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Abstract

Information extraction (IE) is a fundamen-001
tal area in natural language processing where002
prompting large language models (LLMs),003
even with in-context examples, cannot defeat004
efficient small LMs tuned on very small IE005
datasets. We observe that while LLMs are not006
designed for user-specified information types,007
they have a decent sense of important informa-008
tion, i.e., the meta-understanding of IE. There-009
fore, we propose a novel framework MetaIE010
to build a small LM as a meta-model by learn-011
ing to extract “important information”, such012
that this meta-model can be effectively and ef-013
ficiently adapted to all kinds of (few-shot) IE014
tasks. Specifically, we obtain the small LM015
via a symbolic distillation from an LLM. We016
construct the distillation dataset via sampling017
sentences from language model pre-training018
datasets and prompting an LLM to identify the019
typed spans of “important information”. Ex-020
tensive results on 13 datasets from 6 IE tasks021
confirm that MetaIE can offer a better start-022
ing point for few-shot adaptation and outper-023
form other strong meta-models, including a024
multi-task model built upon multiple large IE025
benchmark training sets. Moreover, we provide026
comprehensive analyses of MetaIE, such as the027
size of the distillation dataset, the meta-model028
architecture, and the size of the meta-model.029

1 Introduction030

Large language models (LLMs), such as Chat-031

GPT (OpenAI, 2023), benefit from the vast amount032

of training data and have demonstrated excep-033

tional performance across various areas through034

in-context learning (ICL) (Dong et al., 2023). How-035

ever, when it comes to information extraction (IE),036

LLMs, even with ICL examples, struggle to com-037

pete with smaller LMs, such as BERT (Devlin et al.,038

2019) and RoBERTa (Liu et al., 2019), fine-tuned039

on very small training sets (Peng et al., 2023c; Wad-040

hwa et al., 2023; Gao et al., 2024). This is usually041

regarded as a limitation of LLMs in following a 042

specific extraction scheme (Xu et al., 2023). 043

We observe that while LLMs are not designed 044

for user-specified information types, they have a 045

decent sense of important information, i.e., the 046

meta-understanding of IE. We formulate the IE 047

tasks as a label-to-span matching and decompose 048

the task as several label-specific instructions, such 049

as “Given an IE label (l), extract a span from the 050

input text” as shown in Figure 1. Here l can be, 051

for example, (1) Person, Location, Organization 052

in named entity recognition (NER), or (2) Tom 053

births at in relation extraction (RE) to verify if 054

there is a certain relation between two entities by 055

checking the other entity can be recognized or not. 056

Following these label-to-span instructions, LLMs 057

can handle all kinds of IE tasks and return imperfect 058

yet semantically reasonable answers. 059

In this paper, we propose a novel framework 060

MetaIE to build a small LM as a meta-model by 061

learning to extract “important information”, so this 062

meta-model can be effective and efficient for all 063

kinds of (few-shot) IE tasks. In this work, we aim 064

at 6 diverse and popular types of IE tasks, namely, 065

Named Entity Recognition, Relation Extraction, 066

Event Extraction, Semantic Role Labeling, Aspect- 067

based Sentiment Analysis, and Aspect Sentiment 068

Triplet Extraction, which we believe represents the 069

IE tasks well enough. Pioneer works have built 070

meta-models for specific type of IE tasks, e.g., Uni- 071

versalNER (Zhou et al., 2023) explores the poten- 072

tial of building a meta-model for different NER 073

tasks. Our work is more ambitious at a larger scope 074

of IE tasks. 075

MetaIE obtains the small LM via a symbolic 076

distillation (West et al., 2022) from an LLM fol- 077

lowing the label-to-span scheme. We construct the 078

distillation dataset via sampling sentences from lan- 079

guage model pre-training datasets and prompting 080

an LLM to identify the typed spans of “important 081

information”. In particular, we implement this idea 082
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Named Entity Recognition (NER)
Person (l): Tom (s) loves his hometown, LA.

Relation Extraction (RE)
Tom births in (l): Tom loves his hometown, LA (s).

Event Extraction (EE)
Argument for Trigger "loves" (l): Tom loves his hometown, LA (s).

All possible IE labels
(i.e., important information)In-distribution IE Tasks (for MultiIE)

Aspect Sentiment Triplet 
Extraction (ASTE)

Term for Positive Opinion "loves" (l): 
Tom loves his hometown, LA (s).

Semantic Role Labeling (SRL)
A1 Argument for Predicate "loves" (l):  
Tom loves his hometown (s), LA.

