
Under review as a conference paper at ICLR 2022

EFFICIENT TRAINING AND INFERENCE OF
HYPERGRAPH REASONING NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the problem of hypergraph reasoning in large domains, e.g., predicting
the relationship between several entities based on the input facts. We observe that
in logical reasoning, logical rules (e.g., my parent’s parent is my grandparent)
usually apply locally (e.g., only three people are involved in a grandparent rule),
and sparsely (e.g., the grandparent relationship is sparse across all pairs of people
in the world). Inspired by these observations, we propose Sparse and Local Neural
Logic Machines (SpaLoc), a structured neural network for hypergraph reasoning.
To leverage the sparsity in hypergraph neural networks, SpaLoc represents the
grounding of relationships such as parent and grandparent as sparse tensors and
uses neural networks and finite-domain quantification operations to infer new facts
based on the input. We further introduce a sparsification loss to regularize the
number of hyperedges in intermediate layers of a SpaLoc model. To enable training
on large-scale graphs such as real-world knowledge graphs, SpaLoc makes training
and inference-time sub-sampling of the input graphs. To remedy the information
loss in sampled sub-graphs, we propose a novel sampling and label calibration
paradigm based on an information-theoretic measure information sufficiency. Our
SpaLoc shows superior accuracy and efficiency on synthetic datasets compared with
prior art and achieves state-of-the-art performance on several real-world knowledge
graph reasoning benchmarks.

1 INTRODUCTION

Performing graph reasoning in large domains, such as predicting the relationship between two entities
based on the input facts, is an important practical problem that arises in reasoning about molecular
modeling, knowledge networks, and collections of objects in the physical world (Schlichtkrull et al.,
2018; Veličković et al., 2020; Battaglia et al., 2016). The necessary inference rules are generally
unknown and must be inferred from data, which in general are large. In this paper, we focus on
learning neural networks for graph reasoning tasks. Consider the problem of learning a rule that
explains the grandparent relationship. Given a dataset of labeled family relationship graphs, we aim to
build machine-learning algorithms that can learn to predict a specific relationship (e.g., grandparent)
based on other relationships, such as father(x, y) and mother(x, y).

Neural Logic Machines (NLM; Dong et al., 2019) present a method for solving graph reasoning
tasks with a structured neural network. NLMs keep track of hyperedge representations for all tuples
consisting of up to B entities. Thus, they can infer more complex finitely-quantified logical relations
than standard graph neural networks that only consider binary relationships between entities (Morris
et al., 2019; Barceló et al., 2020). However, there are two disadvantages of such a dense hypergraph
representation. First, the training and inference of NLMs requires simultaneously considering all
entities in a domain, such as all of the N people in a family relationship database. Second, they scale
polynomially with respect to the number of entities considered in a single inference. Even inferring a
single relation like grandparent requires O(N3) time and space complexity. In practice, for large
graphs, these limitations make the training and inference intractable and hinder the application of
NLMs in large-scale real-world domains.

To address these two challenges, we present a novel framework, called Sparse and Local Neural
Logic Machines (SpaLoc), for inducing sparse relational rules from data in large domains. Our
key idea is to exploit locality and sparsity in data: determining a relationship between entities

1

Under review as a conference paper at ICLR 2022

I

Sparsify

Input Domain

…

Calibrated
Sub-domains

…

Nullary: p

Unary: p(x)

Binary: r(x, y)

Tenary: r(x, y, z)

…

Expand

Reduce

Expand

Reduce

Expand

Reduce

Expand …

Concat + Permute
NN

NN

NN

NN

…

…

…

…

…

NN

NN

NN

NN

… …

NN

NN

NN

NN

NN

NN

NN

(iii) Sub-domain Training and Information
Sufficnecy Based Calibration (Section 2.4)

(i) Sparse and Local Neural
Logic Machine (Section 2.2)

Global
Prediction

Object-Level
Prediction

Binary-Relation
Prediction

Tenary-Relation
Prediction

…

(ii) Sparsification Through Hoyer
Regularization (Section 2.3)

I

I

V

V

V

V

Breadth

Depth

Figure 1: The overall pipeline of SpaLoc: a multi-layer neural network that applies to hypergraphs. I
and V denote the index tensor and value tensor respectively. To facilitate training and inference in
large domains, we employ a sub-graph sampling procedure and sparsification.

usually only requires consideration of a small number of additional entities, and the resulting relation
usually only holds for a small number of tuples of entities. Our contribution is three-fold. First,
we develop a sparse tensor-based representation for representing hyperedge relationships among
entities and making inferences about them. Second, during both training and inference, SpaLoc
employs a sub-graph sampling technique based on an information-theoretic measure, information
sufficiency, which quantifies the amount of information contained in a sub-graph with respect to
whether a predicate is true for some tuple of entities. Since the sub-graph sampling may violate
the closed-world assumption (i.e., the information in a sub-sampled graph may be insufficient in
predicting the relationship between a pair of entities), we also use the information sufficiency measure
to calibrate training labels. Third, to further speed up inference on large graphs, we encourage neural
networks recover sparse relationships among objects by using a regularization term based on graph
sparsity measurements.

We evaluate SpaLoc on two benchmarks: relational reasoning in synthetic datasets (family trees and
general graph reasoning) and real-world knowledge-graph reasoning. First, we show that, with our
sparsity regularization, the computation complexity for inference can be reduced to the same order as
the optimal complexity, which significantly outperforms the base model NLM. Second, we show that
training via sub-graph sampling and label calibration enables us to learn relational rules in real-world
knowledge graphs with more than 10K nodes, whereas the original NLM can be barely applied to
graphs with more than 100 nodes. Finally, SpaLoc achieves state-of-the-art performance on several
real-world knowledge graph reasoning benchmarks.

2 SPARSE AND LOCAL NEURAL LOGIC MACHINES

In this section, we develop a structured neural network that applies to hypergraphs. The fundamental
structures used for both training and inference, will be hypergraphsH = (V, E), where V is a set of
vertices and E is a set of hyperedges. Each hyperedge e = (x1, x2, · · · , xr) is an ordered tuple of r
elements (r is called the arity of the edge), where xi ∈ V . We use f : E → S to denote a hyperedge
representation function, which maps each hyperedge e to a feature in domain S . Domain S can be in
various forms: discrete labels, numbers, and vectors. For simplicity, we describe features associated
with arity-1 edges as “node features” and features associated with the whole graph as “nullary” or
“global” features.

A graph-reasoning task can be formulated as follows: givenH and the input hyperedge representation
functions f associated with all hyperedges in E , such as node types and pairwise relationships (e.g.,
parent), our goal is to infer a target representation function f ′ for one or more hyperedges, i.e. f ′(e)
for some e ∈ E , such as predicting a new relationship (e.g., grandparent).

