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Abstract

Acquiring a universal policy that performs multiple tasks is a crucial building
block in endowing agents with generalized capabilities. To this end, the field of
Multi-Task Reinforcement Learning (MTRL) proposes sharing parameters and
representations among tasks during the learning process. Still, optimizing for a
single solution that is able to perform various skills remains challenging. Recent
works attempt to address these challenges using a mixture of experts, though this
comes at the cost of additional inference-time complexity. In this paper, we intro-
duce STAR, a novel MTRL algorithm that leverages mode connectivity to share
knowledge across single skills, while remaining parameter-efficient at deployment
time. Particularly, we show that single-task policies can be linearly connected in
policy parameter space to the multi-task policy, i.e., task performance is maintained
throughout the linear path connecting the two policies. Our experimental evaluation
demonstrates that mode connectivity at training time induces implicit regulariza-
tion in the multi-task policy, surpassing related baselines on MTRL benchmarks
MuJoCo and Metaworld. Furthermore, STAR achieves competitive performance
even with methods that retain multiple models at inference time.

1 Introduction

Multi-Task Reinforcement Learning (MTRL) offers a solution for empowering agents with the ability
to handle various tasks, a property that is missing in the traditional Reinforcement Learning (RL)
setting, and demonstrated remarkable success across a diverse range of decision-making problems
[1–6]. The advantage of MTRL over single-task training is in its focus on finding common knowledge
that can be transferred across tasks. Albeit the numerous works that study the benefits of MTRL
theoretically [7, 8] and empirically [4–6], still crucial practical challenges remain. For instance,
tasks can interfere negatively with each other and slow down the learning process of a good solution
that can solve all tasks. Such issue has been highlighted and tackled in prior works [9, 10] from
the gradient perspective. Moreover, interference may happen due to high variance in the reward
magnitudes across tasks [2], or inconsistent task complexities [11, 12] that distract the learning
algorithm to focus on the more salient tasks. In turn, these challenges hinder the widespread adoption
of MTRL, and leave single-task training yet a viable alternative in some applications.

Many recent works have adopted the idea of sharing modular knowledge across tasks in the form of a
mixture of experts. This direction attempts to alleviate task interference by reducing the number of
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(a) Linear mode connectivity between multi-task θ̄ and
single-task policies: θ1 (door open), θ2 (window open).
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Figure 1: (a) Visualization of the task objectives induced after applying STAR on two Metaworld
tasks. (b) Illustrative diagram of the STAR topology in a 2D parameter space (θx, θy). Five single-
task policies are connected linearly to the multi-task policy (red node), through linear paths where
task-specific performance (differentiated by color) is maintained high.

tasks that share the same model. For instance, [5] introduce a method for learning a shared subspace
of abstract policies that can be interpolated to specific tasks. [4] leverage metadata to model task
relationships, enabling attention over shared representations produced by a mixture of state encoders.
More recently, [6] emphasize the value of sharing diverse representations by enforcing orthogonality
among outputs from a mixture of experts. However, a major drawback of these methods is the need
to store and utilize the mixture of models during inference time, which defeats the purpose of MTRL
to design efficient models for various skills. This limits the potential practical application of these
algorithms, as the overall size of the deployed models grows significantly with respect to vanilla
MTRL. This raises the question: how can we benefit from the mixture of experts for alleviating task
interference while having a unified, lightweight policy during inference?

To address this question, we explore a new perspective on the connection between single-task and
multi-task policies, focusing on the structure of the parameter space and the possible geometric
characteristics of the objective landscape. We are motivated by the study conducted in [13] that
demonstrates the existence of a linear path connecting multi-task and continual minima along which
the loss function is maintained low. This observation is closely related to a phenomenon known as
mode connectivity [14–16] which happens when different local minima are connected by a simple
path of non-decreasing accuracy. In supervised learning, mode connectivity proved useful in finding
better solutions [17], as well as alleviating the catastrophic forgetting in continual learning [13].

Building on the findings in [13], can we leverage these insights in the MTRL framework to find a fully
connected solution where all single-task policies are linearly connected to the multi-task one? In this
work, we design a MTRL algorithm that enforces a linear connectivity property in the parameter space
between the multi-task policy and the individual task-specific ones. The objective of our solution
is to guide the optimization of the multi-task policy by constraining its parameters to be linearly
connected to the single-task policies while maintaining high performance along each linear path.
During inference, we end up with a lightweight compact policy that have benefited from single-task
policies during training. In Figure 1(a), we show an illustrative example of the outcome of applying
our proposed approach to two tasks from Metaworld [18]. Although our approach is efficient during
inference, it faces scalability challenges as the number of tasks grows. To address this, we propose an
efficient MTRL algorithm that introduces a linear connectivity structure between a unified multi-task
policy and a set of group-specific policies. Each group-specific policy serves as a multi-task policy for
a cluster of related tasks. This design enables our method to scale effectively, matching the training
efficiency of mixture-of-experts approaches while maintaining a single, lightweight and efficient
multi-task policy at inference time.

To summarize, our contribution is threefold: (i) we shed light on a new approach for MTRL through
the lens of mode connectivity. We empirically investigate the existence of such solution by proposing
a novel MTRL algorithm, called STAR (see Figure 1(b)), designed to find a solution in parameter
space where all single-task policies are connected to the multi-task policy via linear paths of high-
performing policies. (ii) We propose a simple yet efficient algorithmic implementation that limits
the number of training experts via group-specific policies. (iii) Empirically, we demonstrate the
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effectiveness of our approach on two benchmarks – MuJoCo [19] and MetaWorld [18] – showing
the performance gain over single-model approaches while being more computationally and resource
efficient at inference than mixture-of-experts approaches. Additionally, we highlight the benefits of
exploiting the learned policy subspace to further enhance performance and robustness when additional
resources are available.

2 Related Works

2.1 Multi-Task Reinforcement Learning

MTRL [20] holds the promise of granting agents the capability of tackling multiple decision-making
problems. The central aspect of MTRL is sharing any form of knowledge between tasks that captures
their similarities and relations, hence introducing an induction bias that is lacking in single-task
training. Many works have studied the benefits of MTRL and showed the potential of learning multiple
tasks simultaneously [7, 8, 1, 9, 21, 4–6]. Although there is a theoretical benefit, as discussed in [7]
for learning multiple tasks jointly, practically, there are challenges that limit the ultimate superiority
of MTRL over single-task learning. Task interference is a crucial challenge that negatively affects the
MTRL learning process. [9] study the issue from the gradient perspective, hence proposing a gradient
manipulation technique that requires projecting the task gradient to the orthogonal direction to the
other tasks. Another line of work has focused on sharing knowledge in modular form for reducing
the interference. [5] propose to learn a subspace of abstract policies from which task-specific policies
are learned. On the other hand, [4] use metadata to capture task relations for attending over shared
representations generated by a mixture of state encoders. Recently, [6] study the importance of
sharing diverse representations between tasks through orthogonality of the output of a mixture of
experts. In this work, we investigate the potential of linearly connecting the multi-task policy to the
single-task ones through the lens of mode connectivity.