Out-of-distribution IE Tasks

Evaluations
Few-shot Fine-tuning

Meta-model
(e.g., a pre-trained / fine-tuned LM)

Raw Texts
(e.g., OpenWebText)

Strong baseline MultiIE:
Multi-task training on fewnerd, 
fewrel, and fewevent datasets

LLM
(e.g., GPT-3.5-turbo)

Symbolic distillation
following our 

proposed label-to-
span scheme

Prompting LLM to annotate 
all “important information”

Our proposed 
MetaIE Framework

…
…

…
…

Figure 1: An overview of different transfer learning schemes involved in the experiments.

with 100, 000 sentences from the OpenWebText083

corpus (Gokaslan and Cohen, 2019), which con-084

tains various webpage texts and is also a subset of085

the popular language model pre-training dataset.086

We feed these sentences to GPT-3.5-turbo for iden-087

tifying “important information”, which is then used088

to distill small LMs. It is worth mentioning that089

MetaIE is applicable to all types of small LMs and090

one only needs to convert the label-span pairs fol-091

lowing the corresponding labeling scheme (e.g.,092

BIO sequence labeling for encoders like RoBERTa,093

seq2seq labeling for encoder-decoders like BART).094

Our evaluation focuses on the few-shot learn-095

ing ability of the meta-model for different IE096

tasks. We mainly compare MetaIE with other097

meta-models, including (1) pre-trained language098

model, (2) a multi-task model built upon multiple099

large IE benchmark training sets, and (3) a task-100

specific model obtained via symbolic distillation101

from LLM for a single IE task. Large-scale train-102

ing datasets for NER, RE, and event extraction103

(EE) tasks are used in single-IE-task and multi-104

IE-task pre-training, therefore, these datasets shall105

be considered as in-task-distributional for these106

two types of methods. For a more comprehen-107

sive evaluation, we further include out-of-task-108

distributional datasets from (1) semantic role la-109

beling (SRL) (Carreras and Màrquez, 2005), (2)110

aspect-based sentiment analysis (ABSA) (Pontiki111

et al., 2014), and (3) aspect-sentiment triplet extrac-112

tion (ASTE) (Xu et al., 2020), totaling 13 datasets113

across 6 IE tasks. In our experiments, MetaIE gen-114

erally achieves the best performance, only very115

occasionally losing to task-specific distillation on 116

some in-task-distributional datasets. This demon- 117

strates that MetaIE is a strong and efficient method 118

to distill the meta-understanding of IE from LLMs 119

into small LMs. Remarkably, distilling from the 120

LLM-produced dataset following the traditional hu- 121

man annotation schemes performs poorly. There- 122

fore, the success of MetaIE, rather than from purely 123

using LLMs, shall also come from our label-to- 124

span scheme. 125

We have further conducted comprehensive anal- 126

yses of MetaIE. We study the scaling-up rules to 127

investigate the model and dataset size boundaries in 128

obtaining the meta-understanding of IE. We show- 129

case the diversity of the types of “important infor- 130

mation” in the MetaIE distillation dataset. We show 131

that the RoBERTa with sequence labeling frame- 132

work is the best meta-model architecture compared 133

with sequence-to-sequence and decoder-only mod- 134

els, at a similar scale. 135

Our contributions are three-fold: 136

• We are the first to build a small LM as a meta- 137

model for all kinds of IE tasks. 138

• We propose a novel label-to-span scheme that 139

unifies all IE tasks and applies symbolic distil- 140

lation to distill the meta-understanding from an 141

LLM to a small LM. 142

• We have a rigorous experiment design, which 143

covers various IE tasks and meta-model meth- 144

ods. Comprehensive experiment results support 145

the intuitive expectation and advantage of our 146

MetaIE. 147
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2 Related Works148

