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Variations in the geometry of the environment, such as the shape and size of an enclosure,
have profound effects on navigational behavior and its neural underpinning. Here, we show
that these effects arise as a consequence of a single, unifying principle: to navigate efficiently,
the brain must maintain and update the uncertainty about one’s location. We developed an
image-computable Bayesian ideal observer model of navigation, continually combining noisy
visual and self-motion inputs, and a neural encoding model optimized to represent the loca-
tion uncertainty computed by the ideal observer. Through mathematical analysis and numerical
simulations, we show that the ideal observer accounts for a diverse range of sometimes para-
doxical distortions of human homing behavior in anisotropic and deformed environments, in-
cluding ‘boundary tethering’, and its neural encoding accounts for distortions of rodent grid cell
responses under identical environmental manipulations. Our results demonstrate that spatial

uncertainty plays a key role in navigation.

Determining our location in an environment is
an essential component of successful naviga-
tion'. The neural underpinning of this process
involves some of the most intensively studied cell
types in the brain, the place cells of the hip-
pocampus and the grid cells of the medial en-
torhinal cortex?3. In particular, grid cells ex-
hibit spatially ordered, periodic patterns of firing
that have been hypothesized to provide a reg-
ular ‘metric for space’*. However, both naviga-
tional behavior and regular, grid-like neural re-
sponses seem to go awry when the geometry
of an enclosure is manipulated. For example,
compared to isotropic, square-shaped environ-
ments, human spatial memory exhibits particular
biases in an anisotropic environment with trape-
zoidal boundary geometry®. Under identical con-
ditions, the tuning curves of grid cells in rats
also become less regular and more anisotropic
in shape®. When the size of the environment un-
dergoes an unexpected change, such that it ex-
pands or compresses along an axis, homing be-
havior and neural responses do not only scale
with the environment”® but also, paradoxically,
show changes along the orthogonal, unchanged
axis® %, Moreover, spatial patterns of homing
behavior and grid cell responses dissociate de-
pending on which wall along the changed axis
was last approached''-12.

Previous theories explained only a subset of
these results, e.g. the effects of either environ-

mental shape®'3~"7 or changes in size®%1":12 but
not both, or were only able to explain behavioral®
or neural data'*"7. In addition, they explained
the apparent anomalies in behavioral response
patterns as epiphenomena of deformations in
neural response patterns, without addressing the
potential adaptive value of these ‘anomalies’ from
a normative perspective>%'2. Here we show in-
stead that all these data can be accounted for by
a single, unifying principle: that allocentric loca-
tion is fundamentally uncertain, and this uncer-
tainty thus pervades both behavioral and neural
responses. While the importance of represent-
ing uncertainty about spatial location is well ac-
cepted in engineering solutions to navigation '&1°
(even mobile phone navigation apps show a sim-
ple form of it by the shaded blue disc around the
currently estimated location), its role in biological
navigation has only rarely been considered?%25.
In particular, the fundamental effects of environ-
mental geometry on spatial uncertainty have not
been studied.

