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Abstract
Intermediate-task training has been shown to
substantially improve pretrained model perfor-
mance on many language understanding tasks,
at least in monolingual English settings. Here,
we investigate whether English intermediate-
task training is still helpful on non-English
target tasks in a zero-shot cross-lingual set-
ting. Using a set of 7 intermediate language
understanding tasks, we evaluate intermediate-
task transfer in a zero-shot cross-lingual set-
ting on 9 target tasks from the XTREME
benchmark. Intermediate-task training yields
large improvements on the BUCC and Tatoeba
tasks that use model representations directly
without training, and moderate improvements
on question-answering target tasks. Using
SQuAD for intermediate training achieves the
best results across target tasks, with an av-
erage improvement of 8.4 points on develop-
ment sets. Selecting the best intermediate task
model for each target task, we obtain a 6.1
point improvement over XLM-R Large on the
XTREME benchmark, setting a new state of
the art. Finally, we show that neither multi-
task intermediate-task training nor continuing
multilingual MLM during intermediate-task
training offer significant improvements.

1 Introduction

Zero-shot cross-lingual transfer involves training
a language-encoding model on task data in one
language, and evaluating the tuned model on the
same task in other languages. This format evalu-
ates the extent to which task-specific knowledge
learned in one language generalizes across lan-
guages. Transformer models such as mBERT (De-
vlin et al., 2019a), XLM (Conneau and Lample,
2019) and XLM-R (Conneau et al., 2019) that have
been pretrained with a masked language modeling
(MLM) objective on large corpora of multilingual
data have shown remarkably strong results on zero-
shot cross-lingual transfer, and show promise as

a way of facilitating the construction of massively
multilingual language technologies.

Intermediate-task training (STILTs; Phang et al.,
2018) is the simple strategy of fine-tuning a pre-
trained model on a data-rich intermediate task, ide-
ally related to the target task, before fine-tuning a
second time on the downstream target task. De-
spite its simplicity, this two-phase training setup
has been shown to be beneficial across a range of
Transformer models and tasks (Wang et al., 2019a;
Pruksachatkun et al., 2020), at least with English
intermediate and target tasks.

In this work, we investigate whether interme-
diate training on English language tasks can also
improve performance in a zero-shot cross-lingual
transfer setting. Starting with a pretrained multilin-
gual language encoder, we perform intermediate-
task training on one or more English language tasks,
then fine-tune on the target task in English, and fi-
nally evaluate zero-shot on the same task in other
languages.

Intermediate-task training on English data in-
troduces a potential issue: we train the pretrained
multilingual model extensively on only English
data before attempting to use it on non-English
target task data, leaving open the possibility that
the model will lose the knowledge of other lan-
guages that it acquired during pretraining (Kirk-
patrick et al., 2017; Yogatama et al., 2019). To
attempt to mitigate this, we experiment with mix-
ing in multilingual MLM training updates during
the intermediate-task training.

Concretely, we use the pretrained XLM-R (Con-
neau et al., 2019) as our multilingual language en-
coder as it currently achieves state-of-the-art per-
formance on many zero-shot cross-lingual transfer
tasks. We perform experiments on 9 target tasks
from the recently introduced XTREME benchmark
(Hu et al., 2020), which aims to evaluate zero-
shot cross-lingual performance across diverse tar-
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Figure 1: We investigate the benefit of injecting an additional phase of intermediate-task training on English
language task data. We also consider variants using multi-task intermediate-task training, as well as continuing
multilingual MLM during intermediate-task training. Best viewed in color.

get tasks across up to 40 languages each. We inves-
tigate how intermediate-task training on 7 different
tasks, including question answering, sentence tag-
ging/completion, paraphrase detection, and natural
language inference, impacts zero-shot cross-lingual
transfer performance. We find:

• Applying intermediate-task training to BUCC
and Tatoeba, the two sentence retrieval tar-
get tasks that have no training data, yields
dramatic improvements with almost every in-
termediate training configuration.

• The question-answering target tasks show con-
sistent smaller improvement with many inter-
mediate tasks.

• Evaluating our best performing models for
each target task on the XTREME benchmark
yields an average improvement of 6.1 points,
setting the state of the art as of writing.

• Neither continuing multilingual MLM train-
ing during intermediate-task training nor
multi-task training meaningfully bolster trans-
fer performance.

