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Abstract

Federated learning (FL) is a popular paradigm for collaborative training which avoids direct
data exposure between clients. However, data privacy issues still remain: FL-trained large
language models are capable of memorizing and completing phrases and sentences contained
in training data when given their prefixes. Thus, it is possible for adversarial and honest-
but-curious clients to recover training data of other participants simply through targeted
prompting. In this work, we demonstrate that a popular and simple fine-tuning strategy,
low-rank adaptation (LoRA), reduces memorization during FL by a factor of up to 10 without
significant performance cost. We study this effect by performing fine-tuning tasks in high-risk
domains such as medicine, law, and finance. We observe a reduction in memorization for a
wide variety of model families, from 1B to 70B parameters. We find that LoRA can reduce
memorization in centralized learning as well, and we compare how the memorization patterns
differ. Furthermore, we study the effect of hyperparameters and show that LoRA can be
combined with other privacy-preserving techniques such as gradient clipping and Gaussian
noise, secure aggregation, and Goldfish loss to further improve record-level privacy while
maintaining performance.

1 Introduction

Large language models (LLMs) have been shown to achieve state-of-the-art performance over most relevant
natural language processing (NLP) tasks (Zhao et al. [2023). Following these advances, there is significant
interest in fine-tuning LLMs for downstream tasks over specialized domains such as medicine (Singhal et al.,
2023a; [Thirunavukarasu et al., 2023; [Yang et al., 2022), law (Cui et al., |2024a)) or finance (Wu et al.| [2023b;
Li et al., |2023b). Given the inherent confidentiality of user data involved in these fields, as well as the
increasing number of studies showing LLMs’ propensity to expose training data (Nasr et al., 2025 |Carlini
et al.l |2023a; [Hou et al.| |2025; [Hayes et al., 2025; |Leybzon & Kervadec) 2024; Zeng et al., |2024; [Biderman et al.|
2023)), there is a crucial need for additional privacy mechanisms. One such mechanism for data-constrained
parties is federated learning (FL), a widely-studied paradigm enabling multiple data parties, called clients, to
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collaboratively train a machine learning model without sharing local data (McMahan et al., 2016; Kairouz|

2021)).

An early study by [Thakkar et al.| (2021)) of a 1.3M parameter LSTM next-word predictor (Hard et al., 2019)
showed that FL significantly reduces unintended memorization compared to centralized learning (CL). Yet, it
is unclear whether FL remains effective at preventing recent multi-billion parameter models with Transformers
architectures (Vaswani et al., 2023)) from memorizing training data and exposing sensitive information at
inference time.

Moreover, there is a significant interest in the FL community in leveraging parameter-efficient fine-tuning
(PEFT) techniques (Kuang et all 2023; |QI et al., 2024} Wu et al., 2024} |Yi et al., [2024; [Sun et al 2024;
Liu et al., 2024, and in particular Low-Rank Adaptation (LoRA) (Hu et al) 2021)). Indeed, LoRA and
other PEFT techniques offer multiple desirable properties. By only updating a small set of parameters
while keeping the pre-trained weights frozen, PEFT methods alleviate the prohibitive computational costs
of training models comprised of multiple billion parameters and drastically reduce the size of the updates
exchanged during the FL training. While the impact of LoRA on unintended memorization is gaining interest
in centralized learning (Hou et al., 2025; |Wang & Li, [2025), its specific effects in FL are not well-understood
yet and mainly studied in combination with differential privacy (DP) (Dwork et al.,2006) by [Sun et al.| (2024)
and (2024)). Both works evaluated the performance of LoRA in FL combined with DP and found
non-trivial performance losses even for high privacy budgets.

In this paper, we extensively evaluate the resulting unintended memorization of FL-trained LLMs in a
data-heterogeneous 3-client setup and show that LoRA enables significant memorization reduction for little
to no performance cost compared to full fine-tuning. We fine-tuned models over realistic sensitive information
and measure the rate of unintended memorization in different domains such as medicine, law and finance. In
contrast to |[Thakkar et al.| (2021)), we extend our analysis to LoRA fine-tuning, and study memorization across
a broader range of settings, model families and model sizes up to 70B parameters. Our work is complementary
to[Sun et al.| (2024) and |Liu et al.| (2024): we empirically measured memorization rather than under DP
theoretical bounds, via several memorization metrics such as exact token matching, approximate reproduction
[Ippolito et al| (2023)) and BERTScore (Zhang et al., [2020). While DP provides theoretical bounds, we argue
that a complementary empirical evaluation is essential. Indeed, DP’s applicability to LLM training on natural
language data and its subsequent formal guarantees have been questioned by Brown et al.| (2022)) and [Tramer|
, as it remains unclear how DP’s secret boundaries should be defined given the contextual nature
of language and in the light of successful personally identifiable information (PII) extraction of DP-trained
LLMs (Lukas et al.| [2023).

Qur contributions are as follows:

¢ We empirically demonstrate that LoRA mitigates memorization in federated learning for little to no
performance cost compared to full fine-tuning. This effect generalizes to datasets drawn from several
sensitive data domains such as medicine, law, and finance.

o We comprehensively test model sizes from 1B to 70B parameters from the Llama-2 family, Llama-3
family, and Mistral-v0.3. LoRA effectively reduces memorization across models.

¢« We investigate the impact of the LoRA rank on memorization and compare how sensitive data
memorization in federated learning differs from centralized learning.

o We experimentally explore how LoRA interacts with other privacy strategies. This includes differential
privacy mechanisms such as gradient noising and clipping, Goldfish loss (Hans et al.l [2024)), post-
training noise injection and secure aggregation. We demonstrate how LoRA can work synergistically
with these other approaches.

e We release a repository with code and instructions to reproduce our results: https://github.com/
tuneinsight-collab/FederatedLLMs.
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2 Related Work and Preliminaries

This section reviews related work and foundational concepts in LoRA, federated learning, and memorization
in large language models. Additional discussions on differential privacy, membership inference attacks, secure
aggregation, and medical applications are provided in Appendix [A]

2.1 LoRA

To reduce computational and memory requirements when fine-tuning LLMs, Low-Rank Adaptation (LoRA)
was introduced to drastically reduce the number of trainable parameters during fine-tuning.
This is achieved by representing the weight updates AW as the product AW = BA of two low-rank matrices
A and B. LoRA enables efficient adaptation of LLMs to specific tasks while preserving the generalization
capabilities of the underlying model, as gradients often exhibit low intrinsic dimensionality
|[Aghajanyan et all, [2020). Additionally, LoRA offers a notable advantage in an FL scenario by drastically
reducing the amount of data exchanged between participants during each round. In our experiments, we
achieved a 130-fold reduction. Understanding LoRA’s resultant performance compared with full fine-tuning
is still an active area of research, with preliminary results showing LoRA can match full model training on
small to medium-sized datasets (Schulman & Labj, 2025; Biderman et al., [2024)).

The study of LoRA and memorization has been limited to centralized learning, mainly by [Hou et al/ (2025])
and Wang & Li (2025), and indirectly by Biderman et al. (2024). Hou et al|(2025) compares memorization
between LoRA and prompt-based fine-tuning, which consists in keeping the pre-trained model weights frozen
and learning task-specific prompts. However, their study does not include a comparison with full parameter
fine-tuning, which we argue is most widely used in practice along with LoRA. Recent work by
finds that fine-tuning GPT-2 with LoRA results in lower memorization than full fine-tuning, suggesting
its potential for federated learning. Biderman et al.| (2024) analyzes the trade-off between factual knowledge
learning and forgetting. While they do not directly analyze training data memorization, they show that
LoRA presents a better factual knowledge "learning-forgetting" tradeoff than full fine-tuning, learning less on
math and code datasets but forgetting less of its pre-training knowledge.