Formalizing the effects of environmental geom-
etry on navigation is challenging because it can
affect visual input, a main source of informa-
tion for navigation, in complex ways that may not
be well captured by simple, discrete point-like
landmarks as used in some virtual-reality exper-
iments?5-28 and assumed to provide direct dis-
tance and bearing information in related mod-
eling studies?%?62°, Thus, we constructed the
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Fig. 1 | The BION model. a. Generative model of navigation. The subject’s allocentric head direction (6) and location (€) are up-
dated by egocentric self-motion (u? and u® for rotation and translation, respectively) and give rise to observations of visual input (v)
and, potentially, tactile input (w). Yellow circles denote observed variables, gray circles denote hidden variables. b. Row 1. Top-
down view of a rodent starting from a known location (15t column) and progressing along a trajectory (black line, 2" and 3™
columns). Row 2. First-person view of the 3D environment (v) for the corresponding columns of the rodent shown in row 1. The
view is corrupted by blur and Poisson noise (reduced for visualization). Rows 3-6 show ideal observer inferences about location
using different inputs (red). Row 3. Location posterior based only on self motion, without visual or tactile input, P(et|ugt, ug:t).
Row 4. Location likelihood based only on tactile input, P(w¢|€;). Row 5. Location likelihood based only on visual input, P(v|€;).
Row 6. Location posterior when all inputs are available, P(€¢|vo., wo, uf,, u,). c¢. Modeling behavior in the ‘homing task’. Top row
shows the participant location and bottom row shows the posterior distribution over locations (red shading). Learning the location
of an object (black circle, 15t column) is modeled as encoding the mean (red x) of the posterior in memory. During the test phase,
the participant moves from a new location towards the remembered location of the now invisible object (2" column). Navigational
choices decrease the mean squared error between the remembered location of the object and the current location according to
the current posterior, until no further decrease is possible (3™ column). d. Modeling neural responses. Rows 1-2. Location of
a rodent exploring a trapezoid environment (Row 1) and corresponding ideal observer posteriors (Row 2). Rows 3-4. Grid cell
responses (left) are fed into a probabilistic decoder to compute a neural posterior (right). With a regular grid (Row 3) the neural
and ideal observer posteriors do not match. When the turning curves are optimized by ‘warping’ (Row 4), the neural posterior
matches the ideal observer posterior more accurately. e. Average (across-time) Kullback-Leibler divergence of ideal observer
posteriors from neural posteriors decoded from regular tuning curves (blue) and optimized tuning curves (purple). For reference,
the minimal achievable divergence is shown as the divergence of the ideal observer posterior from the average ideal observer
posterior at each location (red). Chance level is shown as the divergence between time-shuffled ideal observer posteriors (gray).
Error bars show s.e.m. across time points.
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‘Bayesian image-computable observer for navi-
gation’ (BION) model, an ideal observer that in-
tegrates information from successive retinal im-
ages and idiothetic (self-motion) cues to compute
and continuously update a posterior probability
distribution over pose (location and head direc-
tion). The posterior distribution formalizes uncer-
tainty by expressing the probability with which the
observer currently believes themselves to be in

each pose given past and current sensory infor-
mation. This ideal observer reproduced empir-
ically observed patterns of homing behavior in
spatial memory experiments. By deriving ana-
lytical expressions for how uncertainty depends
on environmental geometry in the BION model,
we were also able to provide intuitions for how
the fundamental principles of optics (the retinal
projection) and optimal multi-sensory cue com-
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bination explain the behavioral data. Encoding
the posterior distributions of the ideal observer in
neural population responses also allowed us to
correctly predict how the tuning curves of entorhi-
nal grid cells deform as a function of environmen-
tal geometry, and become tethered to boundaries
when those boundaries are moved. These results
demonstrate that spatial uncertainty plays a key
role in navigation and in its neural underpinning.

Results

The BION model

In order to study spatial uncertainty, we formal-
ized the task of estimating one’s location in the
environment as recursive probabilistic inference
given noisy sensory inputs (Fig. 1, Methods).
This formalization, based on widely used ap-
proaches to robotic navigation'®'°, treats allo-
centric pose (location and head direction) as hid-
den variables to which the brain has no direct ac-
cess (Fig. 1a). Instead, sensory inputs deliver
egocentric signals, such as a first-person view of
the environment by visual inputs, and self-motion
cues from a variety of senses (e.g. the vestibu-
lar system). Thus, the BION model infers allo-
centric pose from a stream of egocentric sen-
sory inputs based on an internal model for how
self-motion cues about translation and rotation
(Fig. 1a, u® and u’ ) provide information about
changes in pose (Fig. 1a, £ and 6 for location and
head direction, respectively), and how the retinal
image depends on the current pose (Fig. 1a, v).
As we expected environmental geometry to have
complex effects on visual information that may
not be well described by abstract Lidar-like read-
ings of distance and bearing to point-like land-
marks that were often used previously?2%-26:29:30,
we adopted an image-computable approach in-
stead®'. Thus, we considered a fully rendered
retinal image through a pinhole projection (with
Gaussian blur and Poisson noise). When model-
ing rodent navigation (but not human navigation
in virtual reality), we also considered tactile input,
providing egocentric information about whether
the animal is next to a wall, and if so, on which
side of the animal the wall is (Fig. 1a, w).

