
nbDescrib: A Dataset for Text Description Generation from Tables and
Code in Jupyter Notebooks with Guidelines

Anonymous ACL submission

Abstract

Generating cell-level descriptions for Jupyter001
Notebooks, which is a major resource con-002
sisting of codes, tables, and documentation,003
has been attracting increasing research atten-004
tion. However, existing methods for Jupyter005
Notebooks mostly focused on generating de-006
scriptions from code snippets or table out-007
puts solely. On the other side, the descrip-008
tions for Jupyter cell should be personalized009
as users have their own preferences or user-010
written guidelines while previous work ignores011
these informative guidelines during descrip-012
tion generation. In this work, we formulate013
a new task, personalized description generation014
with code, tables, and user-written guidelines in015
Jupyter Notebooks along with a novel collected016
new dataset, nbDescrib. Specifically, the pro-017
posed benchmark, namely nbDescrib, contains018
code, tables, and user-written guidelines paired019
with target personalized descriptions. Exten-020
sive experiments show that existing models on021
text generation, e.g., can generate fluent and022
readable text as well as different types of text023
for the same input according to different user-024
written guidelines. However, they still struggle025
to produce faithful descriptions that are factu-026
ally correct. To understand how each compo-027
nent contributes to the generated descriptions,028
we conduct extensive experiments and show029
that guidelines significantly enhance model per-030
formance, helping users create accurately ori-031
ented and reasonable descriptions. Moreover,032
by analyzing the error patterns of the model-033
generated text, we found that the most frequent034
errors involve generating incorrectly oriented035
text based on the guidelines, with additional036
common errors related to incorrect value gener-037
ation and reasoning mistakes. The dataset and038
processing code will be released until the paper039
is published.040

1 Introduction041

Data-to-text generation (Kukich, 1983) is the task042

of generating a textual description from structured043

data such as tables and codes (Richardson et al., 044

2017; Li et al., 2021; Liu et al., 2018a; Parikh et al., 045

2020a; An et al., 2022). It has been applied to var- 046

ious scenarios, for example, generating sentences 047

based on biographical data (Lebret et al., 2016), 048

basketball game reports based on boxscore statis- 049

tics (Wiseman et al., 2017), and fact descriptions 050

from Wikipedia’s superlative tables (Korn et al., 051

2019). Moreover, it served as an important testbed 052

for large language models (LLMs) and neural gen- 053

eration models (Bahdanau et al., 2014) for faithful 054

text generation (Koehn and Knowles, 2017; Lee 055

et al., 2018) and models ability of reasoning and 056

numerical inference (Wiseman et al., 2017; Liu 057

et al., 2018b; Pasupat and Liang, 2015). 058

Literature on data-to-text generation has been 059

focusing on generating text for software code snip- 060

pets or tables separately (Puduppully and Lapata, 061

2021; Richardson et al., 2017). While they achieve 062

remarkable performance on benchmarks, they suf- 063

fer from several major issues, making them subop- 064

timal. 065

First, in Jupyter Notebooks, one cell (in table 066

code associated Markdown cell) may contain both 067

code and its corresponding table outputs which 068

are useful for generating descriptions. Using only 069

one type of information will make the description 070

generation unfaithful sometimes. In this scenario, 071

code and table are complementary to each other 072

for generating descriptions. The code provides 073

essential context and explanation to enhance the 074

comprehension of the text, while the table provides 075

a concise and visual representation of the analy- 076

sis output, supporting the text by presenting the 077

key data points. For instance, the ground truth de- 078

scriptions in Figure 1 are six different categories of 079

description covering both code and its table output. 080

Second, in the Jupyter Notebooks, the cells 081

are always with human-written guidelines support- 082

ing the corresponding descriptions. This kind of 083

human-written guidelines usually describes a sub- 084

1

Table

passengerid pclass sex age fare cabin embarked y_pred y_scores

0 892 3 male 34.5 7.8292 nan q 0 0.108682

1 893 3 female 47.0 7.0000 nan s 1 0.516569

2 894 2 male 62.0 9.6875 nan q 0 0.130859

3 895 3 male 27.0 8.6625 nan s 0 0.116366

4 896 3 female 22.0 12.2875 nan s 1 0.553491

Guideline Description

Value
The 'y_pred' column in the output table represents the binary prediction (0 or 1)
generated by the 'model_consumer' for each passenger，such as passenger 893's
 prediction being 1 (indicating survival)

Goal Builds a prediction pipeline and and applies it to a 'df_test' dataset,generating
predictions and scores for further analysis

Association It is clear that fare has nothing to do with age in the titanic dataset

Outlier Cabin feature has some missing values in the test set

Aggregation There are two classes for Embarked feature

Reason Analyze the data like passenger class, gender, age, and fare to generate
predictions and scores with prediction pipeline

Code Only Table Only

It sets up a machine
learning prediction pipeline
with initial preprocessing
and model consumption

stages and applies it to test
data from a CSV file

The table lists passenger
data with features like

class, sex, age, fare, and
predictions with scores for

a Titanic dataset.

Previous WorkOur Work(Guideline + Code + Table)

Code

Figure 1: An example in our proposed notebookTCDG dataset, which targets generating high-fidelity and
personalized descriptions based on the input of codes, tables, and user-written guidelines. Previous methods and
benchmarks focus on understanding the codes or tables only, which makes the generated description unfaithful.