2.1 PRELIMINARY: NEURAL LOGIC MACHINES

We provide an informal overview of the global architecture of Neural Logic Machines (NLMs);
for a formal description, see the original paper by Dong et al. (2019). In contrast to typical graph
neural networks that only associate representations with input edges in E , NLMs operate on a fully-

2

Under review as a conference paper at ICLR 2022

Index 𝑝𝑎𝑟𝑒𝑛𝑡

(1,3) 1

(2,3) 1

(2,4) 1

Index 𝑃ℎ𝐷 𝑝𝑎𝑟𝑒𝑛𝑡

1 1 1

2 0 1

4 1 0

Index 𝑝𝑎𝑟𝑒𝑛𝑡 𝑃ℎ𝐷

(1, 3) 1 1

(2, 3) 1 0

(2, 4) 1 0

(1, 2) 0 1

(1, 4) 0 1

(4, 1) 0 1

(4, 2) 0 1

(4, 3) 0 1

Expand

Reduce
Permute NN

Unary: 𝑸𝟎

Binary: 𝑹𝟎

Index 𝑃ℎ𝐷

1 1

4 1
Index 𝑝𝑎𝑟𝑒𝑛𝑡 𝑃ℎ𝐷 𝑝𝑎𝑟𝑒𝑛𝑡் 𝑃ℎ𝐷்

(1, 3) 1 1 0 0

(2, 3) 1 0 0 0

(2, 4) 1 0 0 1

(1, 2) 0 1 0 0

(1, 4) 0 1 0 1

(4, 1) 0 1 0 1

(4, 2) 0 1 1 0

(4, 3) 0 1 0 0

(3, 1) 0 0 1 1

(3, 2) 0 0 1 0

(2, 1) 0 0 0 1

(4, 3) 0 0 0 1

⋯

Input Domain:

3

2

4

1

Index 𝑃ℎ𝐷𝐶ℎ𝑖𝑙𝑑

(1, 3) 0

(2, 3) 0

(2, 4) 0

(1, 2) 0

(1, 4) 0

(4, 1) 0

(4, 2) 1

(4, 3) 0

(3, 1) 0

(3, 2) 0

(2, 1) 0

(4, 3) 0

Binary: 𝑹𝟏

Figure 2: A running example of a single layer SpaLoc: inferring the binary relationship of PhD-child-
of from the attribute PhD and the binary relationship parent. Blue entries denote values that are
reduced from high-arity tensors, while green entries are expanded from low-arity tensors. Yellow
entries are created by the “permutation” operation. Gray entries are zero paddings.

connected hypergraph. Thus, NLMs use dense tensors to represent the input, output and intermediate
representations of relations on nodes, edges, and hyperedges.

For example, the input relation parent(x, y) in a given hypergraphH can be represented as a 2D tensor
parentH of sizeN2, whereN = |V| is the number of entities in the hypergraph, and parentH[i, j] = 1
if and only if person i is a parent of j. In general, a vector representation of length D associated with
hyperedges of arity r can be represented using a tensor of size Nr ×D.

An NLM is a multi-layer neural network that operates on this dense hypergraph representation. At
each layer, it computes a new set of features associated with the hyperedges based on the input. To
fuse the information across hyperedges of different arities, NLMs use two special tensor operations,
EXPAND and REDUCE, which add and reduce dimensions of the representation tensors.

Remark. Even when the inputs have only unary and binary relations, allowing intermediate tensor
representations of higher arity to be associated with hyperedges increases the expressiveness of
NLMs (Dong et al., 2019). An intuitive example is that, in order to determine the grandparent
relationship, we need to consider all 3-tuples of entities, even though the input relations are only
binary. Despite their expressiveness, NLMs based on hyperedges cannot be directly applied to
large-scale graphs. For a graph with more than 10,000 nodes (e.g., Freebase (Bollacker et al., 2008)),
it is almost impossible to store vector representations for all of the N3 tuples of arity 3. Our key
observation to improve the training and inference efficiency of NLMs is that relational rules are
usually applied sparsely (Section 2.3) and locally (Section 2.4).

2.2 ARCHITECTURE OF SPARSE AND LOCAL NEURAL LOGIC MACHINES

Fig. 1 shows the overall architecture of SpaLoc, which can be seen as a version of NLMs based
on sparse tensors. A SpaLoc model is composed of multiple relational reasoning layers (RRLs)
that operate on hyperedge representations. It also shows the detailed computation graph at a single
layer in a NLM with 3-ary relations. The EXPAND operation propagates representations from
lower-arity tensors to a higher-arity form (e.g., from each node to the edges connected to it). The
REDUCE operation aggregates higher-arity representations into a lower-arity form (e.g., aggregate the
information from all edges connected to a node into that node). The PERMUTE operation fuses the
representations of hyperedges that share the same set of entities but in different order, such as (A,B)
and (B,A). Finally, NN is a linear layer with nonlinear activation that computes the representation
for the next layer. The neural network module NN is applied independently and identically to all
tuples of the same arity. This ensures that a NLM learned on a small universe can be applied to a
larger universe of entities.

Our RRLs are based on sparse tensor representations. In the following, we let N = |V| be the number
of entities (nodes) in the hypergraph, V = {o1, o2, · · · oN} be the entities, x1, x2, · · · be variables, and
f(x1, x2, · · · , xr) be a mapping from a tuple (x1, x2, · · · , xr) to a vector representation associated
with that tuple. We will denote the maximum arity of tensors considered in a SpaLoc model as R.

3

Under review as a conference paper at ICLR 2022

Sparse tensor representation of hyperedge representations. In SpaLoc, the vector representa-
tions f(x1, x2, · · · , xr) associated with all hyperedges of arity r are represented as a coordinate-list
(COO) format sparse tensor. That is, each tensor is represented as two tensors F = (I,V), each with
M entries. The first tensor I is an index tensor, of shape M × r, in which each row denotes a tuple
(x1, x2, · · · , xr). The second tensor V is a value tensor, of shape M × D, where D is the length
of f(x1, x2, · · · , xr). Each row V[i] denotes the vector representation associated with the tuple I[i].
For all tuples that are not recorded in I, their representations are treated as all-zero vectors. As an
example, in Fig. 2, the input relationship parent(x, y) is represented as a sparse tensor with three
entries.

Sparse relational reasoning layers. Now, we show how each of the critical operations of an NLM
can be performed on this sparse representation.

The EXPAND operation takes a sparse tensor F of arity r and creates a new sparse tensor F ′ with
arity r+ 1: it propagates the representation from arity r to arity (r+ 1), such as from nodes to edges.
This is implemented by duplicating each entry f(x1, · · · , xr) in F by N times, creating the N new
vector representations for (x1, · · · , xr, oi) for all i ∈ {1, 2, · · · , N}. Fig. 2 gives an example.