As the animal moves around in the environment
(Fig. 1b, row 1), it receives a sequence of sensory
inputs (Fig. 1b, row 2 shows visual input). Given
the sequence of inputs received thus far, the ideal
observer computes a posterior distribution, ex-
pressing the probability with which it currently be-
lieves itself to be at each location (and head di-
rection, not shown; Fig. 1b, rows 3-6). When
the ideal observer only has access to self-motion
inputs, this results in the well-known inevitable

accumulation of errors over time by pure path
integration (Fig. 1b, row 3). Tactile inputs pro-
vide information about being somewhere near the
walls, but leave high levels of uncertainty when
the animal is away from the walls (Fig. 1b, row
4). Compared to other senses, visual input can
result in particularly complex and non-monotonic
changes in uncertainty, especially along the line
of sight, depending on the current pose of the an-
imal relative to the geometry of the environment
(Fig. 1b, row 5). Computing the Bayesian poste-
rior with self-motion, tactile, and visual inputs al-
lows the ideal observer to perform optimal multi-
sensory cue combination. In particular, the pos-
terior (Fig. 1b, row 6) is more precise than what
each sensory modality alone can afford.

We used the BION model to make predictions
about both behavioral patterns in human spatial
memory experiments and grid cell recordings in
rodents (Methods). To be able to maximally con-
strain the model, we selected a set of paradigms
for which both behavioral and neural data was
available. In addition, we considered experiments
in which participants had already been familiar-
ized with an environment so that they had mini-
mal uncertainty about its layout (even though in
the test phase of some experiments, the actual
layout was changed unbeknownst to them). This
allowed us to ignore uncertainty about the ‘map’
(see e.g. Ref. 20) and focus on the effects of un-
certainty about location with respect to the map.

The behavioral paradigms we modeled required
human participants to perform a ‘homing task’,
i.e. to return to the location of a specific object
whose location they had to previously encode in
memory. These experiments use virtual reality
environments so that visual input can be precisely
controlled. We modeled both the learning and
the test phases of these experiments (Fig. 1c).
In the learning phase, we simulated trajectories
that led participants to the object locations that
they needed to remember and, at the end of each
such trajectory, stored in memory the mean of the
posterior distribution over locations (with noise to
account for memory decay) as the remembered
location (Fig. 1c, left). In the test phase, partic-
ipants were removed from the original location
of the object, and we modeled their sequence
of navigational choices as greedily (albeit nois-
ily) decreasing the mean squared error between
their current location and the remembered loca-
tion of the target object, until no further decrease
was possible (Fig. 1c, center and right). Criti-
cally, due to the bias-variance trade-off inherent
in minimizing the mean squared error®?, the ex-
pected distance was generally not minimized sim-
ply where the mean of the current location poste-
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rior matched the remembered target location, and
thus participants’ uncertainty (the covariance of
their posterior) also affected the end point of their
chosen routes.

For predicting grid cell responses, we simulated
a population of grid cells (Fig. 1d, bottom left) in
a randomly foraging animal (Fig. 1d, row 1), and
used a probabilistic population decoders3 to com-
pute a ‘neural’ posterior over locations from their
responses (Fig. 1d, right; Methods). In contrast
to standard approaches to efficient coding that
aim to minimize the uncertainty in the neural pos-
terior®*, we required the uncertainty of the neu-
ral posterior to faithfully reflect that of the ideal
observer (Fig. 1d, row 2), which prescribes the
normatively appropriate level of uncertainty given
noise and ambiguity in sensory inputs.

In general, the ideal observer’s posterior under-
went dynamic changes over time (cf. Fig. 1b, row
6), such that it expressed less or more uncer-
tainty about the animal’s location (Fig. 1d, row
2, e.g. compare steps 1 and 2), sometimes be-
ing more isotropic, expressing approximately the
same amount of uncertainty along each direc-
tion, while at other times becoming anisotropic,
i.e. strongly elongated along a particular direction
(compare time steps 2 and 3). Critically, the neu-
ral posteriors for grid cell responses with perfect
hexagonal symmetry were translation-invariant
and isotropic (except for trivial boundary effects),
failing to exhibit the modulations in the uncertainty
the ideal observer expressed (Fig. 1d, row 3).
We thus created a ‘warped population code’ 1634
by warping the underlying grid on which grid
cell tuning curves were defined. Specifically, we
optimized this warping until the resulting neural
posteriors maximally matched the ideal observer
posteriors moment-by-moment (Fig. 1d, row 4
and Fig. 1e). The simulated grid cell responses
obtained with the optimized warping constituted
our neural predictions. Thus, rather than build-
ing a theory for the basic hexagonal symmetry of
grid fields, as in most previous approaches®>*1,
we focused on modeling how and why this perfect
symmetry is broken under well-controlled experi-
mental manipulations.

