7%

Figure 9: Change of answering length when applying VCD.

D.4 Discussion on the Failure of Contrastive Decoding-Based Methods for LVLMs with
Discrete Image Tokenizers

To examine the limitations of contrastive decoding (CD) methods on LVLMs with discrete image
tokenizers, we analyze the behavior of VCD [1] applied to both discrete-token models and LLaVA-
v1.6 [39], which uses continuous visual representations. Experiments on the AMBER generative task
reveal a clear pattern: As shown in Figure 9, VCD significantly increases response length in discrete-
token models—by as much as 223% for Janus-Pro—suggesting instability or overgeneration in this
setting. While longer outputs may improve coverage by mentioning more ground truth objects, they
also increase the likelihood of hallucinations. This trade-off is evident in our main results (Table 1),
where CD-based methods applied to discrete tokenizer-based LVLMs consistently underperform on
the CHAIR metric—indicating more hallucinations—despite gains in coverage. We further illustrate
this issue through case studies in Figure 8. For instance, SID [2] and VCD often extend responses
unnecessarily, even when the initial answer is sufficient. In the first example, SID redundantly restates
the scene (“The image displays. . . ”) after the model has already completed a coherent description.

D.5 Evaluation on POPE

POPE (Polling-based Object Probing Evaluation) [19] is a benchmark designed to systematically
evaluate object hallucination in LVLMs by formulating the task as a binary classification problem
with yes/no questions about objects in images. We perform POPE evaluation on both MSCOCO [26]
and GQA [40] datasets under three test settings: Random, Popular, and Adversarial. The evaluation
metrics are accuracy and F1 score, which have been presented in Appendix A.1.1.

The results in Table 17 demonstrate that our proposed CGC+VTD method achieves the best per-
formance on 31 out of 36 metrics across different models and datasets and OPERA emerges as the
second-best method in most scenarios Notably, the strong performance of CGC+VTD on the GQA
dataset demonstrates excellent generalization capabilities, considering that CGC was trained exclu-
sively on the COCO images (including MSCOCO). This cross-dataset transferability suggests that our
method captures fundamental aspects of visual priors rather than merely exploiting dataset-specific
patterns.

29

Table 17: Evaluation results on POPE. Best/second best results are marked bold/underlined.

Dataset Model Method Random Popular Adversarial
Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

MSCOCO

C
ha

m
el

eo
n-

7B Nucleus Sampling 50.6 60.0 55.00 62.4 52.7 61.2
VCD 51.6 62.2 51.7 62.3 50.9 61.4
SID 51.4 61.0 50.9 60.7 52.2 62.1

OPERA 52.6 65.8 54.2 66.1 50.2 65.7
Cluster-Base 50.6 60.9 54.9 62.2 52.5 61.1
CGC+VTD 52.7 63.9 56.5 68.0 53.0 66.9

Ja
nu

s-
Pr

o-
7B

Nucleus Sampling 89.3 88.4 87.5 86.7 85.2 84.7
VCD 71.3 63.9 70.9 63.5 68.6 61.1
SID 68.9 59.3 68.0 57.7 66.3 55.8

OPERA 89.7 88.9 87.8 87.2 85.4 85.0
Cluster-Base 88.2 87.0 86.6 85.5 84.8 83.9
CGC+VTD 89.8 89.2 88.2 86.9 85.9 86.2

E
m

u3
-1

3B

Nucleus Sampling 87.4 86.0 85.5 84.1 83.9 82.7
VCD 87.0 85.6 84.5 83.2 83.3 82.2
SID 87.5 86.1 85.0 83.7 83.0 81.9

OPERA 87.9 85.3 86.4 85.4 84.2 83.8
Cluster-Base 87.3 85.8 85.4 83.9 83.8 82.5
CGC+VTD 88.3 87.0 87.1 86.1 84.9 83.8

GQA

C
ha

m
el

eo
n-

7B Nucleus Sampling 53.2 62.5 57.6 64.8 55.4 63.9
VCD 54.3 64.6 54.5 64.7 53.6 63.8
SID 54.1 63.5 53.7 63.2 54.9 64.5

OPERA 55.2 68.2 56.9 68.6 52.9 68.1
Cluster-Base 53.3 63.4 57.4 64.6 55.1 63.7
CGC+VTD 55.4 66.4 59.1 70.4 55.7 69.3

Ja
nu

s-
Pr

o-
7B

Nucleus Sampling 91.7 90.9 89.9 89.2 87.8 87.3
VCD 74.0 66.7 73.6 66.2 71.3 63.9
SID 71.6 62.1 70.7 60.6 69.0 58.7

OPERA 92.2 91.4 90.3 89.7 87.9 87.5
Cluster-Base 90.8 89.7 89.2 88.1 87.4 86.5
CGC+VTD 92.3 91.7 90.7 89.4 88.5 88.8

E
m

u3
-1

3B

Nucleus Sampling 90.0 88.7 88.1 86.9 86.5 85.4
VCD 89.6 88.3 87.1 86.0 85.9 84.9
SID 90.1 88.8 87.6 86.5 85.6 84.6

OPERA 90.5 88.0 89.0 88.1 87.8 86.4
Cluster-Base 89.9 88.5 88.0 86.7 86.4 85.2
CGC+VTD 90.9 89.7 89.7 88.8 87.5 86.5

30

	Introduction
	Related Work
	Method
	Model Visual Priors via Context-Guided Clustering
	Visual Priors Induce Hallucinations
	Mitgate Hallucination via Visual Token Decontamination

	Experiments
	Experimental Settings
	Experimental Results
	Further Analysis

	Conclusion
	Limitations & Future Directions
	Acknowledgement
	Benchmark Details
	AMBER
	Evaluation Metrics

	Object HalBench
	Evaluation Metrics

	MME
	Evaluation Metrics

	Implementation Details
	Determine Optimal Hyperparameters
	Combination with Existing Methods

	More details in Context-Guided-Clustering
	Algorithm
	GNN Training
	Attentional Coefficient
	Configurations for GNN Training
	Computational Efficiency

	Importance of the absolut similarity constraint
	HitRate@K: Further Analysis on Hallucination Detection

	Additional results
	Combination with Existing Methods: Further Results
	Efficiency Analysis: Further Results
	Qualitative Results
	Discussion on the Failure of Contrastive Decoding-Based Methods for LVLMs with Discrete Image Tokenizers
	Evaluation on POPE

