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Abstract

Passive acoustic monitoring (PAM) has become a crucial and widespread tool
for conservation monitoring, aiding the protection of species threatened by gun-
based poaching through detecting calls and vocalizations. However, real-time
detection of gun-based poaching activity remains an unsolved challenge despite
its large ecological implications. Existing methodologies face high false positive
rates and utilize computationally intensive models unsuitable for real-time field
deployment. This research developed a lightweight deep neural network suitable
for on-board processing and a sensor integration layer to address these limitations.
The developed model achieved a 0.91 validation F1 at 935k parameters, retaining
94% performance (F1 @ 95% recall) of existing literature while reducing size by
over 87%. Statistical evaluation across acoustic array simulations demonstrated
consistent false positive reduction through the proposed sensor integration function,
presenting a promising approach for cost-effective real-time poaching detection
and wildlife conservation.

1 Introduction

Passive acoustic monitoring (PAM) with autonomous recording units (ARUs) enables long-term, cost-
effective, large-scale studies of vocal wildlife in remote environments [1]. In addition to the study of
non-human animal communication, PAM has become an indispensable tool for conservation: enabling
estimates of animal abundance, evaluation of ecosystem health, and assessment of anthropogenic
impacts [2, 3, 4, 5]. Moreover, acoustic monitoring can aid in detecting major threats to biodiversity,
such as illegal logging or poaching [6, 7, 8]. In particular, gun-based poaching drives far-reaching
species decline, from the illicit ivory trade [9, 10] to unsustainable bushmeat hunting [11, 10]. Yet
while the detection of animal vocalizations has been successfully performed across a broad range
of studies and taxa [12, 13, 14], accurate real-time detection of gunshots is still lacking despite
its large ecological implications. Immediate on-the-ground intervention of gun-based poaching
can dramatically reduce poaching rates, improve ecosystem stability, and protect targeted species
[15], at a potentially global scale, due to the benefits of acoustic monitoring [16]. A majority of
gunshot detection research has been applied for urban contexts, utilizing curated datasets, reducing
applicability for field applications [17, 18]. Existing literature on acoustic gunshot detection using real
field datasets (from rainforest environments) consistently mentions the inherent challenges with false
positives and generalization. Additionally, most methodologies utilize large fine-tuned models better
suited for retrospective studies [19, 20, 21]. To address these bottlenecks and to enable real-time
gun-based poaching detection, this research developed a lightweight deep neural network suitable for
on-board processing and a sensor integration function as a novel approach to reduce false positive
rates.
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Figure 1: Pipeline for detecting poaching activity through real-time acoustic gunshot detection. This
research develops and validates a lightweight model suitable for on-board processing (1) and SAIL,
or the Sensor Analysis and Integration Layer (2). SAIL is proposed as a novel method to reduce false
positive detections by integrating the predictions from spatially separate sensors positioned in an
array. The data used, the developed model, and the SAIL function are available with CLI functionality
at https://github.com/sail-gunshot-detect/sail-gunshot-detect-repo.

2 Methodology

2.1 Datasets

A pre-partitioned 35,980 4-second waveform dataset collected by Katsis et al. [19] was used for
training. The dataset contains a 50:1 class imbalance with gunshots in the minority. The same
partitioning used by Katsis et al. [19] was employed to ensure direct comparison. For evaluation
and acoustical simulation on a spatially distinct dataset, the test partition of a Vietnamese rainforest
dataset collected by Thinh Tien Vu et al. [20] was used, containing 129 background noise waveforms
and 19 gunshots. Both datasets hold the CC BY 4.0 license. The possibility of performing the
simulation on larger datasets is acknowledged; however, limited computing resources constrained the
size of the simulation dataset.

2.2 Preprocessing and Augmentation

Figure 2: Augmentations applied during
training. On the x and y axes are the 250
time bins spanning 4 seconds and the 64
mel bins spanning 0-4kHz.