Deformations arise from inhomogeneous un-
certainty

A critical insight of the BION model is that the
same landmark provides different amounts of vi-
sual information about the subject’s location, de-
pending on its distance along, d, and eccentric-
ity from, e, the subject’s line of sight (Fig. 2a, in-
set). For example, the landmark could be a cor-
ner of the enclosure, with d being the subject’s
distance from the corresponding wall when fac-

ing it. In particular, based on the basic laws of
optics describing a pinhole projection with finite
resolution, we were able to show analytically that
the visual information (/, formally the Fisher in-
formation) about the distance (d) scales with the
square of eccentricity (¢) and inversely with the

fourth power of the distance itself (d):

62

I pr (1)
Importantly, we were also able to show that the
same expression holds for a more realistic sce-
nario, with a fully rendered retinal image and a
finite-sized retinotopic neural population whose
signaling is corrupted by Poisson noise (Supp.
Material). Indeed, numerical simulations of the vi-
sual likelihood of current location using the BION
model confirmed these calculations (Fig. 2a).

Eq. 1 makes direct predictions about how vi-
sual information about location changes inside a
square- versus a trapezoid-shaped environment,
such as those used in several experiments®®
(Fig. 2b). In general, because information falls
steeply with d, overall information at any location
is dominated by information obtained while look-
ing in the direction of the closest wall. Thus, in
both kinds of environments, information is higher
near the walls. This is consistent with humans
making smaller homing errors near walls®. More
importantly, due to the fundamental symmetry of
a square environment, information has a sym-
metrical distribution, and is also symmetric with
respect to the axis along which spatial position
needs to be determined (x or y in Fig. 2b). In con-
trast, in the trapezoid, information is asymmet-
ric between its two sides, and (again consistent
with empirical data®) overall smaller about posi-
tion along the long (x-) axis (because distances
are greater) than about position along its short
(y-) axis (Fig. 2b).

In homing tasks (Fig. 2c, cf. Fig. 1c), total errors
are dominated by the more uncertain direction,
i.e. position about the long axis in the trapezoid
(Fig. 2b, compare left two panels for the trape-
zoid, showing uncertainty about x and y sepa-
rately, with the last panel, showing total uncer-
tainty). Along this direction, on average, d is
greater and thus information is smaller than along
either direction in the square. Therefore, the
BION model predicts homing performance to be
worse in the trapezoid than in the square, which
is what has been found experimentally® (Fig. 2d,
top, green vs. orange). Finally, the asymmetry
between the two ends of the trapezoid results in
e being larger and thus information being greater
near the broad end. As a consequence, hom-
ing performance is predicted to be relatively bet-
ter near its broad end than near the narrow end,
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Fig. 2 | Deformations arise from inhomogeneous uncertainty. a. /nset: top-down view of an observer (rodent in this case)
and a point landmark (solid black circle), at a given distance along the line of sight (d) and ‘eccentricty’ (e, distance orthogonal
to the line of sight) from the observer. Main plot: ideal observer’s visual (Fisher) information about d as a function of the true
distance (abscissa) and eccentricity of the landmark (colors), lines show analytic approximation, markers show numerical simula-
tion. Note logarithmic scale for both axes as well as color scale. b. Visual information about x- and y-coordinates of location, and
total information in the square and trapezoid environments. Warmer/cooler color indicates more/less information, and conversely,
lower/higher uncertainty. ¢. Homing task. Participants memorized the location of an object during the learning phase (filled circle),
to which they were asked to return (after the object was hidden, open circle) during the test phase. Two kinds of environments
were used: square (left) and trapezoid (right). d. Homing performance from experimental data (left®) and BION model predictions
(right). Each set of four columns shows square vs. trapezoid environments and broad vs. narrow part of the trapezoid environment
(see filled areas in schematics at the bottom). Top row: memory score (rank of homing location’s distance to target compared to
all possible locations). Bottom row: estimated distance between target locations in each (half) of the environment compared to
that in the square (true distances were matched). Error bars show s.e.m. across subjects. e-f. Example grid fields (e) and grid
field characteristics (f) in experimental data (left®) and BION model predictions (right). e. Grid fields of the same cell in a square
and a trapezoid environment. f. Gridness (top) and diameter of grid fields (bottom). Each set of four columns shows data for
grid fields in the left and right halves of the square and trapezoid environments separately (see filled areas in schematics at the
bottom). Error bars show s.e.m. across neurons.