The REDUCE operation takes a sparse tensor F = (I,V) of arity r and creates a new sparse tensor F ′
with arity r− 1: it aggregates all information associated with all r-tuples: (x1, x2, · · · , xr−1, ?) with
the same r − 1 prefix. In SpaLoc, the aggregation function is chosen to be max. Thus,

f ′(x1, · · · , xr−1) = max
z:(x1,··· ,xr−1,z)∈I

f(x1, · · · , xr−1, z).

Fig. 2 gives an example.

The PERMUTE operation takes a sparse tensor F of arity r and creates a new sparse tensor F ′ of the
same arity. However, the length of the vector representation will grow from D to D′ = r!×D. It
fuses the representation of hyperedges that share the same set of entities. Mathematically,

f ′(x1, · · · , xr) = Concat
(x′1,··· ,x′r) is a permutation of (x1,··· ,xr)

[f(x′1, · · · , x′r)] .

If a permutation of (x1, · · · , xr) does not exist in F , it will be treated as an all-zero vector. Thus, the
number of entries M may increase or remain unchanged. Fig. 2 gives an example.

The i-th sparse relational reasoning layer has R + 1 linear layers L(i,0), L(i,1), · · · , L(i,R) with
nonlinear activations (e.g., ReLU) as submodules with arities 0 through R. For each arity r, we
will concatenate the feature tensors expanded from arity r − 1, reduced from arity r + 1, and the
output from the previous layer, apply a permutation, and apply L(i,r) on the derived tensor. In the
concatenation step, since tensors from different sources may have different sets of entries, we will
match the entries for different tensors with the necessary all-zero tensors.

We have seen how a sparse representation for NLMs can support efficient inference. In the next
sections, we show how to learn sparse NLMs from graphs, and then how to use subsampling to learn
efficiently from very large training graphs.

2.3 SPARSIFICATION THROUGH HOYER REGULARIZATION

SpaLoc achieves sparsity during training by adding regularization terms to entries that are not useful
in making the target prediction. At each layer, for each hyperedge (x1, · · · , xr), our model jointly
predicts a vector representation f(x1, · · · , xr) as well as a hyperedge gate g(x1, · · · , xr) ∈ [0, 1]
During training, we modulate the input representation f with the gate value g; during inference, we
prune all hyperedges whose gate value is smaller than a scalar hyperparameter ε = 5%. We augment
the task loss with a sparsity regularization loss that encourages the network to prune as many edges
as possible.

Gated hyperedge representation. Recall that each sparse relational reasoning layer is composed
of R + 1 linear layers. In SpaLoc, for each linear layer L(i,r), we add linear gating layer, L(i,r)

g ,
which has sigmoid activation and outputs a scalar value in range [0, 1] that can be interpreted as the
importance score for each hyperedge. During training, we modulate the output of L(i,r) with this
importance value. Specifically, the output of layer i arity r is L(i,r)(F)� L(i,r)

g (F), where F is the

4

Under review as a conference paper at ICLR 2022

input sparse tensor, and � is the element-wise multiplication operation. During inference, we prune
out edges with a small importance score.

Hoyer-Square measure. We use a metric inspired by the Hoyer measure (2004) for quantifying
the sparsity of the hyperedges and as the regularization loss to encourage hyperedge sparsity. It is
based on the L1 norm and the L2 norm of a vector. Let x be an arbitrary vector of length n. Then

Hoyer(x) =
(
∑n

i |xi|)/
√∑n

i x
2
i − 1√

n− 1

The Hoyer measure takes values from 0 to 1. The larger the Hoyer measure of a tensor, the denser the
tensor is. In order to assign weights to different tensors based on their size, we use the Hoyer-Square
measure (Yang et al., 2020),

HS(x) =
(
∑n

i |xi|)2∑n
i x

2
i

,

which ranges from 1 (sparsest) to n (densest). Intuitively, the Hoyer-Square measure is more suitable
than L1 or L2 regularizers for graph sparsification since it encourages large values to be close to 1
and others to be zero, i.e., extremity. It has been widely used in sparse neural network training and
empirically proved to have better performance than other sparse measures Hurley & Rickard (2009).
We also empirically compare HS with other sparsity measures in Appendix C.

The overall training objective of SpaLoc is the task objective plus the sparsification loss, L =
Ltask + λLdensity, where Ldensity is the sum of the HS for all gate tensors across all layers, divided by
the sum of the size of these tensors:

Ldensity =

∑
i

∑R
r=0HS(g(i,r))∑

i

∑R
r=0 #g(i,r)

, g(i,r) = L(i,r)
g (F)

where i sums over all layers of the SpaLoc and r sums over all arities and # counts the number of
elements in a tensor.

2.4 SUBGRAPH TRAINING

1. Sample a sub-domain
from a large domain.

2. Calibrate labels with the
information sufficiency.

IS = 0

IS = 1

Calibrated Sub-DomainLarge Domain parent (Input)

grandparent (Target)

Figure 3: The subgraph training contains two steps. First, we sample a subset of nodes from a large
input graph. Next, we calibrate the labels for edges in the sub-sampled graph. Note that the edge
with information sufficiency 0 will be labeled as a negative example in this subgraph.

Regularization enables us to learn a sparse model that will be efficient at inference, but does not
address the problem of learning efficiently from large training graphs. In this section we describe
a novel strategy for substantially reducing training complexity, based on the observation that an
inferred relation among a set of entities generally depends only on a small set of other entities that are
“between” the target entities in the hypergraph, in the sense that they are connected via short paths of
relevant relations. To exploit this observation, we employ a sub-graph sampling procedure during both
training and inference. In the following, we first present a information-theoretic measure to quantify
the sufficiency of information in a sub-sampled graph for determining the relationship between two
entities, namely, information sufficiency. Next, we present a sub-graph sampling procedure that
is designed to maximize the information sufficiency for training and inference. Finally, since it is
inevitable that we will lose some information during the sampling procedure, we further propose a
training paradigm that calibrates the labels for training examples based on the information sufficiency.

5

Under review as a conference paper at ICLR 2022

Information sufficiency. LetHS = (VS , ES) be a sub-hypergraph of hypergraphH = (V, E), and
e∗ = (y1, . . . , yr) be a target hyperedge in HS , where y1, · · · , yr ∈ VS ⊂ V . Intuitively, in order
to determine the label for this hyperedge, we need to consider all “paths” that connect the nodes
{y1, . . . , yr}. More formally, we say a sequence of K hyperedges

(x11, · · · , x1r1)
e1

, (x21, · · · , x2r2)
e2

, · · · , (xK1 , · · · , xKrk)
eK

,

is a hyperedge path for nodes {y1, · · · yr} if and only if {y1, · · · yr} ⊂
⋃K

j=1 ej and ej ∩ ej+1 6= ∅
for all j. In a graph with only binary edges, this is equivalent to the existence of a path from one
node y1 to another node y2. We define the information sufficiency measure for a hyperedge e∗ in
subgraphHS as the fraction of the total number of paths connecting {yi, · · · , yr} that are retained in
the subgraph:

IS ((y1, · · · , yr) | HS ,H) :=
#Paths connecting (y1, · · · , yr) inHS

#Paths connecting (y1, · · · , yr) inH
* (1)

In practice, we approximate IS by only counting the number of paths whose length is less than a
task-dependent threshold τ for efficiency. The number of paths in a large graph can be pre-computed
and cached before training, and the overhead of counting paths in sampled graph is small, so this
computation does not add much overhead to training and inference. In the case that the input graphs
have maximum arity 2, paths can be counted efficiently by taking powers of the graph adjacency
matrix.