Log-mel spectrograms were chosen as model input for
greater feature representation and dimensionality reduc-
tion. A window size of 256 samples with 50% overlap
maintained temporal resolution, while 64 mel bins covered
frequencies from 100Hz to 4kHz.

To enhance generalizability, extensive waveform-based
augmentations were employed during training. As seen in
Fig. 2, augmentations included pitch shifting, time shift-
ing, Gaussian noise addition, negative sample overlay, and
spectral/temporal masking inspired by SpecAugment [22].
Each augmentation had an occurrence probability of 0.3,
except negative sample overlay, which always occurred.

2.3 Lightweight Supervised Classification

Our model architecture incorporated depthwise-separable 2D convolutions, 1D convolutions, and a
GRU layer for computational efficiency while capturing gunshot features. The architecture comprised
three sequential components: three depthwise-separable 2D convolutional blocks with descending
kernel sizes from (7,7) to (3,3) for spatial feature extraction; three 1D convolutional layers (kernel
size 3) and a GRU layer for temporal modeling; and a classification block with global max pooling
and two fully connected layers for binary classification. The final model contained 935k parameters.

Models were trained for 40 epochs using the Adam optimizer and binary cross-entropy loss across
five seeds. Training lasted two hours per model on a personal computer with a GTX 1060 GPU. The
epoch with the lowest validation loss was selected for serialization.
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Figure 3: Precision-recall curves and boxplots of model performance across five seeds. AP denotes
average precision.

2.4 Sensor Integration

The simple spectral structure of a gunshot can resemble commonplace percussive sounds such
as snapping vegetation, often causing high false positive rates (FPRs). Yet unlike these sound
sources, gunshots propagate for much farther distances, giving the opportunity to improve detection
performance by considering predictions across multiple sensors.

A confidence weighting function mapping three or more sensor predictions to a more accurate final
prediction was designed with the following criteria: (i) penalizing confident and isolated predictions,
(ii) boosting sensor agreement, and (iii) producing probabilities from 0 to 1.

Pf (p1, . . . , pn) = σ

1−

∑
1≤i<j≤n

(1− pi)(1− pj)

n∑
k=1

pk

 (1)

Equation 1 describes the Sensor Analysis and Integration Layer (SAIL) function. It considers
all unique sensor pairs and calculates the product of their negative confidences, measuring joint
agreement that no event occurred. Summing across pairs yields an overall negative consensus,
normalized by the total positive confidence and inverted before applying a sigmoid operation for
the final probability of gunshot presence. Here, σ(x) = 1

1+ek(x−m) . The constant k determines the
steepness of the sigmoid function slope, and the constant m determines the centering. To ensure
smooth and centered mapping of probabilities to outputs between zero and one, values of k = 10 and
m = 0.5 were chosen.

2.4.1 Simulation Design

Acoustic propagation simulation used waveforms from the spatially distinct dataset. Three augmented
copies per waveform underwent gain, Gaussian noise, and temporal shift transformations simulating
distance-dependent attenuation, emulating a three-sensor array. Inference produced confidence scores
for each augmented waveform, which were fed into the SAIL function. To compare SAIL to a
stochastic rather than deterministic baseline, the method of averaging the confidence scores was
evaluated as well.

Statistical analysis was performed at the per-run and per-file scales, yielding dataset-level FPRs and
mean FPRs of individual files across runs, respectively. Both scales were chosen to evaluate the
stability of SAIL across a large number of simulated sensor arrays as well as the file-conditional
effect of SAIL. Across K = 1000 simulation runs, Wilcoxon signed-rank tests evaluated whether
median differences d = FPRinference − FPRSAIL/AVG exceeded zero.

3 Results

Performance evaluation addressed (1) model performance versus larger networks, (2) the effect of
domain shift and model generalization to a spatially distinct dataset, and (3) SAIL’s effect on FPRs.