again consistent with data® (Fig. 2d, top, light vs. jects. Overall, participants showed different de-
dark brown). grees of estimation biases depending on the ge-
ometry of the environment (Fig. 2d, bottom left).
Interestingly, however, the pattern of these esti-
mation biases did not simply reflect the patterns
seen in memory performance: while the biases
in the trapezoid were overall more negative than
in the square (in line with memory performance
being poorer in the trapezoid than in the square),
they were less negative (although memory perfor-
mance was more diminished) in the narrow side
of the trapezoid than in the broad side (Fig. 2d,
left, compare bottom to top).

Note that path integration alone cannot explain
these results, as it predicts an increase in un-
certainty with time, not as a function of space.
This may contribute to spatial information de-
creasing with d (and therefore the decrease of
information away from the walls, and the over-
all increased uncertainty in the trapezoid than in
the square environment that we described above)
as long as there is an additional landmark-based
mechanism that resets path integration near the
walls. However, even such a hard reset mecha-
nism cannot account for the scaling of information The ideal observer reproduced this pattern of re-
with e that underlies the BION model’s predictions sults (Fig. 2d, bottom right). The relative underes-
about differences between the two halves of the timation in the trapezoid was due to regression to
trapezoid. the mean: as visual information is always uncer-
tain, it needs to be combined with the prior cov-

In another task used in the same experiment, par- ering the extent of the environment. This biases

ticipants had to estimate distances between ob-
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locations to be estimated as being closer to the
middle of the environment (the mean of the prior)
and thus overall distances between them to be
smaller — and more so in the trapezoid because
visual information is more uncertain there overall
(Fig. 2b). The more subtle differences in under-
estimation between the two halves of the trape-
zoid environment were explained by the interplay
of how environmental geometry changes both vi-
sual information (Eqg. 1, i.e. the likelihood) and the
prior (Supp. Material).

In the BION model, predicted grid field sizes de-
pended on the overall level of spatial informa-
tion, and their irregularities depended on the de-
gree of warping that was necessary to achieve
the level of spatial anisotropy in the uncertain-
ties expressed by the ideal observer (Fig. 1d, and
Fig. 2e, right). Compared to the square enclo-
sure, uncertainty in the trapezoid was greater and
more anisotropic (differing greatly along the two
axes of the enclosure, Fig. 2b). Thus, the BION
model predicted larger grid fields with lower levels
of gridness for the trapezoid than for the square
(Fig. 2f, right). For analogous reasons, the model
also predicted larger grid fields with lower levels
of gridness for the narrow than for the broad side
of the trapezoid (Fig. 2f, right, orange). These
predictions matched experimental measurements
of grid fields in such square and trapezoid envi-
ronments® (Fig. 2e, left, f, left).

Scaling arises from model mismatch

The BION model also explains scaling of behav-
ioral and neural response patterns in unfamil-
iar environments as a consequence of the mis-
match between the internal model and the sen-
sory input. In a typical human behavioral exper-
iment®, participants were familiarized with a par-
ticular environment and their homing to a previ-
ously experienced target location was tested, af-
ter the environment had been expanded or com-
pressed along one or both axes unbeknownst to
them (Fig. 3a shows expansion along horizontal
axis). Because the changing of the environment
in the test phase was unknown to participants, we
modeled the ideal observer’s inferences as being
computed in the familiar environment’s frame of
reference, resulting in a model mismatch between
the internal model used by the ideal observer and
the actual environment (Methods). Due to this
model mismatch, the actual sensory inputs (that
were generated by the test environment) led to
higher uncertainty in the ideal observer (that in-
terpreted them according to the familiar environ-
ment), particularly along the axis of the environ-
ment that was changed, and particularly for loca-
tions along the axis for which information was low

to begin with (because they were farther from the
nearest wall, see above). Thus, in line with ex-
perimental data® (Fig. 3b, top), the BION model
(Fig. 3b, bottom) predicts response variability to
be higher along the changed axis especially when
the distance to the closest wall along that axis is
greater (Fig. 3b, red vs. blue).

