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Abstract

Generating cell-level descriptions for Jupyter
Notebooks, which is a major resource con-
sisting of codes, tables, and documentation,
has been attracting increasing research atten-
tion. However, existing methods for Jupyter
Notebooks mostly focused on generating de-
scriptions from code snippets or table out-
puts solely. On the other side, the descrip-
tions for Jupyter cell should be personalized
as users have their own preferences or user-
written guidelines while previous work ignores
these informative guidelines during descrip-
tion generation. In this work, we formulate
a new task, personalized description generation
with code, tables, and user-written guidelines in
Jupyter Notebooks along with a novel collected
new dataset, nbDescrib. Specifically, the pro-
posed benchmark, namely nbDescrib, contains
code, tables, and user-written guidelines paired
with target personalized descriptions. Exten-
sive experiments show that existing models on
text generation, e.g., can generate fluent and
readable text as well as different types of text
for the same input according to different user-
written guidelines. However, they still struggle
to produce faithful descriptions that are factu-
ally correct. To understand how each compo-
nent contributes to the generated descriptions,
we conduct extensive experiments and show
that guidelines significantly enhance model per-
formance, helping users create accurately ori-
ented and reasonable descriptions. Moreover,
by analyzing the error patterns of the model-
generated text, we found that the most frequent
errors involve generating incorrectly oriented
text based on the guidelines, with additional
common errors related to incorrect value gener-
ation and reasoning mistakes. The dataset and
processing code will be released until the paper
is published.

1 Introduction

Data-to-text generation (Kukich, 1983) is the task
of generating a textual description from structured

data such as tables and codes (Richardson et al.,
2017; Lietal., 2021; Liu et al., 2018a; Parikh et al.,
2020a; An et al., 2022). It has been applied to var-
ious scenarios, for example, generating sentences
based on biographical data (Lebret et al., 2016),
basketball game reports based on boxscore statis-
tics (Wiseman et al., 2017), and fact descriptions
from Wikipedia’s superlative tables (Korn et al.,
2019). Moreover, it served as an important testbed
for large language models (LLMs) and neural gen-
eration models (Bahdanau et al., 2014) for faithful
text generation (Koehn and Knowles, 2017; Lee
et al., 2018) and models ability of reasoning and
numerical inference (Wiseman et al., 2017; Liu
et al., 2018b; Pasupat and Liang, 2015).

Literature on data-to-text generation has been
focusing on generating text for software code snip-
pets or tables separately (Puduppully and Lapata,
2021; Richardson et al., 2017). While they achieve
remarkable performance on benchmarks, they suf-
fer from several major issues, making them subop-
timal.

First, in Jupyter Notebooks, one cell (in table
code associated Markdown cell) may contain both
code and its corresponding table outputs which
are useful for generating descriptions. Using only
one type of information will make the description
generation unfaithful sometimes. In this scenario,
code and table are complementary to each other
for generating descriptions. The code provides
essential context and explanation to enhance the
comprehension of the text, while the table provides
a concise and visual representation of the analy-
sis output, supporting the text by presenting the
key data points. For instance, the ground truth de-
scriptions in Figure 1 are six different categories of
description covering both code and its table output.

Second, in the Jupyter Notebooks, the cells
are always with human-written guidelines support-
ing the corresponding descriptions. This kind of
human-written guidelines usually describes a sub-



'The 'y_pred' column in the outnut table represents the binary prediction (0 or 1)

predictions and scores for further analvsis

Value generated by the 'model_consumer' for each passenger, such as passenger 893's
prediction being 1 (indicating survival)
Goal Builds a prediction pipeline and and applies it to a 'df_test' dataset,generating

Association |ltis clear that fare has nothing to do with age in the titanic dataset

Outlier

Cabin feature has some missing values in the test set

Aggregation [There are two classes for Embarked feature

/Analyze the data like passenger class, gender, age, and fare to generate

Reason predictions and scores with prediction pipeline

Code Table
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Guideline Description Code Only Table Only

It sets up a machine
learning prediction pipeline
with initial preprocessing
and model consumption
stages and applies it to test
data from a CSV file

The table lists passenger
data with features like
class, sex, age, fare, and
predictions with scores for!
a Titanic dataset.

Our Work(Guideline + Code + Table)

Previous Work

Figure 1: An example in our proposed notebookTCDG dataset, which targets generating high-fidelity and
personalized descriptions based on the input of codes, tables, and user-written guidelines. Previous methods and
benchmarks focus on understanding the codes or tables only, which makes the generated description unfaithful.

set of data facts of the table or the purpose of the
code. Moreover, as the cell with the same code
could serve as different purposes under different
scenarios, user-written guidelines become impor-
tant in the pipeline of generating descriptions.

To step forward in faithful and personalized de-
scription generation for tables and codes, in this
paper, we introduce a challenging user-written
guideline-based text generation task, while focus-
ing on the table and code description generation
(TCDG) for Jupyter Notebooks. Given a table, the
relevant code, and user-written guidelines, the goal
of TCDG is to produce a concise description under
user-written guidelines. The guidelines will be of a
given category corresponding to the type of target
text as shown in table 11.

As previous benchmarks focus on generating
descriptions for codes or tables only without the
user-written guidelines, for advancing the research
on the TCDG task, we construct a new dataset
(nbDescrib) that contains around 3,924 processed
code-table-description pairs extracted from 4,863
highly-ranked notebooks from Kaggle competi-
tions and identifies 15 guideline categories of the
texts (details in Section 3). Specifically, the raw
Jupyter Notebook data with tables, code, and as-
sociated text from popular Kaggle competitions is
crawled. However, the raw data cannot be directly
used due to the large amount of noise (Mondal
et al., 2023; Lin et al., 2022). For example, "I plan
to refine the models by using more sophisticated

machine learning techniques." is about personal ex-
periences and future plans which is not useful for
text generation tasks. On the other side, the user-
written guidelines and ground-truth descriptions
in the markdown cell generally contain multiple
different purposes or facts on the tables. To reduce
the noise in the raw data, we recruit annotators to
first break down the markdown cells and make each
piece of text only contain one purpose or fact. For
each guideline category, we create the label as well
as descriptions, and then curate the tables and filter
out the noise text. Finally, the text descriptions
in our data are natural, faithful, and specifically
targeted under different guidelines (Figure 1).

