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ABSTRACT

Language models often struggle with multiple-choice question answering (MCQA)
tasks when they fail to consistently choose the correct letter corresponding to the
right answer. We find that while certain attention heads within large language mod-
els (LLMs) identify the right answer internally, this information can be lost before
the final decision stage of what to output. To demonstrate and measure this effect,
we introduce the Query-Key (QK) score, a metric based on query- and key-vectors
alignment, that retrieves the correct answer directly from individual attention heads.
This allows us to identify "select-and-copy" heads, that consistently focus on the
correct option during inference. Across four standard MCQA benchmarks (MMLU,
CosmosQA, HellaSwag, and HaluDialogue), QK score from such heads can be
better than the model’s own output by up to 16% in terms of accuracy, especially for
smaller models. On a synthetic dataset, these heads may outperform the baseline
by as much as 60%. We also find that QK-scores from "select-and-copy" heads
are robust to option permutations and remain effective in few-shot settings. After
analyzing a wide range of models across the LLaMA, Qwen, and other families,
with 1.5B to 70B parameters, we observe the select-and-copy phenomenon in all of
them. Our findings offer new insights into the inner workings of LLMs and open a
principled path toward head-level interventions for controllable and trustworthy
LLM reasoning.

1 INTRODUCTION

Questions with multiple answer options are a common form of benchmark for evaluating question
answering (Hendrycks et al.,[2021)), common sense reasoning (Zellers et al.|[2019), reading compre-
hension (Huang et al.l 2019)), and other capabilities of Large Language Models (LLMs). In multiple
choice question answering (MCQA) tasks, the model is provided with the question and a set of
answer options, e.g. "Question: How many natural satellites does the Earth have? Options: A. 0.
B. 1. C. 2. D. 3.” Some context may also be provided to help answer the question. The model is
then expected to select the letter corresponding to the correct answer. This format resembles real-life
student exams and enables straightforward evaluation using automated tools.

However, this format introduces challenges that go beyond raw accuracy. LLMs are expected
not only to reason correctly, but also to comply with a rigid output format, which is not always
trivial, especially for smaller models. Some models may provide correct answers with formatting
issues or additional commentary before the option label, complicating automatic evaluation. As a
result, some studies delegate answer evaluation to another LLM instead of relying on exact string
comparison (Wang et al., 2024).

Further complicating the evaluation, LLMs can sometimes follow shallow patterns, such as favouring
certain answer options (e.g., always choosing "A" or "D"), which can skew the results (Zheng et al.,
20244a). These issues raise deeper questions about what the model actually knows versus what it
outputs and highlight the need for more interpretable and robust evaluation methods.

In this work, we take a white-box interpretability approach to MCQA. Rather than relying solely
on the final output, we analyse the internal attention patterns of LLMs during inference to uncover
how they internally represent and process the answer options. Our key insight is that some attention



Under review as a conference paper at ICLR 2026

[ Question: ... ? \n Choices: \n A. ... [\n] B. ... [\n] ve e Rl [\n] Answer [: ]
+ — g

Query (Q) ; l A ﬁ

X . g s

M W

) A E

Key (K) *J IR
[ Question: ... ? \n Choices:\nA. ... \n| B.... \n, ... .. F... |\n| Answer [: ]

—

Figure 1: Our method calculates the Query-Key score between the end-of-line token of an answer
option and the last token of the prompt for the designated head, from which we derive the answer.

heads perform a select-and-copy operation: they identify semantically relevant options and propagate
their embeddings forward in the network. Building on this, we introduce a novel method that uses
the query-key interactions of these heads to derive the correct answer without having to parse the
model’s output string.

When answering multiple-choice questions, LLMs internally compute rich semantic representations
of both the question and the answer options. We observe that specific heads align these representations
through the query-key attention mechanism and guide the selection of the correct option often more
reliably than the model’s final output. By identifying and analyzing these select-and-copy heads, we
uncover interpretable mechanisms underlying MCQA performance. Our method exposes consistent
patterns across models of various sizes (1.5B to 70B parameters), revealing that middle layers
are particularly effective at encoding task-relevant information. Later layers, in contrast, tend to
override this information, sometimes degrading performance. Notably, the best-performing heads are
consistent across datasets and task variations, and the answers generated by these heads are often
more accurate than the model’s final output, particularly in zero-shot scenarios.

Our contributions are as follows: (1) We show that select-and-copy heads are present in LLMs ranging
from 1.5B to 70B parameters, performing the option selection operation for MCQA tasks, and the
best of them are universal and consistent across datasets; (2) We introduce the Query-Key (QK)
Score, a novel option-scoring method based on key-query representations from these heads. Using it
help to improve accuracy by 9-16%, and also provides information about which model components
contribute most to MCQA task solving; (3) We demonstrate that our method is more stable than
baselines when handling option permutations or the addition of supplementary options (e.g., "I don’t
know"); (4) Our results support the hypothesis that semantic representations are encoded in specific
heads in the query, key, and value vectors of a phrase’s final tokens (namely, end-of-sentence or
end-of-line tokens), as observed in previous studies (e.g., [Li et al.[(2023b); [Stolfo et al.| (2023));
(5) We analyse the attention patterns of select-and-copy heads and their behaviour under different
conditions, advancing our understanding of how attention mechanism can work as “select and copy”
operation, and how LLMs function in general.

2 RELATED WORK

Question-answering tasks are commonly used to evaluate Large Language Models (LLMs) in knowl-
edge retention, text comprehension, and reasoning abilities. The results of such an evaluation are
presented in technical reports on recent LLMs, [Touvron et al.| (2023)); |Dubey et al.| (2024)); OpenAl
(2024); |/Anthropic| (2024)). Multiple-choice question answering (MCQA) is a common benchmark
due to its straightforward evaluation format (Ye et al., [2024; |Pal et al., [2022). MCQA is typically
approached using multiple-choice prompting (MCP), where all answer options are presented at once,
or cloze prompting (CP), where options are evaluated individually. MCP, despite biases in answer
order and selection (Gupta et al., 2024} Pezeshkpour & Hruschkal [2024; Zheng et al., [2024a)), offers
several advantages over cloze prompting. In MCP, the model sees all the options and can compare
them and also we do not need to normalise the answer probabilities as in CP (Robinson & Wingate,
2023).

In this work, we investigate the inner mechanisms of LLMs, particularly the role of attention heads in
MCQA tasks. Attention head functions have been studied since early transformer architectures (Jo &
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Myaeng, 2020; Pande et al.,|2021)), and are now a core focus in mechanistic interpretability for decoder-
only models (Elhage et al., [2021};|Olsson et al., [2022; |Bricken et al.,[2023). For example, induction
heads, identified by |[Elhage et al.| (2021)), are crucial for in-context learning (Olsson et al., [2022;
'Von Oswald et al.| [2023)), indirect object identification (Wang et al.| 2023), and overthinking (Halawi
et al., |2024). Other task-specific heads include constant heads (Lieberum et al., 2023)), negative
heads (Yu et al., [2024)), and content gatherer heads (Merullo et al.l [2024). For further details on
mechanistic interpretability, see Rai et al.| (2024) and Zheng et al.| (2024b)).

We focus on select-and-copy heads, which identify the correct option in MCQA task. We analyse
different types of option-representative tokens that these heads may attend to. Our experiments reveal
that the most effective heads for MCQA are in the middle layers of the LLM. This aligns with prior
research showing that while early layers encode substantial information, it is often lost or altered
in later layers (Kadavath et al.| 2022; |Azaria & Mitchell, 2023} [Liu et al.| 2023} Zou et al., 2023},
Lieberum et al.| 2023} |(CH-Wang et al., 2024)). While previous studies primarily use linear probes on
hidden representations (Ettinger et al., 2016; Conneau et al., 2018}, |Burns et al., [2023)), we show that
discrepancies between model output and internal structures can also be captured through query-key
interactions.

3 ATTENTION AS SELECT-AND-COPY ALGORITHM

In this section, we describe how the attention mechanism can function as a select-and-copy operation.
Consider a sequence of N token embeddings, {x;}}¥,, each attention head performs a transformation
of the input embeddings:

-
k
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This means that the m-th token of the output embedding is a linear combination of the values of
the preceding tokens, weighted by the m-th row of the attention matrix A = {an,m}fx me1- 1f all
but one component of this combination are close to zero, the transformation can be interpreted as a
conditional copy mechanism. Specifically, if a,,_; is the only non-zero weight in the m-th row, then,
due to stochastic nature of A, a,, ; ~ 1, and o, =~ v;. Each token position from 0 to m can be
viewed as a cell storing the corresponding value vector, with the attention weights a,, ; determining
the choice of which cell to copy to the m-th output.

We introduce the concept of select-and-copy heads that select the appropriate option label and copy
it to the output, based on the semantic content of the options, rather than their positional order. To
extract information from heads, we use query vectors and key vectors from them. However, in modern
models these vectors usually undergo additional transformation with positional encoding, such as
Rotary Position Embedding (RoPE) (Su et al., 2024)). To mitigate the potential impact of the relative
position shift, we introduce the Query-Key-score (QK-score), which does not incorporate positional
shifts when comparing queries and keys (see details in the next section). We compare this score to
the Attention-score, which is computed after the RoPE is applied.

4 APPROACH

Consider an MCQA task with the corresponding dataset D = D,,q; U Dyst, Where each instance
consists of a prompt, a question, and labeled answer options. Given this input, the model is tasked
with generating the label for the best answer option.

We investigate two ways to identify the heads in the model that implement the option selection
mechanism described above. The first one is the following: we select the heads that perform best
using D,,,;, based on their accuracy on this validation set. We then evaluate their performance on
the much larger D;.;. If these heads are indeed responsible for option selection, their performance
should be at least comparable to that of the entire model. We confirm this claim through experiments
presented in Section[6] The second method for selecting such heads is proposed in Section[7} where
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Figure 2: (Left) Scheme for option-representative token types. (Right) Performance of QK-score and
Attention-score (App. E[) for different option-representative tokens on LLaMA3.1-8B base.

we analyse of attention maps and demonstrate that the best performing heads, chosen that way, also
effectively implement the option selection algorithm described above.

QK-score and Attention-Score. Given a data sample for an MCQA task, we denote by ¢ the
question, which may be supported by context if applicable, by o = {01, 09, ..., 0, } the semantic
content of the provided answer options, and by d = {d1, ds, ..., d,, } the corresponding labels (e.g.,
A/B/C/D). We assume that the labels are ordered by default, see Figure [I|and Appendix [A.2]for
examples. The model is tasked with estimating P(d; | ¢, d, o) — the probability of selecting option d;
given the question g, the options contents o, and the options labels d.