Unfamiliar environments do not only lead to in-
creased response variability, but also to system-
atic biases in homing responses. These bi-
ases have been characterized in an experiment
in which participants were required to return to
a previously visited target without visual input af-
ter they were led away from it (in the presence
of visual input) along an experimentally controlled
path (Fig. 3c, gray trajectories in left panels fol-
lowed by orange or black arrows in right pan-
els). Critically, participants performed this task for
three consecutive trials with a fixed (‘familiar’) en-
vironmental geometry, and then on the fourth trial
they performed it either in the same environment,
or in an unfamiliar ‘test’ environment that was
scaled (expanded or compressed) along one of
its axes (Fig. 3c shows the case when the test en-
vironment is expanded along the x-axis). Partici-
pants were specifically led to believe that the test
environment was the same as the familiar one al-
though it was in fact scaled — corresponding to
a model mismatch. Response biases (the length
of the return journey in the scaled environment
relative to that in the familiar environment with a
matched distance to the target) were measured
separately for return journeys along the changed
(Fig. 3c, top, orange) or unchanged axis of the
environment (Fig. 3c, bottom, black arrow).

Responses were negatively biased (i.e. under-
shot) along an expanded axis (Fig. 3d, top, or-
ange bars) and positively biased (i.e. overshot)
along a compressed axis (Fig. 3d, top, green
bars). The BION model captured this because,
during the outward journey, the visual image of
the far wall along the expanded axis suggested
that this wall was still at a great distance, which in
turn made the outward journey seem shorter than
it actually was, leading to an undershoot in sim-
ulated responses (Fig. 3d, bottom, orange and
Fig. 3e, top) — and vice versa when the far wall
was seen along the compressed axis (Fig. 3d,
bottom, green). Interestingly, even responses
along the unchanged axes were biased, and in
the opposite direction: positively (overshooting),
when the environment was expanded, and neg-
atively (undershooting), when it was compressed
(Fig. 3d, top, black bars). The BION model also
captured this behavior simply because looking
along the unchanged direction showed the farther
expanded wall (that was seen more during the
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Fig. 3 | Scaling arises from model mismatch. a. Homing in scaled environments8. Human participants first learned a target
location (black circle) in a familiar environment (e.g. a square room) and were asked to return to that location (black path) with the
target now invisible in a test environment that was either the same as the familiar environment or, unbeknownst to them, scaled
(e.g. a rectangular room as shown). Blue and red lines show distances to the nearest walls along the horizontal and vertical axes,
respectively. b. Homing location distributions for the square familiar environment and target object location shown in a in exper-
imental data (top®) and the BION model (bottom). Each sub-panel shows a different test environment. Blue/red arrows show
conditions where the the target object’s distance to the nearest wall along the axis of scaling was comparatively smaller/larger
(see blue/red lines in a). c. Axis-dependent homing in scaled environments®. Participants first walked from the center of an
environment to a visible target and were asked to remember its location (top row, black circle). The target then disappeared and
participants were guided across the environment along a random, multistep path (gray ‘outbound’ path). Participants were then
asked to return to the location of the target (orange and black arrows) in the absence of any visual input (gray bounding box).
In each block, three trials were performed in a ‘familiar’ environment (left) and then a single trial was performed in a scaled test
environment (right). The beginning of the return path (i.e. the endpoint of the outbound path) was always such that the direction
to the target was either along the axis that was changed in that trial (top, orange arrows), or along the unchanged axis (bottom,
black arrows). d. Homing biases in test environments along the changed (orange and green bars) and unchanged (black bars)
axes observed in the data (top?®) and the BION model (bottom). Schematics in the bottom show familiar environment (gray) and
test environment boundaries (black and colored lines) for reference. Error bars show s.e.m. across simulated subjects (not drawn
for the experimental data because only the significance of the comparison and mean differences were available). e. Schematic of
how biases arise when the test environment is scaled (orange) from the familiar environment (gray). When the return direction is
along the expanded axis (top), the angle subtended by the corners of the far wall (orange), as seen during the outbound journey
in the test environment, matches the angle at a location in the familiar environment (gray) that is closer to the target location
(black circle). This results in an undershoot during the return journey (negative bias, orange vs. gray arrows). Conversely, for
homing along the unchanged axis (bottom), the angle subtended by the corners of the far wall in the test environment (black)
suggests being farther from the target in the familiar environment (gray), hence leading to an overshoot (positive bias, black
vs. gray arrows). f. Effect of environmental scaling on rodent grid cell responses 0. Rats were first familiarized with one room
(pink outline, square and rectangular room in left and right panels, respectively) and then were introduced to scaled rooms
(three adjacent rectangles). Grid cell firing rates are shown on the left and autocorrelations on the right for each room shape.
g. Grid field scaling ratio along the changed axis (green and orange for compressed and expanded, respectively) and along the
unchanged axis (black) in the data (top) '® and the BION model (bottom). Schematics in the bottom show familiar environment
(gray) and test environment boundaries (black and colored lines) for reference. Error bars show s.e.m. across neurons.