2.1 Information Extraction149

Information extraction (IE) is one of the most pop-150

ular and vital domains in natural language pro-151

cessing. Early IE systems are generally developed152

for a single IE dataset like NER (dos Santos and153

Guimarães, 2015), RE (Katiyar and Cardie, 2016),154

or EE (Chen et al., 2015). Due to the gap between155

the label sets and annotation styles of different IE156

datasets, few-shot IE frameworks (Ding et al., 2021;157

Han et al., 2018; Ma et al., 2023) are proposed to158

quickly learn models on new datasets. The IE mod-159

els are pre-trained on a large scale of IE labels and160

then transferred to the target domain by fine-tuning161

on few examples. With the emergence of LLMs, re-162

searchers have started to train LMs on multiple IE163

tasks with unified formats (Lu et al., 2022; Paolini164

et al., 2021). LLMs fine-tuned for general purpose165

(OpenAI, 2023; Touvron et al., 2023) have also166

shown strong potential to understand new IE tasks167

with their instruction-following ability. However,168

these LLMs still lag behind supervised models (Xu169

et al., 2023), potentially due to the difficulty of170

specifying the required pattern for extraction in dif-171

ferent datasets. Moreover, the cost of LLMs limits172

their application to IE on a large corpus. This paper173

aims to transfer the meta-understanding of IE from174

LLMs to lighter-weight models, which produce a175

flexible model with high adaptability to any target176

IE task.177

2.2 Model Distillation178

Model distillation (Hinton et al., 2015; Gou et al.,179

2021) is the process of transferring knowledge from180

large models (teacher models) to small ones (stu-181

dent models). Traditional distillation optimizes the182

similarity between logits produced by the teacher183

and student models (Hinton et al., 2015; Kim et al.,184

2019; Mirzadeh et al., 2020). Symbolic distilla-185

tion (West et al., 2022; Li et al., 2023; West et al.,186

2023) for language models learns a student model187

on texts generated by the teacher model. In com-188

parison with traditional distillation, symbolic dis-189

tillation allows the student model to focus on one190

aspect of the teacher model (West et al., 2022),191

which can be some high-level ability, such as chain-192

of-thought reasoning (Li et al., 2023), with much193

smaller model size. For IE, symbolic model dis-194

tillation has been successfully applied for an IE195

subtask, NER (Zhou et al., 2023), which distills196

an NER model that can extract entities in a broad197

domain. This paper aims to distill the cross-IE task 198

ability of LLMs, i.e., meta-understanding of IE and 199

proposes a meta-model that can effectively learn 200

IE tasks with few examples. 201

2.3 Meta Learning 202

Meta-learning (Finn et al., 2017a) enables the mod- 203

els to learn new tasks better, i.e., stronger transfer 204

learning ability. MAML (Finn et al., 2017b) pro- 205

poses a framework to learn a better starting point 206

for few-shot learning by utilizing multiple datasets 207

for loss updating. Reptile (Nichol et al., 2018), 208

similar to MAML, simplifies the meta-learning al- 209

gorithm by performing stochastic gradient descent 210

not only within each task but also across tasks, mak- 211

ing it more efficient and easier to implement. The 212

Prototypical Networks method (Snell et al., 2017) 213

employs a distance-based classification approach, 214

where it learns a metric space in which classifica- 215

tion can be performed by computing distances to 216

prototype representations of each class. While most 217

meta-learning methods are experimented on clas- 218

sification tasks, pre-training on multiple datasets 219

(Ding et al., 2021) and prototypical networks (Ji 220

et al., 2022) have been applied for IE. While these 221

methods focus on specific IE tasks like NER, we 222

aim to optimize a starting point for general IE tasks 223

by distilling from LLMs. 224

3 Our MetaIE Framework 225

3.1 Label-to-span Scheme 226

We formalize the IE task as given an IE label l 227

(e.g., Person in NER), extracting a span s from a 228

sentence X = [x1, · · · , xn]. The span s can be 229

represented as xi:j including the words from i-th 230

to j-th. Denoting the IE process as a mapping 231

fIE(·), it can be represented as s = fIE(X|l). 232

Machine learning-based methods aim to learn the 233

mapping by optimizing a model Mθ with parameter 234

θ. For a specific IE task (e.g., NER), the IE label set 235

L(Task) will contain l falling inside the task label, 236

i.e., (l ∈ L(Task)). Based on the general definition 237

of IE, the general IE label set L(IE) can be any 238

textual description, thus ∀Task,L(Task) ⊂ L(IE). 239

In this paper, we aim to learn a meta-model that 240

can be easily adapted to different IE tasks. In the 241

current practice of IE, the “meta-model” is gener- 242

ally pre-trained in a single IE task with a large num- 243

ber of labels (L(pt) ⊂ L(Task)). Then, the meta- 244

model can be fine-tuned on few-shot examples to 245

quickly adapt to different downstream IE datasets 246
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User: Extract some short important 

information from the following sentence:

<Sentence>

System: Important information 

(Format: - xxx: xxx):

- <IE Label 1>: <Span 1>

- <IE Label 2>: <Span 2>

…

Figure 2: The prompt used in our experiments to build
the dataset for symbolic distillation.

