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Abstract

Large Language Models (LLMs) have demonstrated remarkable generalization and
instruction-following capabilities with instruction tuning. The advancements in
LLM:s and instruction tuning have led to the development of Large Vision-Language
Models (LVLMs). However, the competency of the LLMs and instruction tuning
have been less explored in the molecular domain. Thus, we propose LLaMo:
Large Language Model-based Molecular graph assistant, which is an end-to-
end trained large molecular graph language model. To bridge the discrepancy
between the language and graph modalities, we present the multi-level graph
projector that transforms graph representations into graph tokens by abstracting
the output representations of each GNN layer and motif representations with the
cross-attention mechanism. We also introduce machine-generated molecular graph
instruction data to instruction-tune the large molecular graph-language model for
general-purpose molecule and language understanding. Our extensive experiments
demonstrate that LLaMo shows the best performance on diverse tasks, such as
molecular description generation, property prediction, and [UPAC name prediction.
The code of LLaMo is available at https://github.com/mlvlab/LLaMol

1 Introduction

In recent years, molecular machine learning [1} 12, |3} 4] has received significant attention, addressing
diverse tasks in the chemical domain. The predominant approach for molecular tasks is graph machine
learning [5, 16, [7] that leverages the molecular graph structure, which is a natural and expressive
representation of molecules. Although graph-based methods have successfully represented molecules,
they have limited interpretability and incompatibility to solve multi-modal molecular tasks dealing
with pairs of texts and molecules. To address these issues, recent works [4}, |8] train both a language
model and a graph encoder with cross-modal contrastive learning. However, the models trained with
cross-modal contrastive learning are insufficient to perform open-ended molecule-to-text generation
tasks [3]], which are more applicable to practical use.

Large Language Models (LLMs) [2, 19,10} [11] have shown impressive progress and accomplished
human-like open-ended text generation with the power of billions of parameters. To leverage the
instruction-following capability of LLMs, many works employ instruction-tuning approaches [[12} |13}
14] for general-purpose language models. Motivated by the development of LLMs and instruction
tuning, Large Vision-Language Models (LVLMs) have recently been explored and achieved success
on image comprehension and image-to-text generation tasks [[10} [11} [15L [16} |17, [18]. Despite the
success of LLM-based approaches on natural language processing and machine vision domains,
the research on the integration of language models and molecular graphs has been less studied
due to the lack of consideration of the architecture design of Large Molecular Graph-Language
Models (LMGLMs) and the molecular graph instruction data.
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In this paper, we propose LLaMo: Large Language Model-based Molecular graph assistant, which
seamlessly integrates a molecular graph encoder and a large language model to enable the instruction-
following response generation in molecular domain. Specifically, LLaMo consists of the molecular
graph encoder, large language model, and multi-level graph projector that bridges the graph encoder
and large language model. The multi-level graph projector abstracts the representation of each GNN
layer and motif representation using a cross-attention mechanism, ensuring a thorough understanding
of molecular structures. Furthermore, we introduce machine-generated molecular graph instruction
data through the pipeline to convert molecular descriptions and IUPAC names into a multi-turn
conversation format. The generated instruction-following data enhances the model’s ability to
perform general-purpose molecule and language understanding, bridging the gap between molecular
graph analysis and language-based tasks. Our proposed LLaMo outperforms the LLM-based works
such as GPT-4 across diverse tasks, including molecular description generation, property prediction,
and IUPAC name prediction .

Our contributions are summarized as follows:

* We propose LLaMo: Large Language Model-based Molecular graph assistant consisting of
graph encoder, language model, and multi-level graph projector equipped with a multi-level
graph projector that captures rich information of the graph structure at multiple levels.

* We introduce GPT-4 generated molecular graph-text multi-turn conversation data to address
the data scarcity problem of molecule-text datasets and improve the instruction-following
capabilities of a large molecular graph-language model.

* Our experiments demonstrate that LLaMo achieves the best performance on various tasks
such as molecular description generation, property prediction, and [UPAC name prediction.

2 Related works

Molecular graph modeling. Molecular graphs serve as a natural and expressive representation of
molecules, effectively capturing the structural information. Graph neural networks [[19} 201121} 22] are
commonly utilized architectures for molecular graph representations. To learn graph neural networks
with the limited molecular graph data [23]], self-supervised learning has been explored. For example,
various approaches [24, 25] have been developed to capture multi-level features of molecular graphs,
such as node-level masked atom modeling [24], motif-based self-supervised learning [25. [26]], and
graph-level contrastive learning [27, 28]]. With the advance of multi-modal large language models,
molecule-language tasks such as molecule-text retrieval [8] or molecule captioning [29] have recently
drawn significant attention. Recent works [3} 14, 30] have attempted to enable language models to
understand molecular graphs. [30] treated nodes of molecular graphs as tokens of language models.
Some works have adopted GNN-based encoders, either by propagating their outputs to language
models through MLP [4] or employing cross-modal projectors [3]. However, these methods fail
to consider molecular graphs at multiple levels and are hindered by inherent limitations of graph
encoders, such as the over-smoothing problem [31]]. To address these challenges, we propose a novel
architecture, LLaMo, which effectively propagates multi-level information of molecular graphs to
language models.

Instruction tuning. Recent advancements of LLMs lead to extensive research on instruction tuning,
aimed at improving the model’s capability to follow human instructions [12, 32} [33}34, 35]. To
construct high-quality instruction tuning data, a line of previous approaches [34,[35] has adopted
existing human-annotated datasets and integrated them with a new structure and template. On the
other hand, recent studies [[12, 36} 137]] on instruction tuning have collected data samples from strong
LLMs like GPT-4 [10]]. These works first manually construct annotated seed instruction samples and
expand them by prompting LLMs. As a result, several instruction-tuned LLMs [[14, (16, [37]] have
been proposed from the open-source LLMs, e.g., LLaMA [9] and shown generalizability across a
wide range of instructions. More recently, those studies on instruction tuning have been expanded
to visual instruction tuning in image [[15, 17, 38]] and video [39, 40] domain to enable the model to
understand the visual contents. Inspired by the instruction tuning for multi-modal LLMs in other
domains, in this work, we study instruction tuning specifically for molecule graphs, which has been
underexplored in the literature.
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Figure 1: Overall framework of LLaMo. LLaMo consists of a graph neural network, a multi-level
graph projector, and a large language model. It first encodes an input 2D molecular graph with the
graph neural network and then converts the encoded graph into molecular graph tokens with the
multi-level graph projector. Finally, the large language model generates the instruction-following
response given the input SMILES, graph tokens, and the instruction.

3 LLaMo: Large Language Model-based Molecular Graph Assistant

The primary goal is to seamlessly integrate a molecular graph encoder and a Large Language
Model (LLM) to generate instruction-following responses to the input texts and molecules. To
achieve it, we propose LLaMo: Large Language Model-based Molecular graph assistant, a general-
purpose Large Molecular Graph-Language Model (LMGLM) equipped with a multi-level graph
projector. Specifically, the proposed framework utilizes three input modalities: 1D SMILES [41], 2D
molecular graph, and text (instruction). SMILES [41] is a 1D representation of a molecule, and a 2D
molecular graph is processed by a GNN. The three input modalities are fed as a sequence of tokens
and our LLaMo autoregressively generates text responses. Formally, given SMILES S, molecular

graph tokens G, and text (instruction) T, the proposed method renders the response Y = {yi}iK:1 as:

K
p(Y|S,G7T) :Hp(YZ|S7G7Tay<1)7 (1)

i=1

where y ; indicates generated token sequences until -th token.