2.2 Mode Connectivity

Mode connectivity [14, 15, 13] is a research direction that studies the shape of the parameter space and
the geometric properties of the loss landscape of neural networks. [14, 15] observe that independently
trained neural networks are connected, in the parameter space, by a simple non-linear path along
which a low loss is maintained. Importantly, [17] propose an approach to learning a subspace of
neural networks from scratch and of different shapes. Moreover, the linear connectivity between
modes has been studied in the literature. A linear path can be found when the networks share a few
training epochs [16]. [22] note that different minima that rely on pre-trained model’s initialization
are linearly connected along which no performance barrier exists. Importantly, [13] investigated the
connectivity between multi-task and continual learning solutions in the supervised learning setting. It
turns out that, clearly, there is a linear connectivity between the different minima obtained from the
multi-task and the continual learning regime when the minima share the same initialization. [13] rely
on this finding in designing a continual learning approach that constrains the solutions to behave like
the multi-task ones through having linear connectivity with the previous tasks. In this work, we also
exploit this finding to propose an effective approach for MTRL by forcing the single-task policies
to be linearly connected to a common multi-task one. In RL, the mode-connectivity phenomenon
has been studied in the literature. [23] learn a subspace of policies for enhancing the robustness to
environment changes at test time. In addition, [24] demonstrate the advantage of the subspace of
policies in tackling the sequential learning of different tasks under the continual learning regime by
extending or keeping the subspace during learning. Motivated by these works, we investigate the
MTRL regime of simultaneously learning a set of different tasks. As far as we know, this is the first
work that studies the presence mode-connectivity phenomenon in the MTRL setting while showing
its implications in designing an effective MTRL algorithm.

3 Preliminaries

In RL, we consider the problem as a Markov Decision Process (MDP) [25, 26], which is defined by a
tupleM =< S,A,P, r, ρ, γ >, where S is the state space, A is the action space, P : S × A → S
is the transition distribution where P(s′ |s, a) is the probability of reaching s

′
when being in state

s and performing action a, r : S ×A → R is the reward function, ρ is the initial state distribution,
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and γ ∈ (0, 1] is the discount factor. The agent takes actions using a policy π that maps each state
s to a probability distribution over the action space A. The RL objective is to search for a policy
π that maximizes the expected discounted return J(π) = Eπ[

∑∞
t=0 γ

tr(st, at)]. In Deep RL, the
policy is encoded as a neural network πθ(at|st), with parameters θ, that maximizes the objective
J(πθ) := J(θ).

3.1 Multi-Task Reinforcement Learning

In MTRL, the agent interacts with T different tasks, where each task c ∈ C is a different MDP
Mc =< Sc,Ac,Pc, rc, ρc, γc >. The goal of MTRL is to learn a single policy π that maximizes the
expected discounted return averaged across all tasks J(θ̄) = Ec∈C [Jc(θ̄)], where θ̄ is the parameter of
the multi-task policy. In this work, we follow [4] in defining the MTRL problem as a Block Contextual
Markov Decision Process (BC-MDP), which is 5-tuple < C,S,A, γ,M′

> where C is the context
space, S is the true state space, A is the true action space, whileM′

is a mapping function that
provides the task-specific MDP components given the context c ∈ C,M′

(c) = {Sc,Ac,Pc, rc, ρc}.

3.2 Mode Connectivity

Following [17], we can find a subspace of neural networks of high-accuracy and diverse solutions
by learning the corresponding parametrization. The subspace is parameterized by a set of neural
networks (anchors). In the case of a line, we define it by the parameters of two neural networks,
θ1, θ2 ∈ Rd, where d is the number of dimensions of the parameters space. We learn the anchors by
optimizing for having high objective value for every parameter θ on the line,

θ = αθ1 + (1− α)θ2, (1)

where α ∈ [0, 1] is the convex combination weight.

To identify mode connectivity along a line, we adapt the measure, named error barrier height,
introduced in [16] to RL as shown:

B :=
1

2
(J(θ1) + J(θ2))−minαJ(αθ1 + (1− α)θ2), (2)

where B is the performance barrier height which should be close to zero in case of linear connectivity.

4 Methodology

Inspired by the findings in [13] for supervised learning, we aim to investigate mode connectivity
among policy networks in the context of MTRL. To this end, our approach attempts to find a set of
single-task policies where each is linearly connected—in policy parameter space—to the multi-task
policy. Next, we dive into the proposed method, describing the mathematical formulation and the
algorithmic details.

4.1 Problem Formulation

In Deep RL, we aim to optimize for a parameter vector θ ∈ Rd that parameterizes a policy π(a|s, θ)
such that the discounted return for a specific problem is maximized. On the other hand, MTRL
targets learning a universal policy that can perform multiple tasks. In the proposed framework, we
simultaneously search for the single-task policies and the multi-task policy through optimizing for
their corresponding parameters Θ =

{
θ1, . . . , θT , θ̄

}
that belong to a class of solutions Θ ∈ Ω, where

there is a linear path that connects every single-task policy θc to the multi-task policy θ̄ along which
high performance is maintained. This is achieved by optimizing the following constrained MTRL
optimization problem:

argmaxΘ∈Ω Ec∈C [Jc(θc) + Jc(θ̄)]

s.t. Bc :=
1

2
(Jc(θc) + Jc(θ̄))−minαJc(αθc + (1− α)θ̄) = 0, ∀c ∈ C,

(3)
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where the single-task and the multi-task policies are optimized to maximize the MTRL objective
while satisfying a set of constraints of performance barrier heights maintained zero on every linear
path connecting single-task and multi-task policies to enforce mode connectivity.

This constrained optimization problem can be simplified for practical reasons as optimizing for a
modified MTRL objective:

argmaxΘ∈Ω Ec∈C,α∼U(0,1) [Jc(αθc + (1− α)θ̄)], (4)

where α is sampled from a uniform distribution U(0, 1). Note that when α = 0 is sampled, we
optimize for the MTRL policy. In contrast, sole single-task policies can be found by setting α = 1.

4.2 STAR: Multi-Task Reinforcement Learning via Mode Connectivity

Given the general formulation, we present a novel algorithm, named STAR, which can be built on top
of any off-policy actor-critic RL algorithm. In this work, we use Soft Actor-Critic (SAC) [27] as the
base RL method. It is worth mentioning that the name STAR is inspired by the STAR-topology in
networking due to the similarity in its shape to the target solution.

Policy Update. Following Eq. 4, we optimize for having a linear path that connects each single-task
policy with the multi-task one. In this context, connectivity implies that performance is maximized
and maintained high for all policies across the linear subspace. To achieve this, we minimize the actor
loss at the anchors (single-task and multi-task), as well as along the line by uniformly sampling the
random convex combination weight(s) α for each task. In turn, we solve the following optimization
problem:

argminΘ∈Ω Ec∈C,Dc∼Rc [Lc
actor(θc,Dc)︸ ︷︷ ︸

Single-Task

+Lc
actor(θ̄,Dc)︸ ︷︷ ︸
Multi-Task

+Eα∼U(0,1)[Lc
actor(αθc + (1− α)θ̄,Dc)]︸ ︷︷ ︸
Mode Connectivity

],

(5)
where Dc is a batch of transitions for task c sampled from a replay buffer of the corresponding task.
In this work, the actor loss follows the loss function used in SAC.

Q Update. For each task c, we model a separate critic function Qc
ϕ(s, a, α) defined as a neural

network with a learnable parameter ϕ. The critic function models the state-action value function of
every policy on the line. We learn the parameter ϕ of each critic function by minimizing the critic loss
considering the state-action value function of the single-task policy (α = 1), the multi-task policy
(α = 0), and uniformly sampled convex combination weight(s) α for modeling the interpolated
policies on the line:

argminϕ Ec∈C,Dc∼Rc [Lc
critic(ϕ, α = 1,Dc)︸ ︷︷ ︸

Single-Task

+Lc
critic(ϕ, α = 0,Dc)︸ ︷︷ ︸

Multi-Task

+Eα∼U(0,1)[Lc
critic((ϕ, α,Dc))]︸ ︷︷ ︸

Mode Connectivity

].

(6)
Sharing a task-specific critic model across all policies on the line is an algorithmic component that
effectively models the state-action value functions of the policies on the line and proves crucial for
enforcing a linear subspace of high-performing solutions.