Subgraph sampling. We use different sub-graph sampling strategies for training and inference.

During training, each data point is a tuple (H, f, f ′) where H is the input graph, f is the input
representation, and f ′ is the desired output representation. We will sample a subgraphH′ ⊂ H, and
train models to predict the value of f ′ onH′ given f . For example, we will train models to predict the
grandparent relationship between all pairs of entities inH′ based on the parent relationship between
entities inH′. Thus, our goal is to find a subgraph that retains most of the paths connecting nodes in
this subgraph. We achieve this using a neighbor expansion sampler that uniformly samples a few
nodes from V as the seed nodes. It then samples new nodes connected with one of the nodes in the
graph into the sampled graph and runs this “expansion” procedure for multiple iterations to get VS .
Finally, we include all edges that connect nodes in VS to form the final subsampled hypergraph.

During inference, usually our goal is to just infer the relationship between one pair of entities
f ′(y1, y2) on a graph H given the input representation f . In this case, we will use a path sampler
when dealing with large domains, which samples paths connecting y1 and y2 and induce a subgraph
from these paths. We provide ablation studies comparing different sampling techniques in Section 3.4.
The implementation details of our information sufficiency computation and subgraph samplers can
be found in Appendix D and Appendix B.

Training label calibration with IS. Due to the information loss caused by graph subsampling, the
closed-world assumption (CWA) no longer holds in the subgraph. That is, the information contained
in the subgraph may not be sufficient to make predictions about a target relationship. For example, in
a family relationship graph, removing a subset of nodes may cause the system unable to conclude
whether a specific person x has a sibling.

Thus, we propose to calibrate the model training by assigning each example f ′(y1, · · · , yr) with a
soft label. Specifically, consider a binary classification task f ′. That is, function f ′ is a mapping from
a hyperedge tuple of arity r to {0, 1}. Denote the model prediction as f̂ ′. Typically, we will train the
SpaLoc model with a binary cross-entropy loss between f̂ ′ and the groundtruth f ′. In our subgraph
training, we will instead compute a binary cross-entropy loss between f̂ ′ and f ′HS

� IS, whereHS is
the sub-sampled graph. Mathematically,(

f ′HS
� IS

)
(y1, · · · , yr) , f ′HS

(y1, · · · , yr) · IS ((y1, · · · , yr) | HS ,H) .

Fig. 3 shows a concrete example of the label calibration process.

* 0
0

is defined as 1.

6

Under review as a conference paper at ICLR 2022

Table 1: Results (Per-class Accuracy) on family tree reasoning benchmarks. Models are tested on
domains with 100 objects. Minus mark means the model cannot scale up in training datasets of
corresponding sizes or cannot handle ternary predicates.

Family Tree MemNN ∂ILP NLM GraIL (R-GCN) SpaLoc (Ours)

Ntrain 20 2,000 20 2,000 20 2,000 20 2,000 20 2,000

HasFather 65.24 - 100 - 100 - 100 100 100 100
HasSister 66.21 - 100 - 100 - 97.05 97.95 100 97.97

Grandparent 64.57 - 100 - 100 - 99.95 98.08 100 100
Uncle 64.82 - 100 - 100 - 97.87 96.50 100 100

MGUncle 80.93 - 100 - 100 - 54.67 71.29 100 100
Family-of-Three - - - - 100 - - - 100 100

Three-generations - - - - 100 - - - 100 100

3 EXPERIMENTS

In this section, we compare SpaLoc with other methods in two aspects: accuracy and efficiency on
large domains. We compare SpaLoc with other approaches on relational reasoning and real-world
knowledge graph reasoning benchmarks. All experiments are under the inductive, supervised learning
setup, i.e., testing objects and relations have not been seen during training, and the sizes of domains
used for training and evaluation are also very different.

3.1 BASELINES

For the family tree reasoning tasks, we compare SpaLoc against four baselines. The first three
are Memory Networks (MemNN) (Sukhbaatar et al., 2015), ∂ILP (Evans & Grefenstette, 2018)
and Neural Logic Machines (NLMs; Dong et al., 2019), which are state-of-the-art models for
relational rule learning tasks. For these models, we follow the configuration and setup in Dong
et al. (2019). The fourth baseline is an inductive link prediction method based on graph neural
networks, GraIL (Teru et al., 2020). Since GraIL can be only used for link prediction, we use the
full-batch R-GCN (Schlichtkrull et al., 2018), the backbone network of GraIL, for node property
predictions. For inductive knowledge graph reasoning datasets, we compare SpaLoc with state-of-
the-art models, including Neural LP (Yang et al.), DRUM (Sadeghian et al.), RuleN (Meilicke et al.,
2018), GraIL and TACT (Chen et al., 2021). For transductive learning tasks, we compare SpaLoc with
four representative knowledge graph embedding methods, including TransE (Bordes et al., 2013),
DistMult (Yang et al., 2015), ComplEx (Trouillon et al., 2017), and RotatE (Sun et al., 2019).

3.2 FAMILY TREE REASONING

20 40 60 80 100 120 140
Number of Objects

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
N

Z
(x

10
6)

1e6 HasSister

Real
n3

f = 0.0n3 + 6.7n2 + 0.0n + 0.0

20 40 60 80 100 120 140
Number of Objects

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
N

Z
(x

10
6)

1e6 Grandparent

Real
n3

f = 0.0n3 + 11.9n2 + 0.0n + 0.0

20 40 60 80 100 120 140
Number of Objects

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
N

Z
(x

10
6)

1e6 Uncle

Real
n3

f = 0.0n3 + 11.0n2 + 0.0n + 0.0

Figure 4: Numbers of non-zero elements (NNZ) in the intermediate groundings of SpaLoc vs. the
number of objects in the evaluation domains.

We evaluate SpaLoc on the family-tree reasoning benchmark, a synthetic benchmark for inductive
logic programming. The goal of family-tree tasks is to induce target family relationships or member
properties given the following binary relations: Son, Daughter, Father, and Mother. We give
concrete logical definitions of the family tree benchmark in the Appendix E.