2 Approach

We propose a three-phase approach to training, il-
lustrated in Figure 1: (i) we use a publicly available
model pretrained on raw multilingual text using

MLM; (ii) we perform intermediate-task training
on one or more English intermediate tasks; (iii)
we fine-tune the model on English target task data,
before evaluating it on task data in multiple lan-
guages.

During phase (ii), all our intermediate tasks have
English labeled data only. We experiment with
performing intermediate-task training on single
tasks individually and as well as a multi-task for-
mat. Intermediate tasks are described in detail in
Section 2.1. We use target tasks from the recent
XTREME benchmark, whose goal is to evaluate
zero-shot cross-lingual transfer, i.e. training on En-
glish target-task data and evaluating the model on
target-task data in different languages. Target tasks
are described in Section 2.2.

2.1 Intermediate Tasks

We study the effect of intermediate-task training
(STILTs; Phang et al., 2018) on zero-shot cross-
lingual transfer into multiple target tasks and lan-
guages. We experiment with seven different in-
termediate tasks, all of them with English labeled
data, as illustrated in Table 1.

ANLI + MNLI + SNLI (ANLI+) The Adversar-
ial Natural Language Inference dataset (Nie et al.,
2019) is collected adversarially using a human and
model in the loop as an extensions of the Stanford
Natural Language Inference (SNLI; Bowman et al.,



Name |Train| |Dev| |Test| Task Genre/Source

Intermediate tasks

ANLI+ 1,104,934 22,857 N/A natural language inference Misc.
QQP 363,846 40,430 N/A paraphrase detection Quora questions
SQuAD 87,599 34,726 N/A span extraction Wikipedia
HellaSwag 39,905 10,042 N/A sentence completion Video captions & Wikihow
CCG 38,015 5,484 N/A tagging Wall Street Journal
Cosmos QA 25,588 3,000 N/A question answering Blogs
CommonsenseQA 9,741 1,221 N/A question answering Crowdsourced responses

Target tasks (XTREME Benchmark)

XNLI 392,702 2,490 5,010 natural language inference Misc.
PAWS-X 49,401 2,000 2,000 paraphrase detection Wiki/Quora
POS 21,253 3,974 47–20,436 tagging Misc.
NER 20,000 10,000 1,000–10,000 named entity recognition Wikipedia
XQuAD 87,599 34,726 1,190 question answering Wikipedia
MLQA 87,599 34,726 4,517–11,590 question answering Wikipedia
TyDiQA-GoldP 3,696 634 323–2,719 question answering Wikipedia
BUCC – – 1,896–14,330 sentence retrieval Wiki / news
Tatoeba – – 1,000 sentence retrieval Misc.

Table 1: Overview of the intermediate tasks (top) and target tasks (bottom) in our experiments. EM is short for
Exact Match. For target tasks, Train and Dev correspond to the English training and development sets, while Test
shows the range of sizes for the target-language test sets for each task. XQuAD, TyDiQA and BUCC do not have
separate held-out development sets.

2015) and the Multi-genre Natural Language Infer-
ence (MNLI; Williams et al., 2018) corpora. We
follow Nie et al. (2019) and use the concatenated
ANLI, MNLI and SNLI training sets, which we
refer to as ANLI+.

CCG CCGbank (Hockenmaier and Steedman,
2007) is a translation of the Penn Treebank into
Combinatory Categorial Grammar (CCG) deriva-
tions. The CCG supertagging task that we use con-
sists of assigning lexical categories to individual
word tokens which roughly determine a full parse.1

CommonsenseQA CommonsenseQA (Talmor
et al., 2019) is a multiple-choice QA dataset gener-
ated by crowdworkers based on clusters of concepts
from ConceptNet (Speer et al., 2017).

Cosmos QA Cosmos QA is multiple-choice
commonsense-based reading comprehension
dataset (Huang et al., 2019b) generated by
crowdworkers, with a focus on the causes and
effects of events.

HellaSwag HellaSwag (Zellers et al., 2019) is a
commonsense reasoning dataset framed as a four-
way multiple choice task, where examples consist
of a text and four choices of spans, one of which is
a plausible continuation of the given scenario. It is

1If a word is tokenized into sub-word tokens, we use the
representation of the first sub-word token for the tag prediction
for that word.

built using adversarial filtering (Zellers et al., 2018;
Bras et al., 2020) with BERT.