outward journey) subtend a large angle, making it appear as if it was closer, and thus the outward
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journey longer than it actually was, leading to an
overshoot in simulated responses (Fig. 3e, bot-
tom) — and again vice versa in the compressed
environment (Fig. 3d, bottom, black bars).

Although the geometrical intuitions above only
apply to the effect of visual inputs, and are most
straightforward assuming simple point-like land-
marks (the corners of the enclosure), the simu-
lation results we show were obtained by the full
ideal observer that uses a rendered retinal im-
age as visual input, and combines it with self-
motion inputs (Fig. 1a-b). This shows that the
basic laws of optics determining the retinal pro-
jection can have significant behavioral effects in a
Bayes-optimal observer during navigation — and
thus explain the experimentally observed pattern
of results.

Recordings of rodent grid cell responses in
analogous scaled rectangular enclosures found
that the regularity (specifically, isotropy) of grid
fields depended on whether a given enclosure
shape was familiar (pink outlined environments in
Fig. 3f) or encountered after scaling, rather than
on the shape itself. For example, grid fields in the
identical square environment were isotropic when
the square was familiar (Fig. 3f, top left, firing rate
and autocorrelation map inside pink outline), but
became more anistropic when the familiar envi-
ronment was a rectangle and the square envi-
ronment was encountered as a scaled version
of this rectangle (Fig. 3f, top right). Conversely,
grid fields were isotropic in the rectangular en-
vironment in the second case but anisotropic in
the first case. These results were naturally repro-
duced by the BION model, simply because the
distortions of uncertainty due to model mismatch,
which explained human behavior, required in-
creased warping of grid fields (Fig. 3f, bottom).

In the same set of experiments, a finer grained
analysis revealed systematic distortions of grid
fields along the changed vs. unchanged axes of
these environments (Fig. 3g, top). In particular,
in line with the biases seen in human behavior
(Fig. 3d, top), grid fields compressed and ex-
panded respectively along the compressed and
expanded axes of the environment (Fig. 3g, top,
green and orange bars), and showed opposite
scaling along the unchanged direction (Fig. 3g,
top, black bars). Once again, the same distor-
tions in the BION model’s spatial uncertainty that
explained human behavior, also required grid field
warpings that reproduced these neural response
patterns (Fig. 3g, bottom).

Tethering arises from cue conflict

Unexpected changes in environmental geometry
have also revealed an intriguing ‘tethering’ effect
in both behavioral and neural responses. In be-
havioral experiments, homing end point locations
corresponding to different targets in the changed
geometry have been compared to the original lo-
cations of those targets in the familiar geometry
(Fig. 4a). The relationship between these two
sets of target locations was characterized by a
‘scale’ factor, measuring the ratio of distances be-
tween homing locations and distances between
original target locations, and an overall ‘shift’ in
homing locations away from the wall from which
participants started their return journeys (‘start-
ing wall’) in a given trial with the changed ge-
ometry. As expected, the scaling of homing lo-
cations reflected the scaling of the environment:
when the environment was compressed or ex-
panded, homing locations were respectively com-
pressed or expanded (Fig. 4b, top left). However,
there was also a systematic shift in homing loca-
tions (Fig. 4b, bottom left): when the environment
was compressed, they shifted forwards, while in
expanded environments, they shifted backwards,
keeping their distance to the starting wall sim-
ilar to that in the familiar environment in both
cases (i.e. as if they were ‘tetherted’ to the start-
ing wall) 2.