Accuracy & Efficiency. From Table 1 we observe the superiority of SpaLoc in terms of accuracy
and efficiency. SpaLoc achieves perfect accuracy on test set. And when handling large input domains

7

Under review as a conference paper at ICLR 2022

Table 2: Results (AUC-PR) on real-world knowledge graph inductive reasoning datasets from GraIL.

Model WN18RR FB15k-237 NELL-995

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

Neural-LP 86.02 83.78 62.90 82.06 69.64 76.55 73.95 75.74 64.66 83.61 87.58 85.69
DRUM 86.02 84.05 63.20 82.06 69.71 76.44 74.03 76.20 59.86 83.99 87.71 85.94
RuleN 90.26 89.01 76.46 85.75 75.24 88.70 91.24 91.79 84.99 88.40 87.20 80.52
GraIL 94.32 94.18 85.80 92.72 84.69 90.57 91.68 94.46 86.05 92.62 93.34 87.50

TACT-base 98.11 97.11 88.34 97.25 87.36 94.31 97.42 98.09 94.00 94.44 93.98 94.93
TACT 96.15 97.95 90.58 96.15 88.73 94.20 97.10 98.30 94.87 96.58 95.70 96.12

SpaLoc 98.18 99.83 96.66 99.30 99.73 99.38 99.53 99.39 100 98.27 96.19 97.37

(Ntrain = 2000), SpaLoc works well because of the sampling techniques, while most baselines cause
out-of-memory errors.

Sparsity. In Fig. 4, we show the number of non-zero elements in SpaLoc’s intermediate groundings
versus the size of input domains on HasSister, Grandparent and Uncle. We fit a cubic
polynomial equation f̂ to the data points to illustrate the learned inference complexity of SpaLoc.
The SpaLoc we use in these three datasets has an arity of 3 so the maximum capacity of the model is
Θ(N3). However, the memory complexity of SpaLoc converges to the optimal algorithm complexity
of these tasks , which is O(N2). In comparison, the memory complexity of original dense NLMs
will be fixed to Θ(N3) when the model architecture is fixed.

3.3 REAL-WORLD KNOWLEDGE GRAPH REASONING

Table 3: Results (AUC-PR) of transductive link
prediction on real-world knowledge graphs.

WN18RR NELL-995 FB15K-237

TransE 93.73 98.73 98.54
DistMult 93.08 97.73 97.63
ComplEx 92.45 97.66 97.99

RotatE 93.55 98.54 98.53
GraIL 90.91 97.79 92.06

SpaLoc 96.76 99.27 99.61

We evaluate SpaLoc on the real-world
knowledge-graph inductive reasoning bench-
marks proposed in GraIL, whose training
and evaluation sets are disjoint sub-graphs
extracted from WN18RR (Dettmers et al.,
2018), FB15k-237 (Toutanova et al., 2015),
and NELL-995 (Xiong et al., 2017). For each
knowledge graph, there are four versions of
inductive datasets with increasing sizes.

To further demonstrate the scalability of SpaLoc, we also apply SpaLoc to the complete real knowl-
edge graphs. SpaLoc still uses the inductive learning setting. That is, it does not use any entity
information learned from training, only using the structural information for inference. We use the
standard WN18RR, FB15K-237, and NELL-995 benchmarks. We follow the original data split.

Table 2 and Table 3 show the results. SpaLoc significantly outperforms all baselines on all datasets and
achieves a new state-of-the-art. This demonstrates SpaLoc’s excellent scalability and generalization
ability on noisy large-scale real-world data.

3.4 ABLATION STUDY

Table 4: Comparison of different samplers.

Ns/N
Node Walk Neighbor

Acc MIS Acc MIS Acc MIS

20 / 50 100 54.82 100 85.14 100 89.78
20 / 200 100 33.05 100 71.51 100 80.60
20 / 500 58.18 27.27 100 78.22 100 78.70

20 / 1,000 1.84 24.49 100 77.18 100 78.38
20 / 2,000 0 19.66 100 79.69 100 78.53

Table 5: Comparison (per-class accuracy) for different
label calibration methods.

Sampler HasFather HasSister

- LS IS - LS IS

Node 50.00 50.00 50.00 50.00 50.00 80.72
Walk 50.00 52.41 100 59.90 75.13 93.16

Neighbor 50.00 51.63 100 75.29 78.06 97.97

Subgraph sampling. Beside the neighbor expansion sampler, there are also some intuitive and
efficient sub-graph samplers, such as the random node (Node) and random walk (Walk) samplers
proposed by Zeng et al. (2020). We compare these samplers in two ways. Empirically, we test the
models trained with the samplers. Theoretically, we evaluate the overall information sufficiency of a
sub-graph by averaging the information sufficiency of all target edges, introducing a metric called
Mean Information Sufficiency (MIS).

In Table 4, we show the results on the Grandparent dataset. The Node sampler does not leverage
locality, so the performance of models and MIS drops with the size of whole graph increases. SpaLocs

8

Under review as a conference paper at ICLR 2022

trained with Walk and Neighbor samplers achieve perfect accuracies, and the MIS of sub-graphs
provided by these sampers are also comparable. Also, the MIS of Walk’s and Neighbor’s sub-
graphs do not drop significantly with the increasing size of the whole graph, which ensures the
application of these samplers on arbitrarily large graphs.

Label calibration. We compare our information sufficiency based label calibration method against
a simple constant label smoothing. We show our results in Table 5. In the table, “LS” means constant
label smoothing by multiplying positive labels with a constant α = 0.9, and “IS” means label
calibration with the information sufficiency. The impact of sampling and the failure of the closed-
world assumption is particularly significant on the two datasets HasFather and HasSister.
Without label calibration, the performance of the model trained on the sub-graphs is close to random
prediction. Our information-based calibration method improves the performance by a large margin,
and is significantly superior to naive smoothing techniques.

4 RELATED WORK

(Hyper-)Graph representation learning. (Hyper-)Graph representation learning methods, includ-
ing message passing neural networks (Shervashidze et al., 2011; Kipf & Welling, 2017; Velickovic
et al., 2018; Hamilton et al., 2017) and embedding based methods (Dettmers et al., 2018; Toutanova
et al., 2015), have been widely used for knowledge discovery. Since these methods treat relations
(edges) as fixed indices for node feature propagation, their computational complexity is usually small
(e.g., O(NE)), and they can be applied to large datasets. However, the fixed relation representation
and low complexity restrict the expressive power of these methods (Xu et al., 2019; 2020) so they
cannot be used to solve some general complex problems, such as inducing tenary relational rules.
Moreover, some of the widely used methods such as knowledge embeddings are inherently transduc-
tive, and cannot learn lifted rules that generalize to unseen domains. By contrast, relations in SpaLoc
are evolving for reasoning, and the architecture of SpaLoc can be adjusted for problems of different
complexities. Therefore, SpaLoc can learn lifted and complex rules.