in the same task, such that L(ft) ⊂ L(Task). We ex-247

pand this learning scheme to a general meta-model248

that works for all existing and potentially new IE249

tasks. To achieve this goal, our intuition is to pre-250

train the model to learn the label-to-span mapping251

with the label set approximating the general IE la-252

bel distribution L(pt) ∼ L(IE). As the label sets of253

all IE tasks are subsets of L(IE), our meta-model254

will enjoy an efficient transfer to all IE tasks.255

3.2 Distillation Dataset Construction256

To apply a symbolic distillation of the meta-257

understanding of IE from LLMs, we prompt LLMs258

to create data for distillation by querying them259

to extract “important information” from texts as260

shown in Figure 2. Our expectation for the dataset261

is to cover as many l as possible to approximate262

the broad L(IE) set to better distill the meta-model263

for all kinds of IE tasks. We query LLMs to an-264

notate some raw corpora X to build the MetaIE265

dataset. Given each X ∈ X , the LLM is instructed266

to generate a series of (l, s) pairs. We do not set267

any limitation to l to better approximate the broad268

L(IE) set.269

Implementation We select the paragraphs from270

OpenWebText (Gokaslan and Cohen, 2019), Since271

OpenWebText it is a popular dataset used in lan-272

guage model pre-training, we are not introducing273

new texts. We split the paragraphs by sentences274

and only use the first sentence of each paragraph275

for a higher diversity and to avoid the ambiguity276

caused by coreference. The LLM is instructed to277

formalize all (l, s) pairs in the prompting output as278

“- Place (l): New York (s)”, which are extracted279

by regular expression matching. Considering there280

might be multiple spans returned for l, we split the281

span by conjunctions like comma.282

Table 1 shows some statistics and example re-283

sults of the labels returned by the LLM, illustrating284

a broad spectrum of IE domains, ranging from sim-285

ple entities and events to complex relationships 286

and contexts. The diversity in the n-gram cate- 287

gories showcases the model’s ability to capture a 288

wide array of query types. This variety underscores 289

the comprehensive coverage and nuanced under- 290

standing that LLMs bring to the task of generating 291

queries across different facets of the IE domain. 292

3.3 Distillation Framework 293

We illustrate the distillation with a sequence la- 294

beling model (dos Santos and Guimarães, 2015) 295

that suits well for encoder-based language models 296

(e.g., RoBERTa (Liu et al., 2019)). Given a se- 297

quence of words X = [x1, · · · , xn], the sequence 298

labeling model will tag each word by outputting 299

Y = [y1, · · · , yn]. Following the traditional BIO 300

labeling scheme, yi will be B (begin), I (inner), 301

and O (none). The model is trained on word tag- 302

ging and the tags are decoded into spans by search- 303

ing sequences that begin with B and continue by I . 304

In traditional sequence labeling models, the B and 305

I tags generally consist of label information such as 306

B-place or I-person. In our case, we formalize the 307

tagging in a query-dependent way since the model 308

needs to handle arbitrary queries. We attach the 309

label information as a prefix like “place: ” to the 310

beginning of the input text. The input text is then 311

labeled by the BIO scheme, where the span label is 312

indicated in the prefix. Finally, the BIO sequences 313

are used to fine-tune the sequence labeling mod- 314

els. This distillation process can also be adapted 315

to Seq2Seq encoder-decoder models and Causal 316

LM-based decoder-only models. We use sequence 317

labeling models for the main experiment based on 318

their empirical advantage in IE tasks, which we 319

also empirically find support in the analysis in Sec- 320

tion 5.1. 321

4 Experiments 322

4.1 IE Tasks and Datasets 323

To deeply delve into the differences between dif- 324

ferent model distillation or meta-learning methods, 325

we include a wide variety of tasks: 326

1. Named Entity Recognition (NER) extracts 327

named entities with their labels from texts. 328

We include 6 NER datasets that was stud- 329

ied in (Ushio and Camacho-Collados, 2021), 330

i.e., (1) CoNLL2003, (2) BioNLP2004, 331

(3) WNUT2017, (4) MIT-Movie, (5) MIT- 332

Restaurant, (6) BC5CDR, which covers vari- 333

ous domains: news, medical, social media, and 334
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n-gram
(Count)

Example IE Labels (Relative Frequency)

1-gram
(270k)

Location (7.73%), Event (4.67%), Action (4.24%), Topic (3.57%), Subject (3.25%), Person
(2.71%), Date (2.70%), Source (2.44%)

2-gram
(44.5k)

Target audience (1.27%), Time period (0.998%), Individuals involved (0.992%), Action taken
(0.877%), Political affiliation (0.762%), Parties involved (0.758%), Release date (0.697%),
TV show (0.686%)

3-gram
(16.9k)

Source of information (2.02%), Cause of death (1.17%), Call to action (1.02%), Date of
birth (0.739%), Date and time (0.727%), Date of death (0.562%), Type of content (0.337%),
Reason for arrest (0.325%)

4-gram
(7.39k)