3.1 Model Architecture

The overall architecture of LLaMo is illustrated in Figure[TI] LLaMo consists of a graph encoder, a
multi-level graph projector, and a backbone large language model. The graph encoder g(-) takes a
2D molecule graph as an input and outputs their node representations as a sequence of tokens. The
multi-level graph projector Proj,;(+) transforms the sequence of node representations into molecular
tokens to align them with the LLM. Then, the LLM f(-) processes molecular and text tokens and
provides a response in an autoregressive manner.

Graph encoder. We adopt Graph Neural Networks (GNNs) as a molecular graph encoder. Given

the graph G, graph neural networks g (+) iteratively update node representation sz) € R via the
message-passing framework. With the message-passing, L-layer GNN provides node representations
zE,L) that express an L-hop ego-graph given the node v as a center node. More details about graph
neural networks are in the Appendix
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Figure 2: Node representations of graph encoder with 1,2,4,5 layers. As the number of layers
increases, node representations collapse.

Multi-level graph projector. The goal of a multi-level graph projector is to align the graph encoder
with the LLM by transforming a set of node representations Zéfa;h into a sequence of molecular graph
tokens H.pn. It enables the language model to utilize graph information. In the literature, projectors
have been proposed mainly for Large Vision-Language Models (LVLMs) [17, 18} 138,142, |43]]. They
are usually implemented using a linear projection [38] or an abstraction of visual features [17, 42],
which are outputs of the final layer of a visual encoder given input image. Analogously, we can design
the projector for large molecular graph-language models with a linear projection or an abstraction of
high-level node representations from the pre-trained graph encoder, which is formulated as:

H,popn = Proj <Z§;L;h) , where Z{2\ = g(9), )
where Zéz)h = [zéL), e ’ZI(SI) } € RIVIXd"™ i the concatenation of node representation 2" e

R4 from L-th layer GNN and Proj (-) is the projector.

However, we observe that the high-level representation is not effective in capturing the local infor-
mation due to the over-smoothing problem [31], which means that the node representations become
indistinguishable, as the number of layers in the GNN increases. Figure [2] depicts node represen-
tations (yellow dots) of graph encoder with 1,2,4,5 layers on one molecular graph sample. (More
samples are in Appendix [[l) As mentioned above, node representations become over-smoothed as
the number of layers increases, leading to nearly identical node representations in the final layer.
Consequently, conventional projectors relying on high-level node representations have a limited
capability to preserve the detailed or local information of molecular graphs. Moreover, many tasks
require multi-scale information, including atom, atomic group, and molecule levels. Hence, the
projector that solely utilizes features from the top layer is suboptimal for the tasks.

Motivated by the observations, we propose a novel multi-level graph projector to generate graph
tokens that contain richer information reflecting the graph structure at multiple levels. The multi-level
graph projector Projy,q (+) is formulated as

: o \* o \*
Haph = Projyg {Zgraph}l:0 , where {Zgraph}z:o =g(9). 3)
The method captures multi-hop graph information by leveraging node representations from all layers
of a GNN. To handle an arbitrary number of nodes, yielding a variable length |V| x L features, we

adopt the cross-attention with learnable tokens P(\) = [pgl), .. ,pgl)} e R forl =0,...,L,
where b is the number of learnable prompts. Here, [-, -] indicates the concatenation operation. The
learnable tokens aggregate [-th layer GNN representations into a fixed number of tokens as:

PO — At (PD,Z),,. 20

bxd
» “graph’ graph) eR ’ (4)

where Attn (Q, K, V') is the attention operation with query @, key K, and value V.

For more detailed representations of the input molecule, LLaMo also has learnable tokens P (mtif)
for motif-level representations. We use the functional groups as motifs, which are the statistically
important subgraphs in the molecular graphs. To construct functional group representations Zgg, we
initially identify functional groups, following [23]]. Then, we vectorize the main characteristics of each
functional group, which is represented as zgg ;. Finally, the functional group representations Zgg
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Figure 3: Two-stage training pipeline. Stage 1 involves training the graph encoder, and stage 2 entails
fine-tuning the LLM using LoRA. In both stages, the multi-level graph projector is continuously
trained. All training processes are performed by generating the instruction-following response.

are constructed by concatenating all individual functional group representations zgg ;, which is
formulated as Zpg = [2rG,0, - - - » ZFG, M, Where M indicates the number of the functional groups in
the given molecular graph. Given the functional group representations Zgg of the input molecule, we

obtain P @motif) — A tgp (motif) (P(motif)7 ZrG, ZFG) with the cross-attention.

Then, we obtain the graph-level representations by applying MLP to the multi-hop and motif-level
representations, i.e., [P, ..., P&, P(m"ﬁf)]. It is formulated as:

ngaph = MLP ([P(0)7 e ]_f)(L)’ lf)(motif):|) c Rb'(L—’_Q)Xd’ )

where Hgpapn is a sequence of graph tokens to be fed into the LLM.

Large language models. After constructing tokens for encoding molecular graphs, LLaMo fuses
SMILES representation, graph, and text tokens and puts them into the language model to generate an
instruction-following response.

3.2 Training LLaMo

Similar to most LVLMs [[18} 138} 42], we train LLaMo in the two-stage pipeline: (1) pre-training for
molecular graph-language alignment, and (2) instruction-tuning end-to-end as in Figure

Stage 1. Pre-training for molecular graph-language alignment. The first stage focuses on the
alignment between the graph encoder and a large language model by learning our multi-level graph
projector. In this stage, with the LLM frozen, we train the multi-level graph projector and the
graph encoder by generating molecule descriptions. For training, we use a molecule-description pair
dataset (e.g., PubChem [44]) consisting of a 1D SMILES representation of molecule and molecular
graph and its corresponding description.

Stage 2. Instruction-tuning end-to-end. In the second stage, we train the LLM to enhance the
instruction-following capabilities and enable a deeper understanding of molecular graphs. In this
stage, we freeze the graph encoder and train both the multi-level graph projector and the LLM.
Since it is too expensive to train the full LLM, we employ LoRA [45] to adapt LLM to the data. For
instruction-following, we use the GPT-generated instruction-following multi-turn conversation dataset,
which will be introduced in Section[d} In addition to our generated instruction-following dataset, we
use a diverse set of datasets with various instructions: molecule description generation, molecular
property prediction, [IUPAC name generation, forward reaction prediction, and retrosynthesis datasets.

4 GPT-assisted Molecular Graph Instruction Data Generation

Instruction data are essential for improving the instruction-following capabilities of LLM-based
models. Despite active research on instruction-tuning, the instruction-following data for molecular



Table 1: One example to illustrate the instruction-following data. The top block shows the contexts
such as SMILES, description, and IUPAC name used to prompt GPT, and the bottom block shows the
response of GPT-4.

Context type 1: SMILES representation

CCCCC(C)/C=C(\C)/C=C/C(=0)NC1=C[C@]([C@ @H](CC1=0)0)(/C=C/C=C/C=C/C(=0)NC2
=C(CCC2=0)0)0

Context type 2: Description

The molecule is a polyene antibiotic that is TMC-1A in which the 2,4-dimethyloct-2-enoyl group has
been replaced by an (E,E)-4,6-dimethyldeca-2,4-dienoyl group. TMC-1C is an antitumour antibiotic
isolated from Streptomyces sp. A-230...<omitted>

Context type 3: IUPAC name
(2E,4E)-N-[(3S,4R)-3,4-dihydroxy-3-[(1E,3E,5SE)-7-[(2-hydroxy-5-oxocyclopenten- 1-yl)amino]-
7-oxohepta-1,3,5-trienyl]-6-oxocyclohexen-1-yl]-4,6-dimethyldeca-2,4-dienamide

Response: Multi-turn conversation
Question:
What is the IUPAC name of the molecule you are analyzing?