The BION model readily explained these results
as a fundamental feature of navigation in the face
of spatial uncertainty. According to the model,
interpreting visual and self-motion inputs in the
changed geometry under the internal model of
the familiar geometry leads to cue conflict be-
tween these two inputs. That is, when path inte-
gration using self-motion inputs on a return jour-
ney suggests that some distance has been trav-
eled since leaving the starting wall, visual in-
puts are in conflict with this, because the oppo-
site wall appears nearer or farther depending on
whether the environment has been compressed
or expanded. In other words, path integration
anchors responses to the starting wall, while vi-
sual inputs tend to anchor them to the opposite
wall (Fig. 4c, red and blue distributions peaking
at the ends of corresponding arrows). Critically,
the ideal observer combines these two cues ac-
cording to their respective uncertainties, such that
the final estimated spatial location depends more
on the input with less uncertainty. In general,
uncertainty from path integration grows with dis-
tance traveled from the starting wall (Fig. 1b),
while uncertainty in visual inputs decreases be-
cause of its inverse scaling with the distance from
the opposite wall (Eq. 1). Indeed, when we sim-
ulated the ideal observer with each input sepa-
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Fig. 4 | Tethering arises from cue conflict. a. Distance-dependent homing in scaled environments '2. Left. Participants learned
locations of four nameable objects (only two shown here for simplicity, black circle and diamond) in a square familiar environment.
The objects were at different distances from the walls (red and blue arrows indicate the distance from two opposite walls along
the axis that is to be changed). Right. In a test trial, participants were asked to return to the location of an object cued by its
name in an expanded (as shown) or compressed test environment, starting from one of the four walls (for this trial, the starting
wall is red and the opposite wall is blue for illustration purposes only). Gray circles show the ‘equivalent’ location of each target
object (hidden from participants), i.e. the location that is at the same distance from the center of the enclosure in the test as
in the familiar environment (note that this preserves distances between objects). Schematics in the bottom give intuitive expla-
nation for main experimental measures (actual calculations used linear regression across 4 objects x 4 starting walls with the
predicted shift appropriately changed depending on the starting wall '2). The scaling of homing responses measures the ratio
of the distance (A) between the two homing locations (orange) and the distance (B) between the target locations (or equivalent
target locations, gray). The shift of responses measures the difference between the average of the homing locations (orange
arrows) and the average of equivalent target locations (gray), with a sign that is defined to be positive when the shift is away from
the starting wall. b. Distribution of scaling and shift in the data (left; Fig. 6d in Ref. 12, with an opposite definition of the sign
of shift as we use here) and the BION model (right) is consistent with tethering. Box-and-whisker plots show range (whiskers),
interquartile range (box), and median (horizontal line) across subjects. c. Distribution of homing locations simulated by the BION
model, when the test environment is compressed (left column) and expanded (right column), for a target nearer the starting wall
(top row) and farther from the starting wall (bottom row). Red and blue vertical lines indicate the starting and opposite walls,
corresponding arrows show the distance of the object to these walls in the familiar environment shown in a. Curves of different
colors indicate the distribution of homing responses using both visual and self motion (green and orange), vision alone (blue,
mostly preserving the original distance to the blue wall), and self motion alone (red, mostly preserving the original distance to the
red wall). Schematics in the bottom show familiar environment (gray) and test environment boundaries (colored lines) for refer-
ence. d. Top row. Grid fields in the data (left'!) and the BION model (right) show tethering analogous to that seen in behavior.
The familiar, training environment is a square and the test environment is compressed along the horizontal axis. Red and cyan
shading show firing rates conditioned on the last approached wall being the west and east wall, respectively (walls are colored
in the figure for visualization only). Note that in the square environment, the cyan shading overlaps the red shading because the
phases of the grid fields are the same regardless of the last wall approached. Middle row. Phase shift of the grid fields relative to
the scale of the grid (distance between adjacent peaks) in the familiar environment (gray, before [1] and after [2] experiencing the
novel environment) and along the unchanged (red/blue) and changed (green) axes of the compressed environment. Note that,
due to the periodicity of grid fields, their shifts can only be measured up to half the distance between them, i.e. half their scale.
Error bars show s.e.m. across neurons. Bottom row. Pearson’s correlation between the observed tuning curves conditioned on
the last wall being on the changed axis and the tuning curves predicted from perfect scaling (ordinate) vs. perfect shifting (i.e.
boundary tethering, abscissa). Each point is a neuron, colored black if tethering correlation is bigger than scaling correlation,
and gray otherwise. P-values show the significance of a paired t-test in favor of tethering vs. scaling across neurons (comparing
Fisher-transformed correlations).

rately, response distributions based on only self-
motion input became slightly broader for targets
farther from the starting wall (Fig. 4c, red distