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ABSTRACT

Neural Radiance Field (NeRF) is a novel view synthesis model for three-
dimensional space implicit representation, which has swept the field of computer
vision. However, vanilla NeRF overfits to a single scene and fails to synthesize
novel views of unseen scenes. It is training expensive to learn per-scene repre-
sentation so that generalization capability of NeRF has aroused tremendous at-
tention. Previous works address the challenge through multi-view learning meth-
ods and achieve remarkable results. They convert novel view synthesis to multi-
view image-based interpolation problem. These methods focus on image modality
merely, while overlooking other meaningful multimodal knowledge. We propose
MG-NeRF, a novel learning framework that incorporates multimodal information
to polish the generalization performance of NeRF. To our best knowledge, we are
the first to apply multimodal to NeRF’s generalization. We employ a vision lan-
guage pre-training (VLP) framework to generate text information for each scene.
Then, image and text features are fused and fed to NeRF. Due to the alignment of
image and text modalities, we bring in a semantic loss to encourage NeRF to syn-
thesize reasonable novel views. For positional encoding, a frequency regulariza-
tion mechanism is introduced to prevent NeRF from overfitting to high frequency
information. We show that MG-NeRF achieves appreciable achievement on novel
view synthesis of unseen scenes even trained with considerably less resources than
prior work. We will public our code once upon acceptance.

1 INTRODUCTION

Synthesizing photorealistic images has been a prominent subject of research in the fields of computer
vision and computer graphics, driven by the growing demand for virtual reality/augmented reality
(VR/AR) experiences. Traditionally, rendering algorithms such as rasterization and ray tracing have
been employed to generate high-quality synthetic images of a scene. However, these methods re-
quire explicit input of all physical parameters associated with the scene, including camera settings,
object materials, and illumination conditions. Estimating these properties from existing observa-
tions, known as inverse rendering, poses significant challenges when aiming to generate controlled
images that faithfully represent real-world scenes.

In contrast, neural rendering has emerged as a rapidly advancing field that enables compact repre-
sentations of scenes and leverages neural networks to learn rendering from existing observations.
Similar to traditional computer graphics, the primary objective of neural rendering is to generate
controlled, photorealistic images. This includes tasks such as new viewpoint compositing, relight-
ing, scene morphing, and compositing. One particularly popular example in recent years is the
NeRF (Mildenhall et al. (2020)). NeRF aims to decouple the modeling and rendering processes
by solely learning the 3D scene representation and relying on established rendering functions from
computer graphics for supervision. This approach has found applications in various domains, in-
cluding robotics, urban mapping, and autonomous navigation.

NeRF operates by capturing multiple images of a scene from known viewpoints, along with cor-
responding internal and external parameters for each image. Unlike traditional methods, NeRF
bypasses the intermediate 3D reconstruction process and directly synthesizes images from novel
views using only the positional information and the captured images. Under the NeRF-based rep-
resentation, the 3D space is represented as a collection of continuous and learnable radiation fields.
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Figure 1: Vanilla NeRF architecture. Vanilla NeRF approximate this continuous 5D scene repre-
sentation with an MLP network FΘ : (x, d) → (c, σ) and optimize its weights Θ to map from
each input 5D coordinate to its corresponding volume density and directional emitted color, where
x = (x, y, z) indicates location, d = (θ, ϕ) indicates view direction, c = (R,G,B) indicates color,
σ indicates volume density.

These fields are learned from the input viewpoints and positional information to determine density
and color attributes.

