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Q: Could you recognize the table in its cell components?

Q: How many app publishers were in Apple's App Store in 2017?Q: What is the contact number 
for children and teens suffering 
from mental crisis?

Q: What is stored in the cell at the 
intersection of row 1 and column 3?

Q: Can you find where "Miami, 
Florida." appears in the image?

Q: Can you spot the 
words that have been 
falsified in the photo?

Q: Could you identify and read the
text present in the provided image?

Q: What is the total
amount?

Q:When was the document prepared?

Q: How many years after the levanger church 
was built was the bamberg church built?

Q: Where is the largest font word printed 
at the top or bottom of the document?

Q: Which step denotes the quality assurance part 
of the test performed for COVID-19?

Q: Which model has the least tie rate?

Q: How many years did Shares issued under the ESPP exceed $2 million?

Q: was the finish in 1930 above or below 12?

Figure 1: Overview of MMDocBench, which is designed to holistically assess the fine-grained visual
understanding capability of LVLMs through various document understanding tasks. It consists of
15 main tasks and 48 sub-tasks, involving 2, 400 document images, 4, 338 QA pairs and 11, 353
supporting regions (i.e., bounding boxes). Each QA pair corresponds to one or more supporting
regions, marked with red dotted-line rectangles on the images.

ABSTRACT

Large Vision-Language Models (LVLMs) have achieved remarkable performance
in many vision-language tasks, yet their capabilities in fine-grained visual un-
derstanding remain insufficiently evaluated. Existing benchmarks either contain
limited fine-grained evaluation samples that are mixed with other data, or are con-
fined to object-level assessments in natural images. To holistically assess LVLMs’
fine-grained visual understanding capabilities, we propose using document images
with multi-granularity and multi-modal information to supplement natural images.
In this light, we construct MMDocBench, a benchmark with various OCR-free
document understanding tasks for the evaluation of fine-grained visual percep-
tion and reasoning abilities. MMDocBench defines 15 main tasks with 4,338
QA pairs and 11,353 supporting regions, covering various document images such
as research papers, receipts, financial reports, Wikipedia tables, charts, and in-
fographics. Based on MMDocBench, we conduct extensive experiments using
10 open-source and 3 proprietary advanced LVLMs, assessing their strengths and
weaknesses across different tasks and document image types. The benchmark,
task instructions, and evaluation code will be made publicly available.
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1 INTRODUCTION

Large Vision-Language Models (LVLMs) have attained remarkable performance across various
vision-language tasks (Yin et al., 2024). However, existing LVLMs, such as GPT-4V (OpenAI,
2023), LLaVA (Liu et al., 2023a) and MiniGPT-4 (Zhu et al., 2023), still struggle with understand-
ing fine-grained visual details in images. For instance, (Tong et al., 2024) have demonstrated that
many LVLMs perform poorly in visual grounding to image details for visual question answering.
This fine-grained visual understanding capability is indispensable for LVLMs in many downstream
tasks (Peng et al., 2024; Xuan et al., 2024), such as object recognition (Lin et al., 2014), image
segmentation (Minaee et al., 2022) and forgery detection (Qu et al., 2023). As such, it is essential to
develop LVLMs’ capability in fine-grained visual understanding.

To achieve this goal, a key prerequisite is establishing benchmarks that can comprehensively eval-
uate the strengths and weaknesses of LVLMs in fine-grained visual understanding. However, rep-
resentative multimodal benchmarks such as MMVet (Yu et al., 2023), MME (Fu et al., 2024), and
MMT-Bench (Ying et al., 2024) contain relatively few data samples to examine LVLMs’ under-
standing of fine-grained details rather than the entire image. Besides, these samples are not isolated
from the overall dataset. This makes it difficult to evaluate LVLMs’ ability in fine-grained visual
understanding comprehensively. Moreover, some benchmarks, such as Visual7W (Zhu et al., 2016),
RefCOCO (Yu et al., 2016), GVT-bench (Wang et al., 2023a), and MMBench (Liu et al., 2023b),
have designed specific tasks like object grounding and object counting to evaluate fine-grained vi-
sual understanding. However, these tasks are confined to object-level details in natural images and
do not assess finer-grained details.

To address the limitations, we consider using document images to supplement natural images for
the evaluation of fine-grained visual understanding. As illustrated in Figure 1, document images
encapsulate various document content types, including text, figures, tables, charts, and diagrams,
all presented within a visual format. These document images like receipts and research papers are
widely used across various domains such as finance, legal, education, and academia (Kim et al.,
2022). Compared to natural images, document images offer certain advantages as testing data to
evaluate LVLMs’ fine-grained visual understanding capabilities. In particular, 1) document images
contain different granularities of information to evaluate the fine-grained visual perception abilities,
such as the localization and recognition of text and tables. The diverse elements (e.g., text, table, and
chart) tend to occupy only a small part of the entire image, yet convey critical information in various
granularities; for example, a receipt image may comprise item description (sentence level), quantity
(token level), and barcode (object level). Moreover, 2) document images require LVLMs to integrate
multi-granularity and multi-type information to perform complex reasoning, thereby evaluating their
fine-grained visual reasoning abilities. For example, in the bar chart located in the bottom left of
Figure 1, LVLMs need to combine the legend, axis labels, and numerical values on the bar chart for
comprehensive reasoning.

In light of this, we construct a benchmark, MMDocBench, using document images to assess LVLMs’
capabilities in fine-grained visual document understanding. We design various OCR-free document
understanding tasks from the perspectives of fine-grained visual perception and fine-grained visual
reasoning, where understanding partial and fine-grained details in images is crucial, rather than treat-
ing the image as a whole. For fine-grained visual perception, MMDocBench encompasses nine tasks
to evaluate the LVLMs’ capabilities in fine-grained information recognition, localization, detection,
and extraction, including Text Recognition, Table Recognition, Text Localization, Table Cell Local-
ization, Key Information Extraction, Document Forgery Detection, Document Question Answering
(QA), Chart QA, and Infographic QA. For fine-grained visual reasoning, we design six tasks to
assess the reasoning ability by integrating fine-grained information: Arithmetic Reasoning, Logical
Reasoning, Spatial Reasoning, Counting, Comparison, and Sorting. We present one example for
each task in Figure 1 and refer to Section A.4 in Appendix for more comprehensive examples.

Based on these tasks, we select document images from 21 document understanding datasets to con-
struct QA pairs for evaluation. The document images span a wide variety of types, including re-
search papers, book covers, financial reports, scene-text images, receipts, Wikipedia tables, charts,
infographics, and other industry documents. Additionally, in MMDocBench, we also provide anno-
tations of supporting regions (i.e., bounding boxes) within the image for each QA pair, as shown by
red dotted rectangles in Figure 1. The supporting regions enable the evaluation of whether LVLMs
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have correctly grounded their predictions on the associated regions in the image, leading to a more
comprehensive evaluation. Furthermore, the output of supporting regions offers significant prac-
tical value, making the LVLMs’ responses more informative and interpretable while allowing for
rapid cross-checking between the answer and the image. Finally, MMDocBench contains 2, 400
document images, involving 4, 338 QA pairs with 11, 353 supporting regions.