3



Classifier F1Best F1 @ 95% Recall F1Distinct Model Size Parameters

Katsis et al. (ResNet18) Unk. 0.89 Unk. 87MB ≈ 11.7M
Proposed 0.91 0.85 0.80 11MB 935K

Table 1: A table comparing the performance and model file size of the leading deep-learning classifier
for gunshot detection on the Belizean dataset with the best-performing model developed in this study.
F1Distinct denotes the best F1 on the spatially-distinct Vietnamese dataset.

Per-Run Per-File

FPR Difference Mean 95% CI p-value Mean 95% CI p-value

INF-SAIL 0.0233 0.023–0.023 <1e-5 0.0233 0.0–0.0543 0.04
INF-AVG 0.0035 0.0032–0.0039 <1e-5 0.0035 -0.0076–0.0203 0.57
AVG-SAIL 0.0197 0.0198–0.0201 <1e-5 0.0198 0.0022–0.0441 9e-3

Table 2: Summary of Wilcoxon statistical testing the difference in false positive rates (FPRs) between
inference, SAIL, and averaging across the 1000 simulations for both per-run and per-file scales.
INF-SAIL denotes the FPR difference between inference and SAIL, and similarly INF-AVG and
AVG-SAIL denote the respective FPR differences between inference, averaging, and SAIL.

3.1 Gunshot Detection

Fig. 3 presents precision-recall curves for the Belizean dataset validation partition. Models achieved
0.94 mean average precision and 0.99 average specificity at optimal F1 thresholds. Table 1 compares
our best-performing model against the fine-tuned ResNet18 from Katsis et al. [19]. Our model is
11MB, compressing to 964KB via TensorflowLite serialization. Additionally, our approach obtains
F1 scores of 0.91 (optimal threshold) and 0.85 (95% recall threshold), achieving significant model
size and parameter reduction with only a six-percent reduction in F1 @ 95% Recall.

3.2 SAIL Simulation

Table 2 summarizes statistical testing, reporting mean FPR differences, Wilcoxon p-values, and 95%
confidence intervals (bootstrapped with n = 5000). SAIL achieved statistically significant FPR
reductions at both scales, eliminating FPRs on average, whereas averaging produced a small, 0.35
percent-point per-run FPR reduction and a non-significant per-file FPR reduction.

Part (a) of Fig. 4 displays per-run metrics across 1000 simulations, comparing baseline inference with
SAIL. Simple inference achieved an FPR of 0.0233. However, even this relatively low FPR generates
42 false alarms per hour with a 4-second, 50% overlap sliding window detection at a threshold of
0.2. Averaging produced a mean FPR of 0.0197, slightly lower than simple inference, while also
producing a much wider spread, including some outliers of higher FPR and lower precision and F1.
Averaging produced a mean recall, or true-positive rate, of 0.72, higher than SAIL’s mean recall of
0.61 or inference’s mean recall of 0.68. SAIL consistently reduced FPR to zero and produced a mean

Figure 4: From left to right: (a) Distribution of SAIL metrics (boxplots) on a per-run scale across
simulations alongside the performance of simple inference (red dots). (b) Scatterplot of median SAIL
predictions for each filepath across simulations alongside inference predictions.
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recall of 0.61. This reduction in recall may be attributable to already low-SNR or far-away gunshots
undergoing substantial distance augmentations, resulting in more than one spectrogram copy having
no meaningful gunshot features. SAIL’s penalization system would treat this simulated array as a
negative.

Part (b) of Fig. 4 shows confidence score scatterplots comparing inference and median SAIL per-file
predictions. SAIL produces near-zero predictions for negatives and low-confidence positives while
boosting high-confidence positives. Noting the filepath position of the low-confidence (below 0.5)
positives on the left-hand scatterplot, we can see that these same filepaths constitute the false negatives
produced by SAIL.