However, NeRF’s reliance on per-scene optimization renders it susceptible to overfitting, limiting its
ability to generate novel views in unseen scenes. This inherent limitation hinders the widespread ap-
plication of NeRF. Consequently, there is a pressing need for a more generalizable NeRF approach.
To address this challenge, researchers have explored various methods and techniques. MVSNeRF
(Chen et al. (2021)) pretrains on multi-view datasets and incorporate per-scene optimization at test
time. pixelNeRF (Yu et al. (2021b)) and IBRNet (Wang et al. (2021)) condition NeRF on a set
of source views by extracting scene features from those source views. NeuRay (Liu et al. (2022))
proposes a visibility computational mechanism that can quickly and effectively help infer occlusion
relations and improve rendering quality. GPNR (Suhail et al. (2022)) addresses the generalizability
problem of synthesizing unseen scenes by using a Transformer sequence with a 4D light field for
representation normalized positional encoding. GNT (Varma et al. (2022)) proposes an attention-
based generalizable NeRF Transformer architecture. These existing methods are based on the image
modality.

In this article, we present a novel approach, MG-NeRF, aimed at enhancing the generalization ca-
pabilities of NeRF by leveraging multimodal knowledge. Our contributions are significant as we
are the first to incorporate multimodal information into NeRF’s generalization process. To achieve
robust generalization across diverse scenes and multimodal data, we employ IMAGEBIND (Gird-
har et al. (2023)), a state-of-the-art zero-shot multimodal-aligned pretrained model, as the encoder
in our framework. Additionally, we introduce LoRA (Hu et al. (2021)), a technique for fine-tuning
IMAGEBIND (Girdhar et al. (2023)), to further enhance its performance. To refine NeRF, we intro-
duce semantic loss and frequency regularization, which play a crucial role in improving its accuracy
and fidelity. The proposed MG-NeRF framework is summarized in Fig. 2. Experimental results
demonstrate that MG-NeRF achieves remarkable performance and significant advancements in the
field. Our key contributions include:

1. The first multimodal learning framework that improves NeRF’s generalization ability.
2. Generated Text captions for each scene to get text modality information.
3. A semantic loss to encourage realistic rendering.
4. A frequency regularization mechanism to relieve artifacts.

2 RELATE WORK

NeRF Vanilla NeRF represents a scene as a continues 5D function FΘ : (x, d) → (c, σ) that outputs
color c = RGB and volume density σ in each direction d = (θ, ϕ) at each point x = (x, y, z).
It utilizes Multi-Layer Perception (MLP) to approximate the function, as Fig. 1 shows. Generally,
the training process of NeRF is self-supervised. It calculates Mean-Squared Loss (MSE) between
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Ground Truth G views and synthetic views S, which is called reconstruction loss Lrec, to optimize
the weight Θ, seen in Eq. 1. In order to make the representation more multi-view consistent, vanilla
NeRF limits volume density σ to location x, while limits color to location x and view direction d.

Lrec = ||S −G||2 (1)

Many branches of researches on NeRF have been developing prosperously. Mip-NeRF series (Bar-
ron et al. (2021); Verbin et al. (2022); Mildenhall et al. (2022)), CodeNeRF (Jang & Agapito (2021))
and PointNeRF (Xu et al. (2022)) study the fundamentals of NeRF. Instant-NGP (Müller et al.
(2022)), Plenoctree (Yu et al. (2021a)) and TensorRF (Chen et al. (2022)) speed up NeRF. GIRAFFE
(Niemeyer & Geiger (2021)), Edit-NeRF (Liu et al. (2021)) and CLIP-NeRF (Wang et al. (2022)) re-
alize conditional NeRF and manipulation. NeRF-W (Martin-Brualla et al. (2021)), NeRF++ (Zhang
et al. (2020)) and GIRAFFE (Niemeyer & Geiger (2021)) decompose NeRF into foreground and
background parts. iMAP (Sucar et al. (2021)), NICE-SLAM (Zhu et al. (2022)) and SCNeRF (Jeong
et al. (2021)) focus on pose estimation.