2.2 Federated Learning

Federated learning (FL) has been widely-studied for deep learning models in cross-silo settings [Huang et al.
(2022)), in which a limited number of resource-rich clients, such as organizations or institutions, collaboratively
train ML models without sharing their data. In conventional FL, the global objective function of N clients is
defined as

N
mml/nF(W) = Zpkfk(W), (1)
k=1

where W represents the parameters of a model, Zivzl pr = Land f (W) is the local objective function of client
k. Local training data Dj, between clients is often heterogeneous. A common strategy for solving Equation [I]
is Federated Averaging (FedAvg) (McMahan et al., [2016). FL has recently been applied to LLMs [Ye et al|
(2024); |[Thakkar et al.| (2021); Liu et al.| (2024)); Ramaswamy et al| (2020) leveraging FedAvg to aggregate
locally-trained model updates. Work by [Thakkar et al|(2021) informed our federated training strategy by
demonstrating on a small scale that federated averaging is especially effective at reducing memorization on
non-independent and identically distributed (non-I1ID) data. Recent work by Google and others has explored
the use of FL for large-scale language model training in production environments, placing strong emphasis on
privacy protection (Hard et al.| [2019; Ramaswamy et al., 2020; Thakkar et al.l 2021} Xu et al., |2023), showing
growing interest in privacy-preserving training methods. While [Liu et al.| (2024) and |[Sun et al.| (2024) studied
LoRA with DP-SGD, this work is to the best of our knowledge the first to empirically measure the impact of
LoRA on memorization in federated learning.
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2.3 Memorization

How to quantify the memorization capacity of an LLM is an active area of research. A seminal work by
Carlini et al. introduced "canaries", which are synthetic, out-of-distribution pieces of text injected into
training data (such as "My SSN is XXX-XX-XXXX") (Carlini et al.,|2019). It has found use in production-level
studies (Ramaswamy et al., 2020) and adjacent fields such as machine unlearning (Jagielski et al., [2022). An
alternative definition of memorization (Carlini et al., 2023a)), the completion metric, measures how often an
LLM completes a piece of text taken from the training data when prompted on an initial portion (prefix) of
it.

Memorization definition. We use the "extractable memorization" definition of |Carlini et al.| (2023b)
following its wide adoption (Ippolito et al., 2023} [Huang et all [2024; [Hans et al., [2024; Nasr et al., 2023;
. Consider a string representable as the concatenation [p||s] where p is a prefix of length k and s is
the remainder of the string. We define the string s to be memorized with k tokens of context by a language
model f if [p||s] is contained in the training data of f, and f produces s when prompted with p using greedy
decodingﬂ In other words, we consider a string from training data memorized if an LLM can generate it when
prompted by a prefix. We set the length of the generated suffix s to 50 tokens, in line with previous work.

3 Methodology

In a federated learning setting, training data is split among several clients. Our experiments are designed to
mimic a medical scenario in which each client holds potentially sensitive data, reflecting the reality that few,
if any, anonymization tools can guarantee the complete removal of sensitive information (Langarizadeh et al.)
[2018; Brown et al. 2022). In fact, Heider et al.|(2020) evaluated three off-the-shelf de-identification tools on
the i2b2 medical record dataset (Stubbs & Ozlem Uzuner} 2015)—which we use in our study—and found
that none could achieve complete removal. We adopt a so-called cross-silo setting, where there are only a
handful of participants, 3 in our case, each with a relatively large amount of data, in contrast to cross-device
FL in which data is divided among up to millions of clients. Cross-silo FL is a realistic setting for a medical
scenario. For example, a few hospitals with confidentiality requirements may want to collaborate and train a
more generalizable model. Moreover, a large number of clients is computationally prohibitive for the model
scale we are studying in this work.

3.1 Quantifying memorization

Our measurement methodology is largely inspired by [Carlini et al| (2023b]). In short, we inject sensitive
sequences, so-called “canaries" (Carlini et al., 2019} Jagielski et al., |2023; |Thakkar et al.l|2021), into fine-tuning
data and then measure the model’s ability to regurgitate this information when prompted with the beginning
of these sequences.

Canaries. Unlike prior work that evaluates the memorization of all training data (Carlini et al., [2023Db;
Ippolito et al., [2023; [Hans et al., [2024), we are interested in measuring how much sensitive information
is memorized. Similar to Lehman et al.| (2021) and Mireshghallah et al.| (2022)), we inject medical records
into our training set originating from the 2014 i2b2/UTHealth corpus (Stubbs & Ozlem Uzuner} 2015).
The i2b2 dataset contains 1,304 longitudinal medical records that describe 296 patients. This approach
allows us to measure memorization on sensitive data that we explicitly want to protect, while most previous
studies measure memorization on randomly-generated sequences (Carlini et al., [2019; [Thakkar et al., [2021))
or indiscriminately on the whole dataset (Wang & Li, 2025; Biderman et al., 2024} |Hans et al. [2024; Nast|
possibly confounding the memorization necessary for downstream performance [Feldman .

Because data duplication has been shown to greatly influence memorization (Carlini et al., 2023b} [Lee et al.|
[2022; Kandpal et al., [2022), we randomly select 30% of the medical records and duplicate them tenfold within
our fine-tuning data in order to study the effect of data duplication in our experiments. We also experiment
with a lower duplication rate of 3 in Appendix [C]and found consistent results. Following [Carlini et al. (2023b)),

UICarlini et al. (2023a) found that beam search yields slightly higher memorization values. We use greedy decoding for the
sake of simplicity.
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we measure the effect of the context size by prompting the model on each test sequence with prompts of
lengths in {10, 50,100, 200,500}. The different prompts for a given test sequence are constructed such that
the suffix s is kept identical while varying the prompt length. This ensures a fair comparison between prompt
lengths, since different suffixes may be more or less prone to regurgitation.

Memorization scores. To compare generated text with the ground truth, we rely on two metrics: (1) the
exact token match rate and (2) the BLEU score, to measure approximate reproduction, as prior work
suggests that the exact match rate does not capture subtler forms of memorization (Ippolito et al.l |2023). In
line with this work, we consider a sequence memorized if the generated suffix and the ground truth yield
a BLEU score > 0.75. For both metrics, lower is better, and a score of 1 denotes complete memorization
of all test sequences. We additionally report BERTScore (Zhang et al. 2020)) in Appendix to measure
semantic similarity between model outputs and reference sequences and we find trends consistent with the
aforementioned metrics.

No duplication Documents duplicated 10x
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Figure 1: Sensitive medical information memorization of the full fine-tuning of Llama 2 7B in
centralized learning. We report the exact match rate and BLEU score with respect to the prompt length,
with and without duplication. We also show the memorization upper bound (labeled "Full memorization")
that is reached when every test sequence has been memorized. Most settings show signs of regurgitation yet
duplicated documents present an alarming rate of memorization.

To illustrate our method, Figure [I| shows the memorization of the Llama 2 7B full fine-tuning. Multiple
trends are consistent with previous work: (1) there is significantly more memorization when the medical
records occur multiple times in the fine-tuning data (Lee et al., [2022; Kandpal et al., [2022; |Carlini et al.,
2023b); (2) longer prompts show higher memorization (the so-called "discoverability phenomenon") (Carlini
et al., [2023b)) and (3) there is significantly more memorization with approximate generation (BLEU score)
(Ippolito et al., [2023).

Accuracy. We report the downstream accuracy in Appendix [B] to ensure a fair comparison between fine-
tuning methods and ensure that potential privacy gains do not come at the expense of decreased performance.
Figure [6] shows that all fine-tuned models yield relatively similar accuracy values when comparing LoRA to
full fine-tuning. This result suggests that in our setting, LoRA is a competitive technique and may substitute
full fine-tuning at relatively little cost.

3.2 Experimental Setup

Datasets and models. We fine-tune LLMs on three medical QA datasets (MedMCQA, PubMedQA,
and Medical Meadow Flashcards) augmented with sensitive sequences from the i2b2 clinical notes (Stubbs
& Ozlem Uzuner, 2015). Evaluation is performed on a suite of medical benchmarks including MedQA,
PubMedQA, MedMCQA, and MMLU-Medical (Pal et all 2022; Jin et al., 2019 [Han et all [2023). Full
descriptions of datasets, pre-trained models, and licensing terms are provided in Appendix [E] In Appendix [C]

we confirm that our findings generalize to other high-risk domains such as law (Multi-LexSum) and finance
(ConvFinQA) (Shen et al., [2022; |Cheng et al.| |2024]) and to a larger model scale of 70B.
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Figure 2: LoRA vs. full fine-tuning in federated learning. LoRA results in lower unintended
memorization than full fine-tuning in FL across all settings. (a)—(c): Exact match rate under increasing
duplication and prompt length. (d)—(f): BLEU score under the same settings. The memorization scores are
averaged across the 5 different prompt lengths (from 10 tokens to 500 tokens). (c) and (d) show our worst
case setting by using the highest prompt length (500 tokens) and a duplication rate of 10. As control, we
evaluated the memorization scores before fine-tuning and found values lower than 0.0006 for the exact match
rate (i.e.,less 0.06% of the tested sequences resulted in a verbatim regurgitation) and BLEU scores lower than
0.003.