Answer:

The TUPAC name of the molecule is (2E.4E)-N-[(3S,4R)-3,4-dihydroxy-3-[(1E,3E,5SE)-7-[(2-
hydroxy-5-oxocyclopenten-1-yl)amino]-7-oxohepta-1,3,5-trienyl]-6-oxocyclohexen-1-yl]-4,6-
dimethyldeca-2,4-dienamide.

Question:
Can you identify the type of acid or base this molecule can act as in a reaction?

Answer:
This molecule can act as a weak acid due to the presence of the carboxylic acid group.

graphs have been less explored in the literature since annotations require expertise. To alleviate the
need for expertise and minimize the manual efforts, we utilize GPT-4 [10] to generate molecular
graph-text instruction-following data using graph-text pair datasets.

Inspired by previous results [46,47]], we construct multi-turn conversation datasets, which are more
diverse and effective for instruction tuning compared to simple pairs of questions and answers. We
leverage GPT-4 to generate multi-turn conversations with tailored contexts/prompts that consist of two
representations for molecular graphs and description: (i) SMILES representation that describes the
chemical structures with special strings, (ii) captions that explain the molecule, and (iii) [IUPAC name
that describes the molecule based on its chemical composition and structure. These representations
enable the GPT-4, which inherently lacks in-depth molecular knowledge, to understand and generate
a diverse and high-quality set of examples. One example of the input representations is shown in the
top block of Table[]

Specifically, we generate the multi-turn conversation data in three steps: 1) select exemplar con-
versations among machine-generated instruction-tuning data, 2) generate multi-turn conversations
via in-context learning with the exemplar conversations as prompts, and 3) filter out incomplete
conversations and those with many turns. In the first step, we generate exemplars with a brief
human-written instruction as shown in Appendix [H] However, we found that GPT-4 frequently fails to
generate complete multi-turn conversations without the exemplars. To address this issue, we generate
the instruction data with in-context learning. We sample exemplars from a small set of complete
conversations generated by GPT-4 in the first step. Then, GPT-4 generates the complete multi-turn
conversation data for the instruction tuning guided by the prompts wrapped with the generated
exemplars. To validate the quality of the generated conversation, we sample 500 subsets generated
via in-context learning. We find that some conversations consisting of a large number of turns are
prone to generating incomplete and inaccurate outputs. So, we filter out incomplete conversations
and those with many turns. The example of the generated multi-turn conversation is in the bottom
block of Table[l] In total, we generate 12K unique molecular graph-language instruction-following
samples using PubChem324k dataset [3} 44].



Table 2: Performance (%) of generalist models on three tasks: molecule description generation,
TUPAC prediction, and property prediction. Mol. Inst. tuned denotes the molecular instruction-tuned
model. * The result is not available since LLaMA?2 fails generating numerical outputs. 1 denotes the
experimental results drawn from Mol-Instruction [48]].

Model LLM Mol. Inst. Molecule Description TUPAC Prediction Property pred.
tuned | BLEU (1) METEOR (1) | BLEU (1) METEOR (1) MAE (|)

GPT-3.5 GPT-3.5 2.2 19.7 334 52.6 0.075
GPT-3.5 (ICL) GPT-3.5 28.4 56.1 50.3 62.0 0.028
GPT-4 GPT-4 0.8 16.7 29.0 48.1 0.098
GPT-4 (ICL) GPT-4 27.0 52.2 51.8 62.4 0.019
Galacticat Galactica 0.8 6.5 - - 0.568
Text+Chem TS5+ T5-Base 3.6 139 - - -

LLaMA2 LLaMA2-7B 0.0 14.1 0.0 0.4 N/A*
Mol-Instructions LLaMA2-7B v 14.3 254 - - 0.013
LLaMo (Ours) LLaMA2-7B v | 389 67.1 | 56.0 73.2 \ 0.006

5 Experiments

5.1 Experimental Settings

Benchmarks. To evaluate the efficacy of the proposed method, we evaluate the model for three tasks
such as 1) molecule description generation, 2) IUPAC name prediction, 3) property prediction (re-
gression). We conducted experiments under two major settings: generalist and specialist models. In
the generalist setting, one model handles all three tasks, whereas in the specialist setting, we train a
model for each downstream task. More details about benchmarks are in Appendix [G]

Implementation details.  For the generalist models, we train our LLaMo based on
Llama-2-7b-chat [9]] for a fair comparison with Mol-Instructions [48]]. For the specialist models,
we train our LLaMo with Galactica 1.3B [2]] for a fair comparison with MolCA [3]]. To train the
generalist variant of LLaMo, we use a training split of molecular description generation dataset of
Mol-Instruction [48] in stage 1. In stage 2, the model is instruction-tuned with a training split of
description generation, property prediction, forward reaction, and retrosynthesis instruction dataset of
Mol-Instruction [48]], [IUPAC name prediction from [3]], and our GPT-generated instruction-following
data. To train the specialist variant of LLaMo, we follow MolCA [3] to train the model with a
pretraining split of PubChem324kV?2 in the stage 1 phase and fine-tune the model for each specific
downstream task in the stage 2. We adopt a long training schedule (epoch 1 pre-training, epoch
3 instruction tuning) for the final models. For analysis, we use a short training schedule (epoch 1
pre-training, epoch 1 instruction tuning). For further implementation details, refer to Appendix

Baselines. For the generalist models, we compare our LLaMo with (1) LLM-based generalist
models including Galactica [2], LLaMA2-7B [9]], GPT-3.5, and GPT-4, (2) Molecule-specialized
LLM such as Text+Chem T5 [49], and (3) Molecule instruction-tuned generalist model such as Mol-
Instructions [48]]. Since GPT-3.5 and GPT-4 have difficulty in solving the tasks without in-context
learning, we additionally measure the performance of GPT-3.5 and GPT-4 with 4-shot in-context
learning, which are GPT-3.5 (ICL) and GPT-4 (ICL). For the specialist models, we use single-task
specialist molecule-language models as baselines, including MolT5 [29]], MoMu [4], and MolCA [3].

5.2 Experimental Results

Generalist models. We provide the experimental results of generalist models in molecular description
generation, [UPAC name generation, and property prediction tasks. Our LLaMo is built on LLaMA-
7B and it is fine-tuned by our instruction-tuning method. Table 2]shows that our LLaMo achieves the
best performance in all three tasks. In comparison to GPT-4 (ICL), which is GPT-4 with in-context-
learning, LLaMo shows a performance improvement of 11.9 in BLEU-4 and 14.9 in METEOR for
molecular description generation. Furthermore, LLaMo outperforms Mol-Instructions, an instruction-
tuned model with molecular data, by a substantial performance gain of 41.7 in METEOR for molecular
description generation and a 0.007 performance gain in MAE on the property prediction task. More
experimental results on forward reaction prediction and retrosynthesis are in Appendix [D]



Table 3: Performance (%) of specialist models on molecule captioning with the PubChem324k and
ChEBI-20 datasets and IUPAC name prediction. Full ft denotes full parameter fine-tuning.

- PubChem324kV2 ChEBI-20 TUPAC
Model LLM Training type | p; £; METEOR | BLEU METEOR | METEOR

MolT5-Small T5-Small full ft 8.5 18.5 43.6 55.1 42.5
MolT5-Base T5-Base full ft 20.9 35.6 45.7 56.9 53.2
MolT5-Large T5-Large full ft 222 36.6 50.8 61.4 58.5
MoMu-Small T5-Small full ft 12.0 21.8 44.5 57.6 -

MoMu-Base T5-Base full ft 21.5 34.2 46.2 57.6 -

MoMu-Large T5-Large full ft 22.8 36.2 51.5 59.7 -

MoICA, Galacipsm  Galactica-125M full ft 24.3 41.6 52.6 63.6 71.8
MolCA, Galac; 3 Galactica-1.3B LoRA 30.3 45.6 53.1 65.1 72.1
LLaMo (Ours) Galactica-1.3B LoRA \ 344 48.0 \ 54.8 66.6 \ 73.4

Table 4: Performance comparison according to the projector type.