Pretrained Large Model A pretrained large model refers to a neural network model that has been
trained on extensive datasets, typically containing billions of parameters. This model exhibits strong
performance across a wide range of tasks. Through the training process, it acquires valuable fea-
tures from the vast amount of data, which can be effectively transferred to specific tasks. As a result,
it demonstrates excellent performance on multiple tasks without requiring extensive task-specific
retraining. The concept of pretrained large models has garnered significant attention in the field
of artificial intelligence and has already yielded remarkable outcomes in domains such as natural
language processing, computer vision, and speech recognition. BERT (Devlin et al. (2018)), GPT
(Brown et al. (2020)) and ViT (Dosovitskiy et al. (2020)) are three classical single-modality pre-
trained large models, while multimodal pretrained large models come out one after another. CLIP
(Radford et al. (2021)) adopts the idea of comparative learning and receives two different modalities
of data for training at the same time, and performs well in tasks such as text-image retrieval, image
classification, and text-based image generation. IMAGEBIND (Girdhar et al. (2023)) utilizes Image
Bind to learn an embedding space that contains information about all modalities. It achieves align-
ment among six modalities by aligning the embedding of each modality with the image embedding,
even if they are not observed simultaneously with each other.

The utilization of large models in the context of NeRF is gaining traction. CLIP-NeRF (Wang et al.
(2022)) employs CLIP (Radford et al. (2021)) as image/text encoder to extract the corresponding
feature embedding for the shape and appearance mappers to lean a local step in the latent space
for shape and appearance manipulation, respectively. FeatureNeRF (Ye et al. (2023)) trains NeRF
by distilling pre-trained vision foundation models such as DINO (Caron et al. (2021)) and Latent
Diffusion (Rombach et al. (2022)).

3 METHOD

The schematic overview of MG-NeRF is depicted in Fig. 2, illustrating its five key components:
data preparation, encoder, loss, frequency regularization, and the NeRF Network. In the data prepa-
ration stage, we employ Tag2Text (Huang et al. (2023)) to extend image data into text data and,
if necessary, obtain pose information using COLMAP (Schönberger & Frahm (2016); Schönberger
et al. (2016)). The encoder module leverages the power of IMAGEBIND (Girdhar et al. (2023))
and LoRA (Hu et al. (2021)) to extract aligned multimodal features, which are then fused before
being passed to the NeRF network. To address high-frequency information, we introduce a mask
mechanism as part of the frequency regularization process. In addition to the classical rendering loss
mentioned in Sec. 2, we propose a semantic loss to encourage more plausible rendering outcomes.
Finally, the NeRF network adopts a two-stage transformer architecture, similar to GNT (Varma et al.
(2022)), to effectively model the scene.

3.1 TEXT CAPTION GENERATION

The currently available neural radiation field datasets lack text modalities, requiring manual addition
of text descriptions. This can be done through two options: (1) manual labeling, and (2) automated
labeling. As discussed earlier, it is crucial for scene descriptions to exhibit semantic consistency,
meaning that the text description should remain the same regardless of the viewing angle. Given that
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Figure 2: The framework of the proposed MG-NeRF. A key contribution of our work is the exten-
sion of single-modal learning (specifically, image modality) to multi-modal learning, incorporating
both image and text modalities. Textual data is generated for each scene, and to effectively integrate
the information from different modalities, we employ a pretrained model that can generate a joint
embedding across these modalities, as opposed to using a conventional ResNet architecture. Fur-
thermore, we leverage the LoRA (Hu et al. (2021)) technique to efficiently fine-tune this pretrained
model. The resulting embeddings are then fused to enhance the feature representation. To address
the positional information, we employ a frequency regularization method that prevents NeRF from
overfitting to high-frequency components. Additionally, we introduce two types of loss functions
that work together during the optimization stage, facilitating improved learning of NeRF.

a scene often consists of tens or hundreds of images, manually annotating all the mainstream datasets
such as LLFF dataset (Mildenhall et al. (2019)), NeRF Synthetic dataset (Mildenhall et al. (2020)),
IBRNet Collected dataset, Spaces dataset (Flynn et al. (2019)), Google Scanned Objects dataset
(Downs et al. (2022)), RealEstate10K dataset (Zhou et al. (2018)), etc., which collectively contain
thousands of scenes and tens of thousands of images (approximately 827,284 images), would require
significant manpower and time. Moreover, different annotators may introduce varying degrees of
bias. Therefore, the use of pretrained large models is considered to address this task.