Inductive rule learning. In addition to graph learning frameworks, many previous approaches have
studied how to learn generalized rules from data (Muggleton, 1991; Friedman et al., 1999), i.e.,
inductive logic programming (ILP), with recent work integrating neural networks into ILP systems
to combat noisy and ambiguous inputs (Dong et al., 2019; Evans & Grefenstette, 2018; Sukhbaatar
et al., 2015). However, due to the large search space of target rules, computational and memory
complexities of these models are too high to scale up to many large real-world domains. SpaLoc
addresses this scalability problem by leveraging the sparsity and locality of real-world rules, and thus
can induce knowledge with local computations and optimal complexities.

Efficient training and inference methods. There is a rich literature on efficient training and
inference of neural networks. Two directions that are relevant to us are model sparsification and
sampling training. Han et al. (2016) propose to prune and compress the weights of neural networks
for efficiency, and Yang et al. (2020) adopt Hoyer-Square regularization to sparsify models. SpaLoc
extend this sparsification idea by adding regularization at intermediate sparse tensor groundings to
encourage concise induction. Chiang et al. (2019) and Zeng et al. (2020) propose to sample sub-graphs
for GNN training, and Teru et al. (2020) propose to construct sub-graphs for link prediction. SpaLoc
generalizes these sampling methods to hypergraphs, and proposes the information sufficiency based
calibration method to remedy the information loss introduced by sub-sampling.

5 CONCLUSION

We present SpaLoc, a framework for efficient training and inference of hypergraph reasoning networks.
SpaLoc uses sparse tensors to represent high-order relationships (hyperedges), and implements finite-
domain quantification to infer new knowledge. SpaLoc leverages sparsity and locality to train and
infer efficiently. Through regularizing intermediate representation by a sparsification loss, SpaLoc’s
inference complexities on family tree tasks are the same as those of algorithms designed by human
experts. To be applied to large datasets, SpaLoc sample sub-graphs for training and inference, and
calibrate training labels with information sufficiency measure to alleviate information loss. SpaLoc
generalizes well on large-scale relational reasoning benchmarks.

9

Under review as a conference paper at ICLR 2022

REPRODUCIBILITY STATEMENT

To maximize reproducibility, we described our methodology in detail in Section 2 and our experi-
mental setup in Section 3. All the data and codes in this paper will be released upon publication to
facilitate future research.

REFERENCES

Pablo Barceló, Egor V Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan Pablo Silva.
The logical expressiveness of graph neural networks. In International Conference on Learning
Representations (ICLR), 2020. 1

Peter W Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, and Koray Kavukcuoglu. Interac-
tion networks for learning about objects, relations and physics. In Advances in Neural Information
Processing Systems (NeurIPS), 2016. 1

Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a
collaboratively created graph database for structuring human knowledge. In Jason Tsong-Li Wang
(ed.), ACM SIGMOD Conference on Management of Data (SIGMOD), 2008. 3

Antoine Bordes, Nicolas Usunier, Alberto Garcı́a-Durán, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In Advances in Neural Information
Processing Systems (NeurIPS), 2013. 7

Jiajun Chen, Huarui He, Feng Wu, and Jie Wang. Topology-aware correlations between relations
for inductive link prediction in knowledge graphs. In AAAI Conference on Artificial Intelligence
(AAAI), 2021. 7

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD), 2019. 9

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. In Sheila A. McIlraith and Kilian Q. Weinberger (eds.), AAAI
Conference on Artificial Intelligence (AAAI), 2018. 8, 9

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic
machines. In International Conference on Learning Representations (ICLR), 2019. 1, 2, 3, 7, 9, 14

Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data. Journal of
Artificial Intelligence Research, 61:1–64, 2018. 7, 9

Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning probabilistic relational models.
In International Joint Conference on Artificial Intelligence (IJCAI), 1999. 9

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems (NeurIPS), 2017. 9

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. In Yoshua Bengio and Yann LeCun (eds.),
International Conference on Learning Representations (ICLR), 2016. 9

Patrik O. Hoyer. Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res.,
5:1457–1469, 2004. 5

Niall P. Hurley and Scott T. Rickard. Comparing measures of sparsity. IEEE Trans. Inf. Theory, 55
(10):4723–4741, 2009. 5

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015. 13

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR). OpenReview.net, 2017. 9

10

Under review as a conference paper at ICLR 2022

Christian Meilicke, Manuel Fink, Yanjie Wang, Daniel Ruffinelli, Rainer Gemulla, and Heiner
Stuckenschmidt. Fine-grained evaluation of rule- and embedding-based systems for knowledge
graph completion. In The Semantic Web - ISWC 2018 - 17th International Semantic Web Conference,
Monterey, CA, USA, October 8-12, 2018, Proceedings, Part I, 2018. 7

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In AAAI Conference on Artificial Intelligence (AAAI), 2019. 1

Stephen Muggleton. Inductive logic programming. New Gener. Comput., 8(4):295–318, 1991. 9

Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe Wang. DRUM: end-to-end
differentiable rule mining on knowledge graphs. In Advances in Neural Information Processing
Systems (NeurIPS). 7

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In The Semantic Web
(ESWC), 2018. 1, 7

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M.
Borgwardt. Weisfeiler-lehman graph kernels. J. Mach. Learn. Res., 12:2539–2561, 2011. 9

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-end memory networks.
In Advances in Neural Information Processing Systems (NeurIPS), 2015. 7, 9

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding by
relational rotation in complex space. In International Conference on Learning Representations
(ICLR), 2019. 7

Komal Teru, Etienne Denis, and Will Hamilton. Inductive relation prediction by subgraph reasoning.
In International Conference on Machine Learning (ICML), 2020. 7, 9

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury, and Michael
Gamon. Representing text for joint embedding of text and knowledge bases. In Lluı́s Màrquez,
Chris Callison-Burch, Jian Su, Daniele Pighin, and Yuval Marton (eds.), Empirical Methods in
Natural Language Processing (EMNLP), 2015. 8, 9

Théo Trouillon, Christopher R. Dance, Éric Gaussier, Johannes Welbl, Sebastian Riedel, and Guil-
laume Bouchard. Knowledge graph completion via complex tensor factorization. Journal of
Machine Learning Research, 2017. 7

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations
(ICLR), 2018. 9

Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. Neural execution
of graph algorithms. In International Conference on Learning Representations (ICLR), 2020. 1

Wenhan Xiong, Thien Hoang, and William Yang Wang. Deeppath: A reinforcement learning method
for knowledge graph reasoning. In Martha Palmer, Rebecca Hwa, and Sebastian Riedel (eds.),
Empirical Methods in Natural Language Processing (EMNLP), pp. 564–573. Association for
Computational Linguistics, 2017. 8

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019. 9

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
What can neural networks reason about? International Conference on Learning Representations
(ICLR), 2020. 9

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. In International Conference on Learning
Representations (ICLR), 2015. 7

11

Under review as a conference paper at ICLR 2022

Fan Yang, Zhilin Yang, and William W. Cohen. Differentiable learning of logical rules for knowledge
base reasoning. In Advances in Neural Information Processing Systems (NeurIPS). 7

Huanrui Yang, Wei Wen, and Hai Li. Deephoyer: Learning sparser neural network with differentiable
scale-invariant sparsity measures. In International Conference on Learning Representations (ICLR),
2020. 5, 9

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna.
Graphsaint: Graph sampling based inductive learning method. In International Conference on
Learning Representations (ICLR), 2020. 8, 9

12

Under review as a conference paper at ICLR 2022

SUPPLEMENTARY MATERIAL

A EXPERIMENTAL CONFIGURATION

Table 6: Hyper-parameters for SpaLoc. The definition of depth and breadth are illustrated in Figure 1.