Let ¢;, where i € {1,2,...,n}, represent the indices of tokens that encode information about the
corresponding answer options. We refer to these as option-representative tokens. Given the causal
nature of the attention mechanism in LLMs, the most logical choice is the last token following
the option’s content—typically the “\n” token. Our analysis of different tokens across all models
supports this claim (Figure[2), therefore we use the end-of-line token following the i-th option content
as t; in most of our experiments. However, we also found that, in some models, the label token might
serve as an option-representative token, although this behaviour is not consistent across models. We
discuss this behaviour and results for other models in Appendix [B]

Let N denote the length of the entire text sequence, and consider the attention head with index h

from layer [. Given the triplet (¢, d, 0), we define the QK-score Sg’;(l) (d;) for the option d; as the dot
product of the query vector of the whole sequence and ¢;-th key vector:

SSW(dy) = gV TR e {1,2,...,n) ®)

We also define an auxiliary Attention score SX;?) (d;) = ag\l,};) (see Appendix .

The prediction is straightforward: we select the option with the highest score. As we do not apply
a positional transformation in the QK score, it does not correspond to the attention scores prior to
the Softmax operation in Transformer block. As a result, the token with the highest QK-score does
not necessarily correspond to the token with the maximum attention score. For an example, see

Figure[52]

5 EXPERIMENTS

5.1 DATASETS

At first, we introduce Simple Synthetic Dataset (SSD), a synthetic task in the MCQA setting designed
to evaluate the model’s ability to handle the basic task format. Tasks in the SSD do not require any
factual knowledge from the model. The main version of this dataset consists of questions in the form,
“Which of the following options corresponds to “<word>"?" and contains 2.500 examples. The
options consist of a word from the question and three random words, all mixed in a random order and
labeled with the letters ‘A’-‘D’. Other variations of this dataset contain smaller versions in different
languages (see Appendix|[l), as well as versions with a different number of options and different data
labels, all sampled and named according to the same principle (see Appendix [H|for more details).
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Figure 3: Comparison of different methods for LLaMA3.1-8B. Reported metrics are Accuracy and
Permutation Accuracy.

Besides, we conduct experiments on four challenging real-world MCQA datasets from LLM bench-
marks: MMLU (Hendrycks et al., 2021)), CosmosQA (Huang et al.l [2019), HellaSwag (Zellers
et al.,2019) and HaluDialogue, which is a “dialogue” part of HaluEval (Li et al.,[2023a)). From
each dataset we picked 10,000 questions with four possible answer options, and some samples also
include a context that must be used to determine the correct answer. More details about each dataset
and examples can be found in Appendix [A] Our prompt has no instructions, only provides necessary
information for the task, and we ensured the performance was stable under the change of prompts,

see Appendix

Finally, following |Ye et al.| (2024) in all five datasets we specially modified questions by adding
two extra options “E. None of the above.” and “F. I don’t know.” that are intended to aggregate the
uncertainty of LLM. Despite adding these two options, there are no questions for which ‘E’ or ‘F’ are
correct answers. We provide more intuition about adding these options in Appendix [C]

5.2 BASELINES

The standard approach for MCQA is to use output probabilities from LLM on options d; to pick the
final option d:
d = arg max P(d; | q,d,0), 3)

where q is the question, o = {01, ...,0,} — option contents, d = {dy, ..., d, } — options labels. In
our experiments, we refer to this method as BASELINE.

In [Zheng et al.|(20244), it was proposed to mitigate option selection bias by averaging the results over
option permutations. The idea is to use the set of all cyclic permutations Z = {(¢,i+1,....,n,1,....,i—
1)}, to calculate the debiased probability:

P(d; | q,d,0) =T ZIOgP (m1(di) | ¢, d, mr(0)) @
Iez

Since computing probabilities for all permutations for each question is computationally expensive,
authors propose to estimate the prior distribution for option labels on validation set which contains
5% of all samples, and use it to debias new samples. In our experiments we refer to this method as
PRIDE. The test set is the same as the one that we use for head selection. We employ this method to
evaluate the QK-score’s effectiveness in addressing selection bias and to compare it with the model’s
performance after debiasing.

Following previous studies on selection bias Pezeshkpour & Hruschkal (2024)); Zheng et al.| (2024a),
we test whether our methods tend to choose specific option rather than the correct answer. In our
experiments, we observed that both the OK-score and the Attention-score may occasionally exhibit
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bias toward certain answer options, partially reflecting the overall model bias (see Appendix [C). This
suggests that debiasing methods could potentially improve performance. However, investigating such
approaches is left for future work.

5.3 EXPERIMENTAL SETUP

Our main experiments were carried out the following way: first, we took a pretrained LLM and froze
its parameters. Following Zheng et al.| (2024al), we selected best head in terms of QK-score on D,,,;,
which is a fixed set of 5% samples from D for each dataset. Then we calculated QK-Scores and
Baseline on samples from D;.,; only with this head. If several heads had equal accuracy scores,
we chose one from the lower level of the model (although this barely occurred in our experiments).
Finally, we performed random shuffle of option contents in all questions and repeated the above
procedure; this was done to correctly compute the Permutation Accuracy |Gupta et al.[(2024)) metric.
Option labels remain on place during shuffie and options “E. None of the above.” and “F. I don’t
know.” are exempt from shuffling. Also, note that it may be two different heads that achieve the best
QK-scores in the validation set before and after the option permutation.

We report two quality metrics on the test subset: the accuracy of predicted answers (from the first run)
and the Permutation Accuracy (PA). The latter is, in a sense, an accuracy, stable to option permutation.
It is computed as the percentage of questions for which the model selects the correct choice both
before and after the random permutation of options:

1 N
_ TP
PA = ;:1 L1, 5)

where I; is the indicator value equals to 1 iff the model answers question i correctly, while I¥ equals
to 1 iff the model answers question ¢ correctly after answer contents were permuted.

Also similar to|Zheng et al.| (2024a) we used N-shot setup, where we provide model with additional
examples of MCQA task. The examples are separated from each other and from the actual question
by single line breaks. Refer to Appendix [A.3]for examples. The few-shot examples are the same for
every question in the given dataset. The set of examples for (k 4 1)-shot extend the set of examples
for the k-shot prompts, adding one new example. The few-shot examples were chosen from the first
fifteen entries of the validation set. Their selection was mostly arbitrary, but we tried to filter out
questions that we considered suboptimal from the perspective of an English-speaking human expert.

Even without a task-specific D,,4;, we can identify predictive heads using our synthetic data. We first
rank all heads by their QK-score on the synthetic set and select the top 5%. In an N-shot setup, we
then remove any of these heads that answered all in-context examples incorrectly. The final prediction
is the option with the highest average QK-score across the remaining heads. Figure [3|refers to this
procedure as ‘Synthetic’. A similar aggregation can be applied to heads chosen on a given D,,,; (see
Appendix), though a comprehensive study of head combinations is beyond this work’s scope.

6 RESULTS

6.1 SYNTHETIC DATASET RESULTS

Our experiments on the synthetic dataset demonstrate the

remarkable efficiency of the QK score. It achieves near- Taple 1: Top-20 heads performance on
perfect accuracy across all tested models, languages, and Simple Synthetic Dataset for LLaMA
option counts, while full LLMs degrade as the number 3 1.8B

of choices increases(Fig. [5] Table [I} more results in Ap-

pendix). Although individual attention heads exhibit di- Language | Max Acc | Min Acc
verse behaviors, each model contains a subset of “sta- English 1.000 0.995
ble heads” whose accuracy remains consistent across lan- Italian 1.000 0.995
guages and option sizes. Importantly, as we show further, French 1.000 0.985
some of these stable heads retain their performance on real Russian 1.000 0.990
data.
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Figure 4: Heatmap of best-performing heads in with varying numbers of options in
LLaMA3.1-8B. Colored frames mark heads that general- a zero-shot setting for LLaMA-3.1-
ize the best across real datasets (green: top 5% across all 8B. Square markers indicate heads
four datasets, yellow: across three of them). Dark trian- performing well on real datasets (see
gles show heads beating the baseline on synthetic data; Fig. E]); round markers highlight heads
green triangles - on real data. Layers 0-7 and 21-32 are good specifically on synthetic data;
omitted due to lack of notable heads. triangle-dotted line shows the baseline.
LLaMA... LLaMA... (chat, instruct)
Method 3-8B 3-70B 3.1-8B 3.1-70B | 3-8B 3-70B 3.1-8B 3.1-70B
MMLU
Baseline 603 75.3 59.1 72.9 60.5 78.2 60.4 73.8
Pa | 504 68.8 48.6 65.7 477 701 50.1 67.8
QK-score Acc | 61.0 745 62.5 75.9 63.0 779 64.9 79.4
PA | 51.5 66.0 50.7 68.5 493 679 55.2 74.4
Cosmos QA
Baseline 549 82.0 80.7 88.9 854 916 87.2 83.4
Pa | 39.3 757 73.1 85.7 71.0 825 82.7 79.6
QK-score Acc | 70.6  87.6 84.2 91.3 88.6 94.1 90.9 94.7
PA | 60.9 81.7 78.6 87.4 75.1 88.1 86.8 92.6
Hellaswag QA
Baseline 335 82.5 39.2 69.5 67.4 86.8 68.4 74.7
PA | 158 76.1 22.5 59.6 27.8 71.2 58.7 68.8
QK-score Acc | 60.9 82.1 64.0 85.2 725 86.3 71.5 86.7
PA | 50.8 752 54.3 78.0 36.3 72.8 65.3 80.8
Halu Dialogue
Baseline 46.6 443 51.5 18.9 62.1 68.8 55.8 62.9
PA | 29.1 335 36.6 11.8 426 638 474 62.1
QK-score 52.3 67.8 56.1 68.7 64.7 76.7 64.9 78.8
36.7 579 41.1 56.3 46.6 65.6 51.0 73.5

Table 2: Comparison of different base models in zero-shot setup on various Q&A datasets. Reported
metrics are Accuracy (Acc) and Permutation Accuracy (PA). Best results are highlighted in bold.
Detailed results for LLaMA3.1-8B are presented in Table E}

6.2 REAL DATASET RESULTS

Figure[3|reports QK and attention-based scores for the LLaMA3.1-8B model, using heads selected on
each validation set and the universal heads from synthetic data. In the zero-shot setting, our method
outperforms the baseline by 5% on MMLU and up to 29% on HellaSwag. On knowledge-based
tasks (MMLU, CosmosQA), this gap narrows as option counts increase, indicating that QK can
recover latent answers when standard MCQA formatting hinders generation. Few-shot prompting can
similarly guide the model by explicitly demonstrating the required MCQA format, although it incurs
substantially higher computational cost. On common-sense benchmarks (HellaSwag, HalLuDialog),
QK consistently surpasses the baseline for all option sizes, revealing knowledge suppressed during
decoding.
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QK-scores

Attentions

Figure 6: QK-scores after softmax and attentions for the last token on the 0-shot MMLU example
on (17, 26) head of LLaMA3.1-8B. The task is “Question: What singer appeared
in the 1992 baseball film 'A League of Their Own’\nOptions:\nA.
Brandy.\nB. Madonna.\nC. Garth Brooks.\nD. Whitney Houston.\nE. I
don’t know.\nF. None of the above.\nAnswer:” with correct option 'B’.