The linear connectivity is enforced by optimizing for the multi-task and the single-task policies, as
well as a number of randomly selected policies on the line interpolated via the convex combination
parameter α. The number of the sampled weights is a hyper-parameter of our method which can
be tuned for each MTRL setting. Our ablation study shows that linear connectivity may be ensured
even when sampling a single weight for each optimization update, hence reducing the computational
overhead required (see Appendix for details). It is worth mentioning that, when computing the loss for
multiple interpolated policies on the line, we evenly split the data batch among them for maintaining
consistent training speed. Nevertheless, the loss is computed on the full batch for the single-task and
multi-task anchors.

Exploration. One of the pros of building such linear paths, is having a continuous subspace of policy
parameterizations which can be used for exploration. In our approach, we leverage this flexibility by
moving on the line of each task with a constant predetermined step at every episode. At each episode,
we then generate a complete rollout and store it in the replay buffer for training. We are motivated by
prior works [23, 24] as well as our empirical study that shows the performance gain when sharing
data between the single-task policy, multi-task policy, and the various policies on the line.
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(a) Metaworld: Reach θ1, Peg Insert Side θ8
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(b) Mujoco: Ant θ1 and Hopper θ3

Figure 2: Linear mode connectivity study showing how different single-task policies θc are connected
to a multi-task policy θ̄ after applying STAR on Metaworld and Mujoco. In each sub-figure, the
heatmaps on the left and right display the objective landscapes for the first and second tasks referenced
in the caption, respectively.

4.3 Mode Connectivity Analysis

We investigate both the existence of the intended solution and the effectiveness of our approach in
discovering it by empirically evaluating STAR in two distinct MTRL scenarios—Mujoco [19] and
Metaworld—[18] with various numbers of tasks, 4 and 10, respectively. In both settings, STAR
successfully converges to a fully connected solution in which each single-task policy is linearly
connected to the multi-task policy via a path that maintains high performance throughout. In Fig. 2,
we visualize a subset of this solution by projecting the task objective landscape onto a plane defined
by two single-task policies and the multi-task policy. As shown, each single-task policy is connected
to the multi-task policy by a trajectory of consistently high-performing policies. Please refer to the
appendix for visualizations of the complete solution.

4.4 Implementation Details

Without loss of generality, we add flexibility to the practical implementation of the algorithm by
allowing for grouping of the single-task policies. More precisely, we allow STAR to conveniently
reduce the number of training experts required by distributing the tasks across predefined clusters, and
learning single expert policies for each group—as in standard MTRL. The global multi-task policy is
then linearly connected to each expert. The number of experts k = 2, ..., T +1 represents the number
of task groups in addition to the global multi-task policy. This can yield up to T + 1 training policies
as in the original STAR configuration, which we refer to as STAR (full) throughout our experiments.
The overall STAR algorithm combines the training effectiveness of mixture-of-experts approaches
with the inference efficiency of single-model methods. Nevertheless, notice that our JAX-based [28]
implementation allows for efficient and parallelized training regardless of the hyperparameter k.
Refer to the Appendix for an ablation on various grouping strategies.

5 Experimental Results

In this section, we empirically demonstrate the advantage of using our approach on two MTRL
benchmarks, namely MuJoco [19], and Metaworld [18]. Moreover, we present a series of ablation
studies for an in-depth analysis of the different components of our method, besides, showing the
robustness of the subspace in handling different changes in the environment as highlighted in [23].

Baselines. We evaluate our approach against a set of related single-model and mixture-of-experts
baselines. (i) SAC [27]: representing the single-task performance; (ii) Multi-Task SAC (MTSAC):
adaptation of SAC to MTRL setting where we concatenate the context (as one-hot encoding) to
the state representation fed to the policy; (iii) Multi-Head MTSAC (MH-MTSAC): SAC with a
Shared-Bottom architecture [29]; (iv) PCGrad [9]: a MTRL algorithm that handles task-interference
through projecting gradients; (v) Mixture Of ORthogonal Experts (MOORE) [6]: a recent state-of-
the-art MTRL algorithm that enforces diversity across a set of shared experts. (vi) MOE [6]: same
architecture as MOORE but without the orthogonality constraints on the representations. On top, we
have two more baselines in Metaworld that utilize pretrained embeddings of the task instructions:
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(e) All (Performance)

STAR
MOORE
MOE

Single-Task
PCGrad

MT-SAC

Num of experts at inference time
x1 x3 x4 x5

1 3
4

Num of experts at
training time

MH-MTSAC

5

(f) All (Performance vs. Efficiency)

Figure 3: The performance of STAR (Multi-task policy) and the related baselines on the MT4 of
MuJoCo, showing the Average Return on the four environments while reporting the normalized
Average Return relative to the single-task performance as an overall metric (e). The black dashed line
represents the final single-task performance of SAC on each environment. We report the mean and
the 95% confidence interval across 10 seeds. For STAR, the number of sampled α weights is 1. For
MOE, MOORE, and STAR, the number of experts is 3. We finally explore the performance-efficiency
trade-off for various number of training experts in (f), highlighting the number of experts retained at
inference time by each method.

(vii) FiLM [30]: is a task-conditioned policy using the FiLM module, (viii) CARE [4]: is an
attention-based approach that learns a mixture of state encoders conditioned on metadata of the tasks.

5.1 MuJoCo

For MuJoCo benchmark, the MTRL setting involves four different tasks: Ant, Half-Cheetah, Hopper,
and Walker. The environments have different state and action dimensionality, hence we perform a
padding process to the state and action spaces complying with the BC-MDP definition in Sec. 3.1.

In Figure 3, we compare the performance of the multi-task policy of STAR against both solo
model and mixture-of-experts baselines across various MuJoCo environments. Overall, STAR
consistently strikes a strong balance across tasks, outperforming all baselines on average. While
MOORE surpasses STAR on the Ant environment (Figure 3(a)), it struggles to maintain competitive
performance elsewhere, likely due to being overly influenced or distracted by a single environment.
On Walker (Figure 3(d)), our approach shows a noticeable performance gap to the closest baseline
while exceeding the single-task performance. Finally, Figure 3(e) shows that STAR achieves the
highest average performance across environments, while utilizing a single model during inference.

In Figure 3(f), we take a closer look at the training effectiveness and inference efficiency. The plot
shows the final performance of each method, along with the number of experts used during training
and inference. Single-model approaches underperform, as they rely solely on a single expert during
training. Mixture-of-experts methods improve performance but at the cost of increased inference
complexity. In contrast, STAR offers a more favorable trade-off—effectively leveraging multiple
experts during training while retaining the efficiency of single-model inference. Notably, STAR’s
performance scales with the number of training experts, unlike MOORE and MOE, which saturate.

5.2 Metaworld

To assess the scalability of STAR and its ability to discover solutions that satisfy the mode connectivity
property, we benchmark our approach on the Meta-World suite [18], a widely adopted benchmark for
MTRL comprising a diverse set of robotic manipulation tasks. Specifically, we focus on the MT10-
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Table 1: The performance of STAR and the related baselines on Metaworld MT10 with random goals.
We then average the success rate across all 10 tasks, computed after evaluating on all 50 goals. We
report the mean and the standard deviation of the metric across 10 seeds. For STAR, we consider the
performance of the multi-task policy. The number of sampled α weights is 4.