Tasks Depth Breadth Hidden Dims Batch size Subgraph size τ

Family
Tree

HasFather 5 3 8 8 20 1
HasSister 5 3 8 8 20 2
Grandparent 5 3 8 8 20 2
Uncle 5 3 8 8 20 2
MGUncle 5 3 8 8 20 2
Family-of-three 5 3 8 8 20 2
Three-generations 5 3 8 8 20 2

Inductive
KG

WN18RR 6 3 64 128 10 3
FB15K-237 6 3 64 64 20 3
NELL-995 6 3 64 128 10 3

Transductive
KG

WN18RR 6 3 64 64 20 3
FB15K-237 6 3 64 64 20 3
NELL-995 6 3 64 64 20 3

We optimize all models with Adam (Kingma & Ba, 2015) and use an initial learning rate of 0.005.
All experiments are under the supervised learning setup, we use Softmax-Cross-Entropy as loss
function.

Table A shows hyper-parameters used by SpaLoc. For all MLP inside SpaLoc, we use no hidden layer
and the sigmoid activation. Across all experiments in this paper, the maximum arity of intermediate
predicates (i.e., the “breadth”) is set to 3 as a hyperparameter, which allows SpaLoc to realize all
first-order logic (FOL) formulas with at most three variables, such as a “transitive relation rule.” We
set the specification threshold ε to 0.05 in all our experiments. This value is chosen based on the
validation accuracy of our model. In practice, we observe that any values between 0.01 and 0.1 do
not significantly impact the performance of our method and the inference complexity. We also set the
multiplier of the sparsification loss λ to 0.01 in all SpaLoc’s experiments.

B IMPLEMENTATION OF SUBGRAPH SAMPLERS

Both the neighbor expansion and the path sampler sample subgraphs by inducing from selected node
sets. To deal with input hypergraphs with any arities, the samplers simplify the input hypergraphs
into binary graphs. We define two nodes in the hypergraph are connected if they are covered by a
hyperedge. Therefore, the neighbor expansion and path finding algorithms used by the samplers can
be applied to any hypergraphs for finding node sets. After enough nodes are collected, the sampler
will induce a sub-hypergraph from the original hypergraph by preserving all of the hyperedges lying
in the set.

C ABLATION STUDY ON SPARSIFICATION LOSS

Table 7: Comparison of different sparsification losses.

HasSister Grandparent Uncle

Accuracy Density Accuracy Density Accurcay Density

L1 91.81 0.48% 99.8% 0.99% 74.69% 0.68%
L2 100 0.75% 100% 0.61% 94.46% 2.44%
HS 100 0.51% 100% 0.48% 100% 0.87%

13

Under review as a conference paper at ICLR 2022

We compare our Hoyer-Square sparsification loss against the L1 and L2 regularizers on the family
tree datasets. In Table 7, we show the performance of SpaLoc trained with different sparsification
losses. All models are tested on domains with 100 objects.

“Density” is the percentage of non-zero elements (NNZ) in the intermediate groundings. The lower
the density, the better the sparsification and the lower the memory complexity. We can see that,
compared with L1 and L2 regularizers, the Hoyer-Square loss yields a higher or comparable sparsity
while maintaining the nearly perfect accuracy.

D CALCULATION OF THE INFORMATION SUFFICIENCY

The crucial part in the computation of the information sufficiency is to count the number of k-hop
hyperpaths connecting a given set of nodes {v1, . . . , vr} in a hypergraph. We use the incidence
matrix to calculate this. Firstly, we use a n ×m incidence matrix B to represent the hypergraph
H = (V, E), where n = |V| and m = |E|, such that Bij = 1 if the vertex vi and edge ej are incident
and 0 otherwise. Next, B(k) := (BBT)k−1B is the k-hop incidence matrix of the hypergraph, i.e.,
B

(k)
ij is the number of k-hop paths that the vertex vi and edge ej are incident.

For example, when r = 2, there are B(k)
i BT

j k-hop paths connecting vertex vi and vj . When r = 1,

there are
∑

j B
(k)
ij k-hop paths connecting to vertex vi.

E DEFINITION OF RELATIONS IN FAMILY TREE

The inputs predicates are: Father(x, y), Mother(x, y), Son(x, y), Daughter(x, y).

The target predicates are:

• HasFather(x) := ∃a Father(x, a)

• HasSister(x) := ∃a∃b Father(x, a) ∧ Daughter(a, b) ∧ ¬(b = x)

• Grandparent(x, y) := ∃a parent(x, a) ∧ parent(a, y)

parent(x, y) := Father(x, y) ∨ Mother(x, y)

• Uncle(x, y) := ∃a Grandparent(x, a) ∧ Son(a, y) ∧ ¬Father(x, y)

• MGUncle(x, y) := ∃a∃b Grandmother(x, a) ∧ Mother(a, b) ∧ Son(b, y)

Grandmother(x, y) = ∃a Parent(x, a) ∧ Mother(a, y)

• Family-of-three(x, y, z) = Father(x, y) ∧ Mother(x, z)

• Three-generations(x, y, z) = Parent(x, y) ∧ Parent(y, z)

We follow the dataset generation algorithm presented in Dong et al. (2019). In detail, we simulate the
growth of families to generate examples. For each new member of the family, we randomly assign a
gender and a pair of parents (can be none, which means it the oldest person in the family tree) for it.
After the family tree is generated, we label the relationships according to the definitions above.

F EFFICIENCY ANALYSIS

We compare the time and memory complexity of SpaLoc against NLM on the Has-Sister and
Grandparent tasks. In Fig. 5, we plot the curve of memory consumption and inference time of
each sample as a function of the number of objects in the evaluation domains. The experimental
results show that our method can reduce the space complexity from the original O(n3) complexity of
NLM to the O(n2) complexity required to solve the has-sister and grandparent task. In terms of the
inference time, there is a constant level of optimization. On small graphs, adding sparsity does not
necessarily improve the running time on GPUs because of the overhead of handling sparse tensors
due to the implementation. More efficient implementation of sparse operations is interesting future
work.