In this project, we propose the implementation of text description generation using the pretrained
visual-linguistic macromodel Tag2Text (Huang et al. (2023)). Tag2Text (Huang et al. (2023)) is an
efficient and controllable visual-linguistic model that generates text descriptions guided by tags. It
excels in recognizing tags for images across 3429 commonly used human-defined categories with-
out the need for manual annotations. The efficient tag guidance significantly enhances the perfor-
mance of the visual-linguistic model in both generation-based and alignment-based tasks. Moreover,
Tag2Text (Huang et al. (2023)) offers controllability, allowing users to input desired tags and flexibly
combine corresponding text based on the provided tags. For instance, when an image is uploaded,
Tag2Text (Huang et al. (2023)) can recognize the objects within it and assign appropriate tags, gen-
erating text descriptions guided by these tags. Alternatively, users can specify the tags themselves.
According to the semantic consistency of a single scene, we adopt one-scene-one-description prin-
ciple. Specifically, a description is applicable to all the images from the same scene, for “a bull-
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a large palm tree planted in a concrete planter

a large palm tree in a concrete planter in the lobby of a building

a large palm tree planted in a concrete planter in the lobby of an office building

a large palm tree planted in a planter in the lobby of an office building

a large palm tree planted in a concrete planter in the lobby of a building

a large palm tree in a planter in the lobby of a building

Figure 3: Text caption generation. For example, given several images from fern on the left (Milden-
hall et al. (2019)), we utilize the pretrained model to generate captions of each image and then get
six slightly different descriptions on the right. Next, we choose the longest one ”a large palm tree
planted in a concrete planter in the lobby of an office building” (in the red box) to describe the fern
scene.

dozer is a bulldozer from any perspective” (Jain et al. (2021)). Suppose N images in a scene are
given, denoted as {Ii}i=N

i=1 , we feed each image into Tag2Text model F and get N text descriptions
{F (Ii)}i=N

i=1 . Then, we calculate the length of each text description and select the longest one as the
unified text description of the scene, as Fig.3 shows.

3.2 ENCODER

Previous approaches have primarily relied on classic ResNet-based or transformer-based encoders.
In contrast, our work takes a different approach by leveraging the capabilities of IMAGEBIND
(Girdhar et al. (2023)) to harness multimodal information. Among the various large-scale multi-
modal pretrained models available, IMAGEBIND (Girdhar et al. (2023)) stands out as it incorporates
four additional modes of data: large-scale image-text pairs, self-supervised data, audio, depth, ther-
mal, and inertial measurement unit (IMU) readings. Notably, IMAGEBIND (Girdhar et al. (2023))
has demonstrated superior performance in zero-shot classification and retrieval tasks across each of
these modalities. Importantly, IMAGEBIND (Girdhar et al. (2023)) pioneers the integration of IMU,
depth, and heat modalities in cross-modal domain retrieval tasks. This expanded range of modalities
sets IMAGEBIND (Girdhar et al. (2023)) apart from models like CLIP (Zhou et al. (2022)) and
ONE-PEACE (Wang et al. (2023)), offering greater flexibility and making it a valuable asset for our
research.

In general, pretrained models often exhibit suboptimal performance when applied to new scenes or
tasks. To address this limitation, we introduce LoRA (Hu et al. (2021)), a novel PEFT (Parameter-
Efficient Fine-Tuning) method that facilitates efficient adaptation of pretrained large models to di-
verse downstream applications without the need to fine-tune all parameters of the model. Specifi-
cally, we extract image features and text features separately from the pretrained model and combine
them within an adapter-like structure to obtain enriched features, as illustrated in Fig. 4. These
enriched features are then fed into the NeRF network for further processing and synthesis.