Cross-silo FL. We fine-tuned models with three participants, where each participant trained locally on one
of the three datasets MedMCQA, PubMedQA, and Medical Meadow Flashcards in a heterogeneous data
distribution. Previous work showed the effectiveness of non-IID data at mitigating unintended memorization
(Thakkar et al [2021)), therefore adopting a heterogeneous setting is a memorization-wise best-case scenario
compared to an IID setting. We split and injected i2b2 medical records into each dataset proportionally to
their size. Participants fine-tuned over their local dataset for one epoch between each global weight update,
for a total of five rounds. For every model, we tuned the learning rate separately on each local dataset.
To better understand the privacy impact of FL itself, we compared the same experiments in conventional
centralized learning in Section [£.I} where all training samples were processed by a single participant.

All experiments were performed on a single NVIDIA A100 80GB GPU within an HPC cluster, except for
the 70B-parameter model, which was fine-tuned using eight H1I00 GPUs. We leveraged Hugging Face’s
Transformers library (Wolf et al., [2020) to access and fine-tune pre-trained models. Further training details
are included in Appendix [D}

4 Results

Figure [2[ compares the impact on memorization of replacing full fine-tuning by LoRA in FL. Fine-tuning
federated LLMs with LoRA results in lower unintended memorization than full fine-tuning
across all metrics and models. In our experiments, LoRA fine-tuning reduced memorization up to 10x
for a negligible accuracy loss, as shown in Figure [6]

Notably, data duplication and longer prompt lengths greatly increases unintended memorization, extending
these trends from CL (Lee et al., 2022 |Carlini et al., 2023ajb)) to FL. Also in line with previous work, smaller
models exhibit less memorization than larger ones, though we found that Llama 2 7B and Mistral v0.3 7B
showed different memorization dynamics despite having the same size. For example, fine-tuning Llama 2
7B with LoRA show a drastic memorization improvement over full fine-tuning, whereas LoRA has a lower
impact with Mistral v0.3 7B. Conversely, Llama 2 7B displays a higher memorization rate than Mistral v0.3
7B in full fine-tuning. We discuss this result further in the Section [£.] by comparing FL and CL results.

Additionally, we found that full fine-tuning in FL still results in alarmingly high rates of memorization despite
the privacy-enhancing properties of FL observed by Thakkar et al.| (2021). This result emphasizes the limits
of FLL as a privacy-preserving method. Furthermore, even LoRA exhibits some levels of memorization, despite
being lower, thus showing the need for additional privacy-preserving techniques.
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Figure 3: LoRA vs. full fine-tuning in centralized learning. LoRA consistently reduces unintended
memorization compared to full fine-tuning. (a)—(c): Exact match rate under increasing duplication and
prompt length. (d)—(f): BLEU score under the same settings. We obtained pre-fine-tuning controls scores
an order of magnitude lower than any fine-tuned model score, which additionally confirms that none of the
models had already been trained on the i2b2 dataset. While some scores appear low at first glance, the lowest
memorization depicted in this figure remains >10 times higher than the control.

To provide fair comparisons between multiple federated learning fine-tuning, Figure [2| reports metrics for the
last federated round. This ensures that each model has been fine-tuned on the medical records the same
number of times. We discuss this decision further in Appendix

41 LoRAin FLvsCL

To differentiate the effects of LoRA and FL on memorization, we carried out the same experiments in
centralized learning. In the CL setting, we merged PubMedQA, MedMCQA and Medical Meadow Flashcards
into one fine-tuning dataset, in which we injected the i2b2 medical records to benchmark memorization after
fine-tuning. We used a validation split of 10% and for each model we searched for the learning rate yielding
the lowest validation loss. More details on hyperparameters can be found in Appendix

Figure [3|shows that models fine-tuned in CL with LoRA consistently exhibits lower memorization
scores than full fine-tuning, suggesting the adequacy of using LoRA as a memorization-mitigating technique
in both FL and CL. Across all model sizes, data duplication and longer prompt lengths greatly increase
memorization. The figure also illustrates that larger models memorize more (Carlini et al., 2023b} |Tirumala)
2022). Contrary to our results, [Wang & Li (2025) found that larger models and data duplication in CL
did not affect memorization LoRA fine-tuning, with memorization scores remaining near zero for all settings
while full fine-tuning memorization was increasing. We suggest that near-zero memorization can result from
the small scale of GPT-2 models, and that memorization may appear only above a certain model size. In
fact, the two trends do appear when they relax their definition of memorization, resulting in Llama 3 1B and
8B showing non-trivial memorization with LoRA.

Comparing memorization scores between Figure[2]and [3] we found that FL itself enhances privacy by reducing
memorization compared to CL for a given fine-tuning method. This is consistent with previous work by
[Thakkar et al.| (2021)) who suggested that FedAvg and a non-I1ID data distribution contribute to reducing
unintended memorization. Furthermore, we found that not all trends observed in FL hold in CL. On the one
hand, data duplication, longer context and considering paraphrasing all yield higher memorization scores
for FL as for CL, on the other hand, Figure [2 shows that larger models do not necessarily result in more
memorization with full fine-tuning in FL, as Llama 3.2 1B reached higher memorization scores than Llama
3.2 3B. This difference may stem from FL using separate learning rates for each local model, and thus each
data source, while in centralized learning a single learning rate is used (since all datasets are merged into one).
This finer-grained adaptation in FL, particularly in the non-IID setting where clients train on domain-specific
data, can also explain the slightly higher memorization observed when training Llama 2 7B with FL compared
to CL.

Interestingly, as in FL, LoRA is less effective at reducing memorization for Mistral v0.3 7B than for Llama 2
7B in CL as well. We hypothesize that architectural features may cause different memorization dynamics.
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Notably, Mistral v0.3 leverages a sliding window attention (Beltagy et al., 2020) with Grouped-Query
Attention (Ainslie et all, [2023) while Llama 2 7B uses a regular multi-head attention. We leave further
analysis of the impact of architectural components on unintended memorization for future work.

To better understand the memorization dynamics in FL, we measured memorization with LoRA and full
fine-tuning with respect to federated rounds, as shown in Figure[d} As expected, we found that memorization
in FL increases monotonically with the number of rounds (which corresponds to the number of times medical
records are seen). Throughout the rounds, we see that LoRA memorizes less than full fine-tuning, with
some exceptions where LoRA starts with slightly higher memorization in the first or second round. The
choice of the number of rounds is thus critical, and we show in Table [3] that full fine-tuning reached its best
downstream accuracy in the last two rounds, where the memorization gap between LoRA and full fine-tuning
is the greatest. In other words, LoRA is most effective at reducing memorization where the models are most
performant.
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Figure 4: Memorization evolution throughout the federated learning rounds. The FL memorization
values found in Figure |2| are the values at the last round in this Figure.

To summarize our results, we found that combining LoRA with FL synergistically mitigates unin-
tended memorization across varying model sizes and duplication rates. Furthermore, we show in
Appendix [C] that these results generalize to other domains such as law and finance, to lower duplication rates,
as well as to larger models such as Llama 3.1 70B in CL. Future work is necessary to understand differing
memorization dynamics between similarly-sized models, for example by exploring the effects of differing
attention mechanisms.
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4.2 The privacy-utility tradeoff
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Figure 5: Accuracy vs. privacy across fine-tuning steps. We tracked the accuracy and memorization
(BLEU) during the Llama 3.2 3B fine-tuning (10x duplication) using full fine-tuning (Full FT) and LoRA,
compared to the base model. Numbers above points indicate completed fine-tuning steps.

To assess whether the privacy gains resulting from replacing full fine-tuning with LoRA is due to overfitting
and is preventable by early stopping, we analyzed the utility-privacy tradeoff throughout the CL fine-tuning
steps. Comparing utility and privacy with respect to training steps further allows us to assess whether
the privacy gains observed when training models with LoRA and CL come at the cost of utility. Figure
illustrates the evolution of the privacy and utility for Llama 3.2 3B for LoRA and full fine-tuning. The
figure shows that LoRA consistently follows a more privacy-preserving trend than full fine-tuning
throughout the training steps, with lower memorization scores at similar utility levels. Furthermore, after
a certain number of fine-tuning steps, the model’s tendency to memorize data increases without significant
improvements in utility, due to overfitting. This highlights that early stopping during LLM training not only
improves efficiency, but also reduces the risk of memorization.