Next, we automate the evaluation of this dataset
and investigate the performance of different mod-
els, especially the ones based on LLMs. The abla-
tion study shows that guidelines significantly affect
to the final performance at different levels, which
demonstrates the validity of our task. We further
conduct human evaluation and find that these ad-
vanced models still struggle to produce faithful
enough results, regardless of high-quality training
data. We analyze the error patterns of the models
to inspire future work. In short, our data can be
used to develop a unique model of the selected ta-
ble and code within Jupyter Notebook, facilitating
real-world applications such as the automatic cre-
ation of slides and reports. Moreover, the dataset
itself is also beneficial for the NLP community as
well in evaluating the capabilities of advanced NLP



models.

In summary, the main contributions of our work
are: (1) We formulate a novel task namely, TCDG,
and collect a high high-quality benchmark with
2747 Code-Table-Description pairs training and
785 pairs testing data for automatic evaluation; (2)
Experiments using LMs, i.e., CodeT5, GPT-3, and
GPT3.5 show that fine-tuned LMs (CodeT5) out-
perform powerful GPT-3.5, highlighting the vulner-
ability of LLMs on TCDG. (3) Extensive ablation
studies demonstrate that guidelines significantly
enhance model performance, helping users create
accurately oriented and reasonable descriptions. (4)
Error analysis conducted in this guideline-based
text generation task to gain insights into the limi-
tations and shortcomings of the implemented ap-
proach, paving the way for future improvements
in the development of models and techniques for
tackling similar challenges.

2 Related Work

To automate the machine learning and Al work-
flow, researchers have used automation techniques
for a variety of table-related and code-related text
generation tasks, including table-to-text generation,
table question answering, and table-based fact veri-
fication, code documentation generation.

In this work, we focus on table and code de-
scription generation (TCDGQG) tasks. Our work is
closely related to table-to-text generation and code
documentation generation (CDG). Most existing
datasets for table-to-text generation (Li et al., 2021;
Liu et al., 2018a; Parikh et al., 2020a; Dhingra
et al., 2019) or code documentation (Richardson
etal., 2017; An et al., 2022; Liu et al., 2021; Khan
and Uddin, 2022) generation contain one text per
table or code on a specific topic and schema. For
instance, Suadaa et al. (2021) contains 1.3K table-
documentation pairs with richer inference from
scientific papers and CodeSearchNet (Husain et al.,
2019) contains 2M function-documentation pairs
across six programming languages (e.g., java, php,
python). Differing from previous CDG and table-
to-text datasets, a documentation text can corre-
spond to both code and its table output in ours.

Previous work on table-to-text focuses on text
generation for standalone table data. Parikh et al.
(2020b) proposed an open domain table-to-text
dataset. They collected tables from Wikidepia
and paired them with single-sentence documen-
tation. They then requested annotators to revise

these Wikipedia candidate sentences into target
sentences, instead of asking them to write new tar-
get sentences. Several studies focused on a specific
topic and schema such as WEATHERGOV (Liang
et al., 2009) and ROBOCUP (Chen and Mooney,
2008), Rotowire (Wiseman et al., 2017), Wikibio
(Lebret et al., 2016, Biographies), E2E (Novikova
et al., 2016, Restaurants). However, they are not
able to provide different target texts for different
data facts in tables, resulting in too singular results
when the model is trained.

Another task similar to table-to-text is table ques-
tion answering (Pasupat and Liang, 2015; Wang
et al., 2018). While they can locate relevant tables
and provide answers by tagging relevant cells, they
do not provide a meaningful explanation of differ-
ent kinds of data facts. There are also other sources
of information that may be used in data science
projects. Without following appropriate guidelines
and integrating these sources, we would not be able
to produce satisfactory results. Chen et al. (2019);
Gupta et al. (2020) attempted to verify whether a
provided textual statement is entailed or refuted by
the given table. But they only focus on verification
issues and cannot generate descriptive statements
of the different types of data fact types.

Since our work focuses on both code and ta-
ble, it is essential to discuss related work on CDG,
which aims to understand the code and generate
the code descriptions. Typical datasets include
CodeSearchNet (Husain et al., 2019) and some
datasets collected from GitHub (Kanade et al.,
2019) or BigQuery (Yue Wang, 2021). Recently,
LLMs have been applied to the CDG task and
most advanced models are based on BERT (e.g.
CuBERT(Kanade et al., 2019), CodeBERT (Feng
et al., 2020), GraphCodeBERT (Guo et al., 2020))
or GPT (Svyatkovskiy et al., 2020; Lu et al., 2021).
Some recent works explore encoder-decoder mod-
els such as PLBART (Ahmad et al., 2021), CodeT5
(Yue Wang, 2021), and TreeBERT (Jiang et al.,
2021). The documentation in this task often does
not cover the facts of the output from the code, only
focusing on the description of the code.

Different from the aforementioned works that
only focus on one text generation for a single stan-
dalone code or table, in our new TCDG task for
computational notebooks, code and its table output
can correspond to one documentation and these
documentations may have many categories depend-
ing on the needs of the user. We thus propose to
construct a notebookTCDG dataset to handle text



generation of multiple guideline category text gen-
eration for code and its table output.

3 TCDG - Task Description

In our task, the model is provided with a long text
including a code cell and its table output, as well as
the corresponding guideline category description.
The guideline indicates the direction of the target
description generation, and the specific category
is described in Section 4.3. The model is asked to
read the input and generate reasonable descriptions
based on the given guideline, code, and table.