QQP The Quora Question Pairs2 is a paraphrase
detection dataset constructed from questions posted
on Quora, a community question-answering web-
site. Examples in the dataset consist of two ques-
tions, labeled for whether they are semantically
equivalent.

SQuAD Stanford Question Answering Dataset
(Rajpurkar et al., 2016) is a question-answering
dataset consisting of passages extracted from
Wikipedia articles and crowd-sourced questions
and answers. Each example consists of a context
passage and a question, and the answer is a text
span from the context. We use SQuAD version 1.1.

Task Selection Criteria We choose these tasks
based on both the diversity of task formats and
evidence of positive transfer from literature. Pruk-
sachatkun et al. (2020) shows that MNLI (which
is a subset ANLI+), CommonsenseQA, Cosmos
QA and HellaSwag are good candidates for inter-
mediate tasks with positive transfer to a range of
downstream tasks. CCG involves token-wise pre-
diction and is similar to the POS and NER target
tasks. SQuAD is a widely-used question-answering
task, while QQP is semantically similar to sentence

2http://data.quora.com/
First-Quora-DatasetRelease-Question-Pairs

http://data.quora.com/First-Quora-DatasetRelease-Question-Pairs
http://data.quora.com/First-Quora-DatasetRelease-Question-Pairs


retrieval target tasks (BUCC and Tatoeba) as well
as PAWS-X, another paraphrase-detection task.

2.2 Target Tasks

We use the 9 target tasks from the XTREME bench-
mark (Hu et al., 2020), which span 40 different
languages (hereafter referred to as the target lan-
guages): The Cross-lingual Question Answering
(XQuAD; Artetxe et al., 2019) dataset, a cross-
lingual extension of the SQuAD dataset (Rajpurkar
et al., 2016); the Multilingual Question Answering
(MLQA; Lewis et al., 2019) dataset; the Typo-
logically Diverse Question Answering (TyDiQA-
GoldP; Clark et al., 2020) dataset; the Cross-
lingual Natural Language Inference dataset (XNLI;
Conneau et al., 2018), a cross-lingual extension of
MNLI (Williams et al., 2018); the Cross-lingual
Paraphrase Adversaries from Word Scrambling
(PAWS-X; Yang et al., 2019) dataset; the Universal
Dependencies v2.5 (Nivre et al., 2018) POS tag-
ging dataset; the Wikiann NER dataset (Pan et al.,
2017); the BUCC dataset (Zweigenbaum et al.,
2017, 2018), which involves identifying parallel
sentences from corpora of different languages; and
the Tatoeba (Artetxe and Schwenk, 2019) dataset,
which involves aligning pairs of sentences.

Among the 9 tasks, BUCC and Tatoeba are sen-
tence retrieval tasks do not include training sets,
and are scored based on the similarity of learned
representations (see Appendix). XQuAD, TyDiQA
and Tatoeba do not include development sets sep-
arate from the test sets.3 For all XTREME tasks,
we follow the training and evaluation protocol de-
scribed in the benchmark (Hu et al., 2020) and their
sample implementation.4 Intermediate and target
task statistics are shown in Table 1.

2.3 Multilingual Masked Language Modeling

Our setup requires that we train the pretrained mul-
tilingual model extensively on English data before
using it on a non-English target task, which can
lead to the catastrophic forgetting of other lan-
guages acquired during pretraining. We investi-
gate whether continuing to train on the multilin-
gual MLM pretraining objective while fine-tuning
on an English intermediate task can prevent catas-
trophic forgetting of the target languages and im-

3UDPOS also does not include development set data for
a small number of languages: Kazakh, Thai, Tagalog and
Yoruba.

4https://github.com/google-research/
xtreme

prove downstream transfer performance.
We construct a multilingual corpus across the

40 languages covered by the XTREME benchmark
using Wikipedia dumps from April 14, 2020 for
each language and the MLM data creation scripts
from the jiant library (Wang et al., 2019c). In
total, we use 2 million sentences sampled across
all languages according to the sampling ratio of
Conneau and Lample (2019) with the α = 0.3.

3 Experiments and Results

3.1 Models

We use the pretrained XLM-R Large model (Con-
neau et al., 2019) as a starting point for all our
experiments.5 Details on the intermediate and tar-
get task training procedures can be found in the
Appendix.