Importantly, LoRA even achieves slightly better peak accuracy than full fine-tuning. This can stem from
LoRA’s inherent resistance to overfitting, as restricting updates to a low-rank subspace acts as a form of
regularization (Biderman et all 2024). In contrast, full fine-tuning begins to overfit after several hundred
steps, which limits its attainable accuracy. Additional regularization could likely improve full fine-tuning.

4.3 The LoRA rank and memorization

We further investigated how LoRA’s configuration influences unintended memorization. Specifically, we varied
the LoRA rank to measure its influence on memorization, studying values r € {4, 16, 64, 128,256, 1024}. The
scaling factor « is set to twice the rank, as recommended by [Biderman et al.| (2024]), and the learning rate is
decreased exponentially as the rank increases. We applied LoRA adapters to all layers, following [Biderman
et al.| (2023)) and [Schulman & Lab| (2025).

As shown in Table [T} increasing the rank—i.e. increasing the number of weights updated during fine-tuning
results in more memorization, ranging from virtually no memorization with a rank of 4 to almost 50% of
the medical records being memorized for rank 1024 when considering duplicated medical records. These
results are consistent with [Wang & Lil (2025)) and extend their conclusions to a larger model than GPT-2.
Note that in our case, the highest rank did not yield the best accuracy. We further note that for most ranks,
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Table 1: Impact of the LoRA rank on memorization. We fine-tuned Llama 3.2 3B with LoRA in
centralized learning on increasing LoRA ranks. Higher ranks lead to more memorization but not necessarily
to better accuracy. The lower memorization scores and the highest accuracy are emphasized in bold.

LoRA rank Exact match rate BLEU score Accuracy
No duplication 10x duplication No duplication 10x duplication
4 0.0003 0 0.0133 0.0198 0.509
16 0.0005 0.0031 0.0167 0.0623 0.512
64 0.0031 0.2105 0.0258 0.379 0.511
128 0.0042 0.3735 0.0305 0.5111 0.510
256 0.0057 0.4895 0.0352 0.5809 0.542
1024 0.0063 0.4981 0.0409 0.6228 0.530

suboptimal learning rates can lead to relatively significant memorization with LoRA, though still lower than
for full fine-tuning, highlighting the need for careful hyperparameter tuning.

4.4 Combining LoRA with other privacy-enhancing methods

Although LoRA mitigates unintended memorization on its own, we investigated whether it can be combined
with other privacy-preserving techniques without compromising performance or increasing memorization. In
this section, we outline the different techniques we evaluated, while detailed descriptions of each are provided

in Appendices [F] [G] H] and [J]

Goldfish loss. If users are focused on reducing extractable memorization in pretraining, then they may be
interested in Goldfish loss, while LoRA is used for fine-tuning. However, we investigated its potential for
fine-tuning in combination with LoRA in Appendix [F] and show that the combination of LoRA with Goldfish
loss synergistically achieves lower memorization beyond what either strategy achieves alone.

NEFTune. We examine NEFTune in Appendix[G] a noise-enhanced fine-tuning approach designed to improve
robustness and reduce overfitting. While not a privacy-preserving method per se, we hypothesized that noise
addition could induce some memorization reduction. In practice, we found that combining NEFTune with
LoRA fine-tuning does not further decrease the memorization and in fact does not improve the performance
either, the highest accuracy being reached without any noise. We hypothesize that NEFTune’s noise addition
is superfluous when combined to LoRA’s regularization properties that we discuss in Section

Differential Privacy. In Appendix we discuss the challenges of applying differential privacy (DP)
in our federated setting and the alternative approaches we explored. DP is a well-established technique
that provides formal guarantees to protect individual data from being inferred through the model’s output.
However, integrating DP into our setup requires significant modifications to our training pipeline that
are beyond the scope of this work. Nevertheless, we show that applying gradient clipping without noise
addition improves both accuracy and reduces memorization during fine-tuning, albeit without formal privacy
guarantees. Furthermore, we show in Appendix|[[] that injecting random Gaussian noise into the model weights
does not improve the privacy—accuracy trade-off.

Secure Aggregation. While we observed lower memorization in FL compared to CL (see Section {4)),
locally trained models transmitted during FL may still expose participant data if not properly protected.
In Appendix [J| we present experiments using a secure aggregation protocol combining Fully Homomorphic
Encryption (FHE) and Secure Multiparty Computation (SMPC). We find that this approach effectively
mitigates privacy risks in the federated setting while introducing only negligible computational overhead.

5 Potential Theoretical Explanations

LoRA’s memorization-mitigation effect remains largely empirical and lacks a theoretical foundation. Here,
we discuss several works that present theoretical explanations as potential directions for future work. We
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address additional theoretical work on the impact of FedAvg and similarities to J-compression operators in
Appendix [K]

LoRA as regularization. Biderman et al|(2024) presents LoRA as a competitive regularization method,
and compares it to traditional regularization techniques. They find that LoRA retains more factual knowledge
from its pretraining than fine-tuning with attention dropout or weight decay, and also keeps a better diversity
of token generation than full fine-tuning. Indeed, our experiments show that LoRA is a competitive alternative
to full fine-tuning for our medium-sized datasets, sometimes even slightly outperforming full fine-tuning.
Furthermore, we found that combining LoRA with NEFTune, a noise-based regularization technique, does
not lead to further improvement, suggesting a potential redundancy of regularization.

If we regard memorization as a function of duplication-induced overfitting, the preserved model accuracy of
LoRA fine-tuning coupled with significantly lowered memorization may signal a reduction in benign-overfitting
(Bartlett et al. [2020). That is, while full fine-tuning does not significantly alter model performance, the usage
of full gradients may result in training overfitting without affecting generalization. As our gradients VIV are
low-rank, from a principal component analysis (PCA) perspective, excluding minor singular vectors in an
update may reduce overfitting onto training data. Indeed, (Biderman et all, 2024]) shows that full-finetuning
learns updates with ranks 10 — 100x larger than LoRA and [Zeng & Lee| (2024) formally and empirically
show that any Transformer model with hidden dimension d can be well-approximated with a LoRA rank of
d/2. Thus, it is possible that LoRA reduces benign overfitting (Bartlett et al.| [2020)), which occurs when
training data is overfitted without affecting performance. Notably, [Tang et al.| (2023a)) prove that benign
overfitting can preserve out-of-distribution generalization for overparameterized linear models if there is a
strong correlation between the dominant eigenvectors/components of the source and target distributions. It
is possible then that our LLMs are displaying this phenomenon: in both the centralized and FL settings, our
fine-tuning datasets, while heterogeneous, contain aligned components due to their shared domain. LoRA
may reduce benign overfitting by ignoring minor components, which only explain a minimal (and possibly
noisy) portion of the data covariance.

LoRA as DP-SGD. Recent work by Malekmohammadi & Farnadi| (2025) establishes a theoretical and
empirical relationship between LoRA training and the DP-SGD algorithm. LoRA is shown to be approximately
equivalent to fine-tuning adapters with noisy batch gradients, where the noise variance is a decreasing function
of the LoRA rank. Indeed, we found that reducing the LoRA rank reduces unintended memorization, although
at the cost of decreased performance, similarly to DP-SGD. Consequently, [Malekmohammadi & Farnadi
(2025) showed that LoRA provides additional robustness to membership inference attacks.

6 Conclusion and Limitations

In this work, we demonstrate that LoRA in FL is capable of reducing memorization of fine-tuning sensitive
training data with little to no downstream performance cost. In particular, this effect is also observable in
both centralized learning, and we analyze how memorization patterns differ between the two. Moreover, it is
possible to further reduce memorization by combining LoRA with other strategies such as Goldfish loss or
conventional privacy-preserving mechanisms such as Gaussian noising and gradient clipping.

Our study is limited to cross-silo settings with few clients, and further work is needed to analyze whether
our findings generalize to large-scale cross-device settings. Additionally, further research on a theoretical
explanation of our results is needed as well, and we discussed existing work and hypotheses for future directions
in Section [5[ and Appendix [K| such as reduction of benign overfitting (Bartlett et al., 2020), similarities
between LoRA and DP-SGD (Malekmohammadi & Farnadi, 2025)), and connections to d-compression operators
(Karimireddy et al., 2019).