3.1 Input

The input to a text generation model consists of an
input text and a target document:

(1) Codes and tables from the input texts are
extracted from notebooks crawled from the Kaggle
website. The code provides the necessary context
to understand how the table output was generated.
By analyzing the code, one can infer the logic and
algorithms applied to the input data, which facili-
tates accurate interpretation of the table’s contents.

(2) A guideline category description serves as
a guiding principle for generating the target de-
scription. Some descriptions prioritize interpreting
table content and code snippets provide contextual
information. Some other descriptions emphasize
explaining the purpose of the code, requiring data-
driven explanations from tables. Moreover, target
description is not always relevant to the code and
table themselves in the notebook, such as “From
the table above, it is obvious a few things.” For
these kinds of documents, we label them “Other.”
This setup mimics the real-life scenario.

3.2 Output

A text generation model is employed to predict
the specific guideline category of descriptions. Ta-
ble code associated Markdown cells are the target
documents that we collect since these cells are typ-
ically used to provide descriptive text for code and
tables. Also, some Markdown cells can be used
only for headings in the notebook. To exclude such
Markdown cells, search for key characters like #,
which generally refers to the titles.

3.3 Evaluation Metrics

We use the ROUGE scores (Lin, 2004) and
BERTScore (Zhang et al., 2019) to evaluate our
model’s performance with regard to the ground-

truth documentation content. We report ROUGE-1,
ROUGE-2, and ROUGE-L.

4 nbDescrib

4.1 Data Collection

As we are focusing on the text generation in Jupyter
Notebooks, we need to crawl a sufficient number of
code-table-description pairs first. Publicly shared
notebooks on GitHub are often ill-documented
(Rule et al., 2018) and do not have many tables,
thus are not suitable for constructing the training
dataset for this text generation task. On the other
side, Kaggle allows community members to vote
up and down on uploaded notebooks, and find-
ings show that the highly-voted notebooks are of
good quality and quantity for code documentation
(Wang et al., 2021; Liu et al., 2021). Thus, we de-
cided to utilize the top-voted and well-documented
Kaggle notebooks. We crawled notebooks from
seven popular competitions, i.e., seven top popu-
lar Kaggle competitions - House Price Prediction,
Titanic Survival Prediction, Predict Future Sales,
Spaceship Titanic, U.S. Patent Phrase to Phrase
Matching, JPX Tokyo Stock Exchange Prediction,
and Ubiquant Market Prediction, and built around
4,000 pairs of code-table-description pairs. Links
for these competitions can be found in Appendix
B. To build this dataset, we also filter out the de-
scription which is not in English. We checked the
data policy of each of the competitions, and none
of them have copyright issues. We also contacted
the Kaggle administrators to make sure our data
collection complies with the platform’s policy.

4.2 Data Preprocessing

We employed the following heuristics to collect
codes, tables, and Markdown:

Cell Matching: We search for codes that pro-
duce tables in the notebooks and determine if the
code and table are described with a Markdown cell
below. We collect these eligible code-table pairs as
input. The sentences are also split if there is more
than one sentence in the corresponding Markdown
cell. We label each sentence and let annotators
rewrite it accordingly, since each sentence may
have a different description angle. Details about
how annotators code the sentence and reach an
agreement are shown in Section 4.3. The specific
guideline details will be described in the following.

Table Processing: Since the table in Jupyter
Notebook is in HTML code, to transfer it into a



| Overall | Train | Dev | Test

Code-Table-Description pairs | 3,924 2,747 | 393 785
Code vocabulary size 3,497

Table vocabulary size 16,424

Description vocabulary size 4,481

Avg. # token in Description 12.41 12.37 | 12.51 | 12.52
Max. # token in Description 66 57 46 66
Std. # token in Description 7.45 7.43 7.26 7.66
Avg. # token in code cell(s) 10.68 11.17 | 1046 | 10.22
Max. # token in code cell(s) 310 310 131 131
Std. # token in code cell(s) 19.54 2140 | 1642 | 15.64
Avg. # token in table 13.85 13.92 | 12.84 | 14.11
Max. # token in table 272 272 97 261
Std. # token in table 17.27 1647 | 11.97 | 21.68

Table 1: nbDescrib dataset statistics.

table format, we use HTMLParser' to get the data
value for each row, column, and their relationship
based on the tags, such as <th>, <td>. We first drop
their parent tags <table> to simplify the document
format. Next, we remove the tags <td> and <th>
from cells to extract variables and corresponding
values from the HTML code. Then we concatenate
variables and values with pipe(“”’) to generate table
documentation.

Table Curation: If the description contains vari-
able names in a table, the corresponding rows and
columns containing those variables are extracted to
create a new table. If no key variables are included,
we keep the original tables. This process aims to
minimize the inclusion of irrelevant information.

4.3 Guideline Category Description

Three members of the research team conducted
an iterative open-coding process to analyze the
collected notebooks. Differing from Wang et al.
(2020), where their qualitative coding stopped at
the tabular data level, and our analysis goes deep
to the granularity of the cell, the cell be used to
explain beyond the adjacent code cell whose out-
put is the table: we annotate these cells’ purposes
and types of content. Each annotator independently
analyzed the same five notebooks to develop a code-
book. After discussing and refining the codebook,
they again went back to recode those five notebooks
and achieved pairwise inter-rater reliability ranged
0.81-0.93 (Cohen’s K). To further determine the
correctness of inter-annotator agreement, we let
these three annotators analyze another undiscussed
five notebooks and get pairwise inter-rater reliabil-
ity ranging from 0.78 to 0.89 (Cohen’s K) which
is convincing to demonstrate the reliability of our
codebooks. After getting a reliable agreement, the
three coders divided and coded the remaining note-
books. In total, we identified fifteen guideline cat-
egories for the content of the markdown cells (Ta-

"https://docs.python.org/3/library/html.parser.html

ble 11, Appendix D provides examples).