With MMDocBench, we evaluate 10 open-source and 3 proprietary LVLMs that have demonstrated
impressive performance in many vision-language tasks. Experimental results reveal that our MM-
DocBench poses significant challenges to current LVLMs, especially in region prediction, where
almost all LVLMs struggle to identify the supporting regions. Although a notable gap persists in
answer prediction between open-source and closed-source LVLMs, their performance in region pre-
diction is comparable. The in-depth analyses on LVLMs’ performance across different tasks and
document types provide more insights: 1) Localization and detection tasks present significantly
greater challenges compared to other tasks; 2) Region prediction on document images containing
diverse elements (e.g., table, chart, and figure) is typically more challenging than on general docu-
ments, whereas answer prediction shows no significant variation across different document types.

In summary, our contributions are summarized as follows.

• We highlight the gap in existing benchmarks for evaluating LVLMs’ fine-grained visual under-
standing capabilities. Besides, we propose leveraging document images with multi-granularity
and multi-type information to complement natural images in assessing the fine-grained visual per-
ception and reasoning abilities of LVLMs.

• We construct MMDocBench, a comprehensive benchmark for tracking LVLMs’ progress in fine-
grained visual document understanding. MMDocBench defines 15 main tasks and 48 sub-tasks
over a wide range of document types, involving 2, 400 document images, 4, 338 QA pairs, and
11, 353 supporting regions for a holistic evaluation.

• We conduct extensive experiments with 13 representative LVLMs on MMDocBench. We report
the major strengths and weaknesses of LVLMs in different tasks and document types and provide
valuable insights, facilitating the advancements of LVLMs in future.

2 RELATED WORK

2.1 LARGE VISION-LANGUAGE MODELS

Large Vision Language Models (LVLMs) are built upon Large Language Models (LLMs) like
GPTs (Radford et al., 2019; Brown et al., 2020) and LLaMA (Touvron et al., 2023). A common
approach is to utilize a visual encoder to encode the image first and then apply a visual adapter to
align visual and textual representations within the LLMs. LVLMs are typically trained in two stages,
i.e. self-supervised pre-training over large-scale image-text pairs and supervised instruction tuning
with annotated data. Notable examples include Flamingo (Alayrac et al., 2022), BLIP-2 (Li et al.,
2023a), LLaVA (Liu et al., 2023a), MiniGPT-4 (Zhu et al., 2023), mPLUG-Owl (Ye et al., 2023c),
CogVLM (Wang et al., 2023b), MiniCPM-V (Yao et al., 2024), Monkey (Li et al., 2024b), and
InternVL (Chen et al., 2024d). For instance, BLIP-2 (Li et al., 2023a) utilizes frozen CLIP (Rad-
ford et al., 2021) as its visual encoder and proposes a Q-Former as the visual adapter. LLaVA (Li
et al., 2024a) and MiniGPT-4 (Zhu et al., 2023) replace the visual adapter with simple linear layers,
demonstrating impressive effectiveness.

Recently, increasing efforts have been devoted to enhancing LVLMs’ performance in document im-
age understanding (Ye et al., 2023b; Liu et al., 2024b; Ye et al., 2023a; Liu et al., 2024c; Bai et al.,
2023; Zhang et al., 2023), generally by accommodating high-resolution input images or/and improv-
ing quality of training corpus. For instance, LLaVA-NeXT (Liu et al., 2024b) extends LLaVa (Liu
et al., 2023a) to enhance its OCR capability by increasing image resolution and mixing more docu-
ment images in visual instruction tuning data; TextMonkey (Liu et al., 2024c) and MiniCPM-V (Yao
et al., 2024) divide high-resolution images into window patches with a sliding window method and
reduce the length of visual tokens via token compression techniques. Compared with natural im-
ages, the understanding of document images requires LVLMs’ interpretation of fine-grained image
details. In this work we propose a comprehensive benchmark to evaluate such fine-grained visual
understanding capability of LVLMs to facilitate future research.
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Figure 2: An illustration of benchmark construction pipeline for MMDocBench.

2.2 EVALUATION BENCHMARKS FOR LVLMS

To date, lots of multimodal benchmarks have been constructed to holistically assess LVLMs’ inte-
grated capabilities, such as recognition, knowledge, math, reasoning and safety (Huang & Zhang,
2024). Some representative examples include LVLM-eHub (Xu et al., 2023), MME (Fu et al.,
2024), MMStar (Chen et al., 2024a), SEED-Bench (Li et al., 2023b), MMMU (Yue et al., 2024a),
MMMU-Pro (Yue et al., 2024b), MMVet (Yu et al., 2023) and MMT-Bench (Ying et al., 2024), etc.
In addition, there are also some benchmarks designed to evaluate one specific aspect of LVLMs.
For instance, POPE (Li et al., 2023b) and HallusionBench (Guan et al., 2024) focus on evaluating
hallucination; MathVista (Lu et al., 2024) is centered on assessing the visual mathematical reason-
ing capability; OCRBench (Liu et al., 2023c) assesses the OCR capability on document images
with five text-related visual tasks. These existing benchmarks include some samples that can be
used to examine LVLMs’ fine-grained visual understanding capability, but they are not only limited
in number, but also difficult to be separated from other samples. Moreover, their evaluations rely
solely on natural language output without supporting region prediction involved, which is a crucial
measure for achieving fine-grained visual understanding in LVLMs (Peng et al., 2024). Current
available benchmarks specially for evaluating fine-graded visual understanding of LVLMs mainly
include Visual7W (Zhu et al., 2016), RefCOCO (Yu et al., 2016), GVT-bench (Wang et al., 2023a),
and MMBench (Liu et al., 2023b), which are however centered on object-level recognition and in-
terpretation within natural images, offering limited information granularity. Our MMDocBench is
the first comprehensive benchmark aiming to evaluate LVLMs’ fine-grained visual understanding
capability with various OCR-free document understanding tasks.