set of data facts of the table or the purpose of the085

code. Moreover, as the cell with the same code086

could serve as different purposes under different087

scenarios, user-written guidelines become impor-088

tant in the pipeline of generating descriptions.089

To step forward in faithful and personalized de-090

scription generation for tables and codes, in this091

paper, we introduce a challenging user-written092

guideline-based text generation task, while focus-093

ing on the table and code description generation094

(TCDG) for Jupyter Notebooks. Given a table, the095

relevant code, and user-written guidelines, the goal096

of TCDG is to produce a concise description under097

user-written guidelines. The guidelines will be of a098

given category corresponding to the type of target099

text as shown in table 11.100

As previous benchmarks focus on generating101

descriptions for codes or tables only without the102

user-written guidelines, for advancing the research103

on the TCDG task, we construct a new dataset104

(nbDescrib) that contains around 3,924 processed105

code-table-description pairs extracted from 4,863106

highly-ranked notebooks from Kaggle competi-107

tions and identifies 15 guideline categories of the108

texts (details in Section 3). Specifically, the raw109

Jupyter Notebook data with tables, code, and as-110

sociated text from popular Kaggle competitions is111

crawled. However, the raw data cannot be directly112

used due to the large amount of noise (Mondal113

et al., 2023; Lin et al., 2022). For example, "I plan114

to refine the models by using more sophisticated115

machine learning techniques." is about personal ex- 116

periences and future plans which is not useful for 117

text generation tasks. On the other side, the user- 118

written guidelines and ground-truth descriptions 119

in the markdown cell generally contain multiple 120

different purposes or facts on the tables. To reduce 121

the noise in the raw data, we recruit annotators to 122

first break down the markdown cells and make each 123

piece of text only contain one purpose or fact. For 124

each guideline category, we create the label as well 125

as descriptions, and then curate the tables and filter 126

out the noise text. Finally, the text descriptions 127

in our data are natural, faithful, and specifically 128

targeted under different guidelines (Figure 1). 129

Next, we automate the evaluation of this dataset 130

and investigate the performance of different mod- 131

els, especially the ones based on LLMs. The abla- 132

tion study shows that guidelines significantly affect 133

to the final performance at different levels, which 134

demonstrates the validity of our task. We further 135

conduct human evaluation and find that these ad- 136

vanced models still struggle to produce faithful 137

enough results, regardless of high-quality training 138

data. We analyze the error patterns of the models 139

to inspire future work. In short, our data can be 140

used to develop a unique model of the selected ta- 141

ble and code within Jupyter Notebook, facilitating 142

real-world applications such as the automatic cre- 143

ation of slides and reports. Moreover, the dataset 144

itself is also beneficial for the NLP community as 145

well in evaluating the capabilities of advanced NLP 146

2

models.147

In summary, the main contributions of our work148

are: (1) We formulate a novel task namely, TCDG,149

and collect a high high-quality benchmark with150

2747 Code-Table-Description pairs training and151

785 pairs testing data for automatic evaluation; (2)152

Experiments using LMs, i.e., CodeT5, GPT-3, and153

GPT3.5 show that fine-tuned LMs (CodeT5) out-154

perform powerful GPT-3.5, highlighting the vulner-155

ability of LLMs on TCDG. (3) Extensive ablation156

studies demonstrate that guidelines significantly157

enhance model performance, helping users create158

accurately oriented and reasonable descriptions. (4)159

Error analysis conducted in this guideline-based160

text generation task to gain insights into the limi-161

tations and shortcomings of the implemented ap-162

proach, paving the way for future improvements163

in the development of models and techniques for164

tackling similar challenges.165

2 Related Work166

To automate the machine learning and AI work-167

flow, researchers have used automation techniques168

for a variety of table-related and code-related text169

generation tasks, including table-to-text generation,170

table question answering, and table-based fact veri-171

fication, code documentation generation.172

In this work, we focus on table and code de-173

scription generation (TCDG) tasks. Our work is174

closely related to table-to-text generation and code175

documentation generation (CDG). Most existing176

datasets for table-to-text generation (Li et al., 2021;177

Liu et al., 2018a; Parikh et al., 2020a; Dhingra178

et al., 2019) or code documentation (Richardson179

et al., 2017; An et al., 2022; Liu et al., 2021; Khan180

and Uddin, 2022) generation contain one text per181

table or code on a specific topic and schema. For182

instance, Suadaa et al. (2021) contains 1.3K table-183

documentation pairs with richer inference from184

scientific papers and CodeSearchNet (Husain et al.,185

2019) contains 2M function-documentation pairs186

across six programming languages (e.g., java, php,187

python). Differing from previous CDG and table-188

to-text datasets, a documentation text can corre-189

spond to both code and its table output in ours.190

Previous work on table-to-text focuses on text191

generation for standalone table data. Parikh et al.192

(2020b) proposed an open domain table-to-text193

dataset. They collected tables from Wikidepia194

and paired them with single-sentence documen-195

tation. They then requested annotators to revise196

these Wikipedia candidate sentences into target 197

sentences, instead of asking them to write new tar- 198

get sentences. Several studies focused on a specific 199

topic and schema such as WEATHERGOV (Liang 200

et al., 2009) and ROBOCUP (Chen and Mooney, 201

2008), Rotowire (Wiseman et al., 2017), Wikibio 202

(Lebret et al., 2016, Biographies), E2E (Novikova 203

et al., 2016, Restaurants). However, they are not 204

able to provide different target texts for different 205

data facts in tables, resulting in too singular results 206

when the model is trained. 207

Another task similar to table-to-text is table ques- 208

tion answering (Pasupat and Liang, 2015; Wang 209

et al., 2018). While they can locate relevant tables 210

and provide answers by tagging relevant cells, they 211

do not provide a meaningful explanation of differ- 212

ent kinds of data facts. There are also other sources 213

of information that may be used in data science 214

projects. Without following appropriate guidelines 215

and integrating these sources, we would not be able 216

to produce satisfactory results. Chen et al. (2019); 217

Gupta et al. (2020) attempted to verify whether a 218

provided textual statement is entailed or refuted by 219

the given table. But they only focus on verification 220

issues and cannot generate descriptive statements 221

of the different types of data fact types. 222

Since our work focuses on both code and ta- 223

ble, it is essential to discuss related work on CDG, 224

which aims to understand the code and generate 225

the code descriptions. Typical datasets include 226

CodeSearchNet (Husain et al., 2019) and some 227

datasets collected from GitHub (Kanade et al., 228

2019) or BigQuery (Yue Wang, 2021). Recently, 229

LLMs have been applied to the CDG task and 230

most advanced models are based on BERT (e.g. 231

CuBERT(Kanade et al., 2019), CodeBERT (Feng 232

et al., 2020), GraphCodeBERT (Guo et al., 2020)) 233

or GPT (Svyatkovskiy et al., 2020; Lu et al., 2021). 234

Some recent works explore encoder-decoder mod- 235

els such as PLBART (Ahmad et al., 2021), CodeT5 236

(Yue Wang, 2021), and TreeBERT (Jiang et al., 237

2021). The documentation in this task often does 238

not cover the facts of the output from the code, only 239

focusing on the description of the code. 240

Different from the aforementioned works that 241

only focus on one text generation for a single stan- 242

dalone code or table, in our new TCDG task for 243

computational notebooks, code and its table output 244

can correspond to one documentation and these 245

documentations may have many categories depend- 246

ing on the needs of the user. We thus propose to 247

construct a notebookTCDG dataset to handle text 248

3

generation of multiple guideline category text gen-249

eration for code and its table output.250

3 TCDG - Task Description251

In our task, the model is provided with a long text252

including a code cell and its table output, as well as253

the corresponding guideline category description.254

The guideline indicates the direction of the target255

description generation, and the specific category256

is described in Section 4.3. The model is asked to257

read the input and generate reasonable descriptions258

based on the given guideline, code, and table.259

3.1 Input260

The input to a text generation model consists of an261

input text and a target document:262

(1) Codes and tables from the input texts are263

extracted from notebooks crawled from the Kaggle264

website. The code provides the necessary context265

to understand how the table output was generated.266

By analyzing the code, one can infer the logic and267

algorithms applied to the input data, which facili-268

tates accurate interpretation of the table’s contents.269

(2) A guideline category description serves as270

a guiding principle for generating the target de-271

scription. Some descriptions prioritize interpreting272

table content and code snippets provide contextual273

information. Some other descriptions emphasize274

explaining the purpose of the code, requiring data-275

driven explanations from tables. Moreover, target276

description is not always relevant to the code and277

table themselves in the notebook, such as “From278

the table above, it is obvious a few things.” For279

these kinds of documents, we label them “Other.”280

This setup mimics the real-life scenario.281

3.2 Output282

A text generation model is employed to predict283

the specific guideline category of descriptions. Ta-284

ble code associated Markdown cells are the target285

documents that we collect since these cells are typ-286

ically used to provide descriptive text for code and287

tables. Also, some Markdown cells can be used288

only for headings in the notebook. To exclude such289

Markdown cells, search for key characters like #,290

which generally refers to the titles.291

3.3 Evaluation Metrics292

We use the ROUGE scores (Lin, 2004) and293

BERTScore (Zhang et al., 2019) to evaluate our294

model’s performance with regard to the ground-295

truth documentation content. We report ROUGE-1, 296

ROUGE-2, and ROUGE-L. 297

4 nbDescrib 298

4.1 Data Collection 299

As we are focusing on the text generation in Jupyter 300

Notebooks, we need to crawl a sufficient number of 301

code-table-description pairs first. Publicly shared 302

notebooks on GitHub are often ill-documented 303

(Rule et al., 2018) and do not have many tables, 304

thus are not suitable for constructing the training 305

dataset for this text generation task. On the other 306

side, Kaggle allows community members to vote 307

up and down on uploaded notebooks, and find- 308

ings show that the highly-voted notebooks are of 309

good quality and quantity for code documentation 310

(Wang et al., 2021; Liu et al., 2021). Thus, we de- 311

cided to utilize the top-voted and well-documented 312

Kaggle notebooks. We crawled notebooks from 313

seven popular competitions, i.e., seven top popu- 314

lar Kaggle competitions - House Price Prediction, 315

Titanic Survival Prediction, Predict Future Sales, 316

Spaceship Titanic, U.S. Patent Phrase to Phrase 317

Matching, JPX Tokyo Stock Exchange Prediction, 318

and Ubiquant Market Prediction, and built around 319

4,000 pairs of code-table-description pairs. Links 320

for these competitions can be found in Appendix 321

B. To build this dataset, we also filter out the de- 322

scription which is not in English. We checked the 323

data policy of each of the competitions, and none 324

of them have copyright issues. We also contacted 325

the Kaggle administrators to make sure our data 326

collection complies with the platform’s policy. 327

4.2 Data Preprocessing 328

We employed the following heuristics to collect 329

codes, tables, and Markdown: 330

Cell Matching: We search for codes that pro- 331

duce tables in the notebooks and determine if the 332

code and table are described with a Markdown cell 333

below. We collect these eligible code-table pairs as 334

input. The sentences are also split if there is more 335

than one sentence in the corresponding Markdown 336

cell. We label each sentence and let annotators 337

rewrite it accordingly, since each sentence may 338

have a different description angle. Details about 339

how annotators code the sentence and reach an 340

agreement are shown in Section 4.3. The specific 341

guideline details will be described in the following. 342

Table Processing: Since the table in Jupyter 343

Notebook is in HTML code, to transfer it into a 344

4

Overall Train Dev Test

Code-Table-Description pairs 3,924 2,747 393 785
Code vocabulary size 3,497
Table vocabulary size 16,424
Description vocabulary size 4,481
Avg. # token in Description 12.41 12.37 12.51 12.52
Max. # token in Description 66 57 46 66
Std. # token in Description 7.45 7.43 7.26 7.66
Avg. # token in code cell(s) 10.68 11.17 10.46 10.22
Max. # token in code cell(s) 310 310 131 131
Std. # token in code cell(s) 19.54 21.40 16.42 15.64
Avg. # token in table 13.85 13.92 12.84 14.11
Max. # token in table 272 272 97 261
Std. # token in table 17.27 16.47 11.97 21.68