As shown in Table 11, eleven guideline cate-
gories mainly focus on the data facts of a table. It is
worth noting while these guidelines focus more on
the description of the table data, the code still pro-
vides contextual information to supplement their
description, as shown in Figure 1. Our analysis
revealed that markdown cells are mostly used to
describe the specific attribute values from the ta-
ble (Value, 7.29%). Second to the Value category,
6.55% markdown cells are used to specify the out-
liers from the table output (Outliers).

However, these guidelines do not meet the needs
of Jupyter Notebook users. This kind of markdown
cells can also be used to mainly explain the beyond
adjacent code cells. Even though they mainly focus
on the code, a clear understanding of table data is
also crucial for understanding the code logic. We
found that some of these markdown cells describe
the motivation from the code descriptive text(Goal,
19.64%), to explain the results or critical decisions
(Reason, 7.03%), or to describe a combination of
mathematical transformations from the code (Fea-
ture Engineer, 10.02%). We also found that some
markdown cells are more general and not highly
related to the data variables or functions from the
code/table (Other, 22.17%).

4.4 Train/ Dev / Test Splits

Overall, the dataset contains 2747 Code-Table-
Description pairs in the training set, 393 pairs in
the development set, and 785 pairs in the test set
(see Table 1 for more statistics).

S Experiments

5.1 Baselines

Evaluating existing models on nbDescrib is chal-
lenging. Unlike code documentation generation,
table question answering, and table-to-text, our task
requires both the code and table to help generate tar-
get text documents in different guidelines. In gen-
eral, we utilized three representative types of mod-
els: a fine-tuned encoder-decoder-based CodeT5,
the popular decoder-only LLMs (an off-the-shelf
GPT-3.5 and a fine-tuned GPT-3.0). Details are
shown in Appendix C.

5.2 Results

The numbers in Table 3 show that this guideline-
based text generation task is very challenging,



Models | ROUGE-1 | ROUGE-2 | ROUGE-L | BERTScore | Pyramid Evaluation

Guideline # Description

Value 286 Get the exact data attribute values for a set of criteria.
(7.29%)

Difference 138 A comparison between at least two distinct attributes within the
(3.52%) target object, or a comparison between the target object and

previously measured values.

Trend 31 Indicates a general tendency over a period of time.
(0.79%)

Proportion 120 Measure the proportion of selected data attribute(s) within a

(3.06%)  specified set

Categorization 74 Select the data attribute(s) that meet the condition.

(1.89%)

Distribution 127 Show the amount of shared value for the selected data attributes
(3.20%)  or present a breakdown of all data attributes.

Rank 73 Sort data attributes by their values and display a breakdown of
(1.86%)  selected attributes.

Association 165 Identify the useful relationship between two or more data at-
(4.21%) tributes.

Extreme 227 Identify the data cases that are the most extreme in relation to
(5.78%)  the data attributes or within a specific range

Outlier 257 Determine whether there are unexpected data attributes or statis-

(6.55%) tically significant outliers.

Aggregation 125
(3.19%)

Calculate the descriptive statistical indicators (e.g., average, sum,
count, etc. ) based on the data attributes.

Goal 771 Express user’s goal. To say what value or function they tend to
(19.64%) use for the later research

Reason 276
(7.03%)

Express reason using the data from the table or explain the rea-
sons why certain functions are used or why a task is performed.

Feature Engi- 393 The process of selecting, transforming, extracting, combining,
neer (10.02%) and manipulating raw data to generate the desired variables for
analysis or predictive modeling.

Other 870
(22.17%)

Other description providing supplementary details

Table 2: We identify 15 guideline categories based on
the types of descriptions in the Markdown cells which
are below the code whose output is a table.

while the fine-tuned CodeT5 obtained the best per-
formance. As shown in Table 3, CodeT5-Large out-
performs the GPT-3.5 and GPT-3 in this task. Addi-
tionally, we notice that the ROUGE-L of CodeT5-
Large is above 25, and the ROUGE-2 is around
15, indicating that our dataset can produce more
accurate and fluent text in response to different
guidelines in this task.

Ablation Study: To better understand the impact
of each component on this new task, we perform ab-
lation studies(Table 3) to evaluate how table, code,
and guideline description contribute to the model
performance separately. More concretely, we gen-
erate ablation models with the following settings:
(1) without table, (2) without code, (3) without
guideline description, (4) chain of thought prompt-
ing on GPT-3.5, (5) in-context learning on GPT-3.5.

Since CodeT5 performs best in the task, we use
it as a backbone to test its performance without
code, table, and guideline description. In general,
all the elements contribute to the performance, and
removing one element will lead to a significant
performance drop. Note that table content has a
bigger effect on model performance compared to
code. Code also influences performance by provid-
ing the necessary context to infer the logic, which
aids in interpreting the table’s content accurately.
Guideline description can be seen as a synergy of

Baselines

CodeTs | 2961 | 1438 | 2672 | 5951 | 19.37
GPT:3.5 | 2519 | 332 | 2631 | 5300 | 18.43
GPT-3 | 1925 | 442 | 2072 | 5126 | 1337

Ablation Study

CodeT5
without table ‘ 22.40 ‘ 9.54 ‘ 20.49 ‘ 5591 ‘ 18.52
CodeTs 26.35 72 | 2401 57.93 19.14
without code
CodeT5
without guideline 25.09 10.78 22.61 56.63 18.75
description
GPT-3.5 with
chain of 24.80 3.77 25.56 50.4 16.89
thoughts
GPT-3.5 with
in context 23.09 3.50 24.62 49.6 15.88
leaning

Table 3: ROUGE scores and BERTScore for the base-
lines, our model, and the ablation studies. Results show
that this task is challenging though we use it in the
state-of-art text generation models.