While we found significant memorization reduction in our study, LoRA and FL does not completely eliminate
unintended memorization, even when combined with other privacy-enhancing techniques. As argued by
Brown et al.| (2022) in the context of LLM training, the only truly privacy-preserving solution is to rely
exclusively on data that is intended to be public and LoRA should not be considered a panacea for unintended
memorization, but rather a privacy-wise improvement over full fine-tuning.
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Broader Impact Statement

This paper presents work whose goal is to advance the field of Machine Learning, especially enhancing
privacy. Among the many potential societal consequences of our work, we specifically acknowledge that
techniques mitigating unintended memorization can incidentally facilitate the concealment of unlawful use
of copyrighted data by preventing its regurgitation post-training. However, we believe that the benefit of
enhanced safeguards for confidential data protection combined with the current advances of other methods
such as watermarking (Li et al.l |2023a; [Tang et al., 2023b; |Cui et al., [2024b)) can effectively mitigate this risk
and provide stronger overall data protection.
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A Further Related Work

Differential privacy. Classical (¢, ¢)-differential privacy (DP) frameworks formally measure the privacy-
preserving capacity of an algorithm by analyzing whether the probability of observing an output changes by
€ when the underlying database excludes or includes a user record (Dwork et al., 2006]). The application of
this framework to generative language tasks, in general, has proven complicated due to the rigid definition
of a user record (Brown et al., |2022; |Jayaraman & Evans, [2019). When directly applying DP to prevent
sensitive data reconstruction, it has been shown that a non-negligible compromise on privacy is required to
maintain performance (Lukas et al.,2023)). The conventional technique of adding Gaussian noise onto clipped
gradients (Abadi et all [2016) to boost privacy has also been shown to affect model outputs: the randomness
of the noise alone can significantly alter the outputs of two equally-private models (Kulynych et al.l 2023)).
McKenna et al.| (2025)) have recently found significant differences in the scaling laws of DP LLM training
compared to models trained under traditional regime.

Membership inference attacks (MIA) rely on rigorous statistical principles to assess privacy risks in
machine learning models. (Shokri et al.l 2017 introduced an approach for determining whether a specific
data point was part of a model’s training dataset. These attacks exploit differences in model behavior on
training versus non-training data, posing significant privacy concerns for sensitive information. Building on
this, (Hongyan et al., 2024) extended these concepts to LLMs by incorporating contextual information. This
study demonstrated that LLMs are particularly vulnerable to membership inference attacks, as they often
retain verbatim information from their training datasets. The work highlighted the increased privacy risks
associated with LLMs due to their scale and training dynamics.

Secure Aggregations. While the conventional FL ensures that raw data is not shared between participants
during collective training, it does not address the risk of data leakage through model updates shared prior
to aggregation. For example, in the honest-but-curious scenario, a server examines whether client data can
be reconstructed (Huang et al., |2021). This vulnerability becomes particularly critical with LLMs, given
their propensity for memorization. To address the privacy risks associated with local model exchanges in FL,
(Truex et al., [2019)) proposes a hybrid approach that combines differential privacy with secure multiparty
computation (SMC). In this framework, local models are encrypted and remain hidden from other participants
prior to aggregation, thereby mitigating privacy leakage risks associated with individual local models by
focusing them on the aggregated model during each aggregation round. While this method has been explored
for general machine learning applications, to the best of our knowledge, it has not yet been investigated in
the context of large language models (LLMs).

Medical applications. Our emphasis on medical datasets is relevant: LLMs have been shown to regurgitate
sensitive medical data in Lehman et al.|(2021)), though their work relies on an older BERT model. [Mireshghallah
et al.| (2022) study the success of membership inference attacks on i2b2, though they also do not use any
memorization metrics. Although federated learning has been studied and championed as an ideal paradigm
for clinical settings (Xu et al.| [2021; Nguyen et al.; [2022; |Antunes et al., [2022), there is a relative lack of
literature in the context of clinical memorization.

B LoRA vs Full Fine-tuning Accuracy

To compare memorization between LoRA and full fine-tuning, it is essential that we compare settings that
yield similar performance, as well as for this performance to be significantly higher than the base model. We
use 3-shot in-context learning without any chain-of-thought reasoning and average the accuracy over three
seeds. Figure [ and [7] illustrate the resulting benchmark accuracy of the fine-tuned models we evaluate in
this study, in federated learning and centralized learning respectively. We compare the base model to LoRA
and full fine-tuning and find that the two fine-tuning methods reach a similar downstream accuracy that is
significantly higher than the base model. A breakdown per benchmark in centralized learning is included in
Table 2l Every fine-tuning yields a significant accuracy improvement over the pre-trained model except for
Llama 3.1 8B as shown in Figure [7} which performance didn’t improve with fine-tuning. Hyperparameter
search either resulted in a significant performance drop (with high memorization) or kept the learning rate
low enough that the accuracy stayed constant and thus showed no memorization. We hypothesize that part
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Figure 6: Downstream accuracy in federated Figure 7: Centralized learning downstream ac-
learning averaged across the 5 benchmarks. curacy averaged across the 5 benchmarks.
LoRA yields relatively similar accuracy to full fine- LoRA matches full fine-tuning accuracy on every
tuning for several LLMs in a heterogeneous FL model tested. A breakdown per benchmark is in-

setting. We report the out-of-the-box accuracy of cluded in Table
the pre-trained models as a control. A breakdown
per round is included in Table [3]

or all of our fine-tuning dataset has already been trained on during Llama 3.1 8B’s pre-training phase, though
the model showed no memorization of the canaries before fine-tuning. Accordingly, we exclude Llama 3.1 8B
from subsequent experiments.

Table 2: Downstream accuracy in centralized learning. Best accuracy values are marked in bold.

Model Fine-tuning ~ MMLU-medical PubMedQA MedMCQA MedQA MedQA-4 Average
No fine-tuning 0.353 0.363 0.49 0.329 0.275 0.308
Llama 3.2 1B Full 0.456 0.616 0.431 0.322 0.379 0.441
LoRA 0.447 0.594 0.397 0.312 0.362 0.422
No fine-tuning 0.432 0.597 0.122 0.491 0.446 0.504
Llama 3.2 3B Full 0.59 0.536 0.542 0.452 0.507 0.525
LoRA 0.608 0.676 0.512 0.448 0.5 0.549
No fine-tuning 0.381 0.426 0.452 0.380 0.292 0.353
Llama 2 7B Full 0.562 0.596 0.516 0.395 0.478 0.509
LoRA 0.560 0.726 0.448 0.353 0.405 0.498
No fine-tuning 0.552 0.635 0.7 0.483 0.438 0.503
Mistral v0.3 7B Full 0.659 0.758 0.588 0.499 0.551 0.611
LoRA 0.667 0.758 0.572 0.467 0.54 0.601

In our federated learning experiments (Section , we compare memorization after 5 federated rounds. This
ensures that we compare models that have been trained on the same tokens for the same number of times.
Similarly, we do not make use of early stopping in centralized learning. Consequently, our methodology may
not stop the fine-tuning at an optimal number of steps and some model may reach their best accuracy at
different number of rounds. To measure this, we show in Table [3] the accuracy of federated fine-tuning per
round. We find that except Llama 3.2 3B, all models reach their best performance in round 4 or 5, without
any method reaching its best accuracy systematically earlier. For Llama 3.2 3B, LoRA reaches its highest
accuracy at round 2 and then again at round 5. Since we compare memorization at the last round, LoRA
memorization scores may be over-estimated due to overfitting, thus under-estimating how LoRA mitigates
memorization compared to full fine-tuning.

21



Published in Transactions on Machine Learning Research (02/2026)

Table 3: Downstream accuracy per federated round. We emphasize in bold the earliest round where
models reach their best accuracy.

. . Accuracy per round

Model Fine-tuning 1 9 3 4 5
Ll 3.2 1B Full 0425 0.438 0.444 0.445 0.445
ama 2. LoRA 0.415 0.422 0430 0432 0.434
Lloma 3.2 3B Full 0.541 0.561 0.554 0.573 0.578
ama . LoRA 0.557 0.564 0.559 0.563 0.564
T Full 0.468 0.488 0.482 0495 0.511
LoRA 0475 0.490 0.482 0.494 0.493
. Full 0.181  0.590 0.599 0.603 0.602
Mistral v0.3 7B LoRA 0.594  0.599 0.598 0.604 0.608

C Generalization to other domains and larger models

To assess the robustness and broader applicability of our findings, we extend our evaluation beyond the
medical domain and 7B-parameter LLMs. Specifically, we explore whether LoRA’s memorization reduction in
centralized learning persists in other high-risk domains such as law and finance, and to a 70B Llama model.
These additional experiments demonstrate that our conclusions generalize across both tasks and model scales.