Method Success Rate (%) ↑ Train → Test Parameters (M) ↓
SAC [18] 85.6±4.8 3.40 → 3.40
MTSAC [18] 70.4±4.8 0.34 → 0.34
MH-MTSAC [18] 75.6±6.4 0.37 → 0.37
PCGrad [9] 73.5±7.6 0.34 → 0.34
FiLM [30] 51.9±9.5 0.45 → 0.45
CARE [4] 67.4±6.5 0.51 → 0.51
MOE [6] 77.7±9.6 1.38 → 1.38
MOORE [6] 89.7±0.3 1.38 → 1.38

STAR (ours) 85.3±5.8 1.38 → 0.34

rand setting, which challenges a single robot to perform 10 distinct skills, each with randomized goal
positions. Evaluating on Metaworld provides a rigorous test of STAR’s ability to adhere to the mode
connectivity property, thereby guiding the multi-task policy toward regions of high performance in
parameter space.
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Figure 4: Average success rate of
STAR vs. a Distillation approach on
Metaworld MT10-rand scenario.

In Table 1, we present the final success rates of all baselines
after 20 million training steps (2 million per task), along with
their respective parameter counts during both training and in-
ference. As the results show, STAR exhibits a good trade-off
between performance and inference-time efficiency. By effec-
tively leveraging a mixture of models during training, enforcing
the linear mode connectivity property, STAR improves the per-
formance of the multi-task policy relative to single-model ap-
proaches. While MOORE achieves higher overall success rates,
it incurs a significant overhead by requiring all expert mod-
els to be stored, accessed, and activated during inference—a
limitation that STAR overcomes with minimal compromise in
performance.

5.3 Relation to Distillation

The objective of our approach is to leverage a mixture of ex-
perts during training to guide the multi-task policy parameters
toward regions of high performance.To achieve this, we impose
constraints that enforce the existence of linear paths in parameter space—connecting each expert
to the multi-task policy—along which performance remains consistently high. A similar objective
was explored in prior work, notably Distral [1], which learns a set of single-task policies that distill
their knowledge into a centralized policy. This shared policy, in turn, regularizes the training process
by serving as a prior. This comparison raises an important question: Can we distill the experts’
knowledge directly, instead of relying on mode connectivity?

To answer this question, we implemented a Distral-inspired baseline built on our framework, where
knowledge is distilled from a mixture of experts—rather than from single-task policies—by mini-
mizing the Kullback–Leibler (KL) divergence between the multi-task policy and each expert. This
replaces the role of enforcing the mode connectivity property. In Figure 4, we compare STAR
against this distillation baseline on the MT10-rand scenario from Meta-World. STAR outperforms the
baseline in both sample efficiency and final performance, highlighting its effectiveness. These results
suggest that STAR offers a compelling alternative to distillation in MTRL, potentially achieving a
similar goal by implicitly distilling expert knowledge through the lens of mode connectivity.
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Table 2: Study on different inference strategies for STAR and STAR (full) conducted on Mujoco
MT4, and Metaworld MT10 with random goals. We average the performance metric across all tasks,
computed at the end of training. We report the mean and the standard deviation of the metric across
10 seeds. We report the normalized average return for Mujoco and the success rate in Metaworld.
The number of sampled α weights is 1 and 4 on Mujoco and Metaworld, respectively.

Inference Strategies Mujoco Metaworld

STAR STAR (full) STAR STAR (full)

Group/ Single-Task 1.01±0.08 1.18±0.09 85.1±5.8 85.6±7.7
Midpoint 1.03±0.07 1.22±0.06 85.6±5.7 85.9±7.7
Multi-Task 1.04±0.08 1.21±0.08 85.3±5.8 85.8±7.7
Max-on-Line 1.09±0.07 1.27±0.06 85.9±5.8 86.1±7.7

5.4 Beyond the Multi-task Policy

We finally explore novel possibilities in leveraging the mode connectivity induced by STAR at training
time. Particularly, we study how moving across the linear manifold of each task affects the overall
performance and its robustness to dynamics variations.

STAR for novel inference strategies. In practice, performance naturally exhibits slight variations
along the linear subspace induced by STAR, as mode connectivity can only be promoted via sample
estimates. We notice that, when resources permit, higher performance can be achieved at inference
time by searching for the best-performing policy across the linear subspace connecting the multi-
task policy with the underlying task-specific expert—referred to as Max-on-Line. In Table 2 we
report the performance for a collection of inference strategies that leverage the star-shaped manifold,
conducted on Mujoco and Metaworld. We conclude that the multi-task policy offers a favorable
trade-off between performance and efficiency, with only a modest performance gap compared to
more resource-intensive strategies.
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Figure 5: Robustness analysis.

STAR for robustness. We further ex-
plore whether policies across the lin-
ear path between the single-task and
multi-task anchors may exhibit dif-
ferent robustness capabilities, despite
the similar performance. In Figure 5,
we present two instances of this study
where we change the nominal body
mass in the Hopper environment by a
factor in range [0.1, 2.0], in addition
to the scaling of the nominal value of
the ground friction coefficient in the
Half-Cheetah environment by a factor
between [0.01, 2.0]. We illustrate how
the policies on the line handle varying
dynamic parameters. For instance, as
we move towards the multi-task pol-
icy, our approach demonstrates high
robustness capabilities with respect
to the mass changes, especially in
the low mass range as shown in Fig-
ure 5(a). On the other hand, in Fig-
ure 5(b), the subspace demonstrates
more robustness to the changes of the friction coefficients as we move to the single-task policy end
(α = 1). Comparing our approach to a single-model approach MTSAC and a mixture-of-expert
one MOORE in Figures 5(c) and 5(d), we surely notice the edge of the subspace for being robust to
different changes to various environments. In Appendix, we include the complete robustness study
conducted on all Mujoco tasks.
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6 Conclusion and Discussion

In this work, we explored mode connectivity in MTRL and empirically showed that linear paths in
parameter space can link the multi-task policy to each single-task policy, preserving high performance
throughout. Leveraging this insight, we introduced STAR, a scalable and efficient MTRL algorithm
that enforces linear mode connectivity between a global multi-task policy and a mixture of expert
policies. This formulation steers the multi-task policy toward regions of high performance that satisfy
the connectivity constraint. Empirically, STAR achieves a strong balance between performance
and inference-time efficiency—an advantage over existing mixture-of-experts methods in MTRL.
Furthermore, we showed that the learned subspace supports flexible inference strategies—when
resources permit—and demonstrates robustness to environmental variations at test time.
Limitations. While we evaluate our approach on two distinct benchmarks, including MuJoCo tasks
with varying morphologies, we acknowledge that further investigation into the relationship between
mode connectivity and task similarity is important. Our method assigns an expert to groups of tasks,
and we include an ablation study on this clustering in the Appendix. Exploring alternative clustering
strategies, including learning-based approaches, presents a promising direction for future research.
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Figure 6: Visualization of the STAR topology in case of Metaworld MT10 and MuJoco MT4 scenarios.
Each is a contour plot of the objective landscape of all tasks summed and clipped to 1, computed on a
2D parameter space resulted from projecting each 2D plane which contains a pair of task policies and
the multi-task one. These contour plots are the realization of the illustrative diagram of the STAR
topology in Figure 1(b)

A Experimental Results on Metaworld MT50

To evaluate the scalability of STAR, we tested our approach on the MT50 benchmark from Metaworld,
which comprises 50 challenging yet related robotic manipulation tasks. As in the MT10 setup,
we consider a more complex variant—MT50-rand—in which both goal and object positions are
randomized. We benchmark STAR against the same set of baselines as in the MT10 experiment,
excluding PCGrad due to limited computational resources. Table 3 presents the final performance
of each approach, reported as the success rate, along with the number of parameters (in millions)
used during training and inference. SAC outperforms all multi-task reinforcement learning (MTRL)
approaches by leveraging 17M parameters—dedicating a separate policy to each task. Conversely,
MOORE [6] achieves the highest performance among MTRL methods while utilizing around 1.5M
parameters during both training and inference. Despite its strong performance, MOORE presents
practical limitations due to the need to deploy all expert models at inference. In contrast, STAR offers
a substantial performance gain over single-policy baselines like MTSAC by leveraging a mixture of
experts during training and preserving a lightweight multi-task policy at test time. This demonstrates
STAR’s ability to effectively trade off a modest drop in accuracy for substantial gains in deployment
efficiency.