Comparing head-selection strategies, synthetic-data heads excel on the first two datasets but lag
on the latter pair, whereas validation-selected heads deliver robust performance throughout. This
suggests that tasks involving longer options, deeper reasoning, or discourse coherence require skills
not captured by our simple synthetic task.

We observe similar trends for permutation accuracy. Applying PriDe bias-mitigation atop the baseline
narrows the zero-shot gap and even marginally outperforms QK under few-shot prompting, but
its performance is not stable across models and datasets. This highlights the importance of the
information captured by select-and-copy heads and indicates that while debiasing contributes to
improved outcomes, it addresses only part of the underlying issue.

Finally, Table E] summarizes zero-shot results on larger LL.aMa variants (2-13B, 2-70B, 3-8B, 3-
70B) and their instruction-tuned counterparts; full few-shot evaluations appear in Appendix [M}
Appendix [N|reports additional results for Qwen 2.5 (1.5-72B) and smaller models (Gemma 2-2B,
Dolly V2-3B, Phi-3.5-mini). Across most architectures and datasets, QK consistently unlocks hidden
task-solving capacity that few-shot prompting only partially reveals, and identifies both universal and
dataset-specific heads that reliably select correct answers.

Key takeaways

* All the tested models contain select-and-copy heads that encode a latent MCQA task-solving
ability often exceeding what is reflected by the final generation.

* Few-shot prompting partially unlocks this intrinsic knowledge but requires additional exam-
ples and substantially more computation.

7 ANALYSIS

Best heads. Finding the single best head normally requires a validation set, so we ask whether a
small “universal” subset can match dataset-specific heads. For each dataset and shot level, we take
the top 5% of heads by QK-score (Appendix [F) and count which appear most often. Figure ] marks
heads that are top on synthetic zero-shot (grey) and those ranking highest on real data from 0—4 shots
(green). For LlaMa3.1-8B, most stable heads lie in layers 12-21. Four heads—(16,19), (17,26),
(17,29), and (18,9)—consistently outperform the baseline on all real datasets, and ranked high on
SSD. For LLaMa2-7B, two analogous heads ((14,20) and (14,24)) emerge (see Appendix).

Attention patterns analysis. Figure [0]illustrates the attention map and QK-score for head (17,26);
other examples appear in the Appendix. These select-and-copy heads strongly attend to the “\n”
token following the correct option—exactly as expected—and the QK-score highlights this behavior
even more clearly.

Leveraging this, we propose an unsupervised head-scoring algorithm: heads with high total attention
on option tokens and high variance across them tend to be stable. When applied to LLaMA3.1-8B,
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Figure 7: Zero-ablation of select-and-copy and random heads for LLaMA3.1-8B. The heads are
selected by above-random performance of QK-score, and the random ablation with the same amount
of random heads as selected heads is added for comparison. Random heads were ablated with 5
different launches, and we report mean and standard deviation of accuracy.

this score ranks head (16,19) near the top, but there are also high scorers which do not perform well
(see Appendix [K).

Select-and-copy heads ablation. Using zero-ablation (Olsson et al., 2022), we zero out selected
attention heads and measure MCQA accuracy. Removing all select-and-copy heads drops performance
to near random (Figure[7), confirming their causal role. Additional model results are in Appendix [G|

Key takeaways

* A core set of select-and-copy heads is stable across languages, option counts, and tasks,
consistently exceeding baseline performance.

* Although some heads show clear attention to option tokens, such patterns alone do not
guarantee effective option selection.

* The select-and-copy mechanism is essential for accurate MCQA generation.

Limitations. Our method cannot be applied to models without an access to attention matrices. Also,
our method is not applicable on scarce-resource tasks, even though one can utilize the heads we
marked as robust enough.

8 CONCLUSION

In this work, we introduce novel scoring mechanism — Query—Key (QK) score, derived from internal
representations of LLMs. It provides new insights about how model solves MCQA task and offers
an interpretable mechanism that raises MCQA accuracy by up to 16% across popular benchmarks
and up to 60% on a synthetic dataset. It demonstrates that in these cases, the particular parts in the
middle of the model already know the right answers to the questions, yet the model itself didn’t learn
to propagate this information to the last layer.

We catalogued a small, transferable subset of select-and-copy attention heads that consistently appear
across model families, scales, and prompt formats and that remain effective under language switches
or expanded option sets. Our findings suggest that these heads have the potential to deepen our
understanding of LLMs’ capabilities not only for MCQA but for other reasoning tasks as well. This
work opens up new avenues for further research into the internal dynamics of LLMs, including a
deeper exploration of attention mechanisms and their role in complex task-solving, or into head-level
interventions for controllable and trustworthy LLM reasoning.
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A DATASETS

A.1 DATASETS DETAILS

Massive Multitask Language Understanding (MMLU) (Hendrycks et al.,2021)) contains 4-way
questions on the variety of topics related to STEM, the humanities, the social sciences, and other
fields of knowledge. We sample 10,000 instances from the test set to utilize them in our experiments.
Available under the MIT license.

CosmosQAE] (Huang et al., [2019) together with question and answer options additionally contains
text paragraph that is supposed to be used by a model to give the final answer. The purpose is to
evaluate the model’s reading comprehension and commonsense reasoning capabilities. Similar to
MMLU, we sampled 10,000 instances from the test set. Available under CC-BY-4.0 license.

HellaSwag (Zellers et al.,2019) evaluates the commonsense reasoning capabilities of the model by
selecting the best sentence completion for a given sentence prompt, given a short text as a context.
We also extracted 10,000 entities from this dataset. Available under the MIT license.

HaluDialogue is a "dialogue" part of HaluEval (Li et al., |2023a) dataset with about 10,000 examples.
Here, a model is asked to choose an appropriate continuation of a dialogue from four possible options.
Available under the MIT license.

We chose datasets in order to cover the main formats of questions and common NLP tasks. Since our
primary intention was to focus on the investigation and interpretability of attention heads’ roles in
Question Answering, we limited ourselves to these four datasets. We did not try to cover as many
benchmarks as possible.

'https://wilburone.github.io/cosmos/
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A.2 EXAMPLES OF QUESTIONS FROM DATASETS

Listing 1: MMLU example

Question: Where is the Louvre museum?
Options:

A.

MmO QW

Paris.

Lyon.

Geneva.

Vichy.

I don’t know.

None of the above.

Listing 2: CosmosQA example

Context: My house is constantly getting messy and I ca n’t keep

up . I am starting at a new school with no one I know and

it is 4 times bigger than UAF . I am now going to have to
balance school , homework , kids , bill paying ,
appointment making and cleaning when I can barely keep up
without the school and homework ( keep in mind this is a
full time GRADUATE program at a fairly prestigious school )

We are in financial crisis

Question: What is causing the narrator ’'s recent stress ?

Options:

A. They are moving to a new house

B. I would have tried to guess their password and
alternatively gone to a coffee shop for wifi.

C. They are moving to a new university

D. They are moving to a new house for the kids

E. I don’t know.

F. None of the above.

Listing 3: HellaSwag example

Context: A young boy is wearing a bandana and mowing a large
yard. he

Question: Which of the following is the best ending to the
given context?

Options:

A.
B.
C.

is unrelieved by the weeds and is barely smiling.

walks away from the camera as he pushes the mower.

moves and walks the mower but gets stuck because he is
engaged in a game of ping pong with another boy.

seems to be doing a whole lot of things and talks to the
camera from behind a white fence.

I don’t know.

None of the above.

Listing 4: Halu Dialogue example

Context: [Human]: I like Pulp Fiction. What do you think about
it? [Assistant]: I love it. It was written by Roger Avary [
Human]: I heard he also wrote The Rules of Attraction. Do
you know who is in that movie?

Question: Which of the following responses i1s the most suitable

one for the given dialogue?

Options:

A.

Swoosie Kurtz is in it.

B. Fred Savage is in it.

C.

Yes, it is a drama and crime fiction as well. Do you like
crime fiction stories too?.

D. No, it was not made into a film. However, it was adapted

into a popular Broadway musical.
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E. I don’t know.
F. None of the above.

Listing 5: Simple Synthetic Dataset example

Question: Which of the following options corresponds to "
optimal "?

Options:
A. ion.

optimal.

coins.

Jackie.

I don’t know.

None of the above.

MO QW

A.3 PROMPT TEMPLATES AND EXAMPLES

Variable parts are highlighted in bold; whitespace placing is marked by underscores; the position of
line breaks is explicitly shown by symbols ‘\n’ (note that the last line always ends without whitespace
or line break). In our datasets, we ensured that each question ends with a question mark, and each
choice ends with a point (a single whitespace before it does not affect the logic of tokenization by the
LLaMA tokenizer).