Proiector Molecule description TUPAC prediction Property QA
) BLEU (1) METEOR (1) | BLEU (1) METEOR (1) MAE ()

w/o Graph 26.1 56.6 36.3 62.2 0.013
MLP (w/ low-level) 324 62.1 42.2 68.4 0.009
MLP (w/ high-level) 33.8 63.4 45.5 67.4 0.008
MLP (w/ concat) 34.8 64.1 47.1 70.2 0.007
Resampler 34.4 62.8 434 65.2 0.009
MGProj (w/o motif) 36.1 65.3 48.8 69.8 0.008
MGProj (Ours) | 37.8 66.1 | 49.6 70.9 \ 0.007

Specialist models. We also evaluate the performance of specialist models to validate the effectiveness
of our LLaMo, which is individually fine-tuned for each dataset. Table E] demonstrates that our
LLaMo consistently achieves the best performance across all tasks and datasets. Specifically, LLaMo
outperforms the second-best model MolCA with Galactica 1.3B, by 4.1 in BLEU-score and 2.4 in
METEOR on the PubChem324kV?2 dataset. For [IUPAC name prediction, LLaMo also shows superior
performance, achieving a METEOR score of 73.4, which surpasses MolCA with Galactica 1.3B by a
margin of 1.3 points. This experimental result indicates that our LLaMo is consistently effective in
comprehending molecular graphs based on diverse large language models.

5.3 Analysis

Impact of multi-level graph projector. To validate the effectiveness of our multi-level graph
projector, we compare the performance of the multi-level graph projectors (denoted by MGProj)
with other projectors in Table ] including two widely-used projectors such as MLPs and resamplers.
Additionally, we measure the performance of the base model without a graph (and a projector) denoted
as w/o Graph for the ablation study. MLP (w/ low-level) and MLP (w/ high-level) denote the MLP
projectors where the input is low-level representation Zga)ph and high-level representation Z;ﬁ;h,
respectively. MLP (w/ concat) indicates the MLP projector with the concatenated representations
of all GNN layers as an input. Resampler denotes the cross-attention based resampler projector
designed in Qwen-VL [50]. MGProj (w/o motif) and MGProj are our multi-level graph projector

without and with motif tokens Pmotid

Table [d] shows that our multi-level graph projector (MGProj) achieves the best performance across
all three tasks. Specifically, the multi-level graph projector achieves 49.6 BLEU and 70.9 METEOR
scores with a significant improvement compared to MLP projectors in the IUPAC prediction task.
These experimental results demonstrate that our multi-level graph projector is more effective than
conventional projectors by capturing multi-scale information, including atom, atomic group, and
molecule-level information.



Table 5: Ablation studies on training stage and GPT-generated instruction tuning data.

Molecule description IUPAC prediction Property QA
Stage1 Stage2 GPT-generated data BLEU (1) METEOR (1) | BLEU (1) METEOR (1) MAE (|)
0.0 14.1 0.0 0.4 N/A
v 35.5 64.8 7.3 16.9 N/A
v v 37.2 65.1 475 70.2 0.007
v v 37.8 66.1 49.6 70.9 0.007
Table 6: Performance comparison according to the training type.
Training tvpe Molecule description IUPAC prediction Property QA
gtyp BLEU (1) METEOR (1) | BLEU () METEOR (1) MAE ({)
w/o inst. tuning (Stage 1) 35.5 64.8 7.3 16.9 N/A
Multi-task 36.9 64.2 49.4 70.5 0.218
Instruction-tuning (Ours) 37.8 66.1 49.6 70.9 0.007
Coarse-grained (high-level) Fine-grained (low-level)

3 4 5

0 1 2 3 4 5

The molecule is a prostaglandin carboxylic
acid anion that is the conjugate base of
The molecule is a 13,14-dihydroxyprostaglandin F2alpha,
member of morpholines. obtained by deprotonation of the carboxy
group. It is a conjugate base of a 13,14-

dihydroxyprostaglandin F2alpha.

Figure 4: Visualization of attention maps for samples with coarse-grained caption (left) and fine-
grained caption (right). The attention scores of high-level features are relatively high when generating
coarse-grained captions, whereas those of low-level features are high for fine-grained captions.

Impact of GPT-generated instruction-tuning data. In Table[5] we provide the ablation studies of
each training stage and our GPT-generated instruction dataset. The experimental results reveal that
the instruction tuning with our generated multi-turn conversation data enhances the performance of
LLaMo compared to the models trained via one or two-stage training without our GPT-generated
instruction data. This indicates that instruction tuning with our GPT-generated multi-turn conversation
data provides the model with more detailed and instruction-following guidance.

Instruction tuning v.s. multi-task learning. Table [6] shows the advantages of instruction-tuning
based on task instructions compared to multi-task learning using the simple task identifier. We use
the task name as a simple task identifier for multi-task learning. From the table, the model without
instruction tuning (Stage 1) achieves BLUE score of 35.5 and 7.3 on molecule description and
IUPAC prediction tasks, respectively. The multi-task learning approach improves the scores to 36.9
for molecule description and 49.4 for [IUPAC prediction. However, the instruction-tuning method
demonstrated the most significant enhancement, achieving the highest scores of 37.8 for molecule
description and 49.6 for IUPAC prediction. These results indicate that instruction tuning outperforms
both the baseline and multi-task learning methods, suggesting its effectiveness in improving model
performance on general-purpose training.

Visualization of attention maps. We visualize the attention map to explore the effect of the multi-
level graph projector in Figure @] The figure illustrates the attention maps of graph tokens for
generating coarse-grained (left) and fine-grained (right) descriptions. Interestingly, the attention
scores of the low-level are relatively higher than the high-level when generating fine-grained captions,
whereas the attention value of the high levels is high when generating coarse-grained captions.
This indicates that both low and high-level graph structural information is crucial in expressing the
molecules, and the attention matrix is adaptive to the caption types.

Qualitative analysis. Figure[5]shows a GT description and the molecular descriptions generated by
the model with and without the molecular graph (SMILES representation only). As shown in the



GT: 18-hydroxylinoleic acid

0

AN AAAAAY

GT: The molecule is an omega-
hydroxy fatty acid anoin that is the
conjugate base of 18-hydroxylinoleic
acid, obtained by deprotonation of
the carboxy group; major species at
pH 7.3. Itis a polyunsaturated fatty
acid anion and an omega-hydroxy-
long-chain fatty acid anion. It is a
conjugate base of a 18-
hydroxylinoleic acid.

LLaMo w/o graph: 1-hydroxy-2-oxo-4-

oxocyclohexane-1,2-diol

- Invalid -

LLaMo w/o graph: The molecule is a
1-hydroxy-2-oxo-4-oxocyclohexane-
1,2-diol that is the 1-hydroxy-2-oxo-
4-oxocyclohexane-1,2-diol in which
the hydroxy group is at position 3. It
is a 1-hydroxy-2-oxo-4-oxocyc.

LLaMo w/ graph: 13-hydroxyoctadec-
0-enoic acid

MMOH

LLaMo w/ graph: The molecule is a
hydroxy-long-chain fatty acid anion
that is the conjugate base of 13-
hydroxyoctadec-9-enoic acid,
obtained by deprotonation of the
carboxy group; major species at pH
7.3. It is a hydroxy-long-chain fatty
acid anion and a 13-hydroxy-omega-
long-chain fatty.

Figure 5: An example of molecular description generation results of LLaMo w/o graph and LLaMo w/
graph given the molecule (“C(CCC/C=C\C/C=C\CCCCCO)CCCC(=0)[O-1]"). In the top box, the
molecular graphs of IUPAC and functional groups in the descriptions are depicted.