Table 3: The performance of STAR and related baselines on Metaworld MT50 with random goals
(MT50-rand). We report the final success rate, computed after 2 million training steps per task and
averaged across all 50 tasks. We report the mean and the standard deviation of the metric across 10
seeds. For STAR, we consider the performance of the multi-task policy. In addition, the number
of sampled α weights used during training is 4. Moreover, the number of experts is 4 for STAR,
MOORE, and MOE.

Method Success Rate (%) ↑ Train → Test Parameters (M) ↓
SAC [18] 75.0±3.6 17.0 → 17.0
MTSAC [18] 53.2±2.4 0.36 → 0.36
MH-MTSAC [18] 49.6±1.7 0.50 → 0.50
FiLM [30] 47.3±2.4 0.48 → 0.48
CARE [4] 50.8±2.1 0.57 → 0.57
MOE [6] 59.7±3.4 1.51 → 1.51
MOORE [6] 69.6±2.2 1.51 → 1.51

STAR (ours) 60.3±3.1 1.44 → 0.36
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B Additional Empirical Analyses

In this section, we present the complete results from experiments discussed in the main paper as well
as other studies and findings that could not fit because of the limited space.

B.1 Clustering strategies

As discussed in Section 4.4, the original STAR, referred to as STAR (full), suffers from limited
scalability due to its reliance on connecting individual single-task policies with a multi-task policy.
This design leads to a linear growth in the number of parameters as the number of tasks increases. To
address this limitation, we propose replacing the single-task policies with a mixture of group-specific
multi-task policies. Each group comprises a subset of tasks, with a dedicated policy trained to handle
that subset. In this work, we cluster tasks into groups using one of the following strategies:

• Naive: Tasks are grouped sequentially based on their task IDs. Given T tasks and k − 1

groups, the first
⌊

T
k−1

⌋
tasks are assigned to the first group, and so on, with any remaining

tasks allocated to the final group. Here, k denotes the total number of policies, including
the k − 1 group-specific policies and one global multi-task policy at the center of the star
topology.

• Random: Tasks are randomly assigned to groups for each seed while maintaining approxi-
mately balanced group sizes.

• Manual: Groups are manually constructed based on prior knowledge of task relationships.

Since the MuJoCo scenario includes only four tasks, we adopt the random clustering strategy for all
corresponding experiments. In contrast, we apply the manual clustering strategy in both the MT10
and MT50 scenarios of Metaworld. For instance, an illustrative diagram highlighting the clusters
used in the MT10 scenario is presented in Figure 7.

To assess the impact of different grouping strategies on performance, we evaluate our approach using
each strategy on the Metaworld MT50 benchmark. Table 4 presents the final success rate after 2
million training steps per task. While the observed performance differences across strategies are
relatively modest, results indicate a trend toward improved outcomes when more thoughtful grouping
is applied. These findings motivate future investigation into automated, learning-based clustering
approaches that leverage task-related information, such as language instructions.

Additionally, we include the performance of various inference strategies on the MT50 benchmark to
complement the results shown in Table 2. As observed, the multi-task policy achieves performance
comparable to other inference methods, offering a good trade-off between performance and inference-
time efficiency. In contrast, selecting the best-performing task-specific policy yields the highest
success rates but comes at a higher computational and resource cost.

Table 4: Study on different inference strategies for STAR conducted on Metaworld MT50 with
random goals. In addition, we show the performance of STAR with different clustering strategies. We
average the success rate across all 50 tasks, computed at the end of training (after 2 million training
steps per task). We report the mean and the standard deviation of the metric across 10 seeds. The
number of sampled α weights is 4. The number of experts k is 4 (3 group-specific policies and a
global multi-task policy).

Inference Strategies Clustering Strategies

Naive Random Manual

Group 57.7±2.7 59.1±3.2 59.5±3.4
Midpoint 58.5±3.1 60.0±3.2 60.3±3.5
Multi-Task 58.5±2.4 59.9±3.4 60.3±3.1
Max-on-Line 59.1±2.7 60.5±3.2 61.2±3.2
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Figure 7: An illustration of the manual clusters used for the Metaworld MT10 scenario. STAR
(k = 4) learns a mixture of 3 group-specific policies, one policy per group, in addition to the global
multi-task policy at the center of the star topology.

B.2 Ablation on algorithmic components
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Figure 8: Comparison of STAR,
STAR w/o MC, and the Distillation
baseline on the Metaworld MT10-
rand benchmark. We report the av-
erage success rate across all tasks
during 2 million training steps per
task, with mean and the 95% con-
fidence interval computed over 20
seeds. All methods evaluate the per-
formance of the multi-task policy.
For STAR, we also report the per-
formance using the max-on-line in-
ference strategy. The number of
experts is set to 4; for STAR, 4
α values are sampled along each
linear path. The distillation base-
line uses a KL-divergence regular-
ization weight of λ = 0.5.

Our approach, STAR, aims to couple the training of a mixture of
policies with a central multi-task policy by enforcing the mode
connectivity (MC) property. Two key components contribute to
forming a star topology that achieves high performance along
each linear path connecting the multi-task policy to a group-
specific policy. In Section 4, we highlight those components
which are: how the state-action value function is modeled for
each path and how rollouts are collected per task.

For critic design, we model the state-action value function
along each linear path using a dedicated critic network. Specif-
ically, STAR employs k − 1 critic networks—one for each
group—while STAR (full) uses a separate critic per task. This
design allows more accurate modeling of value functions in the
shared subspace, thereby enhancing the quality of the learned
paths. The following section examines different design choices
for the critic model.

Additionally, our approach introduces another form of coupling
during data collection. We leverage the full set of policies
on the line, including both the multi-task and group-specific
policies, for exploration and rollout generation. This strategy
enriches the collected transitions for each task by introducing
diverse behaviors from multiple policies.

To evaluate the contribution of these two components, we con-
duct an ablation study on the Metaworld MT10 benchmark,
comparing STAR with and without mode connectivity. As
shown in Figure 8, a performance gain is observed for STAR
w/o MC due to our critic design and shared rollouts. When
mode connectivity is enforced, performance further improves
due to two factors: the constraint of maintaining high perfor-
mance across the linear paths, and the use of multiple intermediate policies for data collection.
This setup helps position the multi-task policy in a high-performing region of the parameter space.
Furthermore, when applying the max-on-line inference strategy—selecting the best policy along the
line per task—we observe an additional performance gain due to task-specific specialization.

Figure 8 also compares our method to a distillation baseline. Surprisingly, distilling expert knowledge
into the multi-task policy via KL divergence (see Equation 7) yields degraded performance, despite
leveraging the same critic and shared rollout components. This result suggests that direct distillation
may introduce harmful regularization or insufficient transfer when performed online under the given
task diversity.

Ldistill-actor = Lactor + λ Eg∈G [DKL(πθ̄ || πθg )], (7)
where G is the cluster space, and g is the cluster identifier.
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Figure 9: Study on the influence of the critic design choice on the performance of multi-task policy
of STAR, conducted on the MT4 of MuJoCo, showing the Average Return on the four environments
while reporting the normalized Average Return relative to the single-task performance as an overall
metric (e). We report the mean and the 95% confidence interval across 10 seeds. The number of
sampled α weights is 1. The number of experts k is 3.