2.3 VISUAL GROUNDING IN LVLMS

Visual Grounding (VG) is a technique that localizes the relevant object or region to a given natural
language description in the visual input (Deng et al., 2018). It has been applied in LVLMs to fa-
cilitate generating more informative and comprehensive responses, benefiting various downstream
applications like Object Recognition (Lin et al., 2014), Image Segmentation (Minaee et al., 2022)
and Referential Comprehension (Yu et al., 2016). Existing grounded LVLMs can be classified into
two categories: 1) region-level (i.e., bounding box) grounding based LVLMs, such as OFA (Wang
et al., 2022), Kosmos-2 (Peng et al., 2024) and Pink (Xuan et al., 2024); and 2) pixel-level grounding
based LVLMs, such as PixelLM (Ren et al., 2024), GlaMM (Rasheed et al., 2024), Lisa (Lai et al.,
2024) and Ferret (You et al., 2024). However, the training and evaluation of these LVLMs sorely rely
on object-level tasks involving natural images, overlooking the various granularities in document
images. In this work, we build MMDocBench to foster the advancement of the fine-grained visual
understanding capability in LVLMs with a variety of OCR-free document understanding tasks. In
MMDocBench, it requires LVLMs to perform region-level grounding following typical settings in
most document understanding tasks, such as Optical Character Recognition (OCR) (Singh et al.,
2021), Key Information Extraction (Huang et al., 2019) and Table Recognition (Zheng et al., 2021).

3 PROPOSED MMDOCBENCH

3.1 PROBLEM DEFINITION

On MMDocBench, the LVLMs are expected to output the precise answer to a natural language query
given a document image while highlighting the supporting regions within the image contributing
to inferring the answer. Formally, given a document image d possibly containing text, table, chart,
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and/or figure, for a question q, a Large Vision-Language Model M is required to produce a response
including the answer a and the corresponding regions R as supporting evidence, formulated as

M(d, q) = (a,R). (1)

Each region in R is a bounding box that is represented by the coordinates of its top-left and bottom-
right corners in the format of [x1, y1, x2, y2].

3.2 CONSTRUCTION PIPELINE

The pipeline for constructing our MMDocBench is illustrated in Figure 2.

Step 1: Taxonomy Design. Targeting at a comprehensive evaluation of LVLMs’ fine-grained visual
understanding capabilities, we design the taxonomy of MMDocBench following two principles.

• Fine-grained Discrimination: The MMDocBench must provide tasks that can adeptly
evaluate LVLMs’ visual comprehension capabilities with sufficient discriminability of fine-
grained details in the image, rather than treating the image as a whole.

• Diversity: The MMDocBench must encompass a broad range of tasks in terms of required
capabilities (e.g., perception, reasoning), content granularity (e.g., characters, words, ta-
bles), and document types (e.g., scientific papers, financial reports, receipts).

To solve the problem in MMDocBench, two capabilities are at the core for LVLMs, i.e. fine-grained
visual perception and fine-grained visual reasoning (Liu et al., 2023b). To investigate both capa-
bilities of LVLMs, we design a total of 15 tasks in MMDocBench. Specifically, we encompass
nine tasks for fine-grained visual perception, including Text Recognition, Table Recognition, Text
Localization, Table Cell Localization, Key Information Extraction, Document Forgery Detection,
Document Question Answering, Chart Question Answering, and Infographic Question Answering;
and for fine-grained visual reasoning, we include six tasks: Arithmetic Reasoning, Logical Reason-
ing, Spatial Reasoning, Comparison, Sorting and Counting. Further, we include one or multiple
sub-tasks for each task to cover more diverse document image types, e.g. research papers, book cov-
ers, financial reports, scene-text images, receipts, Wikipedia tables, charts, infographics, and other
industry documents, leading to a total of 48 sub-tasks in MMDocBench. See a summary in Table 1.

Step 2: Document Image & QA Pair Preparation. As shown in Table 1, we create BookOCR,
Bbox2Text, and Text2Bbox by ourselves and use original task settings for other sub-tasks. In par-
ticular, we build BookOCR, a text recognition dataset, based on selected document images (i.e.,
book covers) from OCR-VQA (Mishra et al., 2019). After collecting document images, we use
a pre-defined template for text recognition as the question and automatically identify all the OCR
content from the image as the ground-truth answer. We build Text2Bbox and Bbox2Text with the
same document images, which are selected from DocILE (Šimsa et al., 2023), RVL-CDIP (Harley
et al., 2015), DocBank (Li et al., 2020), PubLayNet (Zhong et al., 2019) and PubTabNet (Zhong
et al., 2020) to cover a great diversity of document types. The former task requires an LVLM to find
the region in the document image given a piece of textual content, while the latter needs the model
to identify corresponding text in the document image based on a specified bounding box. For the
three sub-tasks, our annotators (6 undergraduate or graduate students majored in computer science)
manually create one QA pair for each selected document image.

For other sub-tasks, our annotators manually analyze and select appropriate document images with
annotated input-output pairs from the source dataset. After that, the input-output pairs are trans-
formed into QA pairs following the pre-defined templates. Note that all the document images and
QA pairs are selected from the test set of the source dataset except CORD (Park et al., 2019),
DUDE (Van Landeghem et al., 2023) and CharXiv (Wang et al., 2024b). CORD has an insufficient
number of high-quality document images in its test set, so we select some from its validation set.
DUDE and CharXiv have not yet released their test sets, and thus we utilize their validation sets
instead. For each sub-task, we at most select 100 document images.

It is worth mentioning that for preparing sub-tasks of fine-grained visual reasoning, we purposely
select five existing datasets to ensure our MMDocBench includes a great diversity of document
image types. These datasets include DUDE (Van Landeghem et al., 2023) containing general doc-
uments from various industries, WTQ (Pasupat & Liang, 2015) containing table-based documents
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Table 1: Taxonomy and statistics of MMDocBench.

Main Task Sub Task Document Image Type # Images # QA Pairs # Regions
Fine-Grained Visual Perception

Text
Recognition

TextOCR (Singh et al., 2021) Scene-Text Images 100 100 100
BookOCR (Mishra et al., 2019) Book Covers 100 100 438

Table
Recognition

FinTabNet (Zheng et al., 2021) Financial Reports 100 100 1,864
PubTables-1M (Smock et al., 2022) Scientific Papers 100 100 3,520

Text
Localization

Text2Bbox (Šimsa et al. (2023) etc.) Industry Documents 100 100 100
Bbox2Text (Šimsa et al. (2023) etc.) Industry Documents 100 100 100

Table Cell
Localization

FinTabNet (Zheng et al., 2021) Financial Reports 100 100 100
PubTables-1M (Smock et al., 2022) Scientific Papers 100 100 100

Key
Information
Extraction

SROIE (Huang et al., 2019) Receipts 100 303 303
WildReceipt (Sun et al., 2021) Receipts 100 512 512
CORD (Park et al., 2019) Receipts 100 372 372

Doc Forgery
Detection

T-SROIE (Yuxin et al., 2022) Receipts 100 100 286
DocTamper (Qu et al., 2023) Cross-Domain Documents 100 100 129

Document
QA

DocVQA (Mathew et al., 2021) Industry Documents 100 262 262
WTQ (Pasupat & Liang, 2015) Wikipedia Tables 100 351 351
TAT-DQA (Zhu et al., 2022) Financial Reports 100 214 214