XLM-R As our baseline, we directly fine-tune
the pretrained XLM-R model on each target task’s
English training data (if available) and evaluate
zero-shot on non-English data, following the proto-
col for the XTREME benchmark (Hu et al., 2020).

XLM-R + Intermediate-Task Training We in-
clude an additional intermediate-task training
phase, and first fine-tune the pretrained XLM-
R on an English intermediate task before we
train/evaluate on the target tasks as described
above.

We also experiment with multi-task training on
all available intermediate tasks but SQuAD.6 We
follow Raffel et al. (2019a) and sample batches
of examples for each task with probability rm =
min(em,K)∑
(min(em,K) , where em is the number of examples

in task m and K = 217 is a size limit constant.

XLM-R + Intermediate-Task Training + MLM
We consider a variant of intermediate-task training
where the pretrained XLM-R model is trained on
both an intermediate task as well as multilingual
MLM simultaneously. We treat multilingual MLM
as an additional task in the intermediate training
phase, and use the same multi-task sampling strat-
egy as above.

5XLM-R Large (Conneau et al., 2019) is a 550m-parameter
variant of the RoBERTa masked language model (Liu et al.,
2019b) trained on a cleaned version of CommonCrawl on 100
languages.

6Excluded in this draft due to implementation issues.

https://github.com/google-research/xtreme
https://github.com/google-research/xtreme


Target tasks

XNLI PAWS-X POS NER XQuAD MLQA TyDiQA BUCC Tatoeba Avg.
Metric acc. acc. F1 F1 F1 / EM F1 / EM F1 / EM F1 acc. –
# langs. 15 7 33 40 11 7 9 5 37 –

XLM-R 80.1 86.5 75.7 62.8 76.1 / 60.0 70.1 / 51.5 75.7 / 61.0 71.5 31.0 67.2

N
o

M
L

M

ANLI+ - 0.8 + 0.4 - 0.9 - 0.8 - 0.6 / - 0.1 - 0.6 / - 0.8 + 2.2 / + 3.1 +20.1 +49.8 + 7.7
QQP - 1.4 - 2.1 - 5.6 - 6.9 - 3.8 / - 3.8 - 3.9 / - 4.4 - 0.6 / - 0.2 +20.2 +51.7 + 5.3
SQuAD - 1.4 + 0.7 - 1.6 + 0.2 + 1.1 / + 1.3 + 1.9 / + 2.5 + 5.6 / + 7.4 +19.7 +46.9 + 8.3
HellaSwag - 0.3 + 0.8 - 0.7 - 1.0 - 0.3 / + 0.1 - 0.1 / + 0.2 + 1.9 / + 1.3 +20.4 +49.9 + 7.9
CCG - 2.6 - 3.4 - 1.5 - 0.7 - 1.5 / - 1.3 - 1.6 / - 1.5 + 0.4 / + 0.7 + 5.5 +38.9 + 3.7
CosmosQA - 2.9 + 1.5 - 1.2 - 0.9 + 0.2 / + 0.3 + 0.4 / + 0.5 + 2.7 / + 3.8 +13.2 +28.8 + 4.7
CSQA - 2.9 - 0.6 - 1.7 - 0.5 + 0.2 / + 0.4 + 1.6 / + 1.6 + 3.0 / + 4.1 +11.3 +33.1 + 4.9
Multi-task - 1.6 - 0.2 - 2.3 - 2.4 - 2.6 / - 3.1 - 1.4 / - 1.7 + 1.9 / + 1.9 +18.4 +48.3 + 6.4

W
ith

M
L

M

ANLI+ - 0.1 + 0.5 + 0.4 - 0.4 - 0.2 / - 0.4 - 0.2 / - 0.3 + 2.5 / + 3.3 +17.8 +44.7 + 7.3
QQP - 0.5 + 0.6 - 0.2 + 0.7 - 0.3 / - 0.2 + 0.0 / + 0.2 + 2.9 / + 3.4 +18.0 +42.3 + 5.1
SQuAD - 4.1 + 0.3 - 2.0 - 1.3 + 0.8 / + 1.2 + 0.9 / + 1.1 + 5.0 / + 6.5 +12.8 +23.5 + 4.1
HellaSwag + 0.7 + 0.0 - 0.7 - 1.2 - 0.8 / - 0.8 - 1.0 / - 1.4 + 2.6 / + 3.5 + 8.9 + 6.9 + 1.7
CCG - 1.0 - 0.6 - 0.6 - 1.9 - 1.2 / - 1.3 - 1.6 / - 0.8 + 2.2 / + 2.7 -10.1 +22.2 + 0.9
CosmosQA - 0.3 + 0.4 - 1.2 - 1.5 - 0.6 / - 0.3 - 0.4 / - 0.3 + 2.2 / + 2.0 +18.2 +42.7 + 6.6
CSQA + 0.1 + 0.5 - 1.4 + 0.1 + 0.1 / + 0.1 + 0.8 / + 0.6 + 2.8 / + 3.1 +11.6 +25.9 + 4.5
Multi-task + 0.4 + 0.6 - 2.1 - 1.3 - 0.8 / - 1.0 - 0.6 / - 0.4 + 2.9 / + 3.8 +16.4 +45.6 + 6.8