GT: pyrazine, secondary carboxamide,
tertiary carboxamide

N o o
N
[ j R)kh‘,m R)LN,R,
N H

Ry

GT: The molecule is a member of
pyrazines, a secondary carboxamide

and a tertiary carboxamide.

LLaMo w/o MGProj: pyridine,
carboxamide

LLaMo w/o MGProj: The molecule is
a pyridinecarboxamide. It is a
member of pyridines and a
carboxamide.

LLaMo w/ MGProj: pyrazine, secondary
carboxamide, tertiary carboxamide

N o o
X
[ j R)LN'R‘ AR
N/ H R

LLaMo w/ MGProj: The molecule is a
member of pyrazines, a secondary
carboxamide and a tertiary
carboxamide.

Figure 6: An example of molecular description generation results of LLaMo w/o MGProj and LLaMo
w/ MGProj given the molecule (“C[C@ @H1]1CN(C(=0)C2=C(C(=CC=C2)NC(=0)C3=NC=CN=
C3)0[C@ @H1]ICNC)[C@H1](C)CO”). In the top box, the molecular graphs of [IUPAC and func-
tional groups in the descriptions are depicted.

figure, LL.aMo with a graph denoted as LLaMo w/ graph generates a better molecular description
compared to LLaMo without a graph (LLaMo w/o graph). The GT description explains the molecule
with ‘omega-hydroxy-long-chain fatty acid anion’. Since LLaMo w/o graph does not have any graph
structural information, it fails to generate a description with an invalid IUPAC name (‘1-hydroxy-2-
oxo-4-oxocyclohexane-1,2-diol”), while LLaMo w/ graph generates a more related description with
‘hydroxy-long-chain fatty acid anion’. In addition, we know that LLaMo w/ graph accurately predicts
the long-chain structure of the molecule.

We also perform another qualitative analysis by comparing molecular descriptions generated from
the model with and without our Multi-level Graph Projector (MGProj) denoted by LLaMo w/ MG
Proj and LLaMo w/o MGProj in Figure[6] The figure shows that the multi-level graph projector
plays a crucial role in capturing the details of the molecule. Compared to LLaMo w/o MGProj
generating ‘pyridine’, the model with MGProj generates accurate molecular description including
‘pyrazine’ same as GT description. This demonstrates that the multi-level graph projector is effective
in molecule understanding and generation by preserving the molecular graph structural information.

6 Conclusion

We propose LLaMo: Large Language Model-based Molecular graph assitant, an end-to-end trained
Large Molecular Graph Language Model, to perform various molecule-related tasks with a single
model. For the projector, we newly introduce a multi-level graph projector, which addresses the
over-smoothing problem of the graph encoder and captures multi-hop graph information. We also
present machine-generated instruction-following data in the form of multi-turn conversations to
improve the instruction-following capabilities of the large language model.
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The appendix is organized into the following sections.

* Appendix[A} Limitations
* Appendix B} Broader Impacts
* Appendix [C} Explanation on Graph Neural Networks
* Appendix [D} Additional Experimental Results
* Appendix [E} Detailed Experimental Settings
- Appendix [E.T} Implementation Details

- Appendix [E2} Metrics
* Appendix [F} Baselines

* Appendix [G} Benchmarks

* Appendix [H} Prompts

* Appendix [ Over-smoothing Problems
* Appendix[J} More Qualitative Samples

A Limitations

Our LLaMo is built upon an LLM, e.g., LLaMA and Galactica, and is fine-tuned on molecule
benchmark datasets by leveraging its pretrained knowledge. Given that LLMs are pretrained using
extensive web-crawled corpora, it is uncertain whether the data used for LLMs’ pretraining and the
test samples in molecule benchmark datasets are mutually exclusive. This results in implicit data
leakage when fine-tuning and evaluating LLaMo on molecule benchmark datasets. Furthermore,
LLM:s inherently require large memory and computational costs and cause hallucination problems
where the model generates incorrect but plausible text. Our LLaMo may inherit these LLMs’ problems
due to LLMs’ powerful pre-trained knowledge.

B Broader Impacts

We proposed the first molecular graph-based general-purpose model, LLaMo, which is widely
applicable to various molecule tasks such as molecule captioning, property prediction, and ITUPAC
naming. Our LLaMo itself does not have negative societal impacts. However, as discussed above,
since our model is built upon an LLM, the model sometimes generates biased output concerning race,
religion, culture, and gender, resulting in the misusage of our model. Also, training LLMs requires
massive amounts of CO2 emission promoting global warming.

C Explanation on Graph Neural Networks

Let G = (V, €, X) denote the input graph, where V, £ are a set of nodes and edges, respectively, and
X indicates a set of input node features. The input feature of node v € V is defined as x,, and the
edge between node u and v is represented with (u,v) € V x V. The neighbor set of node v on the
input graph is denoted by NV,, = {u| (u,v) € £}. Given the graph, graph neural networks iteratively

update node representation zg,l) e R via the following message-passing framework:
2() = UPDATE") (ng), AGGREGATE(®) ({sz*U ue Nv})) Cl=1,...L (6

where zEf’) = X,, in that the node representation of 0-th layer is input node features. AGGREGATE (-)

function aggregates the representations of the neighbor set with a particular function. UPDATE (-)
function is designed to update a node reprsentation zq(f_l) with the aggregated information produced

by AGGREGATE (). With the message-passing, L-layer GNN provides node representations zE,L)

that express an L-hop egograph given the node v as a center node. In this paper, we use a pre-trained
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Table 7: Performance on chemical reaction tasks, including forward reaction prediction and retrosyn-
thesis. * denotes the model fine-tuned with task-specific instruction data.

Model Exactf BLEUT Levenshtein/ RDK FTST MACCS FTST Morgan FTS?T Validity 1
Forward Reaction Prediction

Alpaca' [14] 0.000 0.065 41.989 0.004 0.024 0.008 0.138
Baize' [51] 0.000 0.044 41.500 0.004 0.025 0.009 0.097
ChatGLM' [52] 0.000 0.183 40.008 0.050 0.100 0.044 0.108
LLaMAT [53] 0.000 0.020 42.002 0.001 0.002 0.001 0.039
Vicuna' [37] 0.000 0.057 41.690 0.007 0.016 0.006 0.059
LLaMA* [53] 0.012 0.804 29.947 0.499 0.649 0.407 1.000
Mol-Instruction [48] 0.045 0.654 27.262 0.313 0.509 0.262 1.000
InstructMol-G [54 0.153 0.906 20.155 0.519 0.717 0.457 1.000
InstructMol-GS [54] 0.536 0.967 10.851 0.776 0.878 0.741 1.000
LLaMo (Ours) 0.584 0.894 6.162 0.857 0.918 0.841 0.938
Retrosynthesis

Alpaca' [14] 0.000 0.063 46.915 0.005 0.023 0.007 0.160
Baize' [51] 0.000 0.095 44.714 0.025 0.050 0.023 0.112
ChatGLM' [52] 0.000 0.117 48.365 0.056 0.075 0.043 0.046
LLaMAT [53] 0.000 0.036 46.844 0.018 0.029 0.017 0.010
Vicuna' [37] 0.000 0.057 46.877 0.025 0.030 0.021 0.017
LLaMA* [53] 0.000 0.283 53.510 0.136 0.294 0.106 1.000
Mol-Instruction [48] 0.009 0.705 31.227 0.283 0.487 0.230 1.000
InstructMol-G [54] 0.114 0.586 21.271 0.422 0.523 0.285 1.000
InstructMol-GS [54] 0.407 0.941 13.967 0.753 0.852 0.714 1.000
LLaMo (Ours) 0.341 0.830 12.263 0.793 0.868 0.750 0.954

GIN [21]] with 5 layers for the graph encoder, which has widely been applied to molecule graph

understanding tasks [4]]. Formally, GIN updates node representations zg,l) with the following equation:

zg) = MLPY (1 + e(l)) ~Z5)l_1) + Z Zg_l) , @)
ueN,

where (/1) is a learnable parameter or a fixed scalar. The aggregate function AGGREGATE (-) is
the sum operation and the MLP function is used for the combine function UPDATE (-).