Additional domains. To evaluate generalizability beyond medicine, we fine-tuned models on Ai2’s Multi-
LexSum (Shen et all 2022), a legal summarization dataset, and ConvFinQA (Cheng et al., 2024]), a financial
QA benchmark. Multi-LexSum contains long-form summaries of real-world civil rights lawsuits across multiple
granularities. ConvFin@QA is a conversational question-answering dataset derived from financial reports. It
tests numerical reasoning and understanding in domain-specific contexts and includes sensitive financial
information. These domains are highly sensitive to privacy risks, where even partial memorization can be
problematic.

Additional semantic measure. We added BERTScore (Zhang et al. |2020) as an additional metric to
better capture semantic similarity and subtle variations in memorized content. Following best practices,
we use the DeBERTa-zlarge-MNLI model. We apply score rescaling, which adjusts for baseline similarity
between unrelated sentence pairs. This technique improves the comparability and interpretability of reported
scores across different models and datasets.

Scaling up to 70B parameters. We evaluated the LLaMA 3.1 70B Instruct model (Dubey et al.| [2024) to

test whether LoRA’s memorization mitigation scales to larger models.

Table 4: Law domain memorization metrics. LoRA consistently lowers all metrics, including BLEU Score
and BERT F1 score.

Model Method BLEU BERTScore
Llama 3.1 70B  Full FT 0.55 0.55
Llama 3.1 70B LoRA 0.17 0.32
Llama 3.2 3B Full FT 0.29 0.42
Llama 3.2 3B LoRA 0.06 0.17

Results. Asshown in Table[]for law and Table[f]for finance, LoRA consistently lowers BLEU and BERTScore
compared to full fine-tuning, generalizing our findings in centralized learning on our medical dataset to other
domains and measures. In particular, we also find that fine-tuning a 70B model with LoRA also yields lower
memorization than full fine-tuning, indicating its continued effectiveness at scale. Memorization scores are
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generally higher for the 70B model than for its 3B counterpart, except on the finance dataset, where we
hypothesize that the lower memorization rate is due to suboptimal default hyperparameters.

Table 5: Finance domain memorization metrics. LoRA consistently lowers all metrics, including BLEU
Score and BERT F1 score.

Model Method BLEU BERTScore
Llama 3.1 70B Full FT 0.55 0.48
Llama 3.1 70B LoRA 0.50 0.45
Llama 3.2 3B Full FT 0.51 0.56
Llama 3.2 3B LoRA 0.11 0.12

Lower duplication rate. Previous duplication experiments relied on a duplication rate of 10. While we
argue that such a rate is realistic in medical datasets given the prevalence of personal health information
(PHI) in medical records, we further evaluate memorization with a duplication rate of 3 in Table [6] These
results confirm that mitigation trends still holds with a lower duplication rate than the 10x duplication used
in earlier sections, consistently with previous work (Wang & Li, [2025) in centralized learning.

Table 6: Medical domain memorization metrics for a large model and lower duplication rate. LoRA
consistently lowers all metrics, including BLEU Score and BERT F1 score.

Model Dupl. Method BLEU BERTScore
Llama 3.1 70B  None Full FT  0.170 0.23
Llama 3.1 70B  None LoRA 0.100 0.18
Llama 3.2 3B None Full FT  0.030 0.11
Llama 3.2 3B None LoRA 0.010 0.12
Llama 3.2 3B 3x Full FT  0.060 0.20
Llama 3.2 3B 3x LoRA 0.004 0.14

D Training setup

All experiments were performed on a university-grade HPC furnished with nodes of 8 80GB A100 GPUs,
with a Python 3.11.9 environment, PyTorch 2.4.0 and CUDA 12.1. Fine-tuning fit on a single GPU without
parallelization for model sizes up to 8GB. Llama 3.1 70B was fine-tuned on 8 GPUs. A centralized fine-tuning
lasts 3 GPU-hours in average. Including preliminary and failed experiments, centralized training amounts
to around 350 GPU-hours. In federated experiments, each round corresponds to one epoch of each of the 3
datasets, in averaging lasting one GPU-hour, in addition to hyperparameters search amounting to roughly 20
GPU-hours per federated fine-tuning and totalling around 250 GPU-hours. Experiments on the LoRA rank,
batch size, Goldfish loss, NEFTune, gradient clipping and Gaussian noise add 400 GPU-hours.

Hyperparameters. In centralized learning, we sweep the learning rate € {le—5,5e—5, le—4, 5e —4} for full
fine-tuning experiments. For LoRA experiments, we search for learning rate values € {5e—5, le—4, 5e—4, 1e—3}
as recommended by [Biderman et al.| (2024). In federated learning experiments, we sweep the learning rate on
each dataset individually for one epoch, with the same set of values as in centralized learning.

For all experiments we fine-tune models with the AdamW optimizer (Loshchilov & Hutter, [2019) with default
parameters (81 = 0.9, B2 = 0.999, ¢ = le~®, weight decay of 0.01). We used a context length of 1024 and
ensured that no text inputs were longer than the context length. We use a linear warmup of 100 steps with
a cosine annealing schedule. Unless mentioned otherwise, we use a global batch size of 32 with gradient
accumulation and gradient checkpointing. For LoRA fine-tuning with use a rank of 16, an alpha of 8, drop
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out 0.05 and use adapters for all projection layers. We study the impact of the LoRA rank on memorization
in Section .3l

E Datasets and pre-trained models

In this section, we describe the datasets and pre-trained models used in our experiments, including fine-tuning
sources, generalization datasets, evaluation benchmarks, and licensing terms.

E.1 Fine-tuning Datasets

In order to reproduce a plausible FL environment with non-IID data, we select 3 popular medical datasets
with different types of QA.

1. MedMCQA (Pal et al., 2022)) is composed of multiple-choice questions, containing almost 190k
entrance exam questions (AIIMS & NEET PG). We fine-tune on the training split and leave aside
validation data as a downstream evaluation benchmark.

2. PubMedQA (Jin et al., [2019)) consists of Yes/No/Maybe questions created from PubMed abstracts.
The dataset contains 1k expert-annotated (PQA-L) and 211k artificially generated QA instances
(PQA-A). We include 500 questions from the train and validation sets of PQA-L and 50k questions
of PQA-A.

3. Medical Meadow flashcards (Han et al.l |2023) contains 39k questions created from Anki Medical
Curriculum flashcards compiled by medical students. We include 10k instances for fine-tuning data.

E.2 Medical Benchmarks

To measure the downstream performance of the fine-tuned models, we evaluate models on 4 medical
benchmarks following existing methodology (Wu et all [2023a; [Singhal et al., |2023cib; |(Chen et al.| 2023):
MedQA, PubMedQA, MedMCQA, and MMLU-Medical.

1. MedQA’s 4-option questions. MedQA (Jin et al.;2020)) consists of US Medical License Exam (USMLE)
multiple-choice questions. The test set contains 1278 questions with both 4 and 5-option questions.
Following |Chen et al.| (2023), we report each case separately, respectively MedQA-4 and MedQA.

2. MedQA’s 5-option questions.

3. PubMed@A’s test set contains 500 expert-annotated questions. No artificially-generated questions
are used during evaluation.

4. MedMCQA’s test set does not provide answer labels, therefore we rely on the validation set, containing
4183 instances, to benchmark downstream performance following [Wu et al.| (2023a)) and [Chen et al.
(2023).

5. MMLU-Medical. MMLU (Hendrycks et al. [2021) is a collection of 4-option multiple-choice exam
questions covering 57 subjects. We follow (Chen et al.| (2023) and select a subset of 9 subjects that are
most relevant to medical and clinical knowledge: high school biology, college biology, college medicine,
professional medicine, medical genetics, virology, clinical knowledge, nutrition, and anatomy, and
group them into one medical-related benchmark: MMLU-Medical.

E.3 Pre-trained models

To account for the effect of model size on memorization (Carlini et al., |2023b; |Tirumala et al.l 2022)), we
study pre-trained models ranging from 1B to 8B parameters: Llama 3.2 1B, Llama 3.2 3B, Llama 3 8B
(Dubey et al. 2024), Llama 2 7B (Touvron et al., |2023), and Mistral 7B v0.3 (Jiang et al.,|2023). We also
include memorization-focused experiments with the Llama 3.1 70B Instruct model (Dubey et al., [2024])) in
Appendix [C] to evaluate how LoRA scales to larger-capacity models.
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E.4 Licenses and Terms of Use

We provide below the licenses and usage terms for all datasets and pretrained models used in our work.