Chart
QA

ChartQA (Masry et al., 2022) Cross-Domain Charts 100 104 104
CharXiv (Wang et al., 2024b) Scientific Charts 100 149 149

Infographic
QA InfographicVQA (Mathew et al., 2022) Infographics 100 281 281

Fine-Grained Visual Reasoning

Arithmetic
Reasoning

DUDE (Van Landeghem et al., 2023) General Documents 13 15 34
WTQ (Pasupat & Liang, 2015) Wikipedia Tables 54 55 159
TAT-DQA (Zhu et al., 2022) Financial Table-Text Documents 98 217 453
CharXiv (Wang et al., 2024b) Scientific Charts 23 23 67
InfographicVQA (Mathew et al., 2022) Infographics 34 53 90

Logical
Reasoning

DUDE (Van Landeghem et al., 2023) General Documents 10 11 20
WTQ (Pasupat & Liang, 2015) Wikipedia Tables 11 11 41
TAT-DQA (Zhu et al., 2022) Financial Table-Text Documents 1 1 2
CharXiv (Wang et al., 2024b) Scientific Charts 7 7 12
InfographicVQA (Mathew et al., 2022) Infographics 2 2 3

Spatial
Reasoning

DUDE (Van Landeghem et al., 2023) General Documents 38 41 43
WTQ (Pasupat & Liang, 2015) Wikipedia Tables 4 4 8
CharXiv (Wang et al., 2024b) Scientific Charts 7 7 12
InfographicVQA (Mathew et al., 2022) Infographics 17 23 54

Comparison

DUDE (Van Landeghem et al., 2023) Cross-Domain Documents 3 3 6
WTQ (Pasupat & Liang, 2015) Wikipedia Tables 33 34 74
TAT-DQA (Zhu et al., 2022) Financial Table-Text Documents 10 10 30
CharXiv (Wang et al., 2024b) Scientific Charts 16 16 44
InfographicVQA (Mathew et al., 2022) Infographics 13 15 44

Sorting

DUDE (Van Landeghem et al., 2023) General Documents 3 3 6
WTQ (Pasupat & Liang, 2015) Wikipedia Tables 6 12 23
TAT-DQA (Zhu et al., 2022) Financial Table-Text Documents 7 7 14
CharXiv (Wang et al., 2024b) Scientific Charts 15 15 29
InfographicVQA (Mathew et al., 2022) Infographics 20 29 57

Counting

DUDE (Van Landeghem et al., 2023) General Documents 51 55 244
WTQ (Pasupat & Liang, 2015) Wikipedia Tables 15 15 76
TAT-DQA (Zhu et al., 2022) Financial Table-Text Documents 14 14 26
CharXiv (Wang et al., 2024b) Scientific Charts 38 40 149
InfographicVQA (Mathew et al., 2022) Infographics 44 52 248

from Wikipedia, TAT-DQA (Zhu et al., 2022) containing table-text documents from financial re-
ports, ChartXiv (Wang et al., 2024b) containing chart-based documents from scientific papers, and
InfographicVQA (Mathew et al., 2022) containing infographic-based documents.

Step 3: Region Generation. We generate ground truth regions for each QA pair in MMDocBench to
facilitate evaluation. Similar to (Xuan et al., 2024; Chen et al., 2024b), we normalize the coordinates
used to represent the bounding box to the range [0, 1000] w.r.t. the image dimensions.

For the tasks regarding fine-grained visual perception, we set the answer’s location on the image
as the region to be annotated, while for those regarding fine-grained visual reasoning, we annotate
the locations of all supporting evidences used to infer the final answer. Specifically, we first obtain
the OCR results using Google OCR service for each document image in MMDocBench. For fine-
grained visual perception tasks, we automatically identify the corresponding value and its bounding
box in the OCR result based on the answer. If only one value matches, we use the region of this
value as the correct one; otherwise, our annotators manually review and select the appropriate re-
gion for the answer. For fine-grained visual reasoning tasks, we search for the regions for each
supporting evidence if the source dataset already provides the annotation of supporting evidence,
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Figure 3: Position distribution of all regions.
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Figure 4: Area distribution of all regions.

like TAT-DQA (Zhu et al., 2022); for the rest, our annotators manually check supporting evidence
and annotate the appropriate region for each one.

Step 4: QA & Region Verification. To ensure high quality of MMDocBench, we further verify
the collected data. First, we develop a program to automatically highlight the answer or supporting
evidence with its corresponding regions on the document image. Then, different annotators review
the rendered document image in three rounds to ensure that the answer and supporting regions to
the question are correct.

3.3 STATISTICS AND ANALYSIS

With the above construction pipeline, the resultant MMDocBench contains a total of 2, 400 doc-
ument images and 4, 338 QA pairs with 11, 353 annotated supporting regions. On average, each
question has 10.1 words and around 2.61 supporting regions. Refer to Table 4 in Appendix and
Table 1 for more detailed statistics of our MMDocBench.

We analyze the position distribution and area distribution of the annotated supporting regions
for each QA pair in our MMDocBench. To compute the position distribution, given a region
[x1, y1, x2, y2], we first calculate the center point by (x1+x2

2 , y1+y2

2 ). Then, we plot all the cen-
ter points on an image with a dimension of 1000 × 1000. As shown in Figure 3, all points are
scattered across the entire image, indicating no clear positional bias for supporting regions in MM-
DocBench. We also analyze the area distribution of all regions to examine their granularity. We first
calculate the area of each region and then apply a logarithmic transformation with a base of 10 on
the computed area value. As shown in Figure 4, the granularity of regions shows a diversity and the
majority of the region areas fall between 1, 000 and 10, 000, corresponding to regions sized between
10×100 and 100×100. These analyses well highlight the high quality of our MMDocBench, which
is crucial for accurately assessing the capabilities of LVLMs in fine-grained visual understanding.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Evaluated LVLMs. We conduct evaluation experiments with 10 open-source LVLMs and 3 propri-
etary LVLMs on the proposed MMDocBench. We select those open-source models with strong doc-
ument understanding capabilities, including LLaVA-V1.6-34B (Liu et al., 2024a), Llava-OV-Chat-
72B (Li et al., 2024a), TextMonkey (Liu et al., 2024c), MiniCPM-Llama3-V2.5 (Yao et al., 2024),
InternVL2-8B (Chen et al., 2024c), InternVL2-Llama3-76B (Chen et al., 2024c), Qwen2-VL-7B-
Instruct (Wang et al., 2024a), mPLUG-DocOwl-1.5-Omni (Hu et al., 2024), mPLUG-Owl3 (Ye
et al., 2024), and Ferret (You et al., 2024). For proprietary LVLMs to be evaluated in our ex-
periments, we use Qwen-VL-Max-0809 (Bai et al., 2023) and two versions of the latest OpenAI
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Table 2: The overall performance of different LVLMs on MMDocBench. Best results are marked in
bold while second-best are underlined. Metric values below 1% are marked with ’-’.