Listing 6: MMLU prompt template

Question:_{Text of the question}?\n
Options:\n

A. _{Text of the option A}_.\n
B._{Text of the option B} .\n
C._{Text of the option C}_.\n
D._{Text of the option D} .\n
E._I_don’t_know,.\n
F._None_of_the_above_.\n

Answer:

Listing 7: CosmosQA/HellaSwag/Halu Dialogue prompt template

Context:
{The context of the question/situation or the dialog history}
\n
Question:_{Text of the question}?\n
Options:\n
..{Text of the option A}_.\n
..{Text of the option B}_.\n
._{Text of the option C}_.\n
..{Text of the option D}_.\n
.,I don’t_know_.\n
._None_of the_ above_.\n
Answer:

Hmo QoW

The following is an example of a 1 shot prompt from MMLU. 2-3-4-5-shot prompts were built in the
same way, and prompts for datasets with context were built the same way, except each question is
preceded by its context. Note that in demonstrations, we add a single whitespace between “Answer:”
and the correct choice letter; for example, “Answer: A”, but never “Answer :A”. This is done
because sequences like “:  A” and “:A” are differently split into tokens by the LLaMA tokenizer.
The former produces the same tokens corresponding to the letter “A” as in the choice option line,
while later yields a different version of “A”. From LLaMA’s point of view, these two versions of
letters are separate entities and are NOT interchangeable. Removing those symbols of whitespace
often leads to a noticeable drop in performance.

Listing 8: An example of 1-shot prompt for a question from MMLU dataset
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Question: A medication prescribed by a psychiatrist for major

depressive disorder would most likely influence the balance
of which of the following neurotransmitters?\n

Options:\n

serotonin .\n

dopamine .\n

acetylcholine .\n

thorazine .\n

I don’t know .\n

. None of the above .\n

Answer: A\n

Question:
Meat should be kept frozen at what temperature in Fahrenheit?
\n

Options:\n

D Hog QW

A. 0 degrees or below .\n

B. between 10 and 20 degrees .\n
C. between 20 and 30 degrees .\n
D. 0 degrees or below .\n

E. I don’t know .\n

F. None of the above .\n

Answer:

B OPTION-REPRESENTATIVE TOKENS ANALYSIS

For our method, it is crucial to identify particular option-representative tokens {¢;} that concentrate
the semantic information of each option. Given the causal nature of the attention mechanism in
LLMs, the most logical choice is the last token following the option’s content—typically the “\n”
token. We use this in most of our experiments, though other tokens are also worth analysing: the
label itself, the period after the label, and the period after the option content (see Figure [2]left). We
also tested the mean aggregated score across all tokens in the option’s content, but this approach
yielded poor results. A detailed analysis of these variations for attention scores is shown in the right
part of Figure 2] Our findings indicate that the period after the content and the end-of-line token
are the most representative for our scores and the task. Interestingly, while the label token is almost
useless in the zero-shot setup, which is consistent with (Lieberum et al.| [2023), it performs well in
the five-shot setup for certain heads. We hypothesise there exist multiple types of select-and-copy
heads, each influencing the logits in distinct ways.

C SOME MORE INTUITION ON OPTIONS ‘E’ AND ‘F’

As mentioned in the main text, including fictional, though always incorrect, choices “E. None of
the above”and “F. I don’t know” inevery question was aimed at creating the “uncertainty
sinks”. However, they are also beneficial for analyzing attention head roles, but that is somewhat
beyond the scope of this article. Here, we would like to provide some intuition about it.

We performed experiments on a modified version of our datasets, where questions include only 4
“meaningful” choices, i.e., options ‘A’-‘D’ only. Scatterplots in Figure [§|show the correlation between
the accuracy of heads using QK-scores on options without ‘E’-‘F’ (by y-axis) and their accuracy on
questions with all six options (by x-axis). Here, only validation subsets were used. We present plots
for some possible setups, but others follow similar patterns. From these charts, we can see that if
a head reaches good accuracy answering 4-choice questions, it usually will reach nearly the same
accuracy on questions with six choices and vice versa; see points around the diagonal y = z in the
upper-right quadrant.

We can also observe another significant trend: horizontal stripe near y-level 0.25. It can be explained
in the following manner: in the data used, ground-truth answers are perfectly balanced — that is, for
every choice ‘A’-D’ 25% of the questions have it as the correct answer. Therefore, if a head reaches
4-choice accuracy of ~ 25%, it falls into one of the three categories:

1. This head chooses only one option in all questions. Usually, it is the last one on the list.
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Figure 8: Correlation between heads QK-scoring accuracy on questions with 4 (‘A’-‘D’) and 6
(‘A’-‘F’) answer options. Solid red lines mark the accuracy level of 0.25, dashed red line — 0.167 (6
options random choice accuracy). Model LLaMA3.1-8B (base).

2. This head “guesses” answers, choosing options nearly randomly and “independent” from
their meanings.

3. This head “understands” questions but is genuinely bad at answering them.

The addition of choices ‘E’ and ‘F’ drops the performance of the first type heads down to nearly
0%, second type — to around 16.7%; QK-scoring accuracy of the third type heads, however, usually
remains the same.

Thus, we can conclude that choices ‘E’ and ‘F’ cause little effect on the performance of good heads,
but, at the same time, their inclusion creates separation between heads that are bad at Multiple Choice
Question Answering and heads that do not have MCQA in their functionality at all (they may perform
other roles for LM).

Results on Figure [§]are given for LLaMA3.1-8B (base) model, but descibed patterns are typical for
other models as well.

D PROMPT DESIGN ANALYSIS

Large Language Models are sensitive to prompt design and this is a well-known issue. Appendix[A.3]
provides the details on the prompt templates we used in our main experiments. Those prompts do not
contain instructions, so the primary intent of this section is to investigate effect of added instructions.

First, we considered 3 various formal style instructions to make the task clearer for the model. For
experiments on MMLU dataset we removed mentions of context from the instructions.

Listing 9: Explicit instructions

1. Make your best effort and select the correct answer for the
following question based on the context. You only need to
output the option.

2. Think logically and select the correct answer for the
following question based on the context. You only need to
output the option.

3.Answer the question based on the context. Select the option
you are most confident at.

The questions prompted with instructions were built according to the modified template:

Listing 10: Modified template for prompt with instruction

Instruction\n
Context: \n [for MMLU this line is omitted]
Question: {Text of the question}?\n
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We conducted experiments with ‘instructioned’ prompts in 0—shot setup for several models. The
setup was similar to the main experiments reported in this paper. The only difference was that
for evaluation we used a 1,000-sample subset of the original evaluation set (it was done to reduce
computational time; the class balance was preserved).

Normally, for each prompt individually, we selected the best head on the calibration data subset
and measured the performance of QK-scores from that head on the evaluation data. However, we
observed further stability of the QK-score method. Apparently, QK-score on heads chosen with the
default prompts (i.e. without instructions), can achieve near the same level of performance even
if prompt contains explicit instruction. And so, we took best heads found on calibration set with
no-instruction prompts (e.g. head (16, 19) for LLaMA3.1-8B on MMLU, and head (17, 24) on Halu
Dialogue, or head (14, 24) for LLaMA2-7B on MMLU) and evaluated their quality on calibration
sets when prompts are given with instructions. In the table this experiment is given in "QK-score +
fixed head" rows. We report results only for LLaMA2-7B-base/-chat, but for other models the overall
picture is similar.

The results are presented in Table[3] We see that in 0—shot setup on all datasets clear instructions in
the prompt improve the performance of both Baseline and QK-score methods compared to our default
prompts. However, this increase is not uniformal and is much more pronounced for chat-/instruct-
tuned versions. Also, it can be noted that QK-score often has lower variance in both metrics. For the
family of LLaMA?2 models, QK-score with ‘fixed head’ achieves the same level of performance as
QK-score with heads selected for each prompt individually. For the chat-tuned model there is some
difference between them (‘fixed head’ slightly degrades the performance).
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Model Method MMLU  Cosmos QA Hellaswag QA  Halu Dialogue

Baseline Acc | 595+0.6 743+12 58.1+£22 359 +2.1

Qwen2.5 PA [493+04 678+1.6 48.6 2.9 257 £ 1.7

-1.5B Acc | 570+13 72.1+09 587+ 1.0 38.3£0.9
QK-score

PA [ 459+1.1 642+08 48.6 £ 0.3 275+£0.8

Baseline Acc | 292+ 1.5 373+12 29.4 £0.2 265 £ 1.1

LLaMA2 PA | 106+0.5 173409 9.1+£0.1 724+1.2

-7B Acc | 3224+2.6 519+£03 374 +£0.5 356+£03
QK-score

PA | 135419 33.8+0.7 184 + 1.6 12.8 + 0.9

+ Fixed Head Acc | 33015 519+£03 364+£1.5 344+15

PA | 1594+1.0 33.8+0.7 179+ 2.0 145+ 1.5

Baseline Acc | 441+ 1.1 62.1+£0.1 429+04 258 £ 1.6

LLaMA2 PA | 286+0.8 47.0+09 250+ 1.5 12.6 £ 0.8

-7B, chat QK-score Acc | 449+04 640=£12 49.5+ 0.6 440+ 0.5

PA [ 30.1+12 51.0+14 346+ 1.1 252 +£0.8

+ Fixed Head Acc | 445+0.8 628+04 444 4+ 0.8 358 £0.6

PA | 2894+0.1 463+09 30.1 £ 1.5 16.6 £ 0.8

Baseline Acc | 61.1 05 845+0.5 67.9 £0.8 60.7 £0.5

LLaMA3 PA | 5244+0.6 793 =£0.7 593 +09 51.1£1.0

-8B, Instruct QK-score Acc | 61.5+0.1 883+£0.1 70.8 £ 1.9 653+ 14

PA | 5294+0.0 844+02 61.8+25 535+44

Baseline Acc | 60.5+04 78.7+£09 517+ 1.6 553+ 1.7

LLaMA3.1 PA | 468+02 709+0.8 355+3.0 412+ 1.7

-8B Acc | 642+0.6 82.6=£05 679 +£04 58.5+£29
QK-score

PA | 53.8+04 76.6+0.8 574 £ 1.1 427 +3.0

+ Fixed Head Acc | 642+0.6 82.6=£05 58.4+09 549 +£1.8

PA | 53.0+0.7 754+0.6 450+ 1.3 394+19

Baseline Acc | 66.1 =1.5 88.0£1.1 71.8 £ 1.8 57.1£52

LLaMA3.1 PA | 5414+15 835+£15 623 +28 475+£53

-8B, Instruct QK-score Acc | 67.0+£0.6 89.7+0.6 720+ 1.0 69.7 £ 1.8

PA | 576+12 855+1.1 63.6 £ 1.8 553+£22

+ Fixed Head Acc | 67.1 0.6 899+04 73.0+0.3 71.0+ 1.6

PA | 57.1+£06 857+0.8 65.1 £0.5 537+ 14

Table 3: Performance of Baseline and QK-score methods on prompts with explicit instructions. 0-shot
setup.