Table 1: nbDescrib dataset statistics.

table format, we use HTMLParser1 to get the data345

value for each row, column, and their relationship346

based on the tags, such as <th>, <td>. We first drop347

their parent tags <table> to simplify the document348

format. Next, we remove the tags <td> and <th>349

from cells to extract variables and corresponding350

values from the HTML code. Then we concatenate351

variables and values with pipe(“|”) to generate table352

documentation.353

Table Curation: If the description contains vari-354

able names in a table, the corresponding rows and355

columns containing those variables are extracted to356

create a new table. If no key variables are included,357

we keep the original tables. This process aims to358

minimize the inclusion of irrelevant information.359

4.3 Guideline Category Description360

Three members of the research team conducted361

an iterative open-coding process to analyze the362

collected notebooks. Differing from Wang et al.363

(2020), where their qualitative coding stopped at364

the tabular data level, and our analysis goes deep365

to the granularity of the cell, the cell be used to366

explain beyond the adjacent code cell whose out-367

put is the table: we annotate these cells’ purposes368

and types of content. Each annotator independently369

analyzed the same five notebooks to develop a code-370

book. After discussing and refining the codebook,371

they again went back to recode those five notebooks372

and achieved pairwise inter-rater reliability ranged373

0.81–0.93 (Cohen’s K). To further determine the374

correctness of inter-annotator agreement, we let375

these three annotators analyze another undiscussed376

five notebooks and get pairwise inter-rater reliabil-377

ity ranging from 0.78 to 0.89 (Cohen’s K) which378

is convincing to demonstrate the reliability of our379

codebooks. After getting a reliable agreement, the380

three coders divided and coded the remaining note-381

books. In total, we identified fifteen guideline cat-382

egories for the content of the markdown cells (Ta-383

1https://docs.python.org/3/library/html.parser.html

ble 11, Appendix D provides examples). 384

As shown in Table 11, eleven guideline cate- 385

gories mainly focus on the data facts of a table. It is 386

worth noting while these guidelines focus more on 387

the description of the table data, the code still pro- 388

vides contextual information to supplement their 389

description, as shown in Figure 1. Our analysis 390

revealed that markdown cells are mostly used to 391

describe the specific attribute values from the ta- 392

ble (Value, 7.29%). Second to the Value category, 393

6.55% markdown cells are used to specify the out- 394

liers from the table output (Outliers). 395

However, these guidelines do not meet the needs 396

of Jupyter Notebook users. This kind of markdown 397

cells can also be used to mainly explain the beyond 398

adjacent code cells. Even though they mainly focus 399

on the code, a clear understanding of table data is 400

also crucial for understanding the code logic. We 401

found that some of these markdown cells describe 402

the motivation from the code descriptive text(Goal, 403

19.64%), to explain the results or critical decisions 404

(Reason, 7.03%), or to describe a combination of 405

mathematical transformations from the code (Fea- 406

ture Engineer, 10.02%). We also found that some 407

markdown cells are more general and not highly 408

related to the data variables or functions from the 409

code/table (Other, 22.17%). 410

4.4 Train / Dev / Test Splits 411

Overall, the dataset contains 2747 Code-Table- 412

Description pairs in the training set, 393 pairs in 413

the development set, and 785 pairs in the test set 414

(see Table 1 for more statistics). 415

5 Experiments 416

5.1 Baselines 417

Evaluating existing models on nbDescrib is chal- 418

lenging. Unlike code documentation generation, 419

table question answering, and table-to-text, our task 420

requires both the code and table to help generate tar- 421

get text documents in different guidelines. In gen- 422

eral, we utilized three representative types of mod- 423

els: a fine-tuned encoder-decoder-based CodeT5, 424

the popular decoder-only LLMs (an off-the-shelf 425

GPT-3.5 and a fine-tuned GPT-3.0). Details are 426

shown in Appendix C. 427

5.2 Results 428

The numbers in Table 3 show that this guideline- 429

based text generation task is very challenging, 430

5

Guideline # Description

Value 286
(7.29%)

Get the exact data attribute values for a set of criteria.

Difference 138
(3.52%)

A comparison between at least two distinct attributes within the
target object, or a comparison between the target object and
previously measured values.

Trend 31
(0.79%)

Indicates a general tendency over a period of time.

Proportion 120
(3.06%)

Measure the proportion of selected data attribute(s) within a
specified set

Categorization 74
(1.89%)

Select the data attribute(s) that meet the condition.

Distribution 127
(3.20%)

Show the amount of shared value for the selected data attributes
or present a breakdown of all data attributes.

Rank 73
(1.86%)

Sort data attributes by their values and display a breakdown of
selected attributes.

Association 165
(4.21%)

Identify the useful relationship between two or more data at-
tributes.

Extreme 227
(5.78%)

Identify the data cases that are the most extreme in relation to
the data attributes or within a specific range

Outlier 257
(6.55%)

Determine whether there are unexpected data attributes or statis-
tically significant outliers.

Aggregation 125
(3.19%)

Calculate the descriptive statistical indicators (e.g., average, sum,
count, etc.) based on the data attributes.

Goal 771
(19.64%)

Express user’s goal. To say what value or function they tend to
use for the later research

Reason 276
(7.03%)

Express reason using the data from the table or explain the rea-
sons why certain functions are used or why a task is performed.

Feature Engi-
neer

393
(10.02%)

The process of selecting, transforming, extracting, combining,
and manipulating raw data to generate the desired variables for
analysis or predictive modeling.

Other 870
(22.17%)

Other description providing supplementary details

Table 2: We identify 15 guideline categories based on
the types of descriptions in the Markdown cells which
are below the code whose output is a table.

while the fine-tuned CodeT5 obtained the best per-431

formance. As shown in Table 3, CodeT5-Large out-432

performs the GPT-3.5 and GPT-3 in this task. Addi-433

tionally, we notice that the ROUGE-L of CodeT5-434

Large is above 25, and the ROUGE-2 is around435

15, indicating that our dataset can produce more436

accurate and fluent text in response to different437

guidelines in this task.438

Ablation Study: To better understand the impact439

of each component on this new task, we perform ab-440

lation studies(Table 3) to evaluate how table, code,441

and guideline description contribute to the model442

performance separately. More concretely, we gen-443

erate ablation models with the following settings:444

(1) without table, (2) without code, (3) without445

guideline description, (4) chain of thought prompt-446

ing on GPT-3.5, (5) in-context learning on GPT-3.5.447

Since CodeT5 performs best in the task, we use448

it as a backbone to test its performance without449

code, table, and guideline description. In general,450

all the elements contribute to the performance, and451

removing one element will lead to a significant452

performance drop. Note that table content has a453

bigger effect on model performance compared to454

code. Code also influences performance by provid-455

ing the necessary context to infer the logic, which456

aids in interpreting the table’s content accurately.457

Guideline description can be seen as a synergy of458

Models ROUGE-1 ROUGE-2 ROUGE-L BERTScore Pyramid Evaluation

Baselines

CodeT5 29.61 14.38 26.72 59.51 19.37

GPT-3.5 25.19 3.32 26.31 53.00 18.43

GPT-3 19.25 4.42 20.72 51.26 13.37

Ablation Study

CodeT5
without table 22.40 9.54 20.49 55.91 18.52

CodeT5
without code 26.35 11.72 24.01 57.93 19.14

CodeT5
without guideline
description

25.09 10.78 22.61 56.63 18.75

GPT-3.5 with
chain of
thoughts

24.80 3.77 25.56 50.4 16.89

GPT-3.5 with
in context
leaning

23.09 3.50 24.62 49.6 15.88

Table 3: ROUGE scores and BERTScore for the base-
lines, our model, and the ablation studies. Results show
that this task is challenging though we use it in the
state-of-art text generation models.