E.4.1 Datasets

e MedMCQA (Wu et al.; [2023a))
Source: https://huggingface.co/datasets/openlifescienceai/medmcqa
License: Apache License 2.0

« PubMedQA (Singhal et al. [2023b)
Source: https://huggingface.co/datasets/openlifescienceai/medmcqa
License: MIT License

o Medical Meadow Flashcards (Han et al. 2023)
Source: https://huggingface.co/medalpaca/medalpaca-7b
License: Creative Commons license family

« i2b2 2014 De-identification Dataset (Stubbs & Ozlem Uzuner, [2015))
Source: https://www.i2b2.org/NLP/HeartDisease
License: Available under a Data Use Agreement from Partners HealthCare. Access requires registration
and approval.

o Multi-LexSum (Shen et al. 2022
Source: https://huggingface.co/datasets/allenai/multi_lexsum
License: Open Data Commons License Attribution family

o ConvFinQA (Cheng et al 2024)
Source: https://github.com/czyssrs/ConvFinQA
License: MIT License

E.4.2 Pretrained Models

o LLaMA 2 (Touvron et al., [2023)
Source: https://www.llama.com/llama-downloads
License: Llama 2 Community License Agreement

o« LLaMA 3 (Dubey et al.| [2024])
Source: https://www.llama.com/llama-downloads
License: Llama 3.x Community License Agreement

e Mistral 7B v0.3 (Jiang et al.| 2023
Source: https://huggingface.co/mistralai/Mistral-7B-v0.3
License: Apache License 2.0

F Goldfish loss

The Goldfish loss (Hans et al.,|2024)) has been introduced recently as a memorization mitigating technique
for pre-training language models via a new next-token training objective. The training procedure randomly
excludes tokens from the loss computation in order to prevent verbatim reproduction of training sequences.
While Goldfish loss has been designed for pre-training, we apply it to our fine-tuning and report values for
various dropping frequencies k and we use a hashing context width h = 13 following the authors’ methodology
(Hans et al.| [2024). We evaluate the memorization and accuracy of Llama 3.2 3B fine-tuned with LoRA in
combination with Goldfish loss. We also compare it to the same model fully fine-tuned with Goldfish loss
only. Table [7] shows how combining Goldfish loss with LoRA mitigates memorization compared to a full
fine-tuning. By contrasting memorization scores with control values, we can also note that the Goldfish loss
is an effective memorization-mitigation technique.
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Table 7: Impact of Goldfish loss on BLEU Scores and accuracy in LoRA Fine-Tuning. Llama 3.2
3B is fine-tuned with different dropping frequencies (k). Best accuracy is marked in bold.

Goldfish k \ BLEU, no duplication BLEU, 10x duplication Accuracy

2 0.0133 0.0216 0.514

3 0.0154 0.0426 0.549

4 0.0180 0.0543 0.534

5 0.0183 0.0815 0.540

10 0.0256 0.1494 0.538
100 0.0266 0.2852 0.537
1000 0.0256 0.3111 0.533
10000 0.0253 0.2944 0.545
Control 0.0245 0.2920 0.550

To assess the impact of LoRA in combination with Goldfish loss, we evaluated the memorization and accuracy
of fine-tuning the same model using full fine-tuning. Table [§] presents the memorization scores and accuracy
of the model fine-tuned with Goldfish loss alone, without LoRA. Our results indicate that while Goldfish
loss reduces memorization, it does not achieve the same level of reduction as the combination with LoRA,
especially when duplication occurs in the fine-tuning data. In summary, combining LoRA with Goldfish loss
allows a privacy-utility tradeoff that cannot be achieved using Goldfish loss alone.

Table 8: Impact of Goldfish loss on BLEU Scores and accuracy in full fine-tuning. The BLEU
scores and the accuracy of Llama 3.2 3B is reported for full fine-tuning across different dropping frequencies
(k). Best accuracy is marked in bold.

Goldfish k ‘ BLEU, no duplication =~ BLEU, 10x duplication = Accuracy

2 0.0146 0.0340 0.517

3 0.0243 0.0679 0.513

4 0.0282 0.1148 0.524

5 0.0310 0.1568 0.521

10 0.0342 0.3006 0.545
100 0.0399 0.5821 0.534
1000 0.0425 0.6235 0.527
10000 0.0407 0.6235 0.516
Control 0.0417 0.6235 0.538

G NEFTune

NEFTune is a regularization technique consisting in adding random noise to the embedding vectors to improve
instruction fine-tuning. While not introduced as a privacy-preserving technique per se, we hypothesize that a
fine-tuning regularization such as NEFTune may also reduce unintended memorization.

We display results after applying NEFTune with noise value o € {5, 10,15,30,45}. We find that adding noise
does not improve accuracy when applied to our domain adaptation fine-tuning. Secondly, increasing the
noise does not yield better privacy, at least not until we set alpha to 45, which is greater than alpha values
reported by the original work (5, 10, and 15).

H Differential Privacy

(e, §)-Differential privacy (DP) provides formal guarantees that an individual’s data cannot be inferred from a
model’s output, by quantifying the model’s sensitivity to changes in input data. Following |Li et al.| (2021) and
Liu et al| (2024), we define sensitivity as the maximum change in model output resulting from the inclusion
or removal of a single data point in the training dataset (record-level DP).

Implementing differential privacy (DP) requires modifications to the fine-tuning pipeline to measure the
sensitivity of the fine-tuning process. However, the use of stochastic gradient descent (SGD), required for
DP-SGD, poses challenges when fine-tuning the Llama 3.2 3B model. Despite extensive hyperparameter
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Table 9: NEFTune impact on the BLEU score and accuracy when combined with LoRA. We
analyze LoRA fine-tuning with Llama 3.2 3B and different noise scaling factors «.

« | No duplication  10x duplication  Accuracy
Control 0.0276 0.4170 0.562
5 0.0284 0.4525 0.560
10 0.0300 0.4506 0.518
15 0.0284 0.4525 0.544
30 0.0282 0.4377 0.548
45 0.0248 0.3599 0.518
60 0.0227 0.2759 0.501
100 0.0183 0.1006 0.391

tuning, particularly of the learning rate, SGD consistently underperforms compared to Adam-based optimizers.
As shown in Figure 8] Paged AdamW achieves substantially faster and deeper loss reduction than SGD during
fine-tuning, highlighting the difficulty of maintaining optimization efficiency while measuring the sensitivity
in large-scale models.

Gradient clipping. A key technique in differential privacy (DP) is gradient clipping, which constrains the
magnitude of gradient updates and enables the measurement of model sensitivity during fine-tuning. In our
experiments, we find that gradient clipping alone can mitigate memorization, even though it does not provide
formal privacy guarantees. Using a clipping value of 0.0001 substantially reduced memorization and improved
accuracy compared to the default value of 1.0. Table[10| reports the impact of different clipping values on
BLEU score and accuracy during fine-tuning of the Llama 3.2 3B model. These results highlight gradient
clipping as an effective privacy-enhancing mechanism in its own right, even without the addition of noise.
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eval loss
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250 500 750 1000 1250 1500 1750 2000
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Figure 8: Loss reduction comparison between optimizers. The plot compares loss reduction during the
fine-tuning of Llama 3.2 3B using different optimizers: SGD (blue) and Paged AdamW (orange).

| Post-fine-tuning Gaussian noise injection

This section provides details and results of the injection of noise into the weights of a model after fine-tuning.
Specifically, the noise is sampled from a Gaussian distribution A'(u, 02), where the mean p is set to 0, and o2
is the variance that determines the noise’s magnitude. Unlike the DP Gaussian mechanism, this approach
does not provide formal privacy guarantees. However, it offers a practical and computationally light method
to mitigate the memorization of sensitive information, as it does not require additional fine-tuning and can be
directly applied to previously fine-tuned LLMs. Additionally, measuring the performance of this method can
illustrate how other noise mechanisms similar to those used in DP might affect accuracy and privacy metrics.