D Additional Experimental Results

We also conduct experiments to validate the effectiveness of our LLaMo on chemical reaction
prediction, such as forward reaction prediction and retrosynthesis tasks in Table The table
demonstrates that our LLaMo still performs well on the chemical reaction tasks. LLaMo achieves
the best performance on Levenshtein, RDK FTS, MACCS FTS, and Morgan FTS metrics across
diverse baselines in all tasks, which indicates that LLaMo successfully comprehends molecular
graph structure. We conjecture that our multi-level graph projector helps the large language model
understand the molecular graph structure by representing multi-hop structural information to the
molecular graph tokens.

E Detailed Experimental Settings

E.1 Implementation Details

Our code is implemented based on PyTorch [S5] library. Also, we adopt PyTorch Geometric
(PyG) [56], and Huggingface transformers [S7] to utilize the graph architectures and Large Language
Models (LLMs). PEFT [58]] and OpenDelta [59] libraries are used for parameter-efficient fine-tuning
of LLMs, i.e., LORA. We use LLaMA 2 chat 7B model [9] and Galactica 1.3B [2] as our base
language model. We leverage GIN [21]] with five layers initialized based on the MoleculeSTM graph
encoder [60]], which is pre-trained with text-graph contrastive learning [61]]. We use LoRA to train
the large language model in stage 2. We use OGB [62]], a smiles2graph function, to convert SMILES
representations to 2D graphs. Our experiments are run on 4 x A6000 GPUs or 4 x V100 GPUs and
2 x A6000 GPUs for LLaMA?2 and Galactica, respectively. In stage 1, the AdamW [63]] optimizer is
adapted with an initial learning rate of le-4 (minimum learning rate is le-5 and warmup learning rate
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is le-6). The warmup step is 1,000 and the cosine scheduler is applied. In stage 2, the initial learning
rate is set to Se-5 (minimum learning rate is 5e-6 and warmup learning rate is Se-7).

To evaluate the efficacy of the proposed method, we fine-tune baseline models and evaluate them for
three tasks such as 1) molecule description generation, 2) [IUPAC name prediction, and 3) property
question answering. We conducted experiments under two major settings: generalist and specialist
models. In the generalist setting, one model handles all three tasks, whereas in the specialist setting,
we train a model for each downstream task. For generalist experiments, we use datasets derived from
PubChem and QM9. To be specific, for ‘molecule description generation’, and ‘property prediction’,
we use the datasets derived from PubChem and QM9 of MoleculeNet [64] as in Mol-Instructions [48]].
For IUPAC name prediction, a dataset derived from [3]] is used. To train the generalist variant of
LLaMo, we use a training split of molecular description generation dataset of Mol-Instructions in
stage 1. In stage 2, the model is instruction-tuned with a training split of description generation and
property prediction instruction dataset of Mol-Instructions, [UPAC name prediction from [3], and our
GPT-generated instruction-following data. For the evaluation of molecular description generation and
property question answering tasks, we use the test split of Mol-Instructions molecular description
generation and property prediction datasets, which are sampled from PubChem [44] and QM9 dataset
of MoleculeNet [64]], respectively. For ablations, we use a short training schedule (epoch 1 pre-
training, epoch 1 instruction tuning). For the final models, we adopt a long training schedule (epoch 1
pre-training, epoch 3 instruction tuning).

For training the specialist variant of LL.aMo, we follow MoICA [3]] to train the model with the pretrain
split of PubChem324k in the stage 1 phase and fine-tune the model for each specific downstream task
in stage 2. For the inference under specialist experiments, where a model is individually finetuned
for a specific downstream task, we use a test split of PubChem324k [3]], ChEBI-20 [29] and TUPAC
name prediction dataset from [3]].

E.2 Metrics

We report BLEU [65] and METEOR [66] for the molecule description generation and [UPAC name
prediction tasks. MAE is reported for property QA.

BLEU. The BLEU metric measures the quality of generated text by comparing n-gram sequence
between the generated text and the reference text, which can be formulated as:

N
1
BLEU::BPxemppN;§ log pn), ®
n=1

where N is the number of n-grams and p,, is the precision, i.e., the ratio of the number of n-grams in
the generated text appearing in the reference text. The BLEU score also takes into account sequence
length with Brevity Penalty (BP) as:

1 ife>r
BP =
{e(l_r/c) ife<r’ ©)

where c and r are the lengths of generated and reference texts, respectively. This encourages the
model to avoid generating short sequences. In our experiments, we use BLEU-4 as the default BLEU
metric.

METEOR. The METEOR metric is proposed to consider both precision and recall between the
generated text and the reference text, which is as follows:

p_ number of matched words n_ number of matched words (10)
~ number of words in generated text’ ~ number of words in reference text’
10PR
— 11

9P + R’ (n
number of chunks

Penalty = 0.5 - 12

enalty = 0.5 (number of matched words> ’ 12)

METEOR = F - (1 — Penalty), (13)
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where a chunk is a set of uni-grams which are adjacent in the generated text and in the reference text.
Similar to BLEU, the Penalty is reflected to take into account the length of generated text. Therefore,
the METEOR metric is specialized to measure the morphology, fluency, and adequacy of text rather
than sequence order since it does not use n-grams.

MAE. Mean Absolute Error (MAE) aims to measure the average magnitude of errors between the
ground-truth values and predicted values, which is defined as:

N
1,
MAE = = > " [in = yn. (14)

n=1

where y,, is a ground-truth and g,, is a model prediction.

F Baselines

For the generalist models, we train our LLaMo based on Llama-2-7b-chat [9] as a backbone
language model for a fair comparison with Mol-Instructions [48]]. We compare our LLaMo with (1)
LLM-based generalist models including Galactica [2], Llama2-7b-chat [9], GPT-3.5, and GPT-4,
(2) Molecule instruction-tuned generalist model such as Mol-Instructions [48]]. Since GPT-3.5 and
GPT-4 have difficulty in solving the tasks without in-context learning, we additionally measure the
performance of GPT-3.5 and GPT-4 with 4-shots in-context learning, which are GPT-3.5 (ICL) and
GPT-4 (ICL). The 4-shot exemplars are selected by computing the Tanimoto similarity [67] using
a 2048-bit Morgan Fingerprint [68] with RDKiﬂ choosing the four molecules most similar to the
target molecule from the train split of each dataset. For the specialist models, we train our LLaMo
with Galactica 1.3B [2] for a fair comparison with MolCA [3]]. We use single-task specialist models
as baselines, including MolT5 [29], MoMu [4]], and MolCA [3].

G Benchmarks

In this section, we provide a brief introduction to each task and dataset utilized in our research.

Molecular description generation. Generating the description of a molecule is considered one of
the most important tasks in molecular language models. For a given molecule, we aim for the model
to generate an accurate and informative description including various chemical properties, functional
groups, biological roles, and real-world applications of the molecule. Developing a model capable of
generating such descriptions is highly valuable because it has the potential to discover information
about molecules that is currently unknown or very expensive to find out, thus serving as a powerful
assistant for various tasks in chemistry and biology. Therefore, various works [3} 4} 29} 169\ [70, [71]]
have tried to enhance the ability to generate appropriate descriptions of chemical compounds using
language models or multi-modal language models.