tables that guide the generation system to generate 459

desirable topics, and without it, the performance is 460

slightly higher than one without any table content. 461

One intuitive method to enhance the reasoning 462

ability of LLMs is Chain-of-Thoughts (CoT). Here 463

we want to further answer this question: using CoT, 464

can a large language model automatically find an 465

optimum guideline and generate summaries better 466

aligned with human interests? CoT is well known 467

to work well for GPT models, so we experimented 468

on GPT-3.5 with a CoT prompt containing both 469

an example and middle steps of guessing a guide- 470

line (prompts shown in Appendix E). For a fair 471

comparison, we also added the performance of in- 472

context-learning for GPT-3.5, by removing the pro- 473

vided guideline and directly providing the example 474

(prompts shown in Appendix F). The result of CoT 475

improved over in-context learning but is still in- 476

ferior to the performance of the original GPT-3.5 477

with ground-truth guidelines (except ROUGE-2). 478

Then we analyzed the match rate between guide- 479

lines generated through the CoT process and the 480

ground truth. Results show that 72% of the guide- 481

lines did not match. Thus, even though LLM can 482

often generate readable and decent descriptions for 483

code and table(see the results from Table 5 and 484

Table 3), most of the generated descriptions are 485

not as the users expected (see the result in Orienta- 486

tion dimension in Table 5). This demonstrates the 487

necessity of guidelines. In order to fairly compare 488

the generation models and standardize the evalua- 489

tion, we need to specify what we want to generate 490

guideline-based descriptions. 491

Pyramid Evaluation: To further evaluate the faith- 492

fulness of generation, we design an automatic eval- 493

uation method based on the idea of pyramid evalu- 494

ation (PyrEval) (Gao et al., 2019), which is com- 495

6

Guideline category description

Extreme: Identify the data cases that are the most extreme
in relation to the data attributes or within a specific range

Code Cells
cols2 = X_test.columns.tolist() # List of column names
X_test = X_test[cols2] # Applying the new order
X_test

Table

Passenger Sex Age Embarked FamilySize

0 0 34.5 1 1
1 1 47.0 2 2
2 0 62.0 1 1
3 0 27.0 2 1
4 1 22.0 2 3

Documentation

ground truth The oldest passenger in X_test dataset
is 62 years old

CodeT5-Large Oldest person in the titanic was 80
years old and youngest person was less
than one year

GPT-3.5 It displays the first few rows of the ta-
ble which includes the data attribute
age and the label indicates that oldest
passenger

GPT-3 The oldest passenger is a man in his
fifties

Table 4: An example of code-table cell and different
model outputs.

monly used in document summarization and corre-496

lates well with human evaluation. In detail, we first497

extract key phrases from all generations and man-498

ually filter them. It is a more reliable metric than499

ROUGE since key phrases can preserve important500

factual information while removing unimportant to-501

kens. In Table 3, we find that this approach and the502

ROUGE evaluation come up with the same trend,503

indicating that irrelevant tokens may not interfere504

much during our evaluation step. It also further505

validates the effectiveness of table, code, and espe-506

cially guideline descriptions in ablation studies.507

5.3 Human Evaluation508

We also conduct a human evaluation to further eval-509

uate whether those models can generate reasonable510

and oriented text with our dataset.511

Participants: Our human evaluation task involves512

reading the code snippet, its output table, and a513

guideline description and rating the generated docu-514

mentation from them. We recruited 10 participants515

(6 male, 4 female) who are fluent English speak-516

ers with around six years of experience in the data517

science and machine learning field. We conducted518

a rigorous qualification process, evaluating their519

knowledge of coding practices and data analysis,520

to ensure high-quality annotations. We hired them521

by sending invited emails to graduate students who522

have experience in data science work. We allocated523

up to 90 minutes for each participant to complete 524

the study, and for their valuable time and input, 525

each participant received a compensation of $20. 526

Task: We randomly selected 50 pairs of documen- 527

tation and code from our dataset. Note that each 528

pair has only one code, one table, and one guide- 529

line description, but may have one descriptive text. 530

Each participant is assigned 50 pairs. Each pair is 531

evaluated by 10 individuals. In each trial, a par- 532

ticipant reads 6 candidate documentation for the 533

same code snippet-table-guideline: one by GPT- 534

3.5 with chain-of-thought, one by GPT-3.5 with 535

in-context-learning, one as the ground truth, and 536

another three by a three different models. The order 537

of these three is also randomized, so participants 538

do not know which descriptive text is from which 539

model. The participant is asked to rate the 4 doc- 540

umentation texts along three dimensions using a 541

five-point Likert scale from -2 to 2. 542

• Correctness: The generated documentation 543

matches the code and table content. 544

• Orientation: The generated documentation is 545

written in the correct guideline category. 546

• Readability: The generated documentation is in 547

readable English grammar and words. 548

Evaluation Results: We conducted Wilcoxon 549

tests (Woolson, 2007) with a significance level of 550

0.05 to compare the performance of Ground Truth 551

against CodeT5-Large, GPT-3, and GPT-3.5 in the 552

Correctness, Orientation, and Readability dimen- 553

sions. The Wilcoxon test is a non-parametric sta- 554

tistical test used to compare two paired groups of 555

data. The obtained p-values indicate the probability 556

of observing the reported differences if there were 557

no true differences between the models. The re- 558

sults indicate significant differences in the Correct- 559

ness dimension, where Ground Truth outperforms 560

CodeT5-Large (V = 5628, p = 1.74e-30), GPT-3 561

(V = 5635, p = 5.46e-31), and GPT-3.5 (V = 5639, 562

p = 2.84e-30). It is also worth noting that CodeT5 563

performs slightly better than GPT-3.5 in terms of 564

correctness from Table 5, possibly because it han- 565

dles code-containing data sets better. 566

Similarly, in the Orientation dimension, Ground 567

Truth surpasses CodeT5-Large (V = 3567, p = 568

1.59e-20), GPT-3 (V = 3731, p = 1.77e-20), and 569

GPT-3.5 (V = 3675, p = 1.64e-20). 570

For the Readability dimension which considers 571

whether the generated documentation is a valid 572

English sentence, Ground Truth outperforms all 573

models once again: CodeT5-Large (V = 4363, p = 574

7

Model Correctness Orientation Readability

Groundtruth x = 1.19, σ=1.32 x = 1.45, σ=1.02 x = 1.61, σ=0.78
CodeT5-Large x = -0.43, σ=1.55 x = 1.27, σ=1.11 x = 0.55, σ=1.60

GPT-3.5 x = -0.42, σ=1.49 x = 1.15, σ=1.24 x = 0.53, σ=1.72
GPT-3 x = -0.41, σ=1.58 x = 0.98, σ=1.39 x = 0.51, σ=1.61

GPT-3.5 with chain-of-thought x = -0.39, σ=1.54 x = 0.94, σ=1.35 x = 0.48, σ=1.66
GPT-3.5 with in-context-learning x = -0.35, σ=1.60 x = 0.91, σ=1.28 x = 0.46, σ=1.83

Table 5: Human Evaluation Result.