tables that guide the generation system to generate
desirable topics, and without it, the performance is
slightly higher than one without any table content.
One intuitive method to enhance the reasoning
ability of LLMs is Chain-of-Thoughts (CoT). Here
we want to further answer this question: using CoT,
can a large language model automatically find an
optimum guideline and generate summaries better
aligned with human interests? CoT is well known
to work well for GPT models, so we experimented
on GPT-3.5 with a CoT prompt containing both
an example and middle steps of guessing a guide-
line (prompts shown in Appendix E). For a fair
comparison, we also added the performance of in-
context-learning for GPT-3.5, by removing the pro-
vided guideline and directly providing the example
(prompts shown in Appendix F). The result of CoT
improved over in-context learning but is still in-
ferior to the performance of the original GPT-3.5
with ground-truth guidelines (except ROUGE-2).
Then we analyzed the match rate between guide-
lines generated through the CoT process and the
ground truth. Results show that 72% of the guide-
lines did not match. Thus, even though LLM can
often generate readable and decent descriptions for
code and table(see the results from Table 5 and
Table 3), most of the generated descriptions are
not as the users expected (see the result in Orienta-
tion dimension in Table 5). This demonstrates the
necessity of guidelines. In order to fairly compare
the generation models and standardize the evalua-
tion, we need to specify what we want to generate
guideline-based descriptions.
Pyramid Evaluation: To further evaluate the faith-
fulness of generation, we design an automatic eval-
uation method based on the idea of pyramid evalu-
ation (PyrEval) (Gao et al., 2019), which is com-



Guideline category description

Extreme: Identify the data cases that are the most extreme
in relation to the data attributes or within a specific range

Code Cells

cols?2 = X_test.columns.tolist() # List of column names
X_test = X_test[cols2] # Applying the new order
X_test

Table
Passenger Sex Age Embarked FamilySize
0 0 345 1 1
1 1 470 2 2
2 0 62.0 1 1
3 0 270 2 1
4 1 220 2 3
Documentation
ground truth The oldest passenger in X_test dataset

is 62 years old

Oldest person in the titanic was 80
years old and youngest person was less
than one year

It displays the first few rows of the ta-
ble which includes the data attribute
age and the label indicates that oldest
passenger

The oldest passenger is a man in his
fifties

CodeT5-Large

GPT-3

Table 4: An example of code-table cell and different
model outputs.

monly used in document summarization and corre-
lates well with human evaluation. In detail, we first
extract key phrases from all generations and man-
ually filter them. It is a more reliable metric than
ROUGE since key phrases can preserve important
factual information while removing unimportant to-
kens. In Table 3, we find that this approach and the
ROUGE evaluation come up with the same trend,
indicating that irrelevant tokens may not interfere
much during our evaluation step. It also further
validates the effectiveness of table, code, and espe-
cially guideline descriptions in ablation studies.

5.3 Human Evaluation

We also conduct a human evaluation to further eval-
uate whether those models can generate reasonable
and oriented text with our dataset.

Participants: Our human evaluation task involves
reading the code snippet, its output table, and a
guideline description and rating the generated docu-
mentation from them. We recruited 10 participants
(6 male, 4 female) who are fluent English speak-
ers with around six years of experience in the data
science and machine learning field. We conducted
a rigorous qualification process, evaluating their
knowledge of coding practices and data analysis,
to ensure high-quality annotations. We hired them
by sending invited emails to graduate students who
have experience in data science work. We allocated

up to 90 minutes for each participant to complete
the study, and for their valuable time and input,
each participant received a compensation of $20.

Task: We randomly selected 50 pairs of documen-
tation and code from our dataset. Note that each
pair has only one code, one table, and one guide-
line description, but may have one descriptive text.
Each participant is assigned 50 pairs. Each pair is
evaluated by 10 individuals. In each trial, a par-
ticipant reads 6 candidate documentation for the
same code snippet-table-guideline: one by GPT-
3.5 with chain-of-thought, one by GPT-3.5 with
in-context-learning, one as the ground truth, and
another three by a three different models. The order
of these three is also randomized, so participants
do not know which descriptive text is from which
model. The participant is asked to rate the 4 doc-
umentation texts along three dimensions using a
five-point Likert scale from -2 to 2.

* Correctness: The generated documentation
matches the code and table content.

* Orientation: The generated documentation is
written in the correct guideline category.

* Readability: The generated documentation is in
readable English grammar and words.

Evaluation Results: We conducted Wilcoxon
tests (Woolson, 2007) with a significance level of
0.05 to compare the performance of Ground Truth
against CodeT5-Large, GPT-3, and GPT-3.5 in the
Correctness, Orientation, and Readability dimen-
sions. The Wilcoxon test is a non-parametric sta-
tistical test used to compare two paired groups of
data. The obtained p-values indicate the probability
of observing the reported differences if there were
no true differences between the models. The re-
sults indicate significant differences in the Correct-
ness dimension, where Ground Truth outperforms
CodeT5-Large (V = 5628, p = 1.74e-30), GPT-3
(V =5635, p=5.46e-31), and GPT-3.5 (V = 5639,
p = 2.84e-30). It is also worth noting that CodeT5
performs slightly better than GPT-3.5 in terms of
correctness from Table 5, possibly because it han-
dles code-containing data sets better.

Similarly, in the Orientation dimension, Ground
Truth surpasses CodeT5-Large (V = 3567, p =
1.59e-20), GPT-3 (V = 3731, p = 1.77e-20), and
GPT-3.5 (V =3675, p = 1.64e-20).

For the Readability dimension which considers
whether the generated documentation is a valid
English sentence, Ground Truth outperforms all
models once again: CodeT5-Large (V =4363,p =



Model Correctness Orientation Readability
Groundtruth T=1.19,0=132 =T=145,0=1.02 =T=1.61,0=0.78
CodeT5-Large T=-043,0=1.55 T=127,0=1.11 T=0.5,0=1.60
GPT-3.5 T=-042,0=149 T=1.15,0=124 T=0.53,0=1.72
GPT-3 z=-041,0=158 7=0.98,0=1.39 ==0.51,0=1.61
GPT-3.5 with chain-of-thought 7 =-0.39,0=1.54 Z=0.94,0=135 z=048, 0=1.66
GPT-3.5 with in-context-learning = =-0.35,0=1.60 7=091,0=1.28 x=0.46,0=1.83

Table 5: Human Evaluation Result.