For testing the performance of molecule description generation of LL.aMo and previous models, we
utilize the molecular description generation dataset of Mol-Instmction [48], based on PubChem
database [44] for generalist models, and both PubChem324k [3]] and ChEBI-20 [8]] for specialist
models. PubChem324k is constructed by collecting 324k molecules and their associated text informa-
tion from the PubChem database. ChEBI-20 is the most commonly utilized benchmark in this task,
consisting of selected 33,010 pairs of molecules and descriptions from ChEBI [72]. Each description
of ChEBI-20 contains more than 20 words and includes various and rich information about molecules,
such as conjugate base/acid, functional parent, and enantiomer of molecules. We employ a test split
of each dataset: 1,000 samples of Mol-Instructions and 2,000 / 3,300 samples of PubChem324k /
ChEBI-20. Similarly, we filter out samples of which SMILES representation cannot be converted
into the molecular graph via RDKit.

IUPAC name prediction.IUPAC (International Union of Pure and Applied Chemistry) nomen-
clature [73]] provides a systematic naming convention for molecules based on pre-defined rules,
eliminating the ambiguity in molecular names. It is the standard method for naming molecular

"https://github.com/rdkit/rdkit, Copyright (c) 2006-2015, Rational Discovery LLC, Greg Landrum,
and Julie Penzotti and others. Licensed under BSD 3-Clause license
3Copyright (c) 2023 ZJUNLP. Licensed under CC-BY 4.0 license
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compounds in chemistry, and as such, numerous pieces of chemical literature utilize [UPAC names to
represent molecules. Consequently, previous studies [2, 3] have adopted the task of predicting IUPAC
names from SMILES representations to evaluate the chemical understanding capability of molecular
language models. We also follow this approach in our research. To assess the performance of LLaMo
and baseline models, we use the PubChem324k dataset [3] again. The test split of PubChem324k
offers curated high-quality samples of 2,000 molecules, each with corresponding SMILES represen-
tations and IUPAC names. We provide the SMILES representation of each molecule to the model
along with a prompt and then compare the model-generated [UPAC names with the ground-truth
TUPAC names to evaluate performance.

Property prediction. In chemical and biological domains, particularly in drug discovery, exploring
chemical compounds that satisfy specific chemical properties is crucial. Therefore, the ability to esti-
mate the chemical and physical properties is essential for chemical foundation models. Additionally,
leveraging machine learning-based approaches for predicting molecular properties has proven to be
much more efficient than traditional approaches in computational chemistry. Inspired by these facts,
property prediction with LLMs has recently drawn attention from researchers [2} 169, (70} [71]. So,
we also assess the property QA performance of LLaMo and baselines using the dataset introduced
by [48]]. This dataset is a subset of QM9 dataset from MoleculeNet [64]], a widely used benchmark
for various chemistry machine learning tasks. The original QM9 dataset contains numerical values
for 19 chemical properties per molecule, but [48] focuses on three properties related to molecular
orbital energy: HOMO (Highest Occupied Molecular Orbital) energy, LUMO (Lowest Unoccupied
Molecular Orbital) energy, and the HOMO-LUMO gap (in Hartree units). [48] also created distinct
question-form instructions for each property to make language models understand the task and
accurately generate continuous values. Consequently, using the given instruction for each molecule
in the 2,000 test samples and its SMILES representation as input, we have LL.aMo and baseline
generalist models predict the properties of the given molecules. Similarly, we filter out samples of
which SMILES representation cannot be converted into the molecular graph via RDKit.

Forward reaction prediction. Understanding chemical reactions is crucial for advancing various
chemical and biological fields, including pharmaceuticals, materials science, and environmental
technology. This understanding enables researchers to design efficient synthesis pathways and
develop new chemical compounds. Therefore, if a molecular model can effectively comprehend these
chemical reactions, it can serve as a powerful assistant in the research and development process. This
concept has emerged through the task of forward reaction prediction, and several prior models [48][54]]
have conducted experiments to address this task. This task focuses on the proactive determination of
potential products resulting from a chemical reaction based on given reactants and reagents. This
approach is also significant from the perspectives of efficiency and environmental sustainability, as
it reduces the need for experimental trial and error in chemical development and research by using
these models to virtually conduct simulated experiments. We utilize the forward reaction prediction
segment of Mol-Instructions [48]], based on the USPTO [74] database, to assess the performance of
LLaMo and other models. This dataset contains question-form instructions for predicting reaction
products, with reactants and reagents separated by a period (‘.”) as input, and the corresponding
product of the reaction as the target output. It also doesn’t specify what the reactants and reagents are
to create a task that more closely resembles real-world scenarios. Finally, using the test samples from
this dataset, we provide the SMILES representations of the reactants and reagents to the model and
their molecular graphs with a prompt, aiming to predict the product molecule in SMILES format as
well.

Retrosynthesis. Retrosynthesis shares a similar context with forward reaction prediction but ap-
proaches chemical reactions from a different perspective. The retrosynthetic analysis begins with the
target compound and works backward to identify potential reactant molecules for its synthesis. This
reverse approach is as valuable as forward reaction synthesis because it aids researchers in discovering
effective and efficient synthetic methodologies for generating target molecules. This is particularly
important in various chemical applications, such as drug discovery, where identifying chemically
valid and economical processes for synthesizing target drug molecules is essential. As a result,
several previous studies [48, 154] have adopted this task to analyze the capability to deeply understand
chemical knowledge and take advantage of this knowledge to specify the chemical reactants of a
given product. We also follow this approach and demonstrate its capability using the retrosynthesis
section of the Mol-Instructions [48]] dataset, which originates from the USPTO_S00MT [75]. Each
sample consists of a product molecule and the required reactant molecules, separated by a period (*.).
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Table 8: Example prompt for GPT in molecular description generation task. The top block shows
the instruction part of the prompts. It includes original instruction from the dataset and additional
instruction added only for in-context learning. The bottom block shows optional few-shot examples
and target SMILES.

You are an expert chemist. Please strictly follow the format, no other information can be provided.
Given the molecular SMILES, could you provide a description of this molecule? You will be
provided with several examples of molecules and their descriptions.

Molecule SMILES: COclcce(-c2cc(=0)c3c(0)c(Ocdecc(-c5ce(=0)c6e(0)cc(0)cc605)ccd)c(0OC)cc3
02)ccl

Molecular Description: The molecule is a natural product found in Selaginella tamariscina, Taxodium
distichum, and other organisms with data available.

Molecule SMILES: CC=Cclccc2oc(-c3ccce(Ocdec(-c50c6cce(C=CC)cc6e5C)cccd0)ce3)c(C)c2el
Molecular Description: The molecule is a natural product found in Piper aequale with data available.

Molecule SMILES: C/C=C/c1ccc2oc(-c3ccc(Ocdec(-c50cb6ecc(/C=C/C)cc6c5C)cccdO)ec3)e(C)c2cel
Molecular Description:

Table 9: Example prompt for GPT in IUPAC name prediction task. The top block shows the
instruction part of the prompts. It includes additional instruction added only for in-context learning.
The bottom block shows optional few-shot examples and target SMILES.

You are an expert chemist. Please strictly follow the format, no other information can be provided.
Given the molecular SMILES, your task is to predict the IUPAC name using your experienced
chemical IUPAC name knowledge. You will be provided with several examples of molecules and
their [UPAC names.