XTREME Benchmark Scores†

XLM-R (Hu et al., 2020) 79.2 86.4 72.6 65.4 76.6 / 60.8 71.6 / 53.2 65.1 / 45.0 66.0 57.3 68.1
XLM-R (Ours) 79.5 86.2 74.0 62.6 76.1 / 60.0 70.2 / 51.2 75.5 / 61.0 64.5 31.0 66.1
Our Best Models‡ 80.4 87.7 74.4 63.4 77.2 / 61.3 72.3 / 53.5 81.2 / 68.4 71.9 82.7 74.2
Human 92.8 97.5 97.0 - 91.2 / 82.3 91.2 / 82.3 90.1 / - - - -

Table 2: Single-task and multi-task intermediate-task training results, with and without MLM co-training during
intermediate-task training. For each target task, we report the mean result across all target languages. Multi-
task experiments use all intermediate tasks except SQuAD. We underline the best results per target task with and
without intermediate MLM co-training, and bold-face the best overall scores for each target task. We highlight the
best score for each target task, excluding human performance, for XTREME Benchmark scores. †: Tasks XQuAD,
TyDiQA and Tatoeba do not have held-out test data. ‡: Results obtained with our best-performing model for each
target task, selected based on the development set.

3.2 Results

Intermediate-Task Training As shown in Ta-
ble 2, no single intermediate task yields positive
transfer across all target tasks. The target tasks
TyDiQA, BUCC and Tatoeba see consistent gains
from most or all the intermediate tasks. In par-
ticular, BUCC and Tatoeba, the two sentence re-
trieval tasks with no training data, benefit univer-
sally from intermediate-task training. PAWS-X,
XQuAD and MLQA also exhibit gains with the
additional intermediate-training on some interme-
diate tasks. On the other hand, we find generally
flat or negative transfer to XNLI, POS and NER
target tasks.

Among the intermediate tasks, we find that
SQuAD performs best; in addition to having pos-
itive transfer to BUCC and Tatoeba, it also leads
to improved performance across the three question-
answering target tasks. Additionally, Common-
senseQA and CosmosQA lead to slightly improved
performance across the question-answering tasks.

ANLI+does not lead to improved performance on
XNLI as we first expected, despite the additional
training data. This is consistent with Nie et al.
(2019), who showed that adding ANLI data to
SNLI and MNLI training sets did not improve per-
formance on NLI benchmarks. QQP significantly
improves sentence retrieval tasks performance but
has broadly negative transfer to the remaining tar-
get tasks. CCG also has relatively poor transfer
performance, consistent with Pruksachatkun et al.
(2020).

One might find it surprising that intermediate-
task training on SQuAD improves XQuAD and
MLQA performance, which also use SQuAD as
training data. We follow the sample implemen-
tation for target task training in the XTREME
benchmark, which trains on SQuAD for only 2
epochs. This may explain why an additional phase
of SQuAD training can improve performance.

MLM and Multi-Task Training Incorporating
MLM during intermediate-task training shows no



clear trend. It reduces negative transfer, as seen in
the cases of CommonsenseQA and QQP, but it also
tends to reduce positive transfer, for instance as
seen with intermediate-training on SQuAD. Both
TyDiQA and PAWS-X see a small improvement
from incorporating multilingual MLM training–in
particular, every combination of intermediate tasks
and MLM has strictly positive transfer to TyDiQA
with an improvement of at least 2 points. The
multi-task intermediate-training transfer results are
on par with the average of the single intermediate-
task transfer results, showing no clear benefit from
using the additional tasks.