1.40e-7), GPT-3 (V =4030, p=3.81e-14), and GPT-
3.5(V=4135,p=2.81e-10). Itis also worth noting
that GPT-3.5 with chain-of-thought and in-context-
learning have worse performance than GPT-3.5
which demonstrates that guidelines can better assist
the description generation for code and table.

The statistically significant p-values (all below
0.05) in each dimension demonstrate it is difficult
to meet the correctness, orientation, and readability
requirements of the user due to the difficulty of the
task. Future work can be accomplished by design-
ing an innovative model to address this challenge.

5.4 Error Analysis

In this section, we analyze some common error
cases in this guideline-based text generation task.
Some examples can be found in the Appendix.

(1) Variable values were generated and matched
incorrectly. As shown in the example in Table 4,
even though CodeT5-Large, GPT-3.5 and GPT-3
are capable of generating keywords such as "high-
est” based on the “Extreme” guideline, it remains
difficult to produce accurate text content based on
the variables in the table. For example, CodeT5-
Large incorrectly predicted the oldest passenger as
80 years old. Table 4 also has this kind of error.

(2) The generated text focuses solely on the ta-
ble and ignores important information in the code.
In the example from Table 10, ground truth is in
the “Extreme” guideline and tends to convey that
the first red wine has the highest pH value. How-
ever, the table does not have a related keyword “red
wine.” And CodeT5 failed to extract this informa-
tion and also extracted the wrong value. Example
from Table 8 also has this kind of error.

(3) Generating incorrectly oriented text based
on guidelines. For example, GPT-3 produces text
related to “Difference” but not “Trend” in the exam-
ple from Table 7. Another example in Table 8, re-
quiresmodels generating text related to “Goal”, but
GPT-3 generates text related to “Association”, de-
scribing the relationship between SibSP and Parch.

(4) Reasoning error. CodeT5, GPT-3.5, and GPT-
3 may generate incorrect Aggregation data (count,

mean, sum) if they are operating under Aggregation
guidelines. In this example (Table 6), GPT-3 can
generate text such as this feature has many null
values, but cannot obtain the count of null values.

We manually check 50 examples of CodeTS5,
GPT-3.5, and GPT-3 models used in our user study
and label the type of errors made. The most errors
are made when they generate incorrectly oriented
text (3rd type) (54.1%). This is due to the fact that
the model has a tendency to generate documents
related to the best-trained guideline type in the
dataset, such as “Association” or “Value”. There
are also two common errors made by generating
documents with wrong values (1st type) and wrong
reason (4th type) (27 % respectively). Such errors
are commonly made by generating “Value” or “Ag-
gregation” type documents. There are also 13.5%
errors made by generating documents without con-
sidering the code. There are many examples with
insufficient code in the dataset, which causes the
model to ignore the code instance in some cases.

From these errors, we can clearly see that our
task and dataset provide some challenges for ex-
isting foundation models. We firmly believe that
researchers can enhance the existing foundation
models in the future when they address the chal-
lenges. By building on our work and leveraging the
valuable insights gained from it, they can push the
boundaries even further, contributing to the contin-
uous evolution of foundation models.

6 Conclusion

In this paper, we formulated a new task, TCDG,
that aimed to automatically generate descriptive
text for code and table based on the given guide-
line for a computational notebook. We collected
a large amount of well-documented Jupyter Note-
books from Kaggle, resulting in a new benchmark
dataset, nbDescrib. From our analysis, our task
imposed unique challenges to the currentgenera-
tion methods including CodeT5 and LLMs. This
dataset facilitated the creation of practical slides
for Jupyter notebooks and enabled evaluations on
faithful, high-fidelity, and factual generation.



Limitations and Potential Risk

As annotations are often performed by multiple
individuals, there may be a degree of subjectivity
and bias in guidelines and datasets used for text
generation. As a result, text can be generated that
does not reflect a diverse range of perspectives.
Furthermore, although we have automatic evalua-
tion metrics such as ROUGE and BERT Score, the
correctness of the generated texts is primarily eval-
uated through human evaluation, which is accurate
but not efficient. Future research should focus on
developing methods for automatically evaluating
the factual correctness of the generated texts, in
order to ensure that the generated text is accurate,
unbiased, and representative of a diverse range of
perspectives.

One potential risk involves the substantial com-
putational resources needed to run state-of-the-art
language models. These resources consume signif-
icant amounts of energy, which not only raises the
carbon footprint of such research but also leads to
environmental degradation.
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A Appendix: Guideline-Code
snippets-Table-Documentation Pair
Examples

Guideline description

Aggregation: Calculate the descriptive statistical indica-
tors (e.g., average, sum, count, etc.) based on the data
attributes

Code Cells

for dataset in [titanic_train,titanic_test]:
dataset['IsAlone'] = @
dataset.loc[dataset['FamilySize'] == 1, 'IsAlone'] =1
titanic_train.head(3)

Table
Passengerld ~ Survived  Sex Ticket Cabin
0 1 0 male  A/521171 NaN
12 1 female PC 17599 Cs8s
2 3 1 female STON/02.3101282 NaN
Documentation
ground truth Cabin feature has 2 missing values
CodeT5-Large These five passengers are in the same
cabin
It includes information on the cabin
attribute for the first three rows
GPT-3 The cabin column has many null values

Table 6: An example of code and its table output
pair(cabin is the Cabin number)

Guideline description

Goal: Express user’s goal. To say what value or
function they tend to use for the later research

Code Cells

for dataset in [titanic_train,titanic_test]:
dataset['FamilySize'] = dataset['SibSp'] +
< dataset['Parch'] + 1
titanic_train.head(3)