3.3 LOSS

Our loss consists of two parts. The first is typical reconstruction loss Lrec, which calculates the L2
norm between ground truth and generated images, seen in Eq. 1. The second is semantic loss Lsec,
which meters the semantic similarity between the scene and corresponding images. We utilize text
captions T presented in Sec. 3.1 to represent scenes’ semantic information. Since IMAGEBIND
(Girdhar et al. (2023)) is multimodal aligned, we reuse its image modality encoder ϕimg to extract
generated novel views’ feature and text modality encoder ϕtxt to extract scenes’ feature. Then, these
different modalities’ features are encoded in a joint embedding space. After that, the semantic loss
Lsec is computed through cosine similarity, seen in Eq. 2.

Lsec = cos(ϕimg(S), ϕtxt(T )) (2)

Where S and T indicate novel views and text captions. At last, the total loss Ltot is weighted sum
of Lrec and Lsec with factors λ, µ, seen in Eq. 3. In practice, λ is set to 0.9 and µ is set to 0.1.

Ltot = λLrec + µLsec (3)
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Figure 4: Feature fusion pipeline. After data preparation, images and text captions are well-paired
when loading data. Images and text captions are input encoders fi, ft to get original features.
Then, linearly map text feature to higher dimension that aligns to image feature’s size. We put
forward an adapter-like structure (gray round rectangle) (Houlsby et al. (2019)) to perform feature
fusion. Processed features are concatenated and are exerted through downwards linear mapping,
GELU activation, upwards linear mapping, and scaling, where the scale factor S is set to 0.1 in our
experiments. At last, enriched feature (green blocks) is obtained by adding the output (blue blocks)
and original image feature (yellow blocks).
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Figure 5: Semantic similarity between images and text captions. To verify that generated text cap-
tions are aligned with images, we randomly select several images with related text captions across
different scenes of different datasets used in this article to compute the similarity in the manner of
(Radford et al. (2021)). Image set {ik}k=N

k=1 is corresponding to text caption set {tl}l=N
l=1 if k equals

to l. After ϕ encoding, we get Images’ embedding set {Ik}k=N
k=1 and text captions’ embedding set

{Tl}l=N
l=1 . We arrange each image embedding in a vector S = (I1, I2, ..., IN ) (shown in yellow

block), and text caption vector T = (T1, T2, ..., TN ) in the same way (shown in red block). T is
multiplied by ST on the left to get the distance confusion matrix C = ST T. The confusion matrix
is plot in the middle. Brighter color indicated more similar. After Softmax operation, we get an
identity matrix IN (bright yellow indicates 1 and dark purple indicates 0) that proofs generated text
captions are well aligned with images.

3.4 FREQUENCY REGULARIZATION

Since neural networks are biased towards learning low-frequency functions (Rahaman et al. (2019)),
resulting in the disability of NeRF to synthesize high quality about the parts of the image that have
drastic color and geometric variations (the high-frequency parts of the image). Researchers ad-
dress the problem by introducing a high-frequency function, γ(·), which maps the inputs to a high-
dimensional space, as Eq. 4 shows, where p refers to a vector. Concretely, p could be the location x
or view direction d. For p = x, the original 3D input is mapped to 3L space. In practice, L is set to
10 for γ(x) and 4 for γ(d).

γ(p) =
[
sin(20πp), cos(20πp), ..., cos(2L−1πp)

]
(4)
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Figure 6: Frequency regularization. The top-left subfigure shows that position information is input
to nerf directly after position encoding in accordance with Eq. 4. We bring in a novel frequency
regularization mechanism after position encoding, marked as green part in the bottom-left subfigure.
The frequency masks α exert on the encoded component to limit high frequency information Then,
the result is concatenated with origin input, which is fed to the NeRF Network. The frequency masks
is acquired by Eq. 5. The Visualization of whole frequency mask is plot in the right subfigure. As
is shown, our frequency mask value is belong to [0, 1], where ”0” means totally invisible and ”1”
implies not restriction. With training going, the limitation on high dimensions (3rd 59th) is gradually
eased, while the first three dimensions (i.e, the original input) are visible all the time.