XTREME Benchmark Results At the bottom
of Table 2, we show results obtained by XLM-
R on the XTREME benchmark as reported by
Hu et al. (2020), results obtained with our re-
implementation of XLM-R (i.e. our baseline), and
results obtained with our best models, which use
intermediate-task training are selected according to
development set performance on each target task.
Scores on the XTREME benchmark are computed
based on the respective target-task test sets where
available, and based on development sets for target
tasks without separate held-out test sets.7 We are
generally able to replicate the best reported XLM-
R baseline results, except for: Tatoeba, where
our implementation significantly underperforms
the reported scores in Hu et al. (2020); and Ty-
DiQA, where our implementation outperforms the
reported scores. On the other hand, our best mod-
els show gains in 8 out of the 9 XTREME tasks
relative to both baseline implementations, attaining
an average score of 74.2 across target tasks, a 6.1
point improvement over the previous best reported
average score of 68.1.

4 Related work

Sequential transfer learning using pretrained
Transformer-based encoders (Phang et al., 2018)
has been shown to be effective for many text clas-
sification tasks. This setup generally involves fine-
tuning on a single task (Pruksachatkun et al., 2020;
Vu et al., 2020) or multiple tasks (Liu et al., 2019a;
Wang et al., 2019b; Raffel et al., 2019b), occasion-
ally referred to as the intermediate task(s), before
fine-tuning on the target task. Our work builds
upon this line of work, focusing on intermediate-
task training for improving cross-lingual transfer.

7We compute these scores internally as the official leader-
board is not yet open for submissions as of writing.

Early work on cross-lingual transfer mostly re-
lies on the availability of parallel data, where one
can perform translation (Mayhew et al., 2017) or
project annotations from one language into another
(Hwa et al., 2005; Agić et al., 2016). When there is
enough data in multiple languages with consistent
annotations, training multilingual models becomes
an option for cross-lingual transfer (Plank et al.,
2016; Cotterell et al., 2017; Zeman et al., 2017).

For large-scale cross-lingual transfer, Johnson
et al. (2017) train a multilingual neural machine
translation system and perform zero-shot transla-
tion without explicit bridging between the source
and target languages. Recent works on extending
pretrained Transformer-based encoders to multi-
lingual settings show that these models are effec-
tive for cross-lingual tasks and competitive with
strong monolingual models on the XNLI bench-
mark (Devlin et al., 2019b; Conneau and Lample,
2019; Conneau et al., 2019; Huang et al., 2019a).
More recently, Artetxe et al. (2020) showed that
cross-lingual transfer performance can be sensitive
to translation artifacts arising from a multilingual
datasets’ creation procedure.

Finally, Pfeiffer et al. (2020) propose adapter
modules that learn language and task representa-
tion for cross-lingual transfer, which also allow
adaptation to languages that are not observed in the
pretraining data.

5 Conclusion and Future work

In this paper, we conduct a large-scale study on the
impact intermediate-task training has on zero-shot
cross-lingual transfer. We evaluate 7 intermediate
tasks and investigate how intermediate-task train-
ing impacts the zero-shot cross-lingual transfer to
the 9 target tasks in the XTREME benchmark.

Overall, intermediate-task training signifi-
cantly improves the performance on BUCC and
Tatoeba, the two sentence retrieval target tasks
in the XTREME benchmark, across almost every
intermediate-task configuration. Our best models
obtain 5.9 and 25.5 point gains on BUCC and
Tatoeba, respectively, in the leaderboard when
compared to the best available XLM-R baseline
scores (Hu et al., 2020). We also observed gains
in question-answering tasks, particularly using
SQuAD as an intermediate task, with absolute
gains of 0.6 F1 for XQuAD, 0.7 F1 for MLQA,
and 5.7 for F1 TyDiQA, again over the best avail-
able baseline scores. We improve over XLM-R by



6.1 points on average on the XTREME benchmark,
setting a new state of the art. However, we found
that neither incorporating multilingual MLM into
the intermediate-task training phase nor multi-task
training led to improved transfer performance.

While we have explored the extent to which En-
glish intermediate-task training can improve cross-
lingual transfer, an obvious next avenue of inves-
tigation for future work is whether multilingual
or target-language intermediate-task training can
further bolster performance, and how the relation-
ship between the intermediate- and target-task lan-
guages influences transfer.
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Martı́nez Alonso, Natalie Schluter, and Anders
Søgaard. 2016. Multilingual projection for parsing
truly low-resource languages. Transactions of the
Association for Computational Linguistics, 4:301–
312.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2020.
Translation Artifacts in Cross-lingual Transfer
Learning. arXiv e-prints, page arXiv:2004.04721.