B.3 Critic design ablation

In this section we examine how the choice of critic architecture shapes the performance of STAR’s
multi-task policy. We evaluate three design choices:

• Single critic: A single neural network Q(s, a, c, α) estimates the state–action value function
for all policies in the star topology. Task context c and convex-combination coefficient α are
concatenated to the state–action input.

• Critic w/ MC: We employ k separate critics—one per task group (task in case of STAR
(full) plus one for the multi-task policy—and impose mode connectivity constraints on their
parameters, mirroring the constraint used for the policies themselves.

• Mixture critic: Each of the k − 1 linear paths connecting a group-specific policy to the
multi-task policy is assigned its own critic model that is conditioned on task context c and
combination weight α.

Figure 9 summarizes the results on the MuJoCo MT4 benchmark, with learning curves for individual
tasks (Figures 9(a)–9(d)) and for the average across all environments (Figure 9(e)). The study
demonstrates the influence of the critic choice on the performance of the multi-task policy of STAR.

The findings indicate that a single critic lacks the capacity to model the various value functions
of the policies in the star topology. Moreover, imposing mode connectivity on Q-functions hurts
learning—most clearly on the Ant task (Figure 9(a))—potentially because (i) Q-function landscapes
do not exhibit the same connectivity as policy landscapes, and/or (ii) bootstrap targets create a
non-stationary objective. To our knowledge, mode connectivity for Q-functions has not been explored
previously in the literature, motivating future work. By contrast, allocating a dedicated critic to each
linear path consistently delivers the best performance, underscoring the importance of this design
choice in STAR.
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Figure 10: Robustness analysis of STAR on the four Mujoco environments with respect to changes in
mass. Each heatmap shows the performance across the linear subspace with respect to changes in the
dynamics parameter. We report the mean of the Average Return metric across 10 seeds. The number
of experts is 5 (STAR (full)) and the number of sampled α weights is 1
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Figure 11: Robustness analysis of STAR on the four Mujoco environments with respect to changes in
friction. Each heatmap shows the performance across the linear subspace with respect to changes
in the dynamics parameter. We report the mean of the Average Return metric across 10 seeds. The
number of experts is 5 (STAR (full)) and the number of sampled α weights is 1

B.4 Robustness analysis

To complete our discussion on the robustness of the learned subspace, we provide the full results from
our study. Figures 10 and 11 show heatmaps depicting policy performance along the interpolation
line under variations in mass and friction, respectively, across four Mujoco environments.

Additionally, we compare the robustness of our approach, STAR, by reporting the maximum perfor-
mance along the interpolation line against the MOORE and MTSAC baselines. The corresponding
quantitative results under varying mass and friction conditions are presented in Figures 12 and 13.

All methods are trained on the nominal tasks where the mass and friction factors are set to 1. The
analysis demonstrates how different methods behaves when changes happen to dynamic parameters
at inference time.
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Figure 12: Robustness analysis, comparing STAR to MOORE and MTSAC baselines on the four
Mujoco environments with respect to changes in mass. We report the mean and the 95% confidence
interval of the Average Return metric across 10 seeds. For STAR and MOORE, the number of experts
is 5. For STAR, the number of sampled α weights is 1.
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Figure 13: Robustness analysis, comparing STAR to MOORE and MTSAC baselines on the four
Mujoco environments with respect to changes in friction. We report the mean and the 95% confidence
interval of the Average Return metric across 10 seeds. For STAR and MOORE, the number of experts
is 5. For STAR, the number of sampled α weights is 1.

18



1 4 8 16 32
Number of Sampled  (abz)

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e 

R
et

ur
n

(a) Ant

1 4 8 16 32
Number of Sampled  (abz)

0.0

0.5

1.0

Av
er

ag
e 

R
et

ur
n

(b) Half-Cheetah

1 4 8 16 32
Number of Sampled  (abz)

0.0

0.5

1.0

1.5

Av
er

ag
e 

R
et

ur
n

(c) Hopper

1 4 8 16 32
Number of Sampled  (abz)

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e 

R
et

ur
n

(d) Walker

1 4 8 16 32
Number of Sampled  (abz)

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 R
et

ur
n

Performance 
Barrier Height 

(e) All

Figure 14: A sensitivity analysis on the effect of the number of sampled α weights on the performance
of the multi-task policy of STAR (in red). In addition, we include the mode connectivity metric (in
blue), performance barrier height. The results considers all four MuJoco environments as well as the
overall relative performance to the single-task SAC. We report the mean and the standard deviation of
the performance metric across 10 different runs. The number of experts k employed during training
is 3.

B.5 Sensitivity analysis on the number of sampled α

In this section, we investigate how the frequency of sampling the convex combination weight α
during training affects the performance of our method. The number of sampled α values serves as
a hyperparameter that influences the discovery of linear subspaces connecting each group-specific
(single-task) policy to the multi-task policy. When sampling multiple α values per training step, the
training batch is split accordingly to allow parallel updates, accelerating the overall learning process.

Figure 14 presents the results of this study on the MuJoCo MT4 benchmark. It reports the final
performance of STAR’s multi-task policy across individual environments as well as the average
performance across all tasks, with respect to varying the number of α weights. To further assess the
quality of the learned subspaces, we also report the Performance Barrier Height—a metric introduced
in Section 3 that quantifies mode connectivity.

The results reveal that sampling even a single α per training step is sufficient to achieve strong
multi-task performance along with well-connected solutions (as indicated by a low barrier height).
While modest fluctuations in both performance and connectivity metrics are observed across different
α sampling frequencies, these differences are minimal. This indicates that our method is relatively
robust to this hyperparameter, reducing the need for fine-grained tuning.
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B.6 Linear mode connectivity analysis

As described in Section 4.3, we visualize the objective landscapes of various tasks using contour
plots defined over a 2D plane that includes two single-task policies and the shared multi-task policy.
These plots illustrate the linear mode connectivity between each pair of single-task policies and the
common multi-task policy.

For instance, to construct each contour plot for the parameter vectors θ1, θ2, and θ̄. We first define
two basis vectors: u = θ2 − θ1 and v = θ̄ − θ1. We then orthogonalize v with respect to u using the
transformation: v ← v − cos(u, v) · u. A mapping function p(x, y) = θ1 + u · x+ v · y translates
each point in the Cartesian 2D space to a point in the parameter space. The performance metric (e.g.,
success rate or average return) is evaluated at each mapped point to generate the final contour plot.

Figure 2(a) illustrates a representative example of our analysis on the MT10 Metaworld benchmark,
using a single seed that achieved 100% success. The example focuses on the Reach and Peg Insert
Side tasks. Comprehensive contour plots for all other task pairs in MT10, excluding redundant com-
binations, are provided in Figures 15–23. It is worth noting that the minor performance fluctuations
and the imperfect connectivity observed along some linear paths are primarily attributable to the
resolution of the 2D evaluation grid, which is set to 21× 21.

Similarly, Figure 2(b) showcases an example from the MuJoCo MT4 benchmark, illustrating linear
mode connectivity between the Ant and Hopper tasks. The full set of contour plots for all remaining
task pairs in this benchmark is provided in Figures 24–29. Additionally, in the same figures, we
include contour maps generated using STAR without mode connectivity (STAR w/o MC). These
results reveal significant disconnectivity between the single-task policies and the multi-task pol-
icy, emphasizing the critical role of learning intermediate policies along linear paths by sampling
interpolation weights α during training.

The presented individual contour plots aim to show the accurate objective landscapes for a pair of
tasks. To have a high level view of the final solution, Figure 6 illustrates a compressed contour plot
for Metaworld MT10 and Mujoco MT4 in Figures 6(a) and 6(b), respectively. Each plot includes all
single-task policies and the multi-task one while presenting the linear paths connecting them along
which high performance is maintained. To improve visualization fidelity, we use higher-resolution
2D evaluation grids: 81× 81 for Figure 6(a) and 41× 41 for Figure 6(b).