Next, we explore more exotic examples. As it was noted in [Mozikov et al.| (2024)), behaviour of
LLM’s may change when models are prompted with different emotional states. Inspired by this work,
we collected a set of 11 creative instructions: 8 instructions asking the model to emulate an emotion
and 3 instructions asking to answer the question while roleplaying a fictional character. The setup of
experiments was the same as the one used for explicit instructions. The results are presented in Table
Here we can see that, in general, our creative instructions result in the decrease of performance of
both methods, and once again, this effect is more noticeable for chat-/instruct-tuned models.

As for prompts with clear instructions, evaluation performance of QK-score on best head fixed on the
‘no-instruction’ prompt is close to performance of QK-score on best head selected specifically for
the prompt. This observation suggests that heads chosen for QK-scoring in our method are stable
across a wide range of possible prompts (thus justifying the omission of clear instructions in our main
experiments is justified).

19



Under review as a conference paper at ICLR 2026

Model Method MMLU  Cosmos QA Hellaswag QA  Halu Dialogue

Baseline Acc | 569+29 T714+27 56.7 £3.7 38.4+25

Qwen2.5 PA | 4594+32 642+32 473 +3.8 272+£25

-1.5B Acc | 553+20 706=+13 56.1+£1.8 382+25
QK-score

PA [433+19 613+14 458 +£2.9 23.6 £5.7

Baseline Acc | 29.2+ 1.8 29.6+50 273+13 239+1.2

LLaMA2 PA | 100+ 1.5 115442 8.1£0.9 5.74+0.8

-7B Acc | 282+ 1.8 47.0+6.0 383+£1.6 344+ 14
QK-score

PA | 1054+2.0 27.6+72 20.2 £2.0 13.7 £ 2.1

+ Fixed Head Acc | 289+4.6 47.0£59 33.5+4.6 31.7£25

PA | 133429 283459 155+35 13.6 2.2

Baseline Acc | 382+64 554+46 36.7+4.5 228 £49

LLaMA2 PA | 2334+54 392+58 19.5+£3.6 10.7 £2.5

-7B, chat QK-score Acc | 39.0+33 554+46 36.7+4.5 40.0 £ 3.0

PA | 226+48 442459 25.7+3.7 203 £4.0

+ Fixed Head Acc | 347+79 578+39 377+ 1.5 348 £34

PA | 212453 375469 220+ 2.1 164+ 19

Baseline Acc | 56.2+5.0 80.0+£4.1 55.8 £ 14.3 552+£9.2

LLaMA3 PA | 476+47 744+46 46.5 + 14.2 46.0 £9.3

-8B, Instruct QK-score Acc | 60.8+1.8 863+1.2 64.8 +£5.9 63.4 +£5.7

PA | 52.8+2.8 81.5+£2.0 55.7+6.8 526£78

Baseline Acc | 555+1.7 T756=£15 332+95 49.6 + 4.1

LLaMA3.1 PA [ 435423 672419 182+ 6.9 353+42

-8B Acc | 629+ 1.1 80.6+1.0 62.2+22 574+£24
QK-score

PA | 52.14+1.7 734+13 499 +2.8 42.1 £3.5

+ Fixed Head Acc | 63.24+1.0 80.6+£1.1 478 +5.6 502 £28

PA | 520+12 721+13 349+53 352+33

Baseline Acc | 609 +63 82.7+4.1 549 £ 183 422+ 14.2

LLaMA3.1 PA [ 498+59 77.6+44 444 4+ 17.7 329+ 133

-8B, Instruct QK-score Acc | 655+20 882+£1.1 64.1 £ 8.1 64.9 £5.6

PA | 559422 833+1.1 53.8 £ 8.5 48.6 £ 6.2

+ Fixed Head Acc | 655+2.0 88.0£1.2 63.6 £ 104 65.6 £5.7

PA | 556+1.8 828+1.7 54.1 +10.0 448 £7.5

Table 4: Performance on prompts asking to emulate an emotion (or roleplay a character) and then
answer the question. 0-shot setup

E NUMERICAL RESULTS FOR COMPARISON OF QK-SCORE WITH OTHER
METHODS

Table [5] provides numerical results for our main experiments with QK-scores from heads of the
LLaMA3.1-8B (base) model that are presented in Figure[3]in the main text. As can be seen from the
table, for MMLU and CosmosQA PRIDE shows the best performance, while QK-score yields results
slightly worse (though within reasonable tolerance). It can be explained by the fact that PRIDE was
initially aimed at improving the model performance by increasing stability of its predictions, and
QK-score is more an analysis tool than a method for evaluation improvement.

In the same way, Table@provides numerical results for the LLaMA2-7B (base) model for comparison.
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...-shot prompting
Method \ 0 1 2 3 4 5
MMLU
Acc | 59.0 633 633 626 627 637
PA 484 526 529 521 520 533
Acc | 624 64.0 633 63.0 634 o64.1
PRIDE PA 529 538 542 537 535 541
Attention Acc | 62.7 62.1 62.1 625 62.6 629
score PA | 51.0 S51.1 509 520 504 523
QK-score Acc | 63.4 62.1 618 625 627 620
PA 52.8 520 510 53.6 528 534
Acc | 61.7 60.8 60.0 629 637 635
PA 53.6 528 519 529 535 534
Cosmos QA
Baseline acc | 80.6 86.2 864 86.1 865 86.1
PA 73.0 80.7 804 804 80.7 805
PRIDE Acc | 847 865 868 86.6 869 87.0
PA 79.2 819 822 822 826 825
Attention Acc | 84.2 855 855 852 852 850
score  PA 76.6  80.1 80.0 773 78.0 779
QK-score Acc | 840 86.5 856 859 856 854
PA 783 80.6 80.0 80.1 78.8 778
Acc | 83.1 845 842 835 841 84.0
PA 776 806 789 783 792 794
Hellaswag QA
Baseline acc | 38.8 60.7 56.5 65.1 632 636
PA 222 462 412 51.6 498 508
PRIDE Acc | 63.0 625 61.1 677 648 63.7
PA 509 494 476 567 530 521
Attention Acc | 59.5 64.1 64.7 66.8 66.1 64.9
score PA | 479 542 549 546 545 548
QK-score Acc | 63.4 641 634 642 657 649
PA 53.6 542 538 556 56,5 55.8
Ace | 49.1 51.0 60.0 625 63.7 635
PA 377 38.1 522 550 550 545
Halu Dialogue
Baseline acc | 51.2 509 60.6 61.7 612 613
PA 37.0 392 496 508 477 49.1
PRIDE A« | 583 515 61.1 625 625 623
PA 474 40.1 509 528 51.6 523
Attention Acc | 56.6 563 65.2 67.6 68.6 67.3
score PA | 448 432 539 564 579 525
QK-score Acc | 570 545 652 677 676 670
PA | 426 416 499 57.0 537 531
Acc | 51.3 51.0 60.1 629 636 629
PA 375 394 502 527 537 53.0

Baseline

Synthetic

Synthetic

Synthetic

Synthetic

Table 5: Comparison of different methods for LLaMA3.1-8B (base) on various Q&A datasets.
Reported metrics are Accuracy (Acc) and Permutation Accuracy (PA). The best results are highlighted
in bold.

F BEST HEADS

We utilized the minimum accuracy percentiles to determine stable heads that can be seen in Figures[J]
and[I0} The head is considered “stable” if (1) QK-score gives both high average accuracy across tasks
and (2) accuracy on each task is better than at least 90% of heads. From these figures, we can see that
LLaMA-3-8B has more “stable” heads than LLaMA-2-7B, and LLaMA-3.1-8B, in turn, surpasses
LLaMA-3-8B in the number of “stable” heads.
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...-shot prompting
Method \ 0 1 2 3 4 5
MMLU
Acc | 267 39.1 43.1 437 44.1 438
PA 8.9 213 262 274 285 284
Acc | 15.5 369 398 408 415 427
PRIDE PA 5.7 20.8 242 246 256 289
Attention Acc | 34.8 399 39.8 40.5 41.0 42.1
score  PA 172 194 219 234 241 243
QK-score Acc | 33.6 40.7 42.1 405 420 427
PA 17.2 217 23.7 22.0 234 24.0
Cosmos QA
Baseline acc | 31.1 393 59.1 569 579 547
PA 11.1 21.9 44.1 39.2  40.7 35.7
PRIDE Acc | 152 446 586 592 60.7 61.3
PA 6.8 257 427 437 457 463
Attention Acc | 40.6 485 609 61.8 623 623
score  PA 238 283 468 4777 484 482
QK-score Acc | 414 50.0 615 593 615 610
PA | 25,6 336 473 436 471 464
Hellaswag QA
Baseline Acc | 26.5 28.8 30.6 333 36.1 34.6
PA 7.5 94 11.8 139 17.3 15.0
PRIDE Acc | 17.8 327 356 386 39.6 414
PA 4.9 12.9 16.0 20.5 21.8 23.2
Attention Acc | 34.8 40.0 41.7 42.6 432 435
score  PA 183 229 249 272 266 265
QK-score Acc | 33.0 37.1 404 427 457 423
PA 15.9 143 230 222 285 246
Halu Dialogue
Baseline acc | 21.1 309 342 36.1 345 356
PA 54 10.2 14.3 18.9 16.8  20.7
PRIDE Acc | 3.0 320 355 363 365 36.1
PA 0.5 12.8 18.2 17.7 18.9 20.8
Attention Acc | 31.4 399 393 41.1 421 399
score  PA 109 194 175 19.0 223 213
QK-score Acc | 371 36.6 40.6 423 453 428
PA 17.7 14.6 196 22.0 259 222

Baseline

Table 6: Comparison of different methods for LLaMA2-7B (base) on various Q&A datasets. Reported
metrics are Accuracy (Acc) and Permutation Accuracy (PA). The best results are highlighted in bold.