1.40e-7), GPT-3 (V = 4030, p = 3.81e-14), and GPT-575

3.5 (V = 4135, p = 2.81e-10). It is also worth noting576

that GPT-3.5 with chain-of-thought and in-context-577

learning have worse performance than GPT-3.5578

which demonstrates that guidelines can better assist579

the description generation for code and table.580

The statistically significant p-values (all below581

0.05) in each dimension demonstrate it is difficult582

to meet the correctness, orientation, and readability583

requirements of the user due to the difficulty of the584

task. Future work can be accomplished by design-585

ing an innovative model to address this challenge.586

5.4 Error Analysis587

In this section, we analyze some common error588

cases in this guideline-based text generation task.589

Some examples can be found in the Appendix.590

(1) Variable values were generated and matched591

incorrectly. As shown in the example in Table 4,592

even though CodeT5-Large, GPT-3.5 and GPT-3593

are capable of generating keywords such as ”high-594

est” based on the ”Extreme” guideline, it remains595

difficult to produce accurate text content based on596

the variables in the table. For example, CodeT5-597

Large incorrectly predicted the oldest passenger as598

80 years old. Table 4 also has this kind of error.599

(2) The generated text focuses solely on the ta-600

ble and ignores important information in the code.601

In the example from Table 10, ground truth is in602

the “Extreme” guideline and tends to convey that603

the first red wine has the highest pH value. How-604

ever, the table does not have a related keyword “red605

wine.” And CodeT5 failed to extract this informa-606

tion and also extracted the wrong value. Example607

from Table 8 also has this kind of error.608

(3) Generating incorrectly oriented text based609

on guidelines. For example, GPT-3 produces text610

related to “Difference” but not “Trend” in the exam-611

ple from Table 7. Another example in Table 8, re-612

quiresmodels generating text related to “Goal”, but613

GPT-3 generates text related to “Association”, de-614

scribing the relationship between SibSP and Parch.615

(4) Reasoning error. CodeT5, GPT-3.5, and GPT-616

3 may generate incorrect Aggregation data (count,617

mean, sum) if they are operating under Aggregation 618

guidelines. In this example (Table 6), GPT-3 can 619

generate text such as this feature has many null 620

values, but cannot obtain the count of null values. 621

We manually check 50 examples of CodeT5, 622

GPT-3.5, and GPT-3 models used in our user study 623

and label the type of errors made. The most errors 624

are made when they generate incorrectly oriented 625

text (3rd type) (54.1%). This is due to the fact that 626

the model has a tendency to generate documents 627

related to the best-trained guideline type in the 628

dataset, such as “Association” or “Value”. There 629

are also two common errors made by generating 630

documents with wrong values (1st type) and wrong 631

reason (4th type) (27% respectively). Such errors 632

are commonly made by generating “Value” or “Ag- 633

gregation” type documents. There are also 13.5% 634

errors made by generating documents without con- 635

sidering the code. There are many examples with 636

insufficient code in the dataset, which causes the 637

model to ignore the code instance in some cases. 638

From these errors, we can clearly see that our 639

task and dataset provide some challenges for ex- 640

isting foundation models. We firmly believe that 641

researchers can enhance the existing foundation 642

models in the future when they address the chal- 643

lenges. By building on our work and leveraging the 644

valuable insights gained from it, they can push the 645

boundaries even further, contributing to the contin- 646

uous evolution of foundation models. 647

6 Conclusion 648

In this paper, we formulated a new task, TCDG, 649

that aimed to automatically generate descriptive 650

text for code and table based on the given guide- 651

line for a computational notebook. We collected 652

a large amount of well-documented Jupyter Note- 653

books from Kaggle, resulting in a new benchmark 654

dataset, nbDescrib. From our analysis, our task 655

imposed unique challenges to the currentgenera- 656

tion methods including CodeT5 and LLMs. This 657

dataset facilitated the creation of practical slides 658

for Jupyter notebooks and enabled evaluations on 659

faithful, high-fidelity, and factual generation. 660

8

Limitations and Potential Risk661

As annotations are often performed by multiple662

individuals, there may be a degree of subjectivity663

and bias in guidelines and datasets used for text664

generation. As a result, text can be generated that665

does not reflect a diverse range of perspectives.666

Furthermore, although we have automatic evalua-667

tion metrics such as ROUGE and BERTScore, the668

correctness of the generated texts is primarily eval-669

uated through human evaluation, which is accurate670

but not efficient. Future research should focus on671

developing methods for automatically evaluating672

the factual correctness of the generated texts, in673

order to ensure that the generated text is accurate,674

unbiased, and representative of a diverse range of675

perspectives.676

One potential risk involves the substantial com-677

putational resources needed to run state-of-the-art678

language models. These resources consume signif-679

icant amounts of energy, which not only raises the680

carbon footprint of such research but also leads to681

environmental degradation.682

References683

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and684
Kai-Wei Chang. 2021. Unified pre-training for pro-685
gram understanding and generation. In Proceedings686
of the 2021 Conference of the North American Chap-687
ter of the Association for Computational Linguistics:688
Human Language Technologies, pages 2655–2668,689
Online. Association for Computational Linguistics.690

Chenxin An, Jiangtao Feng, Kai Lv, Lingpeng Kong,691
Xipeng Qiu, and Xuanjing Huang. 2022. Cont: Con-692
trastive neural text generation. Advances in Neural693
Information Processing Systems, 35:2197–2210.694

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-695
gio. 2014. Neural machine translation by jointly696
learning to align and translate. arXiv preprint697
arXiv:1409.0473.698

David L Chen and Raymond J Mooney. 2008. Learning699
to sportscast: a test of grounded language acquisition.700
In Proceedings of the 25th international conference701
on Machine learning, pages 128–135.702

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai703
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and704
William Yang Wang. 2019. Tabfact: A large-705
scale dataset for table-based fact verification. arXiv706
preprint arXiv:1909.02164.707

Bhuwan Dhingra, Manaal Faruqui, Ankur Parikh, Ming-708
Wei Chang, Dipanjan Das, and William W Cohen.709
2019. Handling divergent reference texts when710
evaluating table-to-text generation. arXiv preprint711
arXiv:1906.01081.712

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi- 713
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin, 714
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code- 715
BERT: A pre-trained model for programming and 716
natural languages. In Findings of the Association 717
for Computational Linguistics: EMNLP 2020, pages 718
1536–1547, Online. Association for Computational 719
Linguistics. 720

Yanjun Gao, Chen Sun, and Rebecca J. Passonneau. 721
2019. Automated pyramid summarization evaluation. 722
In Proceedings of the 23rd Conference on Computa- 723
tional Natural Language Learning (CoNLL), pages 724
404–418, Hong Kong, China. Association for Com- 725
putational Linguistics. 726

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu 727
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey 728
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode- 729
bert: Pre-training code representations with data flow. 730
arXiv preprint arXiv:2009.08366. 731

Vivek Gupta, Maitrey Mehta, Pegah Nokhiz, and Vivek 732
Srikumar. 2020. INFOTABS: Inference on tables 733
as semi-structured data. In Proceedings of the 58th 734
Annual Meeting of the Association for Computational 735
Linguistics, pages 2309–2324, Online. Association 736
for Computational Linguistics. 737

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis 738
Allamanis, and Marc Brockschmidt. 2019. Code- 739
SearchNet challenge: Evaluating the state of seman- 740
tic code search. arXiv preprint arXiv:1909.09436. 741

Xue Jiang, Zhuoran Zheng, Chen Lyu, Liang Li, and 742
Lei Lyu. 2021. Treebert: A tree-based pre-trained 743
model for programming language. In Proceedings 744
of the Thirty-Seventh Conference on Uncertainty in 745
Artificial Intelligence, volume 161 of Proceedings of 746
Machine Learning Research, pages 54–63. PMLR. 747

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, 748
and Kensen Shi. 2019. Pre-trained contextual embed- 749
ding of source code. ArXiv, abs/2001.00059. 750

Junaed Younus Khan and Gias Uddin. 2022. Automatic 751
code documentation generation using gpt-3. In Pro- 752
ceedings of the 37th IEEE/ACM International Con- 753
ference on Automated Software Engineering, pages 754
1–6. 755

Philipp Koehn and Rebecca Knowles. 2017. Six chal- 756
lenges for neural machine translation. In Proceedings 757
of the First Workshop on Neural Machine Translation, 758
pages 28–39, Vancouver. Association for Computa- 759
tional Linguistics. 760

Flip Korn, Xuezhi Wang, You Wu, and Cong Yu. 761
2019. Automatically generating interesting facts 762
from wikipedia tables. In Proceedings of the 2019 763
International Conference on Management of Data, 764
SIGMOD ’19, page 349–361, New York, NY, USA. 765
Association for Computing Machinery. 766