The parameter space that is used to generate the plots is created by dissecting the plane around θ̄
using equally spaced points around the unit circle. This yields one triangular section per policy. On
to each section of this space we then project a local parameter subspace that is constructed using the
center policy θ̄ and the midpoints θc+θc+1

2 , θc+θc−1

2 of the task c and the adjacent tasks along the
circle. This ensures that adjacent slices always intersect, in order to avoid any discontinuities in the
heatmap. Consequently, the linear connector for each task is located in the center of each slice.

The parameters computed for each point on the grid are then evaluated on all tasks. For Metaworld,
we obtain the success rate for each task in [0, 1], whereas in MuJoco we normalize the return of each
task relative to the single-task performance to be in the same interval. Instead of computing the mean
over all tasks, we sum up the individual values and then clip them to 1. Without this clipping, the
multitask performance would drop as we move further away from the central policy. Although the
star would still be visible, we decided to go with the clipped variant to exaggerate the star shape’s
visibility in the heatmap.
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(e) reach-v2 and drawer-close-v2
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(g) reach-v2 and peg-insert-side-v2
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(h) reach-v2 and window-open-v2
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(i) reach-v2 and window-close-v2

Figure 15: Contour plots representing the task objective landscape of the reach-v2 task and the
remaining tasks from the MT10 scenario as a result of applying our approach, STAR.
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(c) push-v2 and drawer-open-v2
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(d) push-v2 and drawer-close-v2
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(f) push-v2 and peg-insert-side-v2
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(g) push-v2 and window-open-v2
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Figure 16: Contour plots representing the task objective landscape of the push-v2 task and the
remaining tasks from the MT10 scenario as a result of applying our approach, STAR.
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Figure 17: Contour plots representing the task objective landscape of the pick-place-v2 task and the
remaining tasks from the MT10 scenario as a result of applying our approach, STAR.
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Figure 18: Contour plots representing the task objective landscape of the door-open-v2 task and the
remaining tasks from the MT10 scenario as a result of applying our approach, STAR.
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Figure 19: Contour plots representing the task objective landscape of the drawer-open-v2 task and
the remaining tasks from the MT10 scenario as a result of applying our approach, STAR.
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Figure 20: Contour plots representing the task objective landscape of the drawer-close-v2 task and
the remaining tasks from the MT10 scenario as a result of applying our approach, STAR.
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Figure 21: Contour plots representing the task objective landscape of the button-press-topdown-v2
task and the remaining tasks from the MT10 scenario as a result of applying our approach, STAR.
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Figure 22: Contour plots representing the task objective landscape of the peg-insert-side-v2 task and
the remaining tasks from the MT10 scenario as a result of applying our approach, STAR.
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Figure 23: Contour plots representing the task objective landscape of the window-open-v2 task and
the remaining tasks from the MT10 scenario as a result of applying our approach, STAR.
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Figure 24: Contour plots representing the task objective landscapes of Ant and Half-Cheetah as a
result of applying STAR and STAR w/o MC, respectively.
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Figure 25: Contour plots representing the task objective landscapes of Ant and Hopper as a result of
applying STAR and STAR w/o MC, respectively.
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Figure 26: Contour plots representing the task objective landscapes of Ant and Walker as a result of
applying STAR and STAR w/o MC, respectively.
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Figure 27: Contour plots representing the task objective landscapes of Half-Cheetah and Hopper as a
result of applying STAR and STAR w/o MC, respectively.

θ2 θ4

θ̄

-778

249

1276

2303

3330

4357

5384

6411

7438

8465

> 8465

A
ve

ra
ge

R
et

ur
n

(a) Half-Cheetah and
STAR

θ2 θ4

θ̄

-1343

-91

1161

2413

3665

4917

6169

7421

8673

9925

> 9925

A
ve

ra
ge

R
et

ur
n

(b) Half-Cheetah and
STAR w/o MC

θ2 θ4

θ̄

421

881

1341

1801

2261

2721

3181

3641

4101

4561

> 4561

A
ve

ra
ge

R
et

ur
n

(c) Walker and STAR

θ2 θ4

θ̄

-84

419

922

1425

1928

2431

2934

3437

3940

4443

> 4443

A
ve

ra
ge

R
et

ur
n

(d) Walker and STAR w/o
MC

Figure 28: Contour plots representing the task objective landscapes of Half-Cheetah and Walker as a
result of applying STAR and STAR w/o MC, respectively.
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Figure 29: Contour plots representing the task objective landscapes of Hopper and Walker as a result
of applying STAR and STAR w/o MC, respectively.
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Algorithm 1 STAR

1: Input: {θc}|C|c=1 (single-task), θ̄ (multi-task), Qϕ (subspace critic).
2: Initialize: {Rc}|C|c=1 (replay buffers with random samples).
3: for e = 1 to E do
4: Sample α ∼ U(0, 1) for exploration.
5: Set θcα ← α θc + (1− α) θ̄ ∀c ∈ C.
6: for i = 1 to H do
7: Collect and store (s, a, r, s′) inRc by sampling a ∼ πθc

α
(.|s, c) ∀c ∈ C.

8: Sample Dc ∼ Rc ∀c ∈ C.
9: Sample α ∼ U(0, 1) for training.

10: Compute SAC MTRL objective: J(θ1, ..., θ|C|, θ̄, ϕ) following Equations 4,5,6.
11: Update subspace critic: ϕ← ϕ− λ∇ϕJ(..., ϕ).
12: Update single-task policies: θc ← θc − λ∇θcJ(..., θc) ∀c ∈ C.
13: Update multi-task policy: θ̄ ← θ̄ − λ∇θ̄J(..., θ̄)
14: end for
15: end for

C Algorithm Box and Code Snippet

This section highlights key implementation details of our approach, STAR. First, we present the
main algorithmic workflow in Algorithm 1, which outlines the essential steps for obtaining a fully
connected solution. While the algorithm corresponds specifically to STAR (full), we omit the suffix
for brevity.

As detailed in Section 4.4, our implementation is built using JAX [28]. Code Snippet 1 showcases a
core component of STAR: the efficient interpolation of expert parameters based on a given combina-
tion weight α. To enable this, we replace the standard Dense layer with a custom SubspaceDense
layer that supports parallelized computation. Leveraging the linearity property, we note that a convex
combination of weights and biases is mathematically equivalent to the convex combination of their
corresponding activations. Therefore, in SubspaceDense, we first compute the activations from
multiple Dense layers in parallel, all using the same input x and then combine the resulting outputs y
according to the convex weight α.

Listing 1: Subspace Dense Layer
1 class SubspaceDense(nn.Module):
2 features: int
3 n_experts: int = 3
4 kernel_init: Callable = default_init ()
5 dtype: Optional[Dtype] = jnp.float32
6

7 @nn.compact
8 def __call__(self , x: jnp.ndarray , alpha: jnp.ndarray) -> jnp.

ndarray:
9

10 y = nn.vmap(
11 nn.Dense ,
12 in_axes=None ,
13 out_axes=-1,
14 variable_axes ={"params": 0},
15 split_rngs ={"params": True},
16 axis_size=self.n_experts ,
17 )(
18 self.features ,
19 kernel_init=self.kernel_init ,
20 dtype=self.dtype ,
21 )(x)
22

23 y = y @ alpha [..., None]
24

25 return jnp.squeeze(y, -1)
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D Implementations Details

In this section, we highlight the hyperparameters used for the two MTRL setting studied in this work,
namely Mujoco [19], and Metaworld [18].