Dataset | Best (Layer, Head)
MMLU (16, 19). (17, 24), (16, 26), (17, 26)
HaluDialogue | (14, 5), (14, 21), (14, 2), (17, 24)
HellaSwag (14, 5) (17, 24), (17, 29), (16, 19)
CosmosQA | (17, 24), (16,19), (16, 26), (17.29)

Table 7: Common top 1% heads across all n-shots based on accuracy for different datasets for
LLaMA-3.1-8B

For LLaMA-2-7B (Figure 10| (a)), the heads from the 14th layer show the highest accuracy on almost
all percentiles again. We also listed the top 1% pairs for all datasets based on accuracy in Table[7]
There is a noticeable overlap between heads for various setups, and, once again, all of them are in
middle layers of the model.
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Dataset Best (Layer, Head)

MMLU (14, 24), (15, 4), (17, 0), (14, 20),
HaluDialogue (14, 29), (14, 24), (14, 26)
HellaSwag (15, 5), (15, 4), (18, 10), (14, 20)
CosmosQA (14, 24), (15, 5), (15, 4), (15, 23), (14, 20)

Table 8: Common top 1% heads across all n-shots based on accuracy for different datasets for
LLaMA-2-7B

LLaMA-3.1-8B LLaMA-3.1-8B-Instruct
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Figure 9: Stable heads for QK-score for 0-shot setup across all tasks for LLaMA-3.1-8B and Qwen2.5-
1.5B (Base and Instruct). “k-th Minimum of Percentiles” means that the head is better than k share of
all heads for all tasks.

If we compare the performance of the “stable” heads with results obtained with preceding calibration
in Figure@], (14, 24) and (14, 20) are frequently chosen from the validation set. However, even when
they do not, their performance is comparable to that of their validation-chosen counterparts, except
for HaluDialogue. Besides, we tested the heads (14, 24), (14, 20), (14, 26), and (14, 13) for stability
against increasing the number of options in SSD dataset (see Figure[I4) and against changing the
symbols that denote options, following [Alzahrani et al.|(2024) (see Appendix [H). We also added
other heads performing well on the SSD dataset to these plots for comparison.

For LLaMA-3.1-8B-base, most heads from the right-top corner of the left part of Figure [9] were
already seen in the Figure 4] as heads in a green frames, i.e. top-5% across all four real datasets
(namely, heads (16, 26), (18, 20), (14, 1), (14, 22), (17, 24), (16, 19), (14, 0), (18, 8), (14, 21), (17,
26), (19, 23), (17, 29), (18, 9), (14, 2), (14, 5), (14, 23), (14, 20)). Several of these heads also turned
out to be very stable on the synthetic dataset, even when the number of options was increased (see
Figure [14]for examples of such heads) and when the language was changed (see Table[10).
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Figure 10: Stable heads for QK-score in (a) LLaMA2-7B and (b) LLaMA3-8B for 0-shot setup across
all tasks. “k-th Minimum of Percentiles” means that the head is better than k share of all heads for all
tasks.

We also provided the results for LLaMA-3.1-8B-Instruct at the right part of the Figure [9]to compare
the “stable head distribution” with the base version. Interestingly, there is a big intersection between
best stable heads of base and Instruct versions of the model.
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Figure 11: Accuracy of the best performing heads and several of the most robust heads — (14, 24),
(14, 20) in LLaMA-2-7B

G HEADS ABLATION

In this section, we present the results of zero-ablation for the select-and-copy mechanism applied
to two additional models: LLaMA-3.1-8B-Instruct (Fig. [[2)) and DeepSeek-R1-Distill-Qwen-7B
(Fig. [I3). Attention heads were selected based on above-random performance according to the
QK-score. For comparison, we also include results from random ablation, where an equal number of
attention heads were ablated at random.
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Figure 12: Zero-ablation of select-and-copy and random heads for LLaMA3.1-8B-Instruct

1.00 MMLU Cosmos Hellaswag Halu Dialogue
' -~ No Ablation
—e— Select-and-copy Heads
5. 0.757 1 ] 1 Random Heads
9 ._/.o-—-—o—-‘*'“
e K D |
FON] g SRR
< % ¢ 4 Pl G e SRS
P ] / s o—o <o -
0.251¢ p y ./// =1
0.00 - ! } } ! L } } } } 1 } } } } L — } ! } }
o 1 2 3 4 50 1 2 3 4 50 1 2 3 4 50 1 2 3 4 5

-shot prompting -shot prompting -shot prompting -shot prompting

Figure 13: Zero-ablation of select-and-copy and random heads for DeepSeek-R1-Distill-Qwen-7B

Random ablations were conducted across five independent runs, and we report the mean and standard
deviation of model accuracy.

Although performance degradation due to zero-ablation remains substantial in finetuned and aligned
models, in some cases it is comparable to that observed in random ablation. We hypothesize that
this may suggest the involvement of other attention heads (associated with in-context learning or
alignment) in the decision-making process.

H BEHAVIOUR OF THE BEST HEADS UNDER THE CHANGE OF OPTIONS
SYMBOLS AND OPTIONS AMOUNT

Aside from the standard version of the Simple Synthetic Dataset (SSD), which includes four essential
options and two additional options, “E” and “F” (described in Section [5.1), we also considered
alternative versions of the SSD with varying numbers of possible options. For instance, the version
corresponding to the number "10" on the x-axis of Figure [5] contains ten essential options (A, B,
C,D,E, F, G, H, I, J) and two special options: “K. I don’t know” and “L. None of the above” (see
Example [TI). In these experiments, we used 200 examples from each version of the dataset to
compute the attention scores.

Listing 11: Modification of SSD with ten options - example

Which of the following options corresponds to " mediterranean
no
Options:

A: acceptance
specialties
charitable
typically
access
jose
findlaw
colonial
mediterranean
data
I don’t know.

None of the above.

EFRagHDOQHRMEOQW
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Figure[T4]is an extended version of Figure[5] showing more heads for LLaMA2-7B (left), LLaMA3-
8B (center) and LLaMA3.1-8B (right). The heads for this figure are taken from the upper right
sections of Figures[T0]and [0} as they are the most stable across real datasets.
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number of options number of options
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number of options

Figure 14: The results for various numbers of options in the Simple Synthetic Dataset (SSD) in a
zero-shot setting are shown for LLaMA2-7B (left), LLaMA3-8B (center) and LLaMA3.1-8B (right).
Different line colors represent the QK dot products from different heads. “Square” markers indicate
heads that perform well across real datasets, while “round” markers represent heads that perform

well on the synthetic dataset. Interestingly, more heads from newer versions of the LLaMA model
show stability under increasing the number of options.

In Figures [I5]and [I6] we return to the standard 4-option SSD dataset but use different symbols for
the option labels. The upper plot includes the renamed special options “E” for “I don’t know” and “F”
for “None of the above”, while the lower plot omits them for the LLaMA2-7B model.
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Figure 15: Performance of the QK-score from the best heads of the LLaMA2-7B for different option

symbols, with “uncertainty” options (i.e. “I don’t know” and “None of the above”) presented (upper
figure) and not presented (lower figure)
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Figure 16: Upper row: performance of the QK-score from the best heads of the LLaMA3-8B for
different option symbols, with “uncertainty” options (i.e. “I don’t know” and “None of the above”)
presented (upper figure) and not presented (lower figure)

The accuracy of the best four heads of LLaMA-2-7B in Figure [[0a] declines in these new setups, but
the head (12, 0) remains stable across all setups. Another interesting head is (5, 11): its accuracy
is high for all setups with “uncertainty” and for “$&#” setup, but drops abruptly for “ABCD” and
“ptgU”. Studying such “anomalies” is a subject for future research.

We plot the results from the same setup for the LLaMA3-8B model in Figure Interestingly, the
best heads of the newer LLaMA3-8B model (see Figure [I0b) exhibit significantly greater stability
across the evaluated setups compared to those of the older LLaMA?2 model.

I SYNTHETIC DATASET IN DIFFERENT LANGUAGES

We regenerated our synthetic dataset using three languages in addition to English. Figure[T7]shows that
the general distribution of QK-scores across heads of the LLaMA?2-7B model on these multilingual
datasets remains largely unchanged; for example, layers 8—15 still contain the most performant heads.
However, differences in the performance of individual heads are also observed. Additionally, we
show accuracies for top-10 performant heads in Table[0] We coloured green the heads that perform
best across four real datasets (see Figure [I0). Additionally, we highlighted in bold the heads that
appear in the top-10 for all four languages.

As shown, 7 out of the top-10 best heads are shared across synthetic datasets in different languages,
including two "green" heads that are also the best across our real datasets. This significant overlap
suggests a substantial degree of universality among the identified heads. Interestingly, the QK-scores
for the best heads are somewhat lower for English compared to the other languages we analysed.
However, we cannot draw definitive conclusions from this observation without further investigation.
A more thorough study of how QK-scores and the best-performing heads vary with the dataset’s
language remains a topic for future research and is beyond the scope of this paper.
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Figure 17: Performance of QK-score across different heads of LLaMA2-7B on a synthetic dataset
generated in multiple languages

Language Best (Layer, Head) Max Acc | Min Acc
French ((1142,’227?,’((1142,’233)),’éf’zsf;,((1142’,2205))’,(3152’,4& 10001 0905
o | RIGR R0 0 | oo

Table 9: Top-10 best heads per language for LLaMA 2-7B, sorted by decreased accuracy
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Figure 18: Performance of QK-score across heads of LLaMA3.1-8B on a multi-language SSD

Language Best (Layer, Head) Max Acc | Min Acc
(11, 24), (11, 25), (11, 26), (12, 30), (14, 6)
(15, 20), (16, 24), (16, 27), (17, 28), (11, 10)
(11, 27), (11, 28), (12, 14), (13, 2), (13, 9)
(13, 10), (13, 16), (13, 23), (16, 17), (16, 25)
(16, 26), (17, 26), (18, 9), (13, 13), (14, 2)
(15, 10), (17, 21), (18, 8), (18, 18), (12, 20)
(11, 24), (11, 25), (11, 27), (12, 14), (12, 30)
13,9), (13, 10), (13, 13), (13, 15), (13, 16)
(14, 18), (15, 26), (16, 17), (16, 19), (16, 27)
(17,21), (18, 9), (18, 18), (11, 4), (11, 10)
(11, 28), (13, 1), (14, 2), (14, 13), (14, 30)
(16, 10), (16, 11), (16, 21), (16, 26), (18, 24)
(11, 4), (16, 27), (18, 9), (11, 24), (11, 25)
(11, 27), (11, 28), (12, 14), (13, 9), (16, 17)
(16, 19), (16, 24), (16, 26), (17, 26), (11, 10)
12, 30), (13, 16), (10, 0), (13,13), (14, 6)
(16, 21), (17, 29), (18, 11), (13, 1), (16, 8)
(16, 25), (17, 21), (18, 8), (12, 28), (13, 15)
(11, 25), (11, 27), (14, 6), (16, 27), (17, 28)
(11, 24), (11, 26), (12, 30), (13, 13), (13, 16)
(16, 19), (16, 24), (16, 25), (16, 26), (17, 29)
(18, 9), (13, 15), (14, 14), (14, 21), (16, 8)
(16,17), (17, 26), (18, 8), (18, 18), 13, 9)
(13, 10), (14, 0), (14, 3), (2195 20), (15, 24)

English 1.000 0.985

Italian 1.000 0.995

French 1.000 0.975

Russian 1.000 0.985

Table 10: Top-30 best heads per language for LLaMA 3.1-8B, sorted by decreased accuracy
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Figure [T8]shows that similar patterns are observed for LLaMA3.1-8B, with the key difference being
that the average quality of the heads in the middle layers is significantly higher than in LLaMA2-7B.
Table lists the top 30 heads for LLaMA3.1-8B, and again, we observe several heads that are
universal across languages (marked in bold). As with LLaMA2-7B, we highlight in green the heads
that perform best across four real-world datasets. We report the top 30 heads instead of the top 10
because LLaMA3.1-8B contains a large number of “good” heads with near-perfect performance —
substantially more than LLaMA2-7B — making a top-10 selection unrepresentative for this model.