Mikel Artetxe, Sebastian Ruder, and Dani Yo-
gatama. 2019. On the cross-lingual transferabil-
ity of monolingual representations. arXiv preprint
arXiv:1910.11856.

Mikel Artetxe and Holger Schwenk. 2019. Mas-
sively multilingual sentence embeddings for zero-
shot cross-lingual transfer and beyond. Transac-
tions of the Association for Computational Linguis-
tics, 7:597–610.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Ronan Le Bras, Swabha Swayamdipta, Chandra Bha-
gavatula, Rowan Zellers, Matthew E Peters, Ashish
Sabharwal, and Yejin Choi. 2020. Adversarial filters
of dataset biases. arXiv preprint arXiv:2002.04108.

Jonathan H. Clark, Eunsol Choi, Michael Collins, Dan
Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and
Jennimaria Palomaki. 2020. Tydi qa: A benchmark
for information-seeking question answering in typo-
logically diverse languages. Transactions of the As-
sociation for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised

cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
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Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebas-
tian Ruder. 2020. MAD-X: An adapter-based frame-
work for multi-task cross-lingual transfer. arXiv
preprint arXiv:2005.00052.

Jason Phang, Thibault Févry, and Samuel R. Bowman.
2018. Sentence Encoders on STILTs: Supplemen-
tary Training on Intermediate Labeled-data Tasks.
Unpublished manuscript available on arXiv.

Barbara Plank, Anders Søgaard, and Yoav Goldberg.
2016. Multilingual part-of-speech tagging with bidi-
rectional long short-term memory models and auxil-
iary loss. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 412–418, Berlin,
Germany. Association for Computational Linguis-
tics.

Yada Pruksachatkun, Jason Phang, Haokun Liu,
Phu Mon Htut, Xiaoyi Zhang, Richard Yuanzhe
Pang, Clara Vania, Katharina Kann, and Samuel R
Bowman. 2020. Intermediate-task transfer learning
with pretrained models for natural language under-
standing: When and why does it work? arXiv
preprint arXiv:2005.00628.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019a. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019b. Exploring the limits
of transfer learning with a unified text-to-text trans-
former.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of

https://doi.org/10.18653/v1/D19-1252
https://doi.org/10.18653/v1/D19-1252
https://doi.org/10.18653/v1/D19-1243
https://doi.org/10.18653/v1/D19-1243
https://doi.org/10.18653/v1/D19-1243
https://doi.org/10.1017/S1351324905003840
https://doi.org/10.1017/S1351324905003840
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.18653/v1/P19-1441
https://doi.org/10.18653/v1/P19-1441
https://doi.org/10.18653/v1/D17-1269
https://doi.org/10.18653/v1/D17-1269
https://hal.archives-ouvertes.fr/hal-01930733
https://hal.archives-ouvertes.fr/hal-01930733
https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/P17-1178
http://arXiv.org/abs/1811.01088
http://arXiv.org/abs/1811.01088
https://doi.org/10.18653/v1/P16-2067
https://doi.org/10.18653/v1/P16-2067
https://doi.org/10.18653/v1/P16-2067
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264


the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Robert Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Thirty-First AAAI Conference on
Artificial Intelligence.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4149–4158, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Tu Vu, Tong Wang, Tsendsuren Munkhdalai, Alessan-
dro Sordoni, Adam Trischler, Andrew Mattarella-
Micke, Subhransu Maji, and Mohit Iyyer. 2020.
Exploring and predicting transferability across nlp
tasks. arXiv preprint arXiv:2005.00770.

Alex Wang, Jan Hula, Patrick Xia, Raghavendra Pap-
pagari, R. Thomas McCoy, Roma Patel, Najoung
Kim, Ian Tenney, Yinghui Huang, Katherin Yu,
Shuning Jin, Berlin Chen, Benjamin Van Durme,
Edouard Grave, Ellie Pavlick, and Samuel R. Bow-
man. 2019a. Can you tell me how to get past sesame
street? sentence-level pretraining beyond language
modeling. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4465–4476, Florence, Italy. Association for
Computational Linguistics.