D.1 MuJoco

For Mujoco [19], we consider four different continuous control environments: Ant, Half-Cheetah,
Hopper, and Walker. They differ in the dimensionality of the state and action spaces. This requires a
padding process to the maximum possible dimensionality among them, S ∈ R27 and A ∈ R8 for the
state space and action space, respectively.

In this work, we use SAC [27] as the RL underlying algorithm. In particular, we adapt SAC to the
MTRL setting as done in prior works [18, 4]. In Table 5, we report the general hyperparameters of
the learning setting, the baselines, and our approach, STAR.

D.2 Metaworld

Metaworld [18] is a collection of various robotic manipulation tasks, each involving interaction with
one or two objects. The state space includes several elements: the 3D position of the end effector, a
normalized value indicating the gripper’s openness, the 3D position of the first object, its quaternion
representation (4D), and the 3D position along with the quaternion of the second object (set to zero if
not required). Additionally, two consecutive data frames are stacked together, along with the 3D goal
position, resulting in a 39-dimensional state space. Conversely, the action space remains consistent
across tasks, defining the 3D displacement of the end effector and the normalized torque exerted by
the gripper. To evaluate our approach, we conduct benchmarks on the MT10 and MT50 scenarios. In
line with [21, 5], we introduce randomization to the goal or object positions across all tasks, referring
to this variant as MT10-rand and MT50-rand. In Table 6, we report the general hyperparameters of
the learning setting, the baselines, and our approach, STAR.
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Hyperparameter Value
Horizon 1000
Discount factor γ 0.99
Number of environments T 4
Steps per environment 1 step per 1 environment
Number of epochs 100
Steps per epoch (Evaluation Frequency) 1× 104

Total Training Steps 1× 106 steps per 1 environment
Train frequency 1
Number of test episodes 5
SAC [27] Hyperparameters
Batch Size 512 per 1 environment
Critic Loss Mean Squared Error
Number of Critic Networks 2
SAC Temperature Automatic Tuned and Disentangled
Target Entropy -dim(A)
Optimizer Adam
Learning rate for Actor, Critic, Alpha 3× 10−4, 3× 10−4, 1× 10−4

Policy standard [min, max] [e−10, e2]
Soft target interpolation 5× 10−3

Minimum Replay Buffer Size 3000
Replay Buffer Capacity 1× 106 per 1 environment
MTSAC [18] and PCGrad [9] Hyperparameters
Actor Network π(.|s, c) [256, 256, dim(A)× 2)]
Critic Network Q(s, a, c) [256, 256, 1]
Activation function {Actor: ReLU, Critic: ReLU}
MH-MTSAC [18] Hyperparameters
Actor Network π(.|s, c) [256, 256]
Actor Output Layer Multi-Head (Shared Bottom), T × [dim(A)× 2]
Critic Network Q(s, a, c) [256, 256]
Critic Output Layer Multi-Head (Shared Bottom), T × [1]
Activation function {Actor: ReLU, Critic: ReLU}
MOORE and MOE [6] Hyperparameters
Number of Experts k 3
Actor Network π(.|s, c) k × [256, 256]
Actor Output Layer Multi-Head (Shared Bottom), T × [dim(A)× 2]
Critic Network Q(s, a, c) k × [256, 256]
Critic Output Layer Multi-Head (Shared Bottom), T × [1]
Activation function {Actor: ReLU, Critic: ReLU}
STAR Hyperparameters
Number of Sampled α 1
Number of Experts k 3 (2 Group-specific + Multi-Task Policy)
Actor Network πθα(.|s, c) k × [256, 256, dim(A)× 2]
Critic Network Q(s, a, c, α) k − 1× [256, 256, 1]
Activation function {Actor: ReLU, Critic: ReLU}

Table 5: MuJoco Hyperparameters.
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Hyperparameter Value
Horizon 150
Discount factor γ 0.99
Number of environments T {MT10 : 10,MT50 : 50}
Steps per environment 1 step per 1 environment
Total Training Steps 2× 106 steps per 1 environment
Train frequency 1
Number of test episodes 10
SAC [27] Hyperparameters
Batch Size 128 per 1 environment
Critic Loss Mean Squared Error
Number of Critic Networks 2
SAC Temperature Automatic Tuned and Disentangled
Target Entropy -dim(A)
Optimizer Adam
Learning rate for Actor, Critic, Alpha 3× 10−4, 3× 10−4, 1× 10−4

Policy standard [min, max] [e−10, e2]
Soft target interpolation 5× 10−3

Minimum Replay Buffer Size 1500
Replay Buffer Capacity {MT10 : 1× 106,MT50 : 1× 105} per 1 environment
MTSAC [18] and PCGrad [9] Hyperparameters
Actor Network π(.|s, c) [400, 400, 400, dim(A)× 2)]
Critic Network Q(s, a, c) [400, 400, 400, 1]
Activation function {Actor: ReLU, Critic: ReLU}
MH-MTSAC [18] Hyperparameters
Actor Network π(.|s, c) [400, 400, 400]
Actor Output Layer Multi-Head (Shared Bottom), T × [dim(A)× 2]
Critic Network Q(s, a, c) [400, 400, 400]
Critic Output Layer Multi-Head (Shared Bottom), T × [1]
Activation function {Actor: ReLU, Critic: ReLU (Tanh for MT50)}
FiLM [30] Hyperparameters
Task Encoder Network [100, 50, 50, 50, 6]
State Encoder [50, 50, 50]
Actor Network π(.|s, c) [400, 400, 400, dim(A)× 2]
Critic Network Q(s, a, c) [400, 400, 400, 1]
Activation function {Actor: ReLU, Critic: Tanh}
CARE [4] Hyperparameters
Task Encoder Network [100, 50, 50, 50, 50]
Number of Experts (State Encoders) k {MT10 : 6,MT50 : 10}
State Encoders k × [50, 50, 50]
Actor Network π(.|s, c) [400, 400, 400, dim(A)× 2]
Critic Network Q(s, a, c) [400, 400, 400, 1]
Activation function {Actor: ReLU, Critic: Tanh}
MOORE and MOE [6] Hyperparameters
Number of Experts k 4
Actor Network π(.|s, c) k × [400, 400, 400]
Actor Output Layer Multi-Head (Shared Bottom), T × [dim(A)× 2]
Critic Network Q(s, a, c) k × [400, 400, 400]
Critic Output Layer Multi-Head (Shared Bottom), T × [1]
Activation function {Actor: ReLU, Critic: ReLU (Tanh for MOE on MT50)}
STAR Hyperparameters
Number of Sampled α 4
Number of Experts k 4 (3 Group-specific + Multi-Task Policy)
Actor Network πθα(.|s, c) k × [400, 400, 400, dim(A)× 2]
Critic Network Q(s, a, c, α) k − 1× [400, 400, 400, 1]
Activation function {Actor: ReLU, Critic: ReLU (Tanh for MT50)}

Table 6: Metaworld Hyperparameters.

29


	Introduction
	Related Works
	Multi-Task Reinforcement Learning
	Mode Connectivity

	Preliminaries
	Multi-Task Reinforcement Learning
	Mode Connectivity

	Methodology
	Problem Formulation
	STAR: Multi-Task Reinforcement Learning via Mode Connectivity
	Mode Connectivity Analysis
	Implementation Details

	Experimental Results
	MuJoCo
	Metaworld
	Relation to Distillation
	Beyond the Multi-task Policy

	Conclusion and Discussion
	Experimental Results on Metaworld MT50
	Additional Empirical Analyses
	Clustering strategies
	Ablation on algorithmic components
	Critic design ablation
	Robustness analysis
	Sensitivity analysis on the number of sampled 
	Linear mode connectivity analysis

	Algorithm Box and Code Snippet
	Implementations Details
	MuJoco
	Metaworld