Molecule SMILES: COclcc([C@H]2COc3cc(O)cec3C2)ccclO
The molecule’s [IUPAC name is (3S)-3-(4-hydroxy-3-methoxyphenyl)-3,4-dihydro-2H-chromen-7-ol

Molecule SMILES: COclc([C@ @H]2COc3cc(O)ccc3C2)ccc2c1C=CC(C)(C)02
The molecule’s IUPAC name is (3R)-3-(5-methoxy-2,2-dimethylchromen-6-yl)-3,4-dihydro-2H-
chromen-7-ol

Molecule SMILES: COC1=CC(=0)C(C2COc3cc(0)ccc3C2)=CC1=0
The molecule’s IUPAC name is

For each test sample, we provide the product’s SMILES representation, its molecular graph, and the
given instruction prompt as input to the model to generate possible reactants in SMILES format.

H Prompts

In this section, we provide input prompts used to evaluate GPT-3.5 and GPT-4 on molecular descrip-
tion generation task (Table[8)), IUPAC name prediction task (Table[d)), and property question answering
task (Table[T0). We also provide the input prompts for machine-generated instruction-tuning data

generation (Table [T T} [T2).

I Over-smoothing Problems

We provide additional samples to show the over-smoothing problems in Figure [7]
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Table 10: Example prompt for GPT in property question answering task. The top block shows
the instruction part of the prompts. It includes original instruction from the dataset and additional
instruction added only for in-context learning. The bottom block shows optional few-shot examples

and target SMILES.

You are an expert chemist. Please strictly follow the format, no other information can be provided.
Given the molecular SMILES, what is the energy separation between the HOMO and LUMO of this
molecule? You will be provided with several examples of molecules and their HOMO-LUMO gap
values.

Molecule SMILES: COCC120C3CC1C32
Output Value: 0.2967

Molecule SMILES: OCCC12CC3C(01)C32
Output Value: 0.305

Molecule SMILES: CCC1C20C3C1C23C
Output Value:

Table 11: Input prompt for generating multi-turn conversation data based on SMILES and caption.

~

You are an Al chemical assistant, and you are seeing a single molecule. What you see is provided
with SMILES representation of the molecule and sentences describing the same molecule you are
analyzing. Answer all questions as you are seeing the molecule.

Ask diverse questions and give corresponding answers.

Include questions asking about the detailed information of the molecule, including the class, conju-
gate acid/base, functional groups, chemical role, etc.

Do not ask any question that cannot be answered confidently.

Molecule SMILES: {SMILES}

Caption: {CAPTION}

Conversation:

N

Table 12: Input prompt for generating multi-turn conversation data based on SMILES, caption, and

TUPAC.

You are an Al chemical assistant, and you are seeing a single molecule. What you see is provided
with SMILES representation of the molecule and sentences describing the same molecule you are
analyzing. In addition, the [IUPAC name of the molecule is given. Answer all questions as you are
seeing the molecule.

Ask diverse questions and give corresponding answers.

Include questions asking about the detailed information of the molecule, including the class, conju-
gate acid/base, functional groups, chemical role, etc.

Do not ask any questions that cannot be answered confidently.

Molecule SMILES: {SMILES}

Caption: {CAPTION}

TUPAC: {IUPAC}

Conversation:

J More Qualitative Samples

We provide further qualitative results of LLaMo w/ and w/o graph in Figure[8] and LLaMo w/ and

wo MGProj in Figure 9] respectively.
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Figure 7: Node representations of graph encoder with 1,2,4,5 layers. As the number of layers
increases, node representations collapse.

GT: 13,14-dihydroprostaglandin
F2alpha

bl
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GT: The molecule is a prostaglandin
carboxylic acid anion that is the
conjugate base of 13,14-
dihydroprostaglandin F2alpha,
obtained by deprotonation of the
carboxy group; major species at pH
7.3. Itis a conjugate base of a 13,14-
dihydroprostaglandin F2alpha.

LLaMo w/o graph: 2-hydroxy-3-oxo-
1,2,3,4-tetrahydro-1H-pyran
O__OH

L

LLaMo w/o graph: The molecule is a
2-hydroxy-3-oxo-1,2,3,4-tetrahydro-
1H-pyran. It is a conjugate acid of a
2-hydroxy-3-oxo-1,2,3,4-tetrahydro-
1H-pyran(2-).

LLaMo w/ graph: 15-deoxy-
Delta(12,14)-prostaglandin J2

LLaMo w/ graph: The molecule is a
prostaglandin carboxylic acid anion
that is the conjugate base of 15-
deoxy-Delta(12,14)-prostaglandin J2,
obtained by deprotonation of the
carboxy group; major species at pH
7.3. It is a conjugate base of a 15-
deoxy-Delta(12,14)-pro.

Figure 8: An example of molecular description generation results of LLaMo w/o graph and LLaMo w/
graph given the molecule “CCCCC[C@ @H1](CC[C@H1]1[C@ @H1](C[C@ @H1]([C@ @H]1]
1C/C=C\CCCC(=0)[0-1])0)0)0)".
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GT: hexacyclonic acid

Ol

O

GT: The molecule is a hydroxy
monocarboxylic acid anion that is the
conjugate base of hexacyclonic acid,
arising from the deprotonation of the
carboxy group; Major species at pH
7.3. It is a conjugate base of a
hexacyclonic acid.

LLaMo w/o MGProj: 3-hydroxybutyric
acid

A on

LLaMo w/o MGProj: The molecule is
a hydroxy fatty acid anion that is the
conjugate base of 3-hydroxybutyric
acid. It is a conjugate base of a 3-
hydroxybutyric acid.

LLaMo w/ MGProj: 4-hydroxy
cyclohexanecarboxylic acid

o
HO’

LLaMo w/ MGProj: The molecule is a
monocarboxylic acid anion that is the
conjugate base of 4-
hydroxycyclohexanecarboxylic acid,
obtained by deprotonation of the
carboxy group; major species at pH
7.3. Itis a conjugate base of a 4-
hydroxycyclohexanecarboxylic acid.

(a) Molecule “C1CCC(CC1)(CC(=0)[O-1])CO”.

GT: sn-glycero-3-
phosphoethanolamine

o
Ho o o NS
: o
OH

GT: The molecule is 1-(alk-1-enyl)-sn-
glycero-3-phosphoethanolamine
zwitterion in which the alk-1-enyl
group is specified as octadec-1-enyl.
It is a tautomer of a 1-(octadec-1-
enyl)-sn-glycero-3-
phosphoethanolamine.

LLaMo w/o MGProj: 1-(2-hydroxy-3-
[(2)-octadec-1-enoxy]propyl)glycine

o
HN R
o o
OH

LLaMo w/o MGProj: The molecule is
a glycerol ether oxoanion. It is a
conjugate base of a 1-(2-hydroxy-3-
[(2)-octadec-1-enoxy]propyl)glycine.

LLaMo w/ MGProj: sn-glycero-3-
phosphoethanolamine

o
Ho o o NS
: o
OH

LLaMo w/ MGProj: The molecule is a
2-acyl-sn-glycero-3-
phosphoethanolamine. Itis a
tautomer of a 1-O-acyl-sn-glycero-3-
phosphoethanolamine.

(b) Molecule “CCCCCCCCCCCCCCCCC=COC[C@H1](COP(=0)([O-1])OCC[NH3+1])O”.

Figure 9: Examples of molecular description generation results of LLaMo w/o MGProj and LLaMo
w/ MGProj.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We clearly state the main claims in the introduction and abstract.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Appendix [A]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our paper does not include any theoretical analysis.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide the implementation details in the Experiments section.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We make our code and dataset publicly available.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide the implementation details in the Experiments section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: We report the performances with single-run experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the implementation details in the Experiments section.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics in our research.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss both positive and negative societal impacts in Appendix [B]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: We release the code and checkpoint with the safeguards.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We explicitly mention the license of used assets in the supplement.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

28


paperswithcode.com/datasets

14.

15.

Answer: [Yes]

Justification: We explain the data generation process in Section 4 and make the data publicly
available.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not use crowdsourcing in this paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not use crowdsourcing in this paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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