9

https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/K19-1038
https://doi.org/10.18653/v1/2020.acl-main.210
https://doi.org/10.18653/v1/2020.acl-main.210
https://doi.org/10.18653/v1/2020.acl-main.210
https://proceedings.mlr.press/v161/jiang21a.html
https://proceedings.mlr.press/v161/jiang21a.html
https://proceedings.mlr.press/v161/jiang21a.html
https://doi.org/10.18653/v1/W17-3204
https://doi.org/10.18653/v1/W17-3204
https://doi.org/10.18653/v1/W17-3204
https://doi.org/10.1145/3299869.3314043
https://doi.org/10.1145/3299869.3314043
https://doi.org/10.1145/3299869.3314043

Karen Kukich. 1983. Design of a knowledge-based767
report generator. In 21st Annual Meeting of the As-768
sociation for Computational Linguistics, pages 145–769
150, Cambridge, Massachusetts, USA. Association770
for Computational Linguistics.771

Rémi Lebret, David Grangier, and Michael Auli. 2016.772
Neural text generation from structured data with ap-773
plication to the biography domain. In Proceedings of774
the 2016 Conference on Empirical Methods in Natu-775
ral Language Processing, pages 1203–1213, Austin,776
Texas. Association for Computational Linguistics.777

Katherine Lee, Orhan Firat, Ashish Agarwal, Clara Fan-778
njiang, and David Sussillo. 2018. Hallucinations in779
neural machine translation.780

Tongliang Li, Lei Fang, Jian-Guang Lou, and Zhoujun781
Li. 2021. Twt: Table with written text for controlled782
data-to-text generation. In Findings of the Associa-783
tion for Computational Linguistics: EMNLP 2021,784
pages 1244–1254.785

Percy Liang, Michael Jordan, and Dan Klein. 2009.786
Learning semantic correspondences with less super-787
vision. In Proceedings of the Joint Conference of788
the 47th Annual Meeting of the ACL and the 4th In-789
ternational Joint Conference on Natural Language790
Processing of the AFNLP, pages 91–99, Suntec, Sin-791
gapore. Association for Computational Linguistics.792

Chin-Yew Lin. 2004. Rouge: A package for automatic793
evaluation of summaries. In Text summarization794
branches out, pages 74–81.795

Sherry Lin, Winthrop F Gillis, Caleb Weinreb, Ayman796
Zeine, Samuel C Jones, Emma M Robinson, Jeffrey797
Markowitz, and Sandeep Robert Datta. 2022. Charac-798
terizing the structure of mouse behavior using motion799
sequencing. arXiv preprint arXiv:2211.08497.800

Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang,801
and Zhifang Sui. 2018a. Table-to-text generation by802
structure-aware seq2seq learning. In Proceedings of803
the AAAI conference on artificial intelligence, vol-804
ume 32.805

Tianyu Liu, Kexiang Wang, Lei Sha, Baobao806
Chang, and Zhifang Sui. 2018b. Table-to-text807
generation by structure-aware seq2seq learning.808
AAAI’18/IAAI’18/EAAI’18. AAAI Press.809

Xuye Liu, Dakuo Wang, April Wang, Yufang Hou, and810
Lingfei Wu. 2021. HAConvGNN: Hierarchical at-811
tention based convolutional graph neural network for812
code documentation generation in Jupyter notebooks.813
In Findings of the Association for Computational814
Linguistics: EMNLP 2021, pages 4473–4485, Punta815
Cana, Dominican Republic. Association for Compu-816
tational Linguistics.817

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey818
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,819
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-820
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-821
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-822
daresan, Shao Kun Deng, Shengyu Fu, and Shujie823

Liu. 2021. Codexglue: A machine learning bench- 824
mark dataset for code understanding and generation. 825
CoRR, abs/2102.04664. 826

Tamal Mondal, Scott Barnett, Akash Lal, and Jyothi Ve- 827
durada. 2023. Cell2doc: Ml pipeline for generating 828
documentation in computational notebooks. In 2023 829
38th IEEE/ACM International Conference on Auto- 830
mated Software Engineering (ASE), pages 384–396. 831
IEEE. 832

Jekaterina Novikova, Oliver Lemon, and Verena Rieser. 833
2016. Crowd-sourcing NLG data: Pictures elicit 834
better data. In Proceedings of the 9th International 835
Natural Language Generation conference, pages 265– 836
273, Edinburgh, UK. Association for Computational 837
Linguistics. 838

Ankur P Parikh, Xuezhi Wang, Sebastian Gehrmann, 839
Manaal Faruqui, Bhuwan Dhingra, Diyi Yang, 840
and Dipanjan Das. 2020a. Totto: A controlled 841
table-to-text generation dataset. arXiv preprint 842
arXiv:2004.14373. 843

Ankur P Parikh, Xuezhi Wang, Sebastian Gehrmann, 844
Manaal Faruqui, Bhuwan Dhingra, Diyi Yang, 845
and Dipanjan Das. 2020b. Totto: A controlled 846
table-to-text generation dataset. arXiv preprint 847
arXiv:2004.14373. 848

Panupong Pasupat and Percy Liang. 2015. Composi- 849
tional semantic parsing on semi-structured tables. In 850
Proceedings of the 53rd Annual Meeting of the As- 851
sociation for Computational Linguistics and the 7th 852
International Joint Conference on Natural Language 853
Processing (Volume 1: Long Papers), pages 1470– 854
1480, Beijing, China. Association for Computational 855
Linguistics. 856

Ratish Puduppully and Mirella Lapata. 2021. Data-to- 857
text generation with macro planning. Transactions of 858
the Association for Computational Linguistics, 9:510– 859
527. 860

Kyle Richardson, Sina Zarrieß, and Jonas Kuhn. 2017. 861
The code2text challenge: Text generation in source 862
code libraries. arXiv preprint arXiv:1708.00098. 863

Adam Rule, Aurélien Tabard, and James D. Hollan. 864
2018. Exploration and explanation in computational 865
notebooks. CHI ’18, page 1–12, New York, NY, 866
USA. Association for Computing Machinery. 867

Lya Hulliyyatus Suadaa, Hidetaka Kamigaito, Kotaro 868
Funakoshi, Manabu Okumura, and Hiroya Takamura. 869
2021. Towards table-to-text generation with numer- 870
ical reasoning. In Proceedings of the 59th Annual 871
Meeting of the Association for Computational Lin- 872
guistics and the 11th International Joint Conference 873
on Natural Language Processing (Volume 1: Long 874
Papers), pages 1451–1465, Online. Association for 875
Computational Linguistics. 876

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and 877
Neel Sundaresan. 2020. Intellicode compose: Code 878
generation using transformer. ESEC/FSE 2020, page 879

10

https://doi.org/10.3115/981311.981340
https://doi.org/10.3115/981311.981340
https://doi.org/10.3115/981311.981340
https://doi.org/10.18653/v1/D16-1128
https://doi.org/10.18653/v1/D16-1128
https://doi.org/10.18653/v1/D16-1128
https://aclanthology.org/P09-1011
https://aclanthology.org/P09-1011
https://aclanthology.org/P09-1011
https://doi.org/10.18653/v1/2021.findings-emnlp.381
https://doi.org/10.18653/v1/2021.findings-emnlp.381
https://doi.org/10.18653/v1/2021.findings-emnlp.381
https://doi.org/10.18653/v1/2021.findings-emnlp.381
https://doi.org/10.18653/v1/2021.findings-emnlp.381
https://doi.org/10.18653/v1/W16-6644
https://doi.org/10.18653/v1/W16-6644
https://doi.org/10.18653/v1/W16-6644
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.18653/v1/2021.acl-long.115
https://doi.org/10.18653/v1/2021.acl-long.115
https://doi.org/10.18653/v1/2021.acl-long.115
https://doi.org/10.1145/3368089.3417058
https://doi.org/10.1145/3368089.3417058
https://doi.org/10.1145/3368089.3417058

1433–1443, New York, NY, USA. Association for880
Computing Machinery.881

April Yi Wang, Dakuo Wang, Jaimie Drozdal, Xuye Liu,882
Soya Park, Steve Oney, and Christopher A. Brooks.883
2021. What makes a well-documented notebook? a884
case study of data scientists’ documentation practices885
in kaggle. Extended Abstracts of the 2021 CHI Con-886
ference on Human Factors in Computing Systems.887