Purpose of the bill (0.325%), Location of the incident (0.271%), Name of the person
(0.271%), Number of people killed (0.203%), Number of people affected (0.189%), Content
of the bill (0.162%), Number of people arrested (0.149%), Source of the information
(0.149%)

≥ 5-gram
(5.37k)

Dates of birth and death (0.13%), Age at the time of death (0.112%), Total number of votes
cast (0.0931%), Feature: Auschwitz through the Lens of the SS (0.0931%), Number of
people on board (0.0745%), Name of the person involved (0.0745%), Date and time of
publication (0.0745%), Action taken by President Obama (0.0745%)

Table 1: Example IE Labels, Counts, and Relative Frequency in our constructed symbolic distillation dataset,
grouped by the number of tokens.

reviews.335

2. Relation Extraction (RE) extracts named enti-336

ties, and in addition, identifies the relationships337

between them. We include 2 popular datasets,338

(1) ADE (Gurulingappa et al., 2012) and (2)339

CoNLL2004 (Carreras and Màrquez, 2004) rep-340

resenting RE on medical and news domain. We341

evaluate the performance of RE models on both342

relation detection and the detection of entities343

involved in the relations.344

3. Event Extraction (EE) extracts event triggers345

and their arguments. We use the standard346

ACE2005 dataset (Walker et al., 2006) prepro-347

cessed by OMNIEVENT (Peng et al., 2023a)348

for EE evaluation. We compare the model per-349

formance on both event detection (ED) and350

event argument extraction (EAE) tasks, follow-351

ing the consistent evaluation framework pro-352

posed by Peng et al. (2023b).353

4. Semantic Role Labeling (SRL) extracts pred-354

icates (verbs) and their arguments. We select355

the CoNLL2005 (Carreras and Màrquez, 2005)356

dataset for SRL. We follow previous works to357

learn backbone LMs on samples from the Brown358

training dataset and then test them on Brown and359

WSJ test datasets.360

5. Aspect-based Sentiment Analysis (ABSA) ex-361

tracts aspect terms and the sentiment polarity362

towards them. We select SemEval2014 (Pontiki363

et al., 2014) as the dataset for ABSA, with its364

two subsets: 14res and 14lap including reviews365

about restaurants and laptops.366

6. Aspect Sentiment Triplet Extraction (ASTE) ex- 367

tracts aspect terms and the corresponding opin- 368

ion terms that contain the sentiment polarity 369

towards them. We use the same SemEval2014 370

dataset as for ABSA, on which aspect-sentiment 371

triplets are further annotated by Xu et al. (2020). 372

For a fair comparison, we formalize all those 373

tasks as s = fIE(X|l), which can be found in the 374

Appendix A. For each task, we query each possible 375

label to extract (l, s) pairs. For spans conflicting 376

with each other, as we run label-wise extractions, 377

we only keep the one with a higher BI sequence 378

probability. For tasks that extractions are depen- 379

dent on each other (e.g., RE, EE, SRL, ASTE), 380

we follow (Paolini et al., 2021) to run multi-stage 381

extractions for these tasks. As ACE2005 involves 382

too many labels, we report the unlabeled perfor- 383

mance on detecting the triggers and arguments for 384

all methods for comparison. 385

4.2 Evaluation Metric: Few-shot Fine-tuning 386

Performance 387

We use the few-shot fine-tuning performance on 388

all IE tasks to evaluate the meta-model’s quality. 389

Specifically, all methods in our evaluation will pro- 390

vide us a backbone LM. We then conduct few-shot 391

fine-tuning from the training dataset for fine-tuning 392

with sample details in Appendix B. Finally, we 393

evaluate them on the test dataset using the micro F1 394

score as the evaluation metric. For multi-task pre- 395

training baselines, tasks without large-scale annota- 396

tions (SRL, ABSA, ASTE) are out-of-distribution 397

5



Method Category Method NER
ConLL2003 BioNLP2004 WNUT2017 MIT-Movie MIT-Restaurant BC5CDR

LLM Prompting ICL 59.68 48.08 36.51 46.08 60.62 59.82

FT Vanilla 32.58 36.06 33.87 57.65 63.40 18.15

Task-level ML+FT

Transfer
Human 71.61 54.58 43.15 64.80 69.17 72.02
LLM 67.74 45.62 45.36 59.59 69.19 73.14

Task Distillation 74.86 56.18 50.09 65.70 71.48 71.01

IE-level ML+FT
MultiIE 63.94 52.47 44.29 58.43 69.38 71.20
MAML 66.97 53.09 46.14 60.57 68.86 72.58
MetaIE 71.49 55.76 44.33 65.64 71.33 75.21