Table
Passengerld  Survived SibSp Parch IsAlone FamilySize
0 1 0 1 0 0 2
12 1 1 0 0 2
2 3 1 0 0 1 2
Documentation
ground truth Checking if the person is alone or with

a family by checking the SibSp and
Parch column in Titanic passenger data
and add a FamilySize column in ti-
tanic_train and titanic_test datasets
CodeT5-Large We can create another feature called
IsAlone
The goal is to create a new attribute
called family size in both the titanic
train and titanic test datasets
GPT-3 we can see that sib sp and parch are
highly correlated

Table 8: An example of code and its table output pair

Guideline description

Guideline description

Trend: Indicates a general tendency over a period of time

Code Cells

train[['Pclass', 'Survived']].groupby(['Pclass'],
< as_index=False).mean().sort_values(by="'Survived',
< ascending=False)

Extreme: Identify the data cases that are the most extreme in
relation to the data attributes or within a specific range

Code Cells

Tuned_rf = tune_model(rf)

Table

Table

Model Accuracy AUC Recall

Pclass  Survived

0 1 0.629630
1 2 0.472826
2 3 0.242363

Documentation

ground truth Higher class survived more

CodeT5-Large The survived rate for this new feature
varies whether it is a tend to be a higher
class passengers or a very high class
passengers
it shows the survival rate for each class
with higher survival rates for lower
class numbers

GPT-3 the survived rate for the pclass 1 is
higher than the pclass 2

Table 7: An example of code and its table output pair
(Pclass is the ticket level. The smaller the value, the
higher the class)

0.7895 0.8864  0.6250
0.9474 1.000 0.8750
0.8947 0.9318 0.8750
0.7368 0.8523  1.0000
0.8947 0.8667 0.8889
0.9473 0.9444  0.8889
0.8947 09111 0.7778
0.7895 0.8333  0.6667
Mean  0.8617 0.9189  0.8222
SD 0.0675 0.0556  0.1348

NNk WD —= O

Documentation

ground truth Model 1 has the highest accuracy while
the code tune with random forest

CodeT5-Large The highest accuracy is 0.8442
It shows the accuracy values for differ-
ent sequence numbers where the mean
accuracy is 0 8617 and the standard
deviation is 0 0675

GPT-3 the highest accuracy is 0.7895

Table 9: An example of code and its table output pair
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Guideline description

Extreme: Identify the data cases that are the most extreme
in relation to the data attributes or within a specific range

Code Cells

df =

< pd.read_csv("../input/red-wine-quality-cortez-et-al-2009/

winequality-red.csv")

df.head()
Table
Wine fixed acidity  volatile acidity = pH sulphates  alcohol  quality
0 7.4 0.70 3.51 0.56 9.4 5
1 7.8 0.88 320 0.68 9.8 5
2 7.8 0.76 326 0.65 9.8 5
3 112 0.28 3.16 0.58 9.8 5
4 7.4 0.70 3.51 0.56 9.4 5
Documentation

ground truth
value

CodeT5-Large the biggest ph is 3.20

The first red wine has the highest pH

It aims to find extreme data cases and
their corresponding attributes within a
certain range in a dataset
GPT-3 data frame sort ph values

Table 10: An example of code and its table output pair
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B Appendix: Kaggle competition link

We crawled highly voted notebooks from seven top
popular Kaggle competitions - House Price Predic-
tion?, Titanic Survival Prediction®, Predict Future
Sales*, Spaceship Titanic®, U.S. Patent Phrase to
Phrase Matching®, JPX Tokyo Stock Exchange Pre-
diction’, Ubiquant Market Prediction®

C Appendix: Detail of Baseline Models

CodeTS5 is a large pre-trained encoder-decoder
Transformer model that better leverages the code
semantics conveyed from the developer-assigned
identifiers. Since CodeT5 is a competitive code-
related text generation model, when using this
model in our task, we converted the relevant table
and guideline category description into an inline
comment in code and then fine-tuned the model. It
has 220 million parameters and the computational
budget is around 3 hours.

GPT-3 (Generative Pre-training Transformer 3)
is an autoregressive language model with 175 bil-
lion parameters, 10x more than any previous non-
sparse language model. GPT-3 achieves strong
performance on many NLP tasks such as text com-
pletion, translation, and text summarization. To use
the GPT3 model for our task, we combine guide-
line description, code, and table as input text. It has
175 billion parameters. The computational budget
is around 1 hour. To use the GPT-3 model, we
register an account on OpenAl and use the related
API (openai api fine_tunes.create”) to fine-tune the
GPT-3 model. Also, we built a dataset suitable for
GPT-3 training, which can shared with the public.

GPT-3.5 is an advanced iteration of the GPT-3
model with around 200 billion parameters and a
default backend of free ChatGPT. The computa-
tional budget is around 1 hour and 15 minutes. Its
ability to comprehend context, generate coherent
and contextually relevant responses, and perform

Zhttps://www.kaggle.com/c/
house-prices-advanced-regression-techniques
3https://www.kaggle.com/c/titanic/
*https://www.kaggle.com/competitions/
competitive-data-science-predict-future-sales
5https://www.kaggle.com/competitions/
spaceship-titanic
6https://www.kaggle.com/competitions/
us-patent-phrase-to-phrase-matching
7https://www.kaggle.com/competitions/
jpx-tokyo-stock-exchange-prediction
8https://www.kaggle.com/competitions/
ubiquant-market-prediction
*https://beta.openai.com/docs/guides/fine-tuning

a wide array of language-related tasks is further
refined. It is an easily accessible tool and has been
widely used in real life. So we add it as an advanced
baseline.