Model Size
Fine-Grained

Visual Perception
Fine-Grained

Visual Reasoning Overall

EM F1 IOU EM F1 IOU EM F1 IOU
Close-Source LVLMs

GPT-4o - 62.47 65.18 3.21 70.33 72.56 1.68 66.40 68.87 2.44
GPT-4V - 52.37 56.95 2.48 50.97 52.22 - 51.67 54.58 1.54
Qwen-VL-Max - 61.63 65.89 18.60 70.15 72.24 4.27 65.89 69.06 11.44

Open-Source LVLMs
InternVL2-Llama3-76B 76B 54.63 58.84 2.30 61.76 64.46 - 58.20 61.65 1.54
LLava-OV-Chat-72b 72B 52.59 57.49 2.28 65.26 67.55 - 58.93 62.52 1.57
mPLUG-DocOwl1.5-Omni 72B 8.18 12.82 1.04 12.24 13.67 - 10.21 13.25 -
LLaVA-V1.6-34B 34B 32.75 39.13 2.66 27.85 31.34 - 30.30 35.23 1.63
Qwen2-VL-7B-Instruct 9B 55.15 59.14 15.16 43.07 45.88 2.69 49.11 52.51 8.93
TextMonkey 9B 31.41 35.88 19.22 13.73 14.74 - 22.57 25.31 9.87
MiniCPM-Llama3-V2.5 8B 33.71 40.42 5.93 30.95 33.23 1.45 32.33 36.82 3.69
InternVL2-8B 8B 45.72 51.42 2.01 45.16 48.57 - 45.44 50.00 1.29
mPLUG-Owl3 7B 15.63 19.97 - 10.84 12.65 - 13.24 16.31 -
Ferret 7B 3.96 6.96 4.33 - - - 1.98 3.48 2.16

GPT (Achiam et al., 2023), i.e. GPT-4o-2024-08-06 and GPT-4-turbo-2024-04-09. These models
show a noticeable diversity in respective parameter sizes, visual encoders, and language models.

Instruction Design. For each main task in MMDocBench, we manually design an instruction
template to guide the LVLM to output the answer and supporting regions in JSON format, e.g.,
{“answer”:“{answer}”, “bbox”:[“{bbox1}”,“{bbox2}”]}. For fine-grained visual perception tasks,
we instruct the LVLM to output the results directly, while for fine-grained visual reasoning tasks,
we enable chain-of-thought (CoT) in the instructions. Since some LVLMs cannot follow the in-
structions well during the test, especially for the region predictions, we revise the instructions based
on the setting of these LVLMs to improve their performance. At inference, we apply zero-shot
prompting on all the LVLMs to generate responses for each question. After obtaining the response,
we develop a program that uses strict regular expressions to extract the predicted answer and the
supporting regions for evaluation.

Evaluation Metrics. For each question, we use Exact Match (EM) and F1-score to evaluate the
predicted answer, and Intersection over Union (IOU) to assess the predicted region(s). The EM is
determined by matching every character of the model’s text prediction to the ground truth. If all
characters are matched, the EM is 1, and otherwise 0. For F1-score, we calculate the word-level F1
based on the number of words in model prediction, ground truth, and their intersection (Rajpurkar
et al., 2018). The Intersection over Union (IOU) is computed between the predicted region and the
ground-truth region, taking into account their overlapping area and union area. The scores on the
three metrics for each sub-task are computed by taking the mean of corresponding metric scores for
all the questions included in this sub-task. To obtain metric scores per task or capability, and overall
performance, we calculate the macro average across all corresponding lower-level metric scores.

4.2 MAIN RESULTS

We conduct a comprehensive comparison of different LVLMs with our proposed MMDocBench, and
show the results in Table 2. We make below key findings. 1) The proposed MMDocBench poses
significant challenges to current LVLMs in terms of both answer prediction and region prediction.
The best model GPT-4o achieves 66.40% in EM for answer prediction, but only 2.44% in IOU
for region prediction. Another close-source model, Qwen-VL-Max, which has comparable answer
prediction performance to GPT-4o, is the best-performing model for region prediction, with an IOU
score of 11.44% only. This highlights substantial challenges of region prediction in MMDocBench.
2) There is a large gap in answer prediction performance between open-source and close-source
models, while that in their region prediction performance is minor. For answer prediction, GPT-
4o significantly outperforms the best open-source model Llava-OV-Chat-72b (with 58.93% in EM)
by over 12% in EM. For region prediction, open-source models like TextMonkey and Qwen2-VL-
7B-Instruct, with IOU scores of 8.93% and 9.87% respectively, perform slightly worse than Qwen-
VL-Max but outperform GPT-4o by around three times. This could be explained by OpenAI using
insufficient samples with visual grounding requirements when training GPT-4o and GPT-4v, leading
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Figure 5: Model performance comparison
across all tasks with F1 score.

Figure 6: Model performance comparison
across all tasks with IOU metric.

to a lack of visual grounding capability. Another possible reason is that visual encoders adopted in
GPT-4o and GPT-4v do not effectively support fine-grained visual understanding, which we leave
for future investigation. 3) LVLMs trained on document images with text-grounding requirements,
such as Qwen-VL-Max, Qwen2-VL-7B-Instruct, and TextMonkey, show improvements in region
prediction, while those trained with object-level grounding over natural images, like Ferret, exhibit
no such improvements. This highlights the necessity of establishing a benchmark that supports
visual grounding at various and finer granularities on document images, such as our MMDocBench.

In the following, we further analyze model performance on answer prediction and region prediction
regarding fine-grained visual perception and fine-grained visual reasoning, respectively.

Answer Prediction. We make below key findings. 1) GPT-4o consistently beats all other models on
both fine-grained visual perception and fine-grained visual reasoning tasks in terms of EM, demon-
strating its superior effectiveness. 2) Larger models, like GPT-4o, Qwen-VL-Max, InternVL2-
Llama3-76B, and Llava-OV-Chat-72b tend to perform better on fine-grained visual reasoning tasks
than fine-grained visual perception tasks, while smaller models, conversely, excel in fine-grained
visual perception tasks over reasoning tasks. This might be because reasoning capabilities improve
significantly as the model size increases.

Region Prediction. We make below key findings. 1) TextMonkey achieves the best results on fine-
grained visual perception tasks with 19.22% in IOU, but it fails to output supporting regions for fine-
grained visual reasoning tasks. One possible reason is that TextMonkey only involves perception-
related samples and instructions for training its grounding ability, resulting in its inability to ground
the supporting evidence for reasoning tasks. 2) All LVLMs face significant challenges in predicting
supporting regions for fine-grained visual reasoning tasks. The performance of most LVLMs on
fine-grained visual reasoning tasks is notably worse than that on fine-grained visual perception tasks.
Qwen-VL-Max, which is the best model for region prediction on fine-grained visual reasoning tasks,
earns only 4.27% in IOU, indicating the remarkable challenges of this task.