Method Category Method RE (NER) RE ED EAE
ADE CoNLL2004 ADE CoNLL2004 ACE2005 ACE2005

LLM Prompting ICL 63.55 58.47 39.02 31.34 60.47 28.79

FT Vanilla 25.97 62.13 15.67 33.52 67.46 32.86

Task-level ML+FT

Transfer
Human 41.56 69.27 20.53 37.51 72.79 35.77
LLM 35.43 66.93 14.35 35.07 65.17 34.86

Task Distillation 66.99 68.66 41.92 41.58 67.34 34.56
NER Distillation 67.35 69.88 32.73 35.68 66.17 32.86

IE-level ML+FT
MultiIE 53.26 69.14 18.23 39.65 71.16 35.23
MAML 56.95 69.28 38.65 42.07 68.22 35.84
MetaIE 69.29 69.47 40.43 43.50 69.85 36.83

Table 2: Few-shot transferring performance (F1 score) of different meta-learning sources (IE-level+FT) on IE
tasks. Other methods are included for reference: 1) LLM Prompting: Performance of the large teacher model; 2)
Task-Level ML+FL: Performance of meta-learning that only focuses on the target IE task. Bold: Performance of
the small LM that is not significantly different from the best one. (p < 0.05).

tasks.398

The default backbone LM we used for fine-399

tuning is RoBERTa-Large (Liu et al., 2019), which400

is a traditional bidirectional encoder used for401

learning IE tasks formalized as sequence tag-402

ging. The learning rate is set to 2 × 10−5 with403

AdamW (Loshchilov and Hutter, 2019) as the opti-404

mizer and a cosine annealing learning rate sched-405

uler (Loshchilov and Hutter, 2017). We fine-tune406

the backbone LM with batch size 64 for a single407

epoch to avoid overfitting.408

4.3 Compared Methods409

We first include a comparison with the teacher410

model GPT-3.5-turbo via LLM Prompting with411

in-context learning (ICL). For ICL, we provide 5412

examples in the prompt of our query. Based on413

previous discoveries on LLM-based IE (Peng et al.,414

2023c; Wadhwa et al., 2023; Gao et al., 2024), we415

shall expect that fine-tuned small LMs work better416

than the LLM.417

We compare our MetaIE with a variety of meth-418

ods from the following three categories419

1. Vanilla LM fine-tuning (FT), i.e., directly using420

the vanilla pre-trained LM as the backbone LM421

in fine-tuning.422

2. Task-level Meta-learning (ML)+FT. It is ex-423

pected to have a strong performance to other 424

datasets in the same IE task but poor generaliza- 425

tion to other IE tasks. 426

• Transfer (Human) is a baseline that trains 427

the backbone LM on large-scale human an- 428

notations of a specific IE task. Specifically, 429

we use FewNerd (Ding et al., 2021) for NER, 430

FewRels (Han et al., 2018) for RE, and Few- 431

Events (Ma et al., 2023) for EE. 432

• Transfer (LLM) uses the same datasets in 433

Transfer (Human) but queries the LLM to 434

annotate them following the human workflow. 435

This baseline aims to compare the quality of 436

annotation from humans and LLMs following 437

the conventional annotation schema. 438

• Task Distillation distills from LLMs by 439

querying answers for specific IE tasks. 440

We implement this by providing in-context 441

task-specific examples to control the LLM- 442

produced data similar to the label IE task. The 443

input texts are set to be the same as MetaIE to 444

avoid bias. 445

• NER Distillation applies the model distilled 446

following Task Distillation but tests them on 447

non-NER tasks to evaluate its cross-task trans- 448

ferability. 449

3. IE-level Meta-learning (ML)+FT aims to learn 450
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Method Category Method SRL ABSA ASTE
Brown WSJ 14RES 14LAP 14RES 14LAP

LLM Prompting ICL 28.79 31.56 53.04 35.62 58.94 44.87

FT Vanilla 52.59 56.47 24.46 10.32 39.17 41.50

Task-level ML+FT NER Distillation 43.65 51.29 10.77 11.21 40.06 38.40

IE-level ML+FT
MultiIE 52.26 56.63 38.22 35.28 24.91 40.49
MAML 52.69 56.23 40.22 34.45 30.83 40.95
MetaIE 54.50 58.49 50.96 39.71 43.30 43.10

Table 3: Few-shot transferring performance (F1 score) of different meta-learning sources (IE-level+FT) on IE tasks
without the large scale of human annotations for task-level meta-learning.