Alex Wang, Jan Hula, Patrick Xia, Raghavendra Pap-
pagari, R. Thomas McCoy, Roma Patel, Najoung
Kim, Ian Tenney, Yinghui Huang, Katherin Yu,
Shuning Jin, Berlin Chen, Benjamin Van Durme,
Edouard Grave, Ellie Pavlick, and Samuel R. Bow-
man. 2019b. Can you tell me how to get past sesame
street? sentence-level pretraining beyond language
modeling. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4465–4476, Florence, Italy. Association for
Computational Linguistics.

Alex Wang, Ian F. Tenney, Yada Pruksachatkun,
Katherin Yu, Jan Hula, Patrick Xia, Raghu Pappa-
gari, Shuning Jin, R. Thomas McCoy, Roma Pa-
tel, Yinghui Huang, Jason Phang, Edouard Grave,
Haokun Liu, Najoung Kim, Phu Mon Htut, Thibault
Févry, Berlin Chen, Nikita Nangia, Anhad Mo-
hananey, Katharina Kann, Shikha Bordia, Nicolas
Patry, David Benton, Ellie Pavlick, and Samuel R.
Bowman. 2019c. jiant 1.2: A software toolkit
for research on general-purpose text understanding
models.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American

Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122. Association for
Computational Linguistics.

Yinfei Yang, Yuan Zhang, Chris Tar, and Jason
Baldridge. 2019. PAWS-x: A cross-lingual adversar-
ial dataset for paraphrase identification. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 3687–3692, Hong
Kong, China. Association for Computational Lin-
guistics.

Dani Yogatama, Cyprien de Masson d’Autume, Jerome
Connor, Tomas Kocisky, Mike Chrzanowski, Ling-
peng Kong, Angeliki Lazaridou, Wang Ling, Lei
Yu, Chris Dyer, et al. 2019. Learning and evaluat-
ing general linguistic intelligence. arXiv preprint
arXiv:1901.11373.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and
Yejin Choi. 2018. SWAG: A large-scale adversar-
ial dataset for grounded commonsense inference. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 93–
104, Brussels, Belgium. Association for Computa-
tional Linguistics.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can
a machine really finish your sentence? In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4791–
4800, Florence, Italy. Association for Computational
Linguistics.

Daniel Zeman, Martin Popel, Milan Straka, Jan
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A Implementation details

A.1 Intermediate Tasks
For intermediate-task training, we use a learning
rate of 1e-5 without MLM, and 5e-6 with MLM.
Hyperparameters in the Table 3 were chosen based
on an initial search based on intermediate task val-
idation performance. We use a warmup of 10%
of the total number of steps, and perform early
stopping based on the first 500 development set
examples of each task. For CCG, where tags are
assigned for each word, we use the representation
of first sub-word token of each word for prediction.

Task Batch size # Epochs

ANLI+ 24 2
CCG 24 15
CommonsenseQA 4 10
Cosmos QA 4 15
HellaSwag 24 7
QQP 24 3
SQuAD 8 3
MLM 8 -
Multi-task Mixed 3

Table 3: Intermediate-task training configuration.

A.2 Target Tasks / XTREME Benchmark
We follow the sample implementation for the
XTREME benchmark unless otherwise stated. We
use a learning rate of 3e-6, and use the same opti-
mization procedure as for intermediate tasks. Hy-
perparameters in the Table 4 follow the sample im-
plementation. For POS and NER, we use the same
strategy as for CCG for matching tags to tokens.
For BUCC and Tatoeba, we extract the represen-
tations for each token from the 13th self-attention
layer, and use the mean-pooled representation as
the embedding for that example, as in the sample
implementation. Similarly, we follow the sample
implementation and set an optimal threshold for
each language sub-task for BUCC as a similarity
score cut-off for extracting parallel sentences based
on the development set and applied to the test set.

We randomly initialize the corresponding output
heads for each task, regardless of the similarity
between intermediate and target tasks (e.g. even
if both the intermediate and target tasks train on
SQuAD, we randomly initialize the output head in
between phases).

Task Batch size # Epochs

XNLI (MNLI) 4 2
PAWS-X 32 5
XQuAD (SQuAD) 16 2
MLQA (SQuAD) 16 2
TyDiQA 16 2
POS 32 10
NER 32 10
BUCC - -
Tatoeba - -

Table 4: Target-task training configuration.
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