The aforementioned high-dimensional mapping methods are suitable for training NeRF using tens
or hundreds of images. However, for a generalizable NeRF that aims to synthesize new viewpoints,
typically only a few reference images are provided, resembling a few-shot neural rendering sce-
nario. In such cases, the high-dimensional mapping approach can lead to overfitting of NeRF to
high-frequency information. Research has shown that high-frequency mapping accelerates the con-
vergence of the high-frequency components (Tancik et al. (2020)), which in turn results in the NeRF
overfitting to high-frequency information and losing some low-frequency information. Inspired by
(Yang et al. (2023)), we propose a frequency regularization mechanism that controls the visible
frequency range of the NeRF using masks during the training process. This gradually opens up
the frequency range from low to high frequencies, preventing the NeRF from overfitting to either
low-frequency or high-frequency information.

Different from (Yang et al. (2023)), we linearly gradually release high frequency component to
the NeRF. To begin with, for location x = (x, y, z), map it to γ(x) according to Eq. 4. Second,
concatenate γ(x) with x = (x, y, z) to get x′ = [x, γ(x)] that possesses both low and high frequency
information. Next, compute the frequency mask α. Given the length of x′ as p and total training
steps as r, the mask value α(u, v) of u-th dimension at v-th training step can be described as Eq. 5.

α(u, v) =


1 , u < 3

0 , u ≥ 3, r(u− 3)− pv < 0
pv − r(u− 3)

pr − r(u− 3)
, else

(5)

where u ∈ {0, 1, ..., p}, v ∈ {0, 1, ..., r}. Consequently, we obtain the entire frequency mask
α, seen in Fig. 6. Finally, the location input at the i-th training step is x′ ⊙ α[i], where ⊙ indicates
Hadamard Product (Element-wise Multiplication) (Million (2007)).

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Datasets. Following prior work (Varma et al. (2022)), we train our MG-NeRF on Real Icon Noface
dataset, Spaces dataset (Flynn et al. (2019)), IBRNet Collected dataset, IBRNet Collected dataset,
RealEstate10K dataset (Zhou et al. (2018)), Google Scanned Objects dataset (Downs et al. (2022)),
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Table 1: Quantitative comparison on LLFF and NeRF Synthetic

Models
Local Light Field Fusion (LLFF) NeRF Synthetic

PSNR↑ SSIM↑ LPIPS↓ Avg↓ PSNR↑ SSIM↑ LPIPS↓ Avg↓

pixelNeRF 18.66 0.588 0.463 0.159 22.65 0.808 0.202 0.078
MVSNeRF 21.18 0.691 0.301 0.108 25.15 0.853 0.159 0.057

IBRNet 25.17 0.813 0.200 0.064 26.73 0.908 0.101 0.040
NeuRay 25.35 0.818 0.198 0.062 28.29 0.927 0.080 0.032
GPNR 25.72 0.880 0.175 0.055 26.48 0.944 0.091 0.036
GNT 25.86 0.867 0.116 0.047 27.29 0.937 0.056 0.029

MG-NeRF 24.28 0.810 0.176 0.066 24.86 0.910 0.089 0.044

Table 2: Ablation study on LLFF and NeRF Synthetic

Models
Local Light Field Fusion (LLFF) NeRF Synthetic

PSNR↑ SSIM↑ LPIPS↓ Avg↓ PSNR↑ SSIM↑ LPIPS↓ Avg↓

w/o all 22.91 0.766 0.212 0.081 18.66 0.588 0.463 0.159
w/ Fusion 23.69 0.792 0.192 0.072 23.71 0.893 0.100 0.052
w/ LoRA 23.55 0.788 0.196 0.074 21.17 0.868 0.128 0.071
w/ Mask 23.90 0.800 0.184 0.069 24.62 0.902 0.095 0.047
w/ Lsec 23.75 0.795 0.190 0.071 22.12 0.877 0.122 0.064

MG-NeRF 24.28 0.810 0.176 0.066 24.86 0.910 0.089 0.044

and evaluate on LLFF dataset (Mildenhall et al. (2019)), NeRF Synthetic dataset (Mildenhall et al.
(2020)). The ratios of training datasets are 0.3, 0.15, 0.35, 0.15, 0.05, respectively.