4.3 ANALYSIS ON DIFFERENT TASKS

We compare the performance of various LVLMs across tasks and present the results in Figure 5
and Figure 6. We make below key findings. 1) As shown in Figure 5, GPT-4o and Qwen-VL-
Max are the best and second-best models across most tasks among all LVLMs, except for Logical
Reasoning and Spatial Reasoning, where LLaVA-OV-Chat-72B outperforms all other models. 2) As
shown in Figure 6, all LVLMs struggle with the prediction of supporting regions on almost all the
tasks, except for Text Recognition, where the best model, Qwen-VL-Max, achieves around 71.2%
in IOU. Qwen-VL-Max delivers the best results in region prediction across most tasks, except for
Forgery Detection, Infographic QA, and Text Localization, where TextMonkey ranks the first. 3)
Among all the tasks, Document Forgery Detection, a fine-grained visual perception task, is the
most challenging for all LVLMs, with the best result being only around 20.6% in EM for answer
prediction and 1.8% in IOU for region prediction; As illustrated in Figure 1, this task requires the
model to identify the inconsistent word(s) against other words within the image. In addition, the
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Table 3: The performance comparison of LVLMs across different document types. Best results are
marked in bold; second-best are underlined. Metric values below 1% are marked with a ’-’.

Model General Table-Based Table-Text Chart-Based Infographic-Based

F1 IOU F1 IOU F1 IOU F1 IOU F1 IOU
Close-Source LVLMs

GPT-4o 71.21 3.25 71.31 1.39 77.97 2.90 71.53 3.06 74.41 1.38
GPT-4V 58.65 2.43 56.84 - 62.76 2.17 54.89 1.64 64.27 1.14
Qwen-VL-Max 68.45 19.38 67.35 5.23 80.89 9.52 74.18 11.53 79.41 4.39

Open-Source LVLMs
InternVL2-Llama3-76B 65.72 2.57 60.28 - 68.37 - 68.39 1.38 68.67 -
LLaVA-OV-Chat-72B 61.83 2.65 65.34 - 69.28 1.17 68.39 1.10 69.53 -
mPLUG-DocOwl1.5-Omni 17.06 - 13.35 - 11.84 - 12.99 - 19.69 1.25
LLaVA-V1.6-34B 42.53 2.57 33.42 - 36.65 - 40.62 - 33.96 -
Qwen2-VL-7B-Instruct 55.64 16.57 50.14 2.67 64.12 5.17 55.92 7.57 59.74 2.81
TextMonkey 36.11 15.44 20.17 4.01 24.70 3.34 23.62 5.51 27.35 4.43
MiniCPM-Llama3-V2.5 40.90 6.67 34.97 1.59 41.64 3.26 42.61 - 39.49 3.83
InternVL2-8B 55.24 2.04 52.17 - 53.01 - 57.93 - 52.49 -
mPLUG-Owl3 21.27 - 10.89 - 18.76 - 22.02 - 15.53 -
Ferret 8.61 7.17 3.08 - 4.70 - 5.81 - 5.63 -

answer prediction performance of all LVLMs on Text Localization and Table Cell Localization is
poor, underscoring the challenges posed by both tasks. Refer to Section A.2 in Appendix for a more
detailed performance comparison of all LVLMs across different tasks.

4.4 ANALYSIS ON DIFFERENT DOCUMENT TYPES

Based on the majority of content included, we categorize all the document images in MM-
DocBench into five types: General Document, Table-Based Document, Table-Text Document,
Chart-Based Document, and Infographic-Based Document, and ensure document images per sub-
task belong to the same one category. Refer to Table 9 in Appendix for detailed strategies.

We present LVLMs’ results across different document types in Table 3, from which we make below
findings. 1) For answer prediction, GPT-4o obtains the best performance on General Document and
Table-Based Document, while Qwen-VL-Max ranks the first across the other three document types.
2) For region prediction, TextMonkey outperforms all other models on Infographic-Based Docu-
ment, while Qwen-VL-Max leads on the remaining four document types. 3) In comparison, region
prediction on other document types is significantly more challenging than on General Documents,
while there is no notable difference in answer prediction across different document types.

5 CONCLUSION

In this work, we introduce the MMDocBench benchmark to comprehensively evaluate LVLMs’ fine-
grained visual perception and reasoning capabilities via various OCR-free document understanding
tasks. In MMDocBench, we carefully design 15 tasks and 48 sub-tasks that require LVLMs to
perform deep, fine-grained interpretation of image details to answer each question. To enable a
more comprehensive evaluation, we provide annotations of the supporting regions for each question-
answer pair to assess whether LVLMs have the abilities to correctly ground their predictions on the
associated regions in the image. With MMDocBench, we evaluate various open-source and propri-
etary LVLMs, analyzing their performance in fine-grained visual document image understanding.
We observe that our MMDocBench presents significant challenges to current LVLMs in both answer
and region prediction, with GPT-4o achieving the highest answer prediction score of 66.40% in EM
and Qwen-VL-Max achieving the best region prediction score of 11.44% in IOU. Moreover, we
find that open-source LVLMs demonstrate competitive performance in region prediction compared
to proprietary models, despite a significant gap in answer prediction. We believe MMDocBench can
enable a thorough and multi-faceted evaluation of fine-grained visual document understanding of
LVLMs, thereby facilitating LVLMs’ future advancement.
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Jordy Van Landeghem, Rubèn Tito, Łukasz Borchmann, Michał Pietruszka, Pawel Joziak, Rafal
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A APPENDIX

A.1 KEY STATISTICS

We present some key statistic about MMDocBench in Table 4.

Table 4: Key statistics of MMDocBench.

Statistic Number
Total Number of Tasks 15
- # Visual Perception Tasks 9
- # Visual Reasoning Tasks 6

Total Number of Sub Tasks 48
- # Visual Perception Sub-Tasks 19
- # Visual Reasoning Sub-Tasks 29

Number of Existing Datasets Involved 21
Total Number of Images 2,400
Total Number of QA Pairs 4,338
Total Number of Regions 11,353
Avg. Number of Words per Question 16.14
Avg. Number of Words per Answer 4.08
Avg. Number of Regions per Question 2.61
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A.2 DETAILED PERFORMANCE OF LVLMS ACROSS DIFFERENT TASKS

Table 5: Model performance comparison across different fine-grained visual perception tasks using
F1 score. TXR:Text Recognition, TBR:Table Recognition, TXL:Text Localization, TCL:Table Cell
Localization, KIE:Key Information Extraction, DFD:Document Forgery Detection, DQA:Document
Question Answering, CQA:Chart Question Answering, IQA:Infographic Question Answering.