Hao Wang, Xiaodong Zhang, Shuming Ma, Xu Sun,888
Houfeng Wang, and Mengxiang Wang. 2018. A889
neural question answering model based on semi-890
structured tables. In Proceedings of the 27th Inter-891
national Conference on Computational Linguistics,892
pages 1941–1951, Santa Fe, New Mexico, USA. As-893
sociation for Computational Linguistics.894

Yun Wang, Zhida Sun, Haidong Zhang, Weiwei Cui,895
Ke Xu, Xiaojuan Ma, and Dongmei Zhang. 2020.896
Datashot: Automatic generation of fact sheets from897
tabular data. IEEE Transactions on Visualization and898
Computer Graphics, 26(1):895–905.899

Sam Wiseman, Stuart Shieber, and Alexander Rush.900
2017. Challenges in data-to-document generation.901
In Proceedings of the 2017 Conference on Empiri-902
cal Methods in Natural Language Processing, pages903
2253–2263, Copenhagen, Denmark. Association for904
Computational Linguistics.905

Robert F Woolson. 2007. Wilcoxon signed-rank test.906
Wiley encyclopedia of clinical trials, pages 1–3.907

Shafiq Joty Steven C.H. Hoi Yue Wang, Weishi Wang.908
2021. Codet5: Identifier-aware unified pre-trained909
encoder-decoder models for code understanding and910
generation. In Proceedings of the 2021 Conference911
on Empirical Methods in Natural Language Process-912
ing, EMNLP 2021.913

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q914
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-915
uating text generation with bert. arXiv preprint916
arXiv:1904.09675.917

11

https://aclanthology.org/C18-1165
https://aclanthology.org/C18-1165
https://aclanthology.org/C18-1165
https://aclanthology.org/C18-1165
https://aclanthology.org/C18-1165
https://doi.org/10.1109/TVCG.2019.2934398
https://doi.org/10.1109/TVCG.2019.2934398
https://doi.org/10.1109/TVCG.2019.2934398
https://doi.org/10.18653/v1/D17-1239

A Appendix: Guideline-Code918

snippets-Table-Documentation Pair919

Examples920

Guideline description

Aggregation: Calculate the descriptive statistical indica-
tors (e.g., average, sum, count, etc.) based on the data
attributes

Code Cells

for dataset in [titanic_train,titanic_test]:
dataset['IsAlone'] = 0
dataset.loc[dataset['FamilySize'] == 1, 'IsAlone'] = 1

titanic_train.head(3)

Table
PassengerId Survived Sex Ticket Cabin

0 1 0 male A/5 21171 NaN
1 2 1 female PC 17599 C85
2 3 1 female STON/O2.3101282 NaN

Documentation

ground truth Cabin feature has 2 missing values
CodeT5-Large These five passengers are in the same

cabin
GPT-3.5 It includes information on the cabin

attribute for the first three rows
GPT-3 The cabin column has many null values

Table 6: An example of code and its table output
pair(cabin is the Cabin number)

Guideline description

Trend: Indicates a general tendency over a period of time

Code Cells

train[['Pclass', 'Survived']].groupby(['Pclass'],
as_index=False).mean().sort_values(by='Survived',
ascending=False)

↪→
↪→

Table

Pclass Survived

0 1 0.629630
1 2 0.472826
2 3 0.242363

Documentation

ground truth Higher class survived more
CodeT5-Large The survived rate for this new feature

varies whether it is a tend to be a higher
class passengers or a very high class
passengers

GPT-3.5 it shows the survival rate for each class
with higher survival rates for lower
class numbers

GPT-3 the survived rate for the pclass 1 is
higher than the pclass 2

Table 7: An example of code and its table output pair
(Pclass is the ticket level. The smaller the value, the
higher the class)

Guideline description

Goal: Express user’s goal. To say what value or
function they tend to use for the later research

Code Cells

for dataset in [titanic_train,titanic_test]:
dataset['FamilySize'] = dataset['SibSp'] +

dataset['Parch'] + 1↪→
titanic_train.head(3)

Table
PassengerId Survived SibSp Parch IsAlone FamilySize

0 1 0 1 0 0 2
1 2 1 1 0 0 2
2 3 1 0 0 1 2

Documentation

ground truth Checking if the person is alone or with
a family by checking the SibSp and
Parch column in Titanic passenger data
and add a FamilySize column in ti-
tanic_train and titanic_test datasets

CodeT5-Large We can create another feature called
IsAlone

GPT-3.5 The goal is to create a new attribute
called family size in both the titanic
train and titanic test datasets

GPT-3 we can see that sib sp and parch are
highly correlated

Table 8: An example of code and its table output pair

Guideline description

Extreme: Identify the data cases that are the most extreme in
relation to the data attributes or within a specific range

Code Cells

Tuned_rf = tune_model(rf)

Table

Model Accuracy AUC Recall ...

0 0.7895 0.8864 0.6250 ...
1 0.9474 1.000 0.8750 ...
2 0.8947 0.9318 0.8750 ...
3 0.7368 0.8523 1.0000 ...
4 0.8947 0.8667 0.8889 ...
5 0.9473 0.9444 0.8889 ...
6 0.8947 0.9111 0.7778 ...
7 0.7895 0.8333 0.6667 ...
Mean 0.8617 0.9189 0.8222 ...
SD 0.0675 0.0556 0.1348 ...

Documentation

ground truth Model 1 has the highest accuracy while
the code tune with random forest

CodeT5-Large The highest accuracy is 0.8442
GPT-3.5 It shows the accuracy values for differ-

ent sequence numbers where the mean
accuracy is 0 8617 and the standard
deviation is 0 0675

GPT-3 the highest accuracy is 0.7895

Table 9: An example of code and its table output pair

12

Guideline description

Extreme: Identify the data cases that are the most extreme
in relation to the data attributes or within a specific range

Code Cells

df =
pd.read_csv("../input/red-wine-quality-cortez-et-al-2009/↪→

winequality-red.csv")
df.head()

Table
Wine fixed acidity volatile acidity pH sulphates alcohol quality

0 7.4 0.70 3.51 0.56 9.4 5
1 7.8 0.88 3.20 0.68 9.8 5
2 7.8 0.76 3.26 0.65 9.8 5
3 11.2 0.28 3.16 0.58 9.8 5
4 7.4 0.70 3.51 0.56 9.4 5

Documentation

ground truth The first red wine has the highest pH
value

CodeT5-Large the biggest ph is 3.20
GPT-3.5 It aims to find extreme data cases and

their corresponding attributes within a
certain range in a dataset

GPT-3 data frame sort ph values

Table 10: An example of code and its table output pair

13

B Appendix: Kaggle competition link921

We crawled highly voted notebooks from seven top922

popular Kaggle competitions - House Price Predic-923

tion2, Titanic Survival Prediction3, Predict Future924

Sales4, Spaceship Titanic5, U.S. Patent Phrase to925

Phrase Matching6, JPX Tokyo Stock Exchange Pre-926

diction7, Ubiquant Market Prediction8927

C Appendix: Detail of Baseline Models928

CodeT5 is a large pre-trained encoder-decoder929

Transformer model that better leverages the code930

semantics conveyed from the developer-assigned931

identifiers. Since CodeT5 is a competitive code-932

related text generation model, when using this933

model in our task, we converted the relevant table934

and guideline category description into an inline935

comment in code and then fine-tuned the model. It936

has 220 million parameters and the computational937

budget is around 3 hours.938

GPT-3 (Generative Pre-training Transformer 3)939

is an autoregressive language model with 175 bil-940

lion parameters, 10x more than any previous non-941

sparse language model. GPT-3 achieves strong942

performance on many NLP tasks such as text com-943

pletion, translation, and text summarization. To use944

the GPT3 model for our task, we combine guide-945

line description, code, and table as input text. It has946

175 billion parameters. The computational budget947

is around 1 hour. To use the GPT-3 model, we948

register an account on OpenAI and use the related949

API (openai api fine_tunes.create9) to fine-tune the950

GPT-3 model. Also, we built a dataset suitable for951

GPT-3 training, which can shared with the public.952

GPT-3.5 is an advanced iteration of the GPT-3953

model with around 200 billion parameters and a954

default backend of free ChatGPT. The computa-955

tional budget is around 1 hour and 15 minutes. Its956

ability to comprehend context, generate coherent957

and contextually relevant responses, and perform958

2https://www.kaggle.com/c/
house-prices-advanced-regression-techniques

3https://www.kaggle.com/c/titanic/
4https://www.kaggle.com/competitions/

competitive-data-science-predict-future-sales
5https://www.kaggle.com/competitions/