Metrics. We report PSNR (peak signal-to-noise ratio), SSIM (structural similarity index mea-
sure) (Wang et al. (2004)) and LPIPS (learned perceptual image patch similarity) (Zhang et al.
(2018)) scores as quantitative results. We also report the geometric mean of MSE = 10−PSNR/10,√
1− SSIM and LPIPS, following (Niemeyer et al. (2022)).

Training / Inference Details. We employ a training strategy where we freeze the IMAGEBIND
(Girdhar et al. (2023)) and train NeRF Network with LoRA (Hu et al. (2021)). In all our experi-
ments, we train for 250,000 steps with 512 rays sampled in each iteration, and sample 64 coarse
points per ray, while GNT samples 512 rays in each iteration and 192 coarse points per ray. This
configuration allows us to train and evaluate MG-NeRF efficiently on only a single GeForce RTX
3090, showcasing its computational effectiveness.

4.2 GENERALIZATION TO UNSEEN SCENES

MG-NeRF is evaluated against six prominent methods for generalizable NeRF: pixelNeRF (Yu et al.
(2021b)), MVSNeRF (Chen et al. (2021)), IBRNet (Wang et al. (2021)), NeuRay (Liu et al. (2022)),
GPNR (Suhail et al. (2022)), and GNT (Varma et al. (2022)). The evaluation is conducted on the
LLFF dataset (Mildenhall et al. (2019)) and the NeRF Synthetic dataset (Mildenhall et al. (2020)).
Quantitative results are presented in Tab. 1, while qualitative results are illustrated in Fig. 7. Al-
though MG-NeRF achieves a slightly lower score compared to GNT, the current state-of-the-art
method, it excels in synthesizing novel views just as effectively. Futher, MG-NeRF performs ap-
proximately 51.7% worse than GNT on the NeRF Synthetic dataset while approximately 40.4%
worse on the LLFF dataset. This discrepancy can be attributed to the complexity of the LLFF
dataset (Mildenhall et al. (2019)), which contains more intricate semantic information compared
to the synthetic dataset, where the semantic information of out MG-NeRF could demonstrate its
influence better.
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(1) w/o all (2) MG-NeRF (4) Ground Truth(3) GNT

Figure 7: Experiments all-in-one results. (1) Without the proposed methods, artifacts are generated
apparently. (2)(3)(4) MG-NeRF is able to synthesize high quality novel views the same as GNT
(SOTA).

4.3 ABLATIONS AND ANALYSIS

We conducted five separate experiments to evaluate the effectiveness of the proposed four meth-
ods. The quantitative and qualitative results are presented in Tab. 2 and Fig. 7, respectively. Each
of the four methods demonstrates significant improvements compared to the baseline experiment
(w/o all). In the absence of our methods, noticeable artifacts are observed in the synthesized novel
views, as depicted in Fig. 7(1). Besides, we observed that the frequency regularization (Mask) tech-
nique notably enhances NeRF’s generalization ability, particularly on the NeRF Synthetic dataset
(Mildenhall et al. (2020)). This phenomena can be attributed to the fact that the NeRF Synthetic
dataset (Mildenhall et al. (2020)) contains images with transparent backgrounds, which tend to ex-
hibit more high-frequency information.

5 CONCLUSION

We have introduced MG-NeRF, a pioneering multimodal representation learning framework de-
signed to enhance the generalization capabilities of NeRF. In this framework, we generate text
modality data for the current mainstream image datasets commonly used in NeRF’s generalization
process. MG-NeRF leverages enriched features with semantic supervision and frequency regulariza-
tion to learn multimodal knowledge. Experimental results demonstrate that MG-NeRF significantly
improves the generalization ability of NeRF. There is still potential for further enhancement by in-
corporating additional modalities and resources. We anticipate that our work will inspire and guide
future research endeavors in this domain.
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