Model Fine-Grained Visual Perception

TXR TBR TXL TCL KIE DFD DQA CQA IQA
GPT-4o 95.66 73.53 10.81 42.14 89.23 20.44 88.76 85.18 80.90
GPT-4V 88.28 73.33 14.12 30.04 82.45 1.99 79.08 72.31 70.93
Qwen-VL-Max 91.85 70.05 29.09 39.59 90.66 6.74 90.23 88.77 86.00
InternVL2-Llama3-76B 90.82 75.18 12.90 33.25 85.97 9.24 74.06 80.53 67.64
LLaVA-OV-Chat-72B 90.58 68.12 5.74 26.55 79.67 4.49 81.09 84.16 76.99
mPLUG-DocOwl1.5-Omni 33.90 - 0.80 2.19 7.37 2.25 15.03 16.73 24.32
LLaVA-V1.6-34B 77.68 4.43 11.97 67.14 2.92 54.88 55.27 38.72
Qwen2-VL-7B-Instruct 89.04 76.11 24.57 28.00 81.63 0.67 79.23 78.21 74.76
TextMonkey 88.13 - 26.10 8.70 59.98 5.50 53.12 42.66 38.71
MiniCPM-Llama3-V2.5 78.40 47.40 11.91 18.27 55.52 1.01 51.40 56.01 43.83
InternVL2-8B 79.09 74.93 6.51 21.70 78.53 5.76 67.21 72.26 56.81
mPLUG-Owl3 45.73 5.31 0.12 7.67 38.20 1.59 28.07 36.01 17.04
Ferret 29.19 - 5.32 0.57 0.69 0.93 7.56 5.81 5.63

Table 6: Model performance comparison across different fine-grained visual perception tasks using
IOU. TXR:Text Recognition, TBR:Table Recognition, TXL:Text Localization, TCL:Table Cell Lo-
calization, KIE:Key Information Extraction, DFD:Document Forgery Detection, DQA:Document
Question Answering, CQA:Chart Question Answering, IQA:Infographic Question Answering.

Model Fine-Grained Visual Perception

TXR TBR TXL TCL KIE DFD DQA CQA IQA
GPT-4o 14.64 0.93 2.09 2.47 2.04 0.25 2.06 3.20 1.18
GPT-4V 8.66 0.73 1.55 1.30 4.42 0.02 1.66 2.40 1.57
Qwen-VL-Max 70.80 5.59 10.91 6.40 33.22 1.12 16.79 16.96 5.66
InternVL2-Llama3-76B 14.48 0.61 1.20 0.50 1.45 0.30 0.62 0.90 0.62
LLaVA-OV-Chat-72B 13.48 0.25 1.18 0.53 2.60 0.05 1.03 0.72 0.65
mPLUG-DocOwl1.5-Omni 3.49 - 1.01 0.03 0.30 0.12 0.93 0.14 2.27
LLaVA-V1.6-34B 11.01 0.55 1.49 5.45 0.32 0.94 0.35 1.13
Qwen2-VL-7B-Instruct 65.55 2.23 7.08 3.12 30.63 0.00 12.27 11.28 4.28
TextMonkey 67.54 - 43.64 2.39 24.30 1.80 14.72 10.48 8.15
MiniCPM-Llama3-V2.5 12.94 1.09 9.18 0.68 13.03 0.03 9.26 0.40 6.74
InternVL2-8B 11.86 0.42 1.03 1.00 2.34 0.07 0.58 0.48 0.34
mPLUG-Owl3 2.03 0.21 0.02 0.31 0.39 0.01 0.15 0.12 0.19
Ferret 29.12 - 1.47 0.98 0.98 0.29 0.83 0.74 0.23
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Table 7: Model performance comparison across different fine-grained visual reasoning tasks using
F1.

Model Fine-Grained Visual Reasoning

Arithmetic Reasoning Logical Reasoning Spatial Reasoning Comparison Sorting Counting
GPT-4o 76.52 73.55 67.50 74.64 73.86 69.28
GPT-4V 53.36 49.25 54.08 49.18 66.57 40.89
Qwen-VL-Max 82.37 70.27 66.80 69.84 76.70 67.45
InternVL2-Llama3-76B 65.77 70.28 65.44 62.27 64.83 58.17
LLaVA-OV-Chat-72B 65.91 75.09 77.18 71.51 62.88 52.74
mPLUG-DocOwl1.5-Omni 4.92 11.17 22.14 18.76 17.30 7.72
LLaVA-V1.6-34B 28.37 44.61 43.46 37.12 18.10 16.36
Qwen2-VL-7B-Instruct 50.42 43.61 53.42 48.93 38.26 40.62
TextMonkey 2.11 10.91 20.38 25.68 14.37 14.99
MiniCPM-Llama3-V2.5 26.73 32.37 44.40 44.54 39.57 11.78
InternVL2-8B 48.19 56.64 60.08 49.73 41.30 35.50
mPLUG-Owl3 2.81 25.34 16.79 22.23 5.39 3.36
Ferret 0.00 0.00 0.00 0.00 0.00 0.00

Table 8: Model performance comparison across different fine-grained visual reasoning tasks using
IOU.

Model Fine-Grained Visual Reasoning

Arithmetic Reasoning Logical Reasoning Spatial Reasoning Comparison Sorting Counting
GPT-4o 0.66 1.70 2.81 0.70 1.85 2.37
GPT-4V 0.41 0.44 0.98 0.44 0.42 0.91
Qwen-VL-Max 3.14 4.68 7.15 4.90 2.63 3.14
InternVL2-Llama3-76B 0.50 1.73 1.43 0.18 0.04 0.86
LLaVA-OV-Chat-72B 0.42 0.91 1.92 0.31 0.58 1.08
mPLUG-DocOwl1.5-Omni 0.22 0.02 0.21 0.13 0.06 0.17
LLaVA-V1.6-34B 0.17 1.39 1.02 0.28 0.43 0.32
Qwen2-VL-7B-Instruct 1.74 4.66 4.99 1.92 1.18 1.66
TextMonkey 0.00 0.00 1.12 0.52 1.41 0.00
MiniCPM-Llama3-V2.5 1.16 1.49 2.37 2.64 0.28 0.77
InternVL2-8B 0.11 1.06 1.43 0.21 0.18 0.45
mPLUG-Owl3 0.00 0.04 0.71 0.00 0.02 0.00
Ferret 0.00 0.00 0.00 0.00 0.00 0.00
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A.3 DOCUMENT CATEGORY

We follow the strategy in Table 9 to divide the document images in each sub-task into five categories,
i.e., General Document, Table-Based Document, Table-Text Document, Chart-Based Document and
Infographic-Based Document.