an IE model with strong transferability to all IE451

tasks. Our MetaIE also falls into this category.452

• MultiIE merges the multiple human-453

annotated IE datasets (FewNerd, FewRels,454

FewEvents) to train a backbone LM, which455

represents a multi-task baseline with human456

annotations.457

• MAML (Finn et al., 2017b) is a traditional458

meta-learning baseline that merges gradients459

on different datasets to build a model that can460

be quickly transferred to these datasets. We461

use the datasets in MultiIE for MAML in the462

experiment.463

For all baselines, the data number for meta-464

learning is controlled to the same as MetaIE465

by sampling towards a fair comparison. The466

main method category for comparison is IE-level467

ML+FT, which focuses on meta-learning for all468

IE tasks. LLM-Prompting is experimented with469

to show the performance of the large teacher model470

as a reference. Task-level ML+FT is also used as471

a reference to showcase the ability of task-specific472

ML, as it utilizes different meta-learning sources473

for different IE tasks.474

4.4 Result Discussion475

The result from our experiments is presented in476

Tables 2 and 3. The vanilla model is poorly trans-477

ferred by fine-tuning to all kinds of IE tasks. The478

model with meta-learning on a single IE task, NER,479

is only well-transferred to other NER datasets but480

poorly-transferred to other IE tasks. Among IE-481

level meta-learning methods, the MultiIE model482

can be transferred to in-domain IE tasks with out-483

standing performance but still fails to be transferred484

to out-of-domain IE tasks, either with regular pre-485

training or meta-learning frameworks like MAML.486

In contrast to all these baselines, our MetaIE shows487

a strong transferability to all IE tasks, especially on488

out-of-domain tasks for MultiIE. Thus, the experi-489

ment results are highly consistent with our claim in490

IE task transferability that wider pre-training label 491

set L(IE) will enable macro transferability of the 492

model to all IE tasks. 493

Besides the main discovery, we can also observe 494

that LLM-based meta-learning outperforms the pre- 495

training on human annotation. Take NER as an in- 496

stance, while both label sets satisfy L ⊂ L(NER), 497

the L proposed by LLMs is much more diverse than 498

the fixed set in human annotated datasets, which 499

again verifies the importance of the label distribu- 500

tion, even in task-specific distillation. 501

The comparison with the teacher model also 502

shows the student model generally outperform- 503

ing the teacher model under few-shot supervision. 504

Thus, we conclude fine-tuning a distilled student 505

IE model to perform better than inference by the 506

teacher LLMs with few-shot in-context examples. 507

This further verifies the advantage of model distilla- 508

tion in meta-learning which enables more efficient 509

and effective transfer. 510

5 Further Analysis 511

5.1 Distillation Framework Comparison 512

We compare student models following different dis- 513

tillation frameworks (because of their architectures) 514

to investigate how this factor affects the distillation 515

effectiveness. 516

Seq2Seq implements the distillation by learn- 517

ing to extract a group of spans based on the IE 518

label as in the distillation dataset. We include 519

two Seq2Seq models: BART-Large (Lewis et al., 520

2020) and T5-Base (Raffel et al., 2020), which 521

contain the same scale of parameters as in the 522

RoBERTa-Large in our previous experiments. 523

CausalLM is similar to Seq2Seq but only 524

uses the decoder model instead of the encoder- 525

decoder as in Seq2Seq. We also include two 526

CausalLM-based models with similar parameter 527

scales: GPT2-Medium (Brown et al., 2020) and 528

OPT-350M (Zhang et al., 2022). 529
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Framework Model ConLL2003 BioNLP2004 WNUT2017 MIT-Movie MIT-Restaurant BC5CDR

Seq-Labeling BERT 63.01 52.39 32.71 61.75 62.50 66.24
RoBERTa 71.49 54.88 44.33 65.64 71.33 75.21

Seq2Seq BART 71.39 47.18 46.74 62.76 67.98 65.90
T5 64.01 42.35 40.74 55.05 53.60 38.67

CausalLM GPT 57.20 37.29 36.89 52.14 60.46 61.03
OPT 52.39 37.64 34.48 53.07 53.59 52.86

Table 4: Comparison between different frameworks on MetaIE distillation.
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Figure 3: The size analysis of the student model scale on different IE tasks and domains.
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Figure 4: The size analysis of the distillation data scale
on different IE tasks and domains.