In Table we evaluate its effect under various noise magnitudes, along with the corresponding impact on
model accuracy. We applied Gaussian noise to the LoRA weights of a fine-tuned Llama 3.2 3B model, as
evaluated in earlier sections. We then compared the model’s BLEU score and accuracy across different noise
magnitudes.
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Table 10: Gradient clipping impact on the BLEU score and accuracy. The BLEU score and the
accuracy of Llama 3.2 3B is reported for LoRA fine-tuning. Best accuracy is marked in bold.

Clipping Value | No duplication  10x duplication  Accuracy
1.0 x 10° (default) 0.0266 0.4235 0.520
5.0 x 1071 0.0235 0.4235 0.541
1.0 x 10~* 0.0229 0.4031 0.530
5.0 x 1072 0.0243 0.3827 0.534
1.0 x 1072 0.0227 0.3914 0.506
5.0 x 1073 0.0245 0.3914 0.531
1.0 x 1072 0.0250 0.3352 0.519
5.0 x 1074 0.0203 0.2914 0.528
1.0 x 1074 0.0185 0.0926 0.536
5.0 x 107° 0.0151 0.0438 0.506
1.0 x 1072 0.0086 0.0099 0.491
5.0 x 1076 0.0065 0.0080 0.449
1.0 x 10~6 0.0026 0.0012 0.460
5.0 x 1077 0.0026 0.0012 0.392
1.0 x 1077 0.0026 0.0012 0.377

Table 11: Impact of noise addition on BLEU score and accuracy. Llama 3.2 3B is fine-tuned with
LoRA across various noise magnitudes (o)

Noise Scale (o) \ BLEU, no Duplication =~ BLEU, 10x Duplication = Accuracy

0 (no noise) 0.0206 0.3012 0.553
0.001 0.0211 0.3049 0.552
0.01 0.0206 0.2877 0.551
0.02 0.0143 0.0994 0.541
0.03 0.0083 0.0111 0.511
0.04 0.0013 0.0006 0.384
0.05 0.0000 0.0000 0.110

We observe that the accuracy remains unaffected up to a certain noise level (¢ = 0.01) and even shows
slight improvement. However, beyond this threshold, accuracy decreases and reduction in memorization
similarly follows, appearing to correlate with this decrease. These observations suggest that this mechanism
effectively reduces excessive memorization in models that have overfitted onto their training data. Therefore,
this approach offers an alternative to early stopping for controlling memorization which can be applied post
fine-tuning. Figure [J] compares the privacy and utility of Llama 3.2 3B subject to post-fine-tuning gaussian
noise injection with the evolution of the model fine-tuned with LoRA accross iterations. The noisy model,
represented by red dots, has been fine-tuned for 2100 iterations before injecting the gaussian noise. Gaussian
noise injection of standard deviations of ¢ = 0.2 and ¢ = 0.3 have been reported in the plot.

1.1  Privacy-Utility tradeoff with Gaussian noise injection

Figure [0 presents a dot plot comparing the privacy-utility tradeoffs of Llama 3.2 3B when fine-tuned with
LoRA versus when Gaussian noise is injected after fine-tuning with LoRA. The results indicate that Gaussian
noise injection does not enhance the privacy-utility tradeoff compared to fine-tuning with LoRA.

J Secure Aggregations

Secure aggregation ensures that sensitive data remains protected by preventing the aggregator from decrypting
any individual model updates. In a federated learning setup, only the aggregated global model is accessible
to participants, meaning that memorization within locally trained models before aggregation does not pose a
privacy risk. We also evaluate the runtime performance of combining secure aggregation with LoRA in a
federated learning setting, demonstrating that this added protection incurs minimal computational overhead.

Performance. To evaluate the performance impact of secure aggregation, we use Lattigo, an open-source
library that enables secure protocols based on multiparty homomorphic encryption [Lattigo v6; Mouchet et al.
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Figure 9: Privacy-Utility tradeoff with post-fine-tuning gaussian noise injection. Accuracy and
memorization (BLEU score with 10x document duplication) tradeoff of Llama 3.2 3B subject to post-fine-
tuning gaussian noise injection with standard deviation. Values above the dots correspond to the number of
iterations for LoRA fine-tuning evolution, and the standard deviation of injected noise for noisy models.

(2020)). Specifically, it implements the CKKS scheme, which allows efficient encrypted computations on real-
valued data, making it ideal for the secure aggregation of the LoRA models trained by the clients/participants.
In our experiments, we consider 3 clients and configure CKKS parameters to enable 32-bit precision. Since our
LoRA models are trained with 16-bit precision, this ensures that secure aggregation does not introduce
any accuracy loss compared to standard aggregation in plaintext.

Time overhead. Secure aggregation introduces a time overhead due to encryption, homomorphic operations,
and collective decryption. The duration of encrypted aggregation is influenced by the number of weights
being aggregated, specifically the number of LoRA weights. In our experiments with Llama 3.2 3B, a LoRA
update contains 24,772,608 parameters, representing approximately 0.77% of the full model’s
parameters. In Table [I2] we report the aggregation times for vectors of varying sizes, corresponding to the
number of LoRA weights. Aggregating three vectors of the size of our LoRA takes 11.33 seconds, which is
negligible compared to the time required for local fine-tuning at each round.

Table 12: Execution Time of the Secure Aggregation Protocol. The protocol aggregates three
equal-sized encrypted vectors for varying sizes.

Aggregation Length Time Taken

10t 12.16ms
102 11.61ms
102 11.32ms
104 17.29ms
10° 58.91ms
106 474.46ms
107 4.37s
2.48 x 107 (LoRA size) | 11.33s
108 68.24s

K Why Does LoRA Reduce Memorization?

We continue here the theoretical discussion started in Section [l Our experimental evaluation demonstrates
that LoRA reduces memorization in both centralized and FL settings, which naturally raises the question:
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why does this happen? We argue that the mechanisms by which FedAvg and LoRA mitigate memorization
should be considered independently. (Carlini et al| (2023a)) empirically establish a log-linear relationship
between canary duplication and memorization, thus we frame our discussion of memorization in the context
of overfitting. How and why in-distribution, non-duplicated sequences can still be regurgitated
is a question that we leave to future work.

Federated learning. While it is known that FedAvg can reduce memorization for simpler LSTM-based
next-word predictors (NWPs) (Ramaswamy et al. |2020; Thakkar et al.,2021)), we hope that our verification
of this phenomenon for LLMs on longer canaries can encourage formal investigation. Nevertheless, we note
the following: in the IID FedAvg setting with identical hyperparameter settings (same number of local
updates, learning rate, and initialization) the expected value of the d-sample stochastic gradient over N

clients, %é Zle Jr(0,z; ~ Dy) in Equationcan resemble a single stochastic gradient in a centralized setting
taken over a single large batch of size Nk since fi, and Dy, are homogeneous. Thus, [Thakkar et al.| (2021)
observe more memorization in IID settings with larger batch sizes. The non-IID setting is significantly more
complex: the optimization problem and associated loss landscape of Equation [I] differs from the centralized
problem. We observe in Figure [2] that non-IID FL significantly reduces memorization, which
(2021)) also observe for their NWPs. While they do not fine-tune their learning rates to eliminate this as a
confounding variable, we chl, thus suggesting that FedAvg itself is a memorization-reducing mechanism.

d-compressors. Specific to FL, an alternative hypothesis is that the low-rank approximation of AW resembles
a d-compression operator (Karimireddy et al., [2019), i.e., ||[LORA(AW) — AW||? < (1 — §)||AW||?, and that
low-§ compressors reduce memorization. Low-bias compressors, such as certain randomized projections
(Dorfman et al.| [2023; [Rabbani et al., [2021} Ivkin et al., [2019) and other low-rank approximations
et al.,|2023) have been shown to preserve model performance in non-IID distributed settings. While the effects
of these other operators on memorization has not been extensively studied, the efficacy of gradient clipping
in lowering memorization while maintaining accuracy (Table lends further credence to this hypothesis.
Clipping is a low-bias compressor for heavy-tailed gradients, which is observed for general SGD
and LLM fine-tuning (Kenton & Toutanoval, [2019). Further exploration of §-compressors such as
sketches, signSGD (Bernstein et al.l |2018), QLoRA (Dettmers et al. 2024, and U-Clip (Elesedy & Hutter]

2023)) is warranted.

2While it is possible that performing centralized learning in a curriculum-style manner with heterogeneous learning rates over
training data can reduce memorization, given the small performance gap against non-IID FL, it is highly unlikely that this alone
can improve its significantly worse memorization scores.
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