J  BEST HEADS ON SYNTHETIC DATASET FOR QWEN 2.5-1.5B

In Figure [I9] we present the accuracy of the QK-score for each head of Qwen 2.5-1.5B-base and
-instruct on our synthetic datasets in four languages. These diagrams confirm that the layers with the
best heads in Qwen 2.5-1.5B are closer to the final layer than in LLaMA-family models. Specifically,
the best-performing heads in Qwen 2.5 are concentrated in layers 16-22, out of a total of 28 layers.
Besides, earlier layers contain many heads with performance close to zero. Despite these differences,
the overall pattern resembles the corresponding heatmaps for LLaMA-2-7B and LLaMA-3.1-8B
shown in Figures [I7]and [T8] particularly in very early and late layers as both do not contain strongly
pronounced select-and-copy heads. We also see that some especially “stable” heads, such as (18,
3), (20, 4) and (21, 11), which perform well across real datasets in Qwen 2.5-1.5B-base, remain
among the best heads for the synthetic dataset in all languages for both Qwen 2.5-1.5B-base and
Qwen 2.5-1.5B-Instruct models, as shown in Figure[T9] This again illustrate the persistence of some
select-and-copy heads across many datasets and languages, as discussed in our paper.

0 1.0 0 1.0 0 1.0 1.0
5 0.8 5 0.8 5 0.8 08
10 0.6 0.6 10 0.6 0.6
15 15
0.4 0.4 0.4 0.4
20 20
0.2 0.2 0.2 0.2
25 25
0 5 10 0.0 0 5 10 0.0 0 5 10 0.0 0.0
(a) English, base (b) Italian, base (c) French, base (d) Russian, base
0 1.0 0 1.0 0 1.0 0 1.0
5 0.8 0.8 5 0.8 0.8
10 0.6 0.6 10 0.6 10 0.6
15 15 15
0.4 0.4 0.4 0.4
20 20 20
0.2 0.2 0.2 0.2
25 25 25
0 5 10 0.0 0 5 10 0.0 0 5 10 0.0 0 5 10 0.0
(e) English, instruct (f) Italian, instruct (g) French, instruct (h) Russian, instruct

Figure 19: Performance of QK-score across different heads of Qwen 2.5-1.5B-base (upper row) and
Qwen 2.5-1.5B-Instruct (lower row) on a multi-language SSD
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K HEAD SCORING WITHOUT VALIDATION SET

Let D be some unlabelled MCQA dataset. Then, for each head we may calculate a score

1 1 \
HeadScore = ﬁ Z Z ant, ﬁﬂ{arg max(ant,) 1} |,
~ = i

where 7 denotes the most frequent option for the given head; head indices (I, k) are omitted. The
left component represents the average amount of attention concentrated on the option-representative
tokens ¢;,7 = 1, ..., n. The right component reflects the frequency of the situation, when the largest
attention among the options falls on the option other than 7, ie., any option other than the most
frequent one.

The results of ranking heads according to these scores for LLaMA models are presented in Figure 20}
We applied similar technique for Qwen-2.5-1.5B as well; the results are presented in the Figure
Here, we calculated the attention score without applying RoPE.
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(a) LLaMA-3
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(b) LLaMA-3.1

Figure 20: Left: average top heads scores of LLaMA models across real datasets (first twenty). Right:
Top head scores on the Simple Synthetic Dataset (first ten). Dark blue marks the best heads, stable
across all real datasets (i.e. heads from top-right corner of the Figures 9] and [T0). Note that for
calculating this score, we did not use the dataset labels.
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Figure 21: Left: average top heads scores for Qwen-2.5-1.5B-base across real datasets (first ten).
Right: the same for Qwen-2.5-1.5B-instruct. Dark blue marks those heads that are the best across all
four real datasets (see Figure E[)

For all three models (LLaMA-3-8B, LLaMA-3.1-8B and Qwen-2.5-1.5B), shown in the Figure 20}
we see that the head with the highest unsupervised score, calculated on unlabelled examples from real
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datasets, also exhibits consistently high accuracy across all these datasets, appearing in the top-right
corner of Figures [0 or[T0] Moreover, many other top-performing heads of these models also rank
among those with the highest unsupervised scores on real and/or synthetic datasets.

L SELECTION BIAS

We investigate our methods in relation to the tendency to favor specific answer choices over the
correct ones. Specifically, we compute how frequently the model itself or the QK-score across the
top three attention heads selects each option. Figure 22]illustrates the selection bias (expressed as a
percentage) for the MMLU task under both 0-shot and 5-shot settings.

Our observations indicate that the models exhibit a distinct selection bias, and the QK-score sometimes
reflects a similar distribution. However, the top heads often display differing distributions over the
answer choices. Notably, in the five-shot setting, these distributions tend to align more closely with
the distribution of correct answers.
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Figure 22: Distribution of predictions across options for different methods on MMLU 0-shot and

5-shot setup. (I, k) depicts the distribution for Sg’}?)

M COMPREHENSIVE RESULTS FOR EXPERIMENTS ON LARGER MODELS FROM
LLAMA FAMILY

Here, we provide complete results of our experiments with QK-scores on four primary datasets
(MMLU, CosmosQA, HellaSwag, and Halu Dialogue) for larger models. As before, the reported
metrics are Accuracy and Permutation Accuracy.

* Figure |2§| contains results for LLaMA2-13B, and Figure@ for its chat-tuned version

* Figure 24| contains results for LLaMA2-70B, and Figure 31| for its chat-tuned version

* Figure @contains results for LLaMA-30B, and Figure@ contains results for LLaMA-65B.
* Figure 25| contains results for LLaMA3-8B, and Figure 33| for its instruct-tuned version

* Figure @ contains results for LLaMA3-70B, and Fi gurel’ﬂl for its instruct-tuned version

* Figure ?? contains results for LLaMA3.1-8B Instruct tuned, while results for its untuned
version are given in the main text.

* Figure[27|contains results for LLaMA3.1-70B, and Figure |3§] for its instruct-tuned version
* Figure 36| contains results for LLaMA3.3-70B-instruct

Our baseline accuracies are slightly lower than those in the original model reports
2023} [Dubey et al}[2024) for two methodological reasons: (i) we evaluate with six answer options
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(A-F) rather than the four used previously; and (ii) we benchmark the strict no-chain-of-thought
setting, a regime that received limited coverage in the original papers.

MMLU Cosmos Hellaswag Halu Dialogue
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Figure 23: Comparison of different methods for LLaMA2-13B (base) on various Q&A datasets.
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Figure 24: Comparison of different methods for LLaMA2-70B (base) on various Q&A datasets.
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Figure 25: Comparison of different methods for LLaMA3-8B (base) on various Q&A datasets.
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Figure 26: Comparison of different methods for LLaMA3-70B (base) on various Q&A datasets.
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Figure 27: Comparison of different methods for LLaMA3.1-70B (base) on various Q&A datasets.
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Figure 28: Comparison of different methods for LLaMA-30B (base) on various Q&A datasets.
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Figure 29: Comparison of different methods for LLaMA-65B (base) on various Q&A datasets.
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Figure 30: Comparison of different methods for LLaMA?2-13B-chat on various Q&A datasets.
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Figure 31: Comparison of different methods for LLaMA?2-70B-chat on various Q&A datasets.
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Figure 32: Comparison of different methods for LLaMA3-8B-instruct on various Q&A datasets.
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Figure 33: Comparison of different methods for LLaMA3.1-8B-instruct on various Q&A datasets.
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Figure 34: Comparison of different methods for LLaMA3-70B-instruct on various Q&A datasets.
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Figure 35: Comparison of different methods for LLaMA3.1-70B-instruct on various Q&A datasets.
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Figure 36: Comparison of different methods for LLaMA3.3-70B-instruct on various Q&A datasets.
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Figure 37: Comparison of different methods for DeepSeek-R1 distilled on Qwen2.5-7B on various
Q&A datasets.
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Figure 38: Comparison of different methods for DeepSeek-R1 distilled on Qwen2.5-14B on various
Q&A datasets.
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Figure 39: Comparison of different methods for Dolly V2-3B on various Q&A datasets.
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Figure 40: Comparison of different methods for Gemma-2B on various Q&A datasets.
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Figure 41: Comparison of different methods for Phi-3.5-mini (instruct tuned) on various Q&A
datasets.
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Figure 42: Comparison of different methods for Qwen-1.5B on various Q&A datasets.
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Figure 43: Comparison of different methods for Qwen-1.5B-Instruct on various Q&A datasets.
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Figure 44: Comparison of different methods for Qwen-7B on various Q&A datasets.
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Figure 45: Comparison of different methods for Qwen-7B-Instruct on various Q&A datasets.
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Figure 46: Comparison of different methods for Qwen-14B on various Q&A datasets.
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Figure 47: Comparison of different methods for Qwen-14B-Instruct on various Q&A datasets.
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Figure 48: Comparison of different methods for Qwen-32B on various Q&A datasets.
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Figure 49: Comparison of different methods for Qwen-32B-Instruct on various Q&A datasets.
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Figure 50: Comparison of different methods for Qwen-72B on various Q&A datasets.
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Figure 51: Comparison of different methods for Qwen-72B-Instruct on various Q&A datasets.