We also include another sequence labeling530

model BERT-Large-Cased (Devlin et al., 2019) as531

a baseline to explore the influence of the backbone532

model quality on the learning performance. For533

all models, we pre-train them using our MetaIE534

dataset with the same hyperparameters.535

We compare the performance of different distil-536

lation frameworks on NER as an example and the537

result is demonstrated in Table 4. Sequence label-538

ing models perform the best in few-shot transfer539

learning, which indicates their advantage in the dis-540

tillation of meta-understanding of IE. This can be541

attributed to the consistency of sequence labeling542

with the extraction nature. We thus conclude distill-543

ing IE knowledge to a traditional sequence labeling544

model is better than those popular generative mod-545

els. Between sequence labeling models, RoBERTa546

outperforms BERT, showing a better student model547

also benefits the distillation procedure.548

5.2 Size Analysis549

We explore how size is a factor affecting the dis-550

tillation quality. For the model scale, we com-551

pare among RoBERTa-Small, RoBERTa-Base, and552

RoBERTa-Large. For the data scale, we increase553

the sampling size to 640K and pre-train the student 554

model with different amounts of data. 555

The analysis of model size is presented in Fig- 556

ure 3, we can observe the performance of a student 557

model can be scaled up by more parameters. Also, 558

for simple tasks (like NER) with a general domain 559

(like CoNLL2004), a tiny student model is com- 560

petent for the distillation. However, for specific 561

domains or complex tasks, the student model needs 562

more parameters for generalization. 563

The analysis of data size is presented in Figure 4, 564

we observe the existence of a threshold between 565

80K ∼ 160K to endow the student model with the 566

meta-understanding of IE. Also, a small amount of 567

metadata (10K) significantly benefits the transfer. 568

6 Conclusions and Future Work 569

This paper presents a novel approach for distill- 570

ing the meta-understanding of IE from LLMs into 571

more efficient, smaller language models through 572

a synthesized dataset, MetaIE. Our findings indi- 573

cate that this method not only enhances the adapt- 574

ability and efficiency of smaller models but also 575

outperforms existing single-task and multi-task dis- 576

tillation methods in various IE tasks. The success 577

of MetaIE underscores the potential of leveraging 578

LLM’s meta-understanding to improve the perfor- 579

mance and versatility of smaller models in complex 580

tasks, offering a promising direction for future re- 581

search in model distillation and IE. Future work 582

will explore a better way for meta-learning by dis- 583

tilling from LLMs and other meta-tasks can be 584

trained based on distillation. 585
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Limitation586

Efficiency The efficiency of the unified label-to-587

span will be O(|L(Task)|), which is lower than the588

traditional O(1) (number of LM forwarding) BIO589

sequence labeler with label information in the la-590

beling result. This will limit the application of our591

model to cases where |L(Task)| is large. This effi-592

ciency is a trade-off for the ability to process any593

IE label, which enables the fast transfer of the BIO594

model to different IE tasks.595

Bias in LLM-proposed labels As pointed out in596

previous works (Gallegos et al., 2023; Fang et al.,597

2023), LLMs have biases in their responses. This598

can also be observed in the statistics of our distil-599

lation dataset. Thus, the small meta-model might600

also inherit the bias and have better transferability601

to labels that LLMs prefer than others.602
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A Label-to-Span Formalization935

NER936

Person: John/B Smith/I loves/O his/O home-937

town/O ,/O Los/O Angeles/O938

RE939

Person: John/B Smith/I loves/O his/O home-940

town/O ,/O Los/O Angeles/O941

John Smith births in: John/O Smith/O loves/O942

his/O hometown/O ,/O Los/B Angeles/I943

EE944

Trigger: John/O Smith/O loves/B his/O home-945

town/O ,/O Los/O Angeles/O946

Argument for Trigger “loves”: John/O947

Smith/O loves/O his/O hometown/O ,/O948

Los/B Angeles/I949

SRL950

Verb: John/O Smith/O loves/B his/O home-951

town/O ,/O Los/O Angeles/O952

A1 Argument for Verb “loves”: John/O953

Smith/O loves/O his/O hometown/B ,/O Los/O An-954

geles/O955

ABSA956

Positive Term: John/O Smith/O loves/O his/O957

hometown/O ,/O Los/B Angeles/I958

ASTE959

Positive Opinion: John/O Smith/O loves/B960

his/O hometown/O ,/O Los/O Angeles/O961

Aspect for Opinion “loves”: John/O Smith/O962

loves/O his/O hometown/O ,/O Los/B Angeles/I963

B Few-shot Details964

NER samples 5-shot examples that contain a cer-965

tain type of entity for each entity type.966

RE samples 5-shot examples that contain a cer-967

tain type of relation for each relation type.968

EE samples 5% examples from the original train-969

ing dataset.970

SRL samples 50-shot examples from the original971

training dataset.972

ABSA samples 5-shot examples that contain973

terms with a certain sentiment polarity for each974

sentiment polarity type.975

ASTE samples 5-shot examples that contain976

aspect-opinion triplet with a certain sentiment po-977

larity for each sentiment polarity type.978
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