14

Under review as a conference paper at ICLR 2022

50 100 150 200 250 300 350 400
Number of Objects

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
em

or
y

(K
B

)

1e7 Has-Sister

NLM
f = 0.5n3 + 0.2n2 + 4.8n + 0.0
SpaLoc
f = 0.0n3 + 50.8n2 + 0.0n + 0.0

50 100 150 200 250 300 350 400
Number of Objects

0

1

2

3

4

5

6

R
un

tim
e

(
s)

1e5 Has-Sister

NLM
f = 0.021n3 + 0.0n2 + 0.0n + 0.0
SpaLoc
f = 0.0051n3 + 0.0n2 + 210.9n + 29622.0

50 100 150 200 250 300 350 400
Number of Objects

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
em

or
y

(K
B

)

1e7 Grandparent

NLM
f = 0.5n3 + 0.2n2 + 6.8n + 0.0
SpaLoc
f = 0.0n3 + 66.3n2 + 0.0n + 0.0

50 100 150 200 250 300 350 400
Number of Objects

0

1

2

3

4

5

6

R
un

tim
e

(
s)

1e5 Grandparent

NLM
f = 0.02n3 + 0.0n2 + 0.0n + 0.0
SpaLoc
f = 0.0047n3 + 0.0n2 + 0.0n + 54440.3

Figure 5: The memory consumption and the inference time of each sample vs. the number of objects
in the evaluation domains.

15

Under review as a conference paper at ICLR 2022

G IMPLEMENTATION OF SPALOC IN PYTORCH

The following python code is a minimal implementation for a single layer SpaLoc with PyTorch and
†torch scatter. The syntax is highlighted and is best viewed in color.

1 from itertools import permutations
2 import SparseTensor
3 import torch
4 from torch import nn
5 import math
6 from torch_sparse import scatter
7

8

9 def expand(input: SparseTensor):
10 """Expands a new dimension in input by duplicating each entry

for n times"""↪→

11 coo = (input.coo.unsqueeze(-1) * input.n) +
torch.arange(input.n).unsqueeze(0)↪→

12 val = input.val.unsqueeze(1).expand(input.length, input.n,
input.channel)↪→

13 val = val.contiguous().view(-1, input.channel)
14 return SparseTensor(val, input.n, input.arity + 1,

input.channel, coo=coo.flatten())↪→

15

16

17 def reduce(input: SparseTensor):
18 """Reduces max at the last dimension,
19 except for elements whose coordinates contain duplicate

objects.↪→

20 """
21 val = input.val.clone()
22 val[reduce_mask(input)] = -math.inf
23 flatten_index = input.coo // input.n
24 coo, inverse_index = torch.unique(flatten_index,

return_inverse=True, sorted=True)↪→

25 val = scatter(val, inverse_index, dim=0, reduce='max')
26 return SparseTensor(val, input.n, input.dim - 1,

input.channel, coo=coo)↪→

27

28

29 def neural_logic(input, hidden_dim):
30 """An MLP layer applied on permutations of the input."""
31 return MLP(permute(input), hidden_dim,

activation=nn.Sigmoid())↪→

32

33

34 def spaloc_breath3(input0, input1, input2, input3, hidden_dim):
35 """A SpaLoc layer with breath 3.
36 Args:
37 input0: SparseTensor of shape [hidden_dim], nullary

predicates.↪→

38 input1: SparseTensor of shape [N, hidden_dim], unary
predicates.↪→

39 input2: SparseTensor of shape [N, N, hidden_dim], binary
predicates.↪→

†https://github.com/rusty1s/pytorch scatter

16

https://github.com/rusty1s/pytorch_scatter

Under review as a conference paper at ICLR 2022

40 input3: SparseTensor of shape [N, N, N, hidden_dim], tenary
predicates.↪→

41 hidden_dim: int, hidden dimension.
42 Returns:
43 4 SparseTensors, output nullary, unary, binary tenary

predicates respectively.↪→

44 """
45 agg0 = concat([input0, reduce(input1)])
46 agg1 = concat([input1, expand(input0), reduce(input2)])
47 agg2 = concat([input2, expand(input1), reduce(input3)])
48 agg3 = concat([input3, expand(input2)])
49 outputs = [neural_logic(x, hidden_dim) for x in [agg0, agg1,

agg2, agg3]]↪→

50 return outputs
51

52

53 def reduce_mask(input):
54 mask = torch.zeros(input.length, dtype=torch.bool)
55 coo = input.coo
56 for i in range(input.arity):
57 for j in range(i+1, input.dim):
58 mask = torch.logical_or(mask, coo[:, i] == coo[:, j])
59 return mask
60

61

62 def permute(input):
63 if input.dim <= 1:
64 return input
65 index = tuple(range(0, input.dim))
66 coo = input.coo()
67 weight = torch.tensor([[input.n ** i for i in

reversed(range(input.dim))]])↪→

68 ts = []
69 for p in permutations(index):
70 new_coo = (weight * coo[:, p]).sum(-1)
71 ts.append(SparseTensor(input.val, input.n,
72 input.dim, input.channel,

coo=new_coo))↪→

73 return input.cat(ts)
74

75 def concat(inputs):
76 nnzs = [t.length for t in inputs]
77 n = inputs[0].n
78 dim = inputs[0].dim
79 channel = sum([t.channel for t in inputs])
80 coo = torch.cat([t.coo for t in inputs], dim=-1)
81 coo, inverse_index = torch.unique(
82 coo, return_inverse=True, sorted=True)
83 val = torch.zeros((len(coo), channel))
84 current_channel, current_idx = 0, 0
85 for idx, t in enumerate(inputs):
86 next_channel, next_idx = current_channel + t.channel,

current_idx + t.length↪→

87 val[inverse_index[current_idx:next_idx],
88 current_channel:next_channel] = t.val
89 current_channel, current_idx = next_channel, next_idx
90 return SparseTensor(val, n, dim, channel, coo=coo)

17

	Introduction
	Sparse and Local Neural Logic Machines
	Preliminary: Neural Logic Machines
	Architecture of Sparse and Local Neural Logic Machines
	Sparsification through Hoyer Regularization
	Subgraph Training

	Experiments
	Baselines
	Family Tree Reasoning
	Real-world Knowledge Graph Reasoning
	Ablation Study

	Related Work
	Conclusion
	Experimental Configuration
	Implementation of Subgraph Samplers
	Ablation Study on Sparsification Loss
	Calculation of the Information Sufficiency
	Definition of Relations in Family Tree
	Efficiency Analysis
	Implementation of SpaLoc in PyTorch