42



Under review as a conference paper at ICLR 2026

N COMPREHENSIVE RESULTS FOR EXPERIMENTS ON QWEN-2.5 AND OTHER
MODEL FAMILIES

Here, we present the results of our experiments with QK-scores on four main datasets (MMLU, Cos-
mosQA, HellaSwag, and Halu Dialogue) for models from other families. As in previous experiments,
the reported metrics are Accuracy and Permutation Accuracy.

* Figures [37]and [38]contain results for DeepSeek-R1 distilled on Qwen2.5-7B and -14B.

» Figure [39]contains results for Dolly V2-3B

* Figure 40| contains results for Gemma-2B

* Figure 41| contains results for Phi-3.5-Instruct

* Figure 42] contains results for Qwen-2.5-1.5B, and Figure [d3]for its instruct-tuned version
* Figure 44| contains results for Qwen-2.5-7B, and Figure 43| for its instruct-tuned version

* Figure @] contains results for Qwen-2.5-14B, and Fi gure for its instruct-tuned version.
* Figure 48] contains results for Qwen-2.5-32B, and Figure 9] for its instruct-tuned version.

* Figure [50] contains results for Qwen-2.5-72B, and Figure [5T] for its instruct-tuned version.

We observe that the accuracy and permutation accuracy plots for the baseline and QK-scores of
models around 3B in size — specifically, Dolly-v2-3B (Figure[39) and Phi-3.5-mini (Figure @T) -
mostly show behavior similar to LLaMA-2 models ranging from 7B (Figure[3) to 13B (Figure [23).
For these models, the QK-score is usually higher than the baseline score in zero-shot setups, and the
QK-score and baseline often show convergence in few-shot setups, though at times they remain at a
similar distance from each other. A similar trend is observed for the Qwen 2.5 models, with sizes of
7B and 14B, especially for instruct versions. The QK-score is also typically better than the baseline
for Gemma-2B (Figure [40), although the plots for this model exhibit some unusual patterns in certain
cases.

However, we observe a deviation from the general trend for both the base and instruct versions of the
smallest model, Qwen 2.5-1.5B. Specifically, the QK-score and baseline scores are unusually close to
each other in few-shot setups, and in several cases, the QK-score performs worse than the baseline in
zero-shot setups. We hypothesize that this may be due to these models being overly fine-tuned for
multiple-choice question answering (MCQA), which alters the baseline behavior in zero-shot setups.
This hypothesis is supported by the fact that these models outperform LLaMA?2-7B and other larger
models in baseline setups.

Intrigued by these differences, we conducted an additional analysis of the behaviour of individual
heads in Qwen 2.5-1.5B. We confirmed that Qwen 2.5-1.5B-base contains several heads that consis-
tently perform well across both real and synthetic datasets, such as heads (20, 4) and (21, 11). In
this regard, it remains similar to the LLaMA models. For a detailed discussion of individual head
performance on the SSD dataset, see Appendix [J}

O RESULTS FOR QK-SCORE ON FINE-TUNED QA MODELS

We have finetuned the LLaMA-2-7B on each dataset and tested how our method performs after
fine-tuning. We trained LoRA adapters and merged them with the model. The results are in the
Table @ To test the models, we used the subset of data the model did not seen during the train.

P RESULTS FOR CLOZE PROMPTING

Cloze-style evaluation (or cloze prompting)(Robinson & Wingate| [2023)) has been widely used for
evaluating language models, but it has certain drawbacks. These include the "probability stealing”
effect, where the correct answer’s probability is spread across different surface forms(Wiegretfe
et al.| 2023)),(Alzahrani et al.,|2024)). Cloze prompting is also sensitive to prompt phrasing and may
lead to overfitting to training patterns. Although multi-choice prompting (MCP) addresses some
of these issues, it introduces its own biases, such as position and label biases, and is sensitive to
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MMLU CosmosQA HaluDialogue HellaSwag

SFT LLaMA | SFT LLaMA | SFT LLaMA | SFT LLaMA

O-shot Baseline | 0.493  0.267 | 0.863  0.311 | 0.923  0.211 | 0.352  0.265
QK 0488 0.336 | 0.840 0.414 | 0.905 0.371 | 0393  0.330

1.shot Baseline | 0.476  0.391 0836 0393 | 0474 0309 | 0.716  0.288
QK 0472 0407 | 0.810 0.5 0.858 0.366 | 0.800 0.371

5 shot Baseline | 0.477 0431 | 0.643  0.591 | 0.823 0342 | 0.795 0.306
QK 0477 0421 | 0.685 0.615 | 0.872 0.406 | 0.803  0.404

3-shot Baseline | 0.483 0437 | 0.670 0.569 | 0.621  0.361 | 0.681 0.33
QK 0470 0405 | 0.692 0593 | 0.867 0.423 | 0.786  0.427

4 shot Baseline | 0.478  0.441 0820 0.579 | 0.730 0.345 | 0.726  0.361
QK 0470 0420 | 0.802 0.615 | 0877 0453 | 0.789  0.457

5_shot Baseline | 0.487  0.438 | 0.827 0.547 | 0.746 0356 | 0.678  0.346
QK 0482 0427 | 0.810 0.61 0.880 0428 | 0.786  0.423

Table 11: Accuracy on supervised fine-tuned LLaMA?2-7B on the same dataset the model was fine-
tuned

sample order in few-shot settings. Additionally, smaller models often struggle with the required
output format(Alzahrani et al.}|2024)), (Khatun & Brown, [2024).

As large language models (LLMs) have advanced, the format of Question Answering tasks has shifted
from cloze prompting to multiple-choice formulations (Gu et al., [2024)), (OpenAl, |2024), which
aligns with the focus of this study. By addressing the limitations of both cloze and MCQA prompting,
our method aims to provide a more reliable and insightful model evaluation.

Our method addresses several of the issues mentioned above by separating option selection from text
generation within the language model. Compared to cloze and multi-choice prompting, our approach
is less sensitive to answer format and wording. It also reduces common biases in MCP, such as those
related to option position or the label, by disregarding the most biased attention heads. Due to the
differing nature of biases, our method and cloze prompting offer complementary insights. We plan to
explore how these two methods can be combined in future work.

A comparison of cloze prompting and our method is presented in Table[T2] We observe that QK-score
performs similarly to cloze prompting on the MMLU dataset, which requires short, knowledge-based
answers, with only slight degradation in the zero-shot setting. The same holds for CosmosQA, where
the model is expected to answer questions based on context. However, for datasets that assess the
model’s ability to continue given text snippets, QK-score significantly underperforms. This finding
aligns with our understanding of QK-score as a method that separates semantic decision-making
from text generation. On datasets like HellaSwag and HaluDialogue, the correct answer is often
determined by the consistency of the text snippet rather than by factual accuracy or commonsense
reasoning. We believe that the QK-score is more heavily influenced by the latter.

In summary, our approach achieves comparable performance while offering complementary insights
into model behavior, making it a valuable alternative to traditional cloze prompting.
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MMLU CosmosQA  HaluDialogue  HellaSwag
Cloze QK | Cloze QK | Cloze QK Cloze QK
O-shot | 0.38 035 | 049 046 | 042 040 | 052 038
I-shot | 0.40  0.39 | 0.51 0.50 | 045 042 | 052 035
2-shot | 0.39 040 | 048 051 | 046 042 | 053 0.38
3-shot | 0.39 040 | 048 057 | 045 037 | 053 043
4-shot | 0.39 039 | 053 054 | 046 039 | 053 043
S5-shot | 0.42 041 | 052 054|044 040 | 054 044

Table 12: Comparison of cloze prompting and our method with QK-Score. All experiments were ran
on 4-optioned examples.
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Q ANALYSIS OF ATTENTION MAP
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Figure 52: Attention maps of (14, 24), (14, 20) and (14,4) pairs (Head, Layer) for O-
shot setting for MMLU example: Question: What singer appeared in the
1992 baseball film ’'A League of Their Own’? \nOptions: \nA.
Brandy.\nB. Madonna.\nC. Garth Brooks.\nD. Whitney Houston.\nE.

I don’t know.\nF. None of the above.\nAnswer:. Second plot for each pair
corresponds to the same, but scaled to the end-of-text-sequence attention map. Values in annotated
cells are corresponding QK-score values. End of each option is denoted with \n symbols. 33th token
is the end of A option, 38th token is the end of B option, 46th token - the end of C option, 53th token
- the end of D option, 62th token - the end of E option, 70th token - the end of F option. The answer
from QK-score of (14, 24) and (14, 4) is B, of (14, 20) is D. The correct answer for this example is B.

R HARDWARE AND RUNNING TIME INFO

The most computationally intense (per sample) part of the complete setup is the calibration when
QK-scores are computed for all heads. Our main experiments with LLaMA3.1-8B (and other models
with size up to 8B) were performed on 16xIntel Xeon Gold 6151 CPU @ 3.00GHz with 2x Nvidia
Tesla V100 GPU acceleration and 28xIntel(R) Core(TM) 17-14700K CPU with 2x NVIDIA GeForce
RTX 4090 acceleration.
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Calibration on MMLU dataset (500 samples) took between 1.9 minutes for 0-shot and 2.8 minutes
for 5-shot promptings.

Calibration on CosmosQA dataset (500 samples) took between 4.4 minutes for 0-shot and 6 minutes
for 5-shot promptings.

Calibration on the Hellaswag dataset (500 samples) took between 4.5 minutes for 0-shot and 6.1
minutes for 5-shot promptings.

Calibration on Halu Dialogue dataset (500 samples) took between 4.6 for 0-shot and 6.5 for 5-shot
promptings.

On average, evaluation of a single sample is almost 2 times faster than calibration on it.

Total running time of our main experiments for LLaMA3.1-8B (calibration and validation) took
approximately 3.8/5.7/6.6/7.1 hours for MMLU/CosmosQA/Hellaswag/Halu Dialogue respectively.

Experiments with larger models (> 14B) were performed on 8xIntel Xeon Gold 6338 CPU @
2.00GHz with 4x Nvidia A100 80 GB GPU accelertion. For example, for the largest LLaMA3.1-
70B, full computations of our main experiments (0—, . .. 5—shot promptings with 500 samples for
calibration and 9, 500 for evaluation in each) took ~ 13/21/23/23 hours for MMLU/CosmosQA/Hel-
laswag/Halu Dialogue respectively.
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