4 Conclusion

In future work, this research will be adapted for use in Cornell’s Elephant Listening Project to
detect poaching activity threatening elephant populations via the detection of gunshots. Evaluation
of the lightweight model and the SAIL function on distance-labeled datasets is recommended to
infer suitable sensor array distances in field deployment. Additionally, the SAIL function can be
compared against other variants of itself, i.e., SAIL with simple output thresholding instead of a
sigmoid operation, or SAIL without normalization by total positive event confidence. While not
directly extendable to FPR reduction in field deployments, statistical evaluation of the 1000 acoustic
simulation runs demonstrates that SAIL consistently reduces false positive rates compared to simple
inference and averaging across a wide range of simulated sensor arrays.

The developed gunshot detector achieved a validation F1 score of 0.91 at 935k parameters, resulting
in less than 964KB of storage when serialized. Compared to existing literature, the model retains 94%
of performance while reducing size by over 87%. Overall, efficient deep learning and SAIL present a
promising approach towards cost-effective real-time poaching detection and wildlife conservation.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction claim (i) a lightweight gunshot detection model
suitable for on-board processing and (ii) a sensor integration function to reduce false
positives. This accurately reflects the paper’s contributions and scope, as reflected by Sec. 2
and 3, where a lightweight model is proposed, architecture and training is described, results
validated against existing literature using the same dataset is provided, and for the sensor
integration, the SAIL function is proposed and evaluated on a spatially distinct dataset
through acoustic simulation. The results (0.91 F1, 935k params, consistent FPR reduction
through SAIL across simulations) provide evidence for and back up the claims made in
the abstract and introduction, as it was motivated that the bottlenecks to real-time gunshot
detection in field environments were model file size and false positive rates.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In the conclusion, the author discusses that the results of the acoustic simu-
lations do not directly extend to FPR reduction in real field deployments, identifying the
limitations of the evaluation of SAIL. Additionally, in Sec. 2.1 (Datasets), it is acknowl-
edged that larger datasets exist for the acoustic simulation, but limited compute resources
constrained that size.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: There are no theorems or mathematical proofs in this paper. While the acoustic
simulations could be considered a theoretical result, the limitations are acknowledged in the
conclusion, identifying that the results do not directly carry over to real field deployments.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Key details appear in Methods: data partitions, spectrogram parameters,
augmentations, model composition, training epochs, optimizer/loss, seeds, and selection
criteria, acoustic simulation design, function description, and statistical testing description.
While more detail could be given to the exact model architecture and the exact code used for
the acoustic simulation, we were unable to provide them within the paper due to page (four
pages max) constraints. The developed model and code is available in the linked repository.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

9



• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The manuscript states the developed model, data-processing code, and SAIL
are available at the linked repository given in Fig. 1; datasets used are public and cited
(Katsis et al., Vu et al.) with instructions to access them in the repo.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Key details appear in Methods: data partitions (train/validation/test described
in Datasets), spectrogram parameters, augmentations, model composition, training epochs,
optimizer/loss, seeds, and selection criteria; additional exact hyperparameters and scripts
are provided in the linked repository.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Statistical testing (Wilcoxon signed-rank) is reported in Table 2 with p-values
and 95% CIs, with the bootstrap n provided, in Sec. 3.2, and the method of performing
the Wilcoxon signed-rank provided in Sec. 2.4.1; model variation across five seeds and
boxplots/PR curves (Fig. 3) are also provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Sec. 2.3, the paper reports training time and computer resources ("two hours
on a personal computer with a GTX 1060 GPU"). Neither the experiments nor the datasets
were large enough that memory or storage were relevant.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work uses public datasets, aims to aid conservation efforts, does not
involve human or animal subjects in its experiments, and no actions appear to conflict with
the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: The manuscript discusses positive conservation impacts (Introduction, Future
Work) but does not explicitly discuss potential negative societal impacts or misuse (e.g.,
surveillance or dual-use risks) nor mitigation strategies because the scope and content of the
work was identified to not require explicit discussion of potential negative societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The scope, content, and supplementary material pose no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: In Sec. 2.1 (Datasets), the datasets used in the paper are properly cited, credited,
and the license for each (CC BY 4.0) is explicitly stated.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Assets (SAIL function, developed model) are introduced, well documented,
and provided through an anonymous GitHub repository link.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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