D Appendix: Guideline Categories

E Appendix: Prompt for doing chain of
thought on GPT-3.5
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Given the 15 guidelines describing the
code cell and its table output in the
Jupiter Notebook:

1. Value(Get the exact data attribute
values for a set of criteria)

2. Difference(A comparison between at
least two distinct attributes within the
target object, or a comparison between

the target object and previously
measured values)

3. Trend(Indicates a general tendency
over a period of time)

4. Proportion(Measure the proportion of
selected data attribute(s) within a
specified set )

5. Categorization(Select the data
attribute(s) that meet the condition)
6. Distribution(Show the amount of
shared value for the selected data
attributes or present a breakdown of all
data attributes)

7. Rank(Sort data attributes by their
values and display a breakdown of
selected attributes)

8. Association (Identify the useful
relationship between two or more data
attributes)

9. Extreme(Identify the data cases that
are the most extreme in relation to the
data attributes or within a specific
range )

10. Outlier(Determine whether there are
unexpected data attributes or
statistically significant outliers)

11. Aggregation(Calculate the
descriptive statistical indicators (e.g
., average, sum, count, etc. ) based on
the data attributes.)

12. Goal(Express user's goal. To say

what value or function they tend to use
for the later research)



https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/titanic/
https://www.kaggle.com/competitions/competitive-data-science-predict-future-sales
https://www.kaggle.com/competitions/competitive-data-science-predict-future-sales
https://www.kaggle.com/competitions/spaceship-titanic
https://www.kaggle.com/competitions/spaceship-titanic
https://www.kaggle.com/competitions/us-patent-phrase-to-phrase-matching
https://www.kaggle.com/competitions/us-patent-phrase-to-phrase-matching
https://www.kaggle.com/competitions/jpx-tokyo-stock-exchange-prediction
https://www.kaggle.com/competitions/jpx-tokyo-stock-exchange-prediction
https://www.kaggle.com/competitions/ubiquant-market-prediction
https://www.kaggle.com/competitions/ubiquant-market-prediction

Guideline N Description Example
Value 286 Get the exact data attribute values fora The mean survived rate is 38.3 denoting
(7.29%)  set of criteria most of the passengers did not survived
Difference 138 A comparison between at least two dis- The difference though narrows down
(3.52%) tinct attributes within the target object, considerably if we were to consider groups
or a comparison between the target ob- of 2 woman travelers
ject and previously measured values.
Trend 31 Indicates a general tendency over a pe- table is displayed in a descending trend
(0.79%)  riod of time. in accuracy
Proportion 120 Measure the proportion of selected data 8 of 10 passengers have parents
(3.06%) attribute(s) within a specified set

Categorization 74

Select the data attribute(s) that meet the

1 denotes survived while @ denote not

(1.89%)  condition. survived
Distribution 127 Show the amount of shared value for Fare value range from 7 to 13
(3.20%) the selected data attributes or present a
breakdown of all data attributes.
Rank 73 Sort data attributes by their values and  Selecting the top 3 classifiers for model
(1.86%) display a breakdown of selected at- prediction
tributes.
Association 165 Identify the useful relationship between These two passengers are in the same
(4.21%) two or more data attributes. PClass
Extreme 227 Identify the data cases that are the most Model 1 has the highest accuracy
(5.78%) extreme in relation to the data attributes
or within a specific range
Outlier 257 Determine whether there are unexpected Age column has some missing values
(6.55%)  data attributes or statistically significant
outliers.
Aggregation 125 Calculate the descriptive statistical indi- There are 2 classes in the Deck
(3.19%)  cators (e.g., average, sum, count, etc. )
based on the data attributes.
Goal 771 Express user’s goal. To say what value We use the Gaussian Process Classifier
(19.64%) or function they tend to use for the later ~ to plot the confusion matrix
research
Reason 276 Express reason using the data from the We go through deleting the column for
(7.03%) table or explains the reasons why certain ~ Cabin deleting 2 rows for Emabarked and
functions are used or why a task is per- since Age plays some role we can ...
formed.
Feature Engi- 393 The process of selecting, transforming, Delete Name and Ticket due to it s high
neer (10.02%) extracting, combining, and manipulat- cardinality
ing raw data to generate the desired vari-
ables for analysis or predictive model-
ing.
Other 870 Other description providing supplemen- It is quite handy when you can see all
(22.17%) tary details at once column names counts unique counts

and data types

Table 11: We identify 15 guideline categories based on the types of descriptions in the Markdown cells which are
below the code whose output is a table.

13. Reason(Express reason using the data
from the table or explain the reasons
why certain functions are used or why a

task is performed.)

14. Feature Engineer(The process of
selecting, transforming, extracting,
combining, and manipulating raw data to
generate the desired variables for
analysis or predictive modeling)

15. Other(Other description providing

supplementary details)

Q: When using Jupiter Notebook, the data
scientist wants to write a description
in the Markdown cell covering the code

cell and its table output.

description should be less than 50

tokens.
Table Sequence:

The
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| passengerid]| survived

mean| 446.000000 | ©.383838
Code: train = pd.read_csv("../input/
titanic/train.csv")
# take a quick look at the training
data
train.describe(include="all")"

A: The data scientist wants to write a
description in Extreme guideline, the
description he writes is: the mean
survived rate is 38.3 denoting most of
the passengers have not survived

Q: When using Jupiter Notebook, the data
scientist wants to write a description
in the Markdown cell covering the code
cell and its table output:

<Table>




<Code>

F Appendix: Prompt for doing in-context
learning on GPT-3.5

Q: When using Jupiter Notebook, the data
scientist wants to write a description
in the Markdown cell covering the code
cell and its table output.
Table Sequence:
| passengerid| survived
mean| 446.000000| ©.383838
train = pd.read_csv("../input/titanic/
train.csv")
# take a quick look at the training data
train.describe(include="all")"

A: The data scientist wants to write a
description in Extreme guideline, the
description he writes is: the mean
survived rate is 38.3 denoting most of
the passengers have not survived

Q: When using Jupiter Notebook, the data
scientist wants to write a description
in the Markdown cell covering the code
cell and its table output

<Table>

<Code>
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