spaceship-titanic
6https://www.kaggle.com/competitions/

us-patent-phrase-to-phrase-matching
7https://www.kaggle.com/competitions/

jpx-tokyo-stock-exchange-prediction
8https://www.kaggle.com/competitions/

ubiquant-market-prediction
9https://beta.openai.com/docs/guides/fine-tuning

a wide array of language-related tasks is further 959

refined. It is an easily accessible tool and has been 960

widely used in real life. So we add it as an advanced 961

baseline. 962

D Appendix: Guideline Categories 963

E Appendix: Prompt for doing chain of 964

thought on GPT-3.5 965

966
Given the 15 guidelines describing the 967

code cell and its table output in the 968

Jupiter Notebook: 969

1. Value(Get the exact data attribute 970

values for a set of criteria) 971

2. Difference(A comparison between at 972

least two distinct attributes within the 973

target object, or a comparison between 974

the target object and previously 975

measured values) 976

3. Trend(Indicates a general tendency 977

over a period of time) 978

4. Proportion(Measure the proportion of 979

selected data attribute(s) within a 980

specified set) 981

5. Categorization(Select the data 982

attribute(s) that meet the condition) 983

6. Distribution(Show the amount of 984

shared value for the selected data 985

attributes or present a breakdown of all 986

data attributes) 987

7. Rank(Sort data attributes by their 988

values and display a breakdown of 989

selected attributes) 990

8. Association (Identify the useful 991

relationship between two or more data 992

attributes) 993

9. Extreme(Identify the data cases that 994

are the most extreme in relation to the 995

data attributes or within a specific 996

range) 997

10. Outlier(Determine whether there are 998

unexpected data attributes or 999

statistically significant outliers) 1000

11. Aggregation(Calculate the 1001

descriptive statistical indicators (e.g 1002

., average, sum, count, etc.) based on 1003

the data attributes.) 1004

12. Goal(Express user's goal. To say 1005

what value or function they tend to use 1006

for the later research) 1007

14

https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/titanic/
https://www.kaggle.com/competitions/competitive-data-science-predict-future-sales
https://www.kaggle.com/competitions/competitive-data-science-predict-future-sales
https://www.kaggle.com/competitions/spaceship-titanic
https://www.kaggle.com/competitions/spaceship-titanic
https://www.kaggle.com/competitions/us-patent-phrase-to-phrase-matching
https://www.kaggle.com/competitions/us-patent-phrase-to-phrase-matching
https://www.kaggle.com/competitions/jpx-tokyo-stock-exchange-prediction
https://www.kaggle.com/competitions/jpx-tokyo-stock-exchange-prediction
https://www.kaggle.com/competitions/ubiquant-market-prediction
https://www.kaggle.com/competitions/ubiquant-market-prediction

Guideline N Description Example

Value 286
(7.29%)

Get the exact data attribute values for a
set of criteria

The mean survived rate is 38.3 denoting
most of the passengers did not survived

Difference 138
(3.52%)

A comparison between at least two dis-
tinct attributes within the target object,
or a comparison between the target ob-
ject and previously measured values.

The difference though narrows down
considerably if we were to consider groups
of 2 woman travelers

Trend 31
(0.79%)

Indicates a general tendency over a pe-
riod of time.

table is displayed in a descending trend
in accuracy

Proportion 120
(3.06%)

Measure the proportion of selected data
attribute(s) within a specified set

8 of 10 passengers have parents

Categorization 74
(1.89%)

Select the data attribute(s) that meet the
condition.

1 denotes survived while 0 denote not
survived

Distribution 127
(3.20%)

Show the amount of shared value for
the selected data attributes or present a
breakdown of all data attributes.

Fare value range from 7 to 13

Rank 73
(1.86%)

Sort data attributes by their values and
display a breakdown of selected at-
tributes.

Selecting the top 3 classifiers for model
prediction

Association 165
(4.21%)

Identify the useful relationship between
two or more data attributes.

These two passengers are in the same
PClass

Extreme 227
(5.78%)

Identify the data cases that are the most
extreme in relation to the data attributes
or within a specific range

Model 1 has the highest accuracy

Outlier 257
(6.55%)

Determine whether there are unexpected
data attributes or statistically significant
outliers.

Age column has some missing values

Aggregation 125
(3.19%)

Calculate the descriptive statistical indi-
cators (e.g., average, sum, count, etc.)
based on the data attributes.

There are 2 classes in the Deck

Goal 771
(19.64%)

Express user’s goal. To say what value
or function they tend to use for the later
research

We use the Gaussian Process Classifier
to plot the confusion matrix

Reason 276
(7.03%)

Express reason using the data from the
table or explains the reasons why certain
functions are used or why a task is per-
formed.

We go through deleting the column for
Cabin deleting 2 rows for Emabarked and
since Age plays some role we can ...

Feature Engi-
neer

393
(10.02%)

The process of selecting, transforming,
extracting, combining, and manipulat-
ing raw data to generate the desired vari-
ables for analysis or predictive model-
ing.

Delete Name and Ticket due to it s high
cardinality

Other 870
(22.17%)

Other description providing supplemen-
tary details

It is quite handy when you can see all
at once column names counts unique counts
and data types

Table 11: We identify 15 guideline categories based on the types of descriptions in the Markdown cells which are
below the code whose output is a table.

13. Reason(Express reason using the data1008

from the table or explain the reasons1009

why certain functions are used or why a1010

task is performed.)1011

14. Feature Engineer(The process of1012

selecting, transforming, extracting,1013

combining, and manipulating raw data to1014

generate the desired variables for1015

analysis or predictive modeling)1016

15. Other(Other description providing1017

supplementary details)1018

1019

Q: When using Jupiter Notebook, the data1020

scientist wants to write a description1021

in the Markdown cell covering the code1022

cell and its table output. The1023

description should be less than 501024

tokens.1025

Table Sequence:1026

| passengerid| survived 1027

mean| 446.000000 | 0.383838 1028

Code: train = pd.read_csv("../input/ 1029

titanic/train.csv") 1030

take a quick look at the training 1031

data 1032

train.describe(include="all")" 1033

1034

A: The data scientist wants to write a 1035

description in Extreme guideline, the 1036

description he writes is: the mean 1037

survived rate is 38.3 denoting most of 1038

the passengers have not survived 1039

1040

Q: When using Jupiter Notebook, the data 1041

scientist wants to write a description 1042

in the Markdown cell covering the code 1043

cell and its table output: 1044

<Table> 1045

15

<Code>10461047

F Appendix: Prompt for doing in-context1048

learning on GPT-3.51049

1050
1051

Q: When using Jupiter Notebook, the data1052

scientist wants to write a description1053

in the Markdown cell covering the code1054

cell and its table output.1055

Table Sequence:1056

| passengerid| survived1057

mean| 446.000000| 0.3838381058

train = pd.read_csv("../input/titanic/1059

train.csv")1060

take a quick look at the training data1061

train.describe(include="all")"1062

1063

A: The data scientist wants to write a1064

description in Extreme guideline, the1065

description he writes is: the mean1066

survived rate is 38.3 denoting most of1067

the passengers have not survived1068

1069

Q: When using Jupiter Notebook, the data1070

scientist wants to write a description1071

in the Markdown cell covering the code1072

cell and its table output1073

<Table>1074

<Code>10751076

16

	Introduction
	Related Work
	TCDG - Task Description
	Input
	Output
	Evaluation Metrics

	nbDescrib
	Data Collection
	Data Preprocessing
	Guideline Category Description
	Train / Dev / Test Splits

	Experiments
	Baselines
	Results
	Human Evaluation
	Error Analysis

	Conclusion
	Appendix: Guideline-Code snippets-Table-Documentation Pair Examples
	Appendix: Kaggle competition link
	Appendix: Detail of Baseline Models
	Appendix: Guideline Categories
	Appendix: Prompt for doing chain of thought on GPT-3.5
	Appendix: Prompt for doing in-context learning on GPT-3.5