Table 9: The document image category for each sub task

Task Sub Task Category

Text Recognition TextOCR General Document
OCR-VQA General Document

Table Recognition FinTabNet Table-Based Document
PubTables-1M Table-Based Document

Text Localization Text2Bbox General Document
Bbox2Text General Document

Table Cell Localization FinTabNet Table-Based Document
PubTables-1M Table-Based Document

Key Information Extraction
SROIE General Document
WildReceipt General Document
CORD General Document

Document Forgery Detection T-SROIE General Document
DocTamper General Document

Document Question Answering
DocVQA General Document
WTQ Table-Based Document
TAT-DQA Table-Text Document

Chart Question Answering ChartQA Chart-Based Document
CharXiv Chart-Based Document

Infographic Question Answering InfographicVQA Inforgraphic-Based Document

Arithmetic Reasoning

DUDE General Document
WTQ Table-Based Document
TAT-DQA Table-Text Document
CharXiv Chart-Based Document
InfographicVQA Inforgraphic-Based Document

Logical Reasoning

DUDE General Document
WTQ Table-Based Document
TAT-DQA Table-Text Document
CharXiv Chart-Based Document
InfographicVQA Inforgraphic-Based Document

Spatial Reasoning

DUDE General Document
WTQ Table-Based Document
CharXiv Chart-Based Document
InfographicVQA Inforgraphic-Based Documen

Comparison

DUDE General Document
WTQ Table-Based Document
TAT-DQA Table-Text Document
CharXiv Chart-Based Document
InfographicVQA Inforgraphic-Based Document

Sorting

DUDE General Document
WTQ Table-Based Document
TAT-DQA Table-Text Document
CharXiv Chart-Based Document
InfographicVQA Inforgraphic-Based Document

Counting

DUDE General Document
WTQ Table-Based Document
TAT-DQA Table-Text Document
CharXiv Chart-Based Document
InfographicVQA Inforgraphic-Based Document

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.4 SAMPLES FOR EACH TASK IN MMDOCBENCH

A.4.1 TEXT RECOGNITION

• Question: Could you identify and read the text present in the provided image?

• Answer: Chaos Computer Club

• Bounding Box: [339, 362, 856, 498]

A.4.2 TEXT LOCALIZATION

• Text2Bbox Question: Can you find where ”Miami, Florida.” appears in the image and
send back its position?

• Bounding Box: [406, 644, 576, 658]

• Bbox2Text Question: For the provided image and bounding box [406, 644, 576, 658], can
you extract and return the text contained within the specified area?

• Text: Miami, Florida.
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A.4.3 TABLE RECOGNITION

• Question: Could you break down the table into its cell components?

• Answers: [[Total genes, Total\nCGIs, Promoter\nCGIs, Inside\nCGIs, Down-
stream\nCGIs], [42, 49, 17, 31, 1], [Unvaried, 29, 10, 18, 1], [Unmet wave, 16, 6, 10,
0], [Met wave, 4, 1, 3, 0]]

• Bounding Box: [[[100,252,236,347], [320,217,385,382], [445,217,559,382],
[614,217,687,382], [739,217,896,382]], [[100,394,130,482], [339,394,369,482],
[489,394,513,482], [638,394,663,482], [812,394,823,482]], [[100,494,211,582],
[339,494,366,582], [489,494,516,582], [638,494,663,582], [812,494,823,582]],
[[100,588,252,676], [339,588,366,676], [494,588,510,676], [638,588,663,676],
[809,588,823,676]], [[100,688,214,776], [345,688,361,776], [497,688,508,776],
[644,688,657,776], [809,688,823,776]]]

A.4.4 TABLE CELL LOCALIZATION

• Question: What is stored in the cell at the intersection of row 1 and column 3?

• Answer: Normal

• Bounding Box: [594, 283, 684, 373]
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A.4.5 KEY INFORMATION EXTRACTION

• Question: Please perform detection and recognition of the text that has been categorized
under the ”total amount” label.

• Answer: 50.000

• Bounding Box: [685, 740, 799, 762]

A.4.6 DOCUMENT FORGERY DETECTION

• Question: Can you spot the words that have been falsified in the photo?

• Answer: results

• Bounding Box: [220, 707, 380, 755]
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A.4.7 DOCUMENT QUESTION ANSWERING

• Question: When was the document prepared?

• Answer: December 31, 1943

• Bounding Box: [428, 448, 579, 464]

A.4.8 CHART QUESTION ANSWERING

• Question: How many app publishers were in Apple’s App Store in 2017?

• Answer: 143

• Bounding Box: [226, 222, 250, 235]
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A.4.9 INFOGRAPHIC QUESTION ANSWERING

• Question: What is the contact number for children and teens suffering from mental crisis,
1-833-456-4566, 1-800-668-6868, or 1-866-633-4220?

• Answer: 1-800-668-6868
• Bounding Box: [147, 829, 331, 845]

A.4.10 COUNTING

• Question: How many years did Shares issued under the ESPP exceed $2 million?
• Reasoning Type: counting
• Answer: 3
• Bounding Box: []
• Supporting Evidence:

– Text: [4, 3, 4]
– Bounding Box: [[795, 225, 807, 236], [673, 225, 685, 236], [918, 225, 929, 236]]
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A.4.11 ARITHMETIC REASONING

• Question: how many years after the levanger church was built was the bamberg church
built?

• Reasoning Type: arithmetic

• Answer: 96

• Bounding Box: []

• Supporting Evidence:

– Text: [1998, 1902]
– Bounding Box: [[843, 506, 918, 551], [843, 407, 917, 452]]

A.4.12 LOGICAL REASONING

• Question: Which step denotes the quality assurance part of the test performed for COVID-
19?

• Reasoning Type: logical

• Answer: 8

• Bounding Box: [726,536,744,568]

• Supporting Evidence:

– Text: [they pass Quality Control (QC)]
– Bounding Box: [[712,685,811,737]]
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A.4.13 SPATIAL REASONING

• Question: Where is the largest font word printed at the top or bottom of the document?
• Reasoning Type: spatial
• Answer: Top
• Bounding Box: []
• Supporting Evidence:

– Text: [DIPLOMA]
– Bounding Box: [[382, 222, 610,268]]

A.4.14 COMPARISON

• Question: was the finish in 1930 above/below 12?
• Reasoning Type: comparison
• Answer: above
• Bounding Box: []
• Supporting Evidence:

– Text: [20]
– Bounding Box: [[547, 358, 577, 388]]
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A.4.15 SORTING

• Question:Which model has the least tie rate?\n * Your final answer must be grounded to
some text that is explicitly written and relevant to the question in the chart.\n * If you need
to answer multiple terms, separate them with commas.\n * Unless specified in the question
(such as answering with a letter), you are required to answer the full names of subplots
and/or labels by default.\n

• Reasoning Type: sorting
• Answer: GPT-3.5
• Bounding Box: [41,508,145,553]
• Supporting Evidence:

– Text: [10.0%]
– Bounding Box: [[536,493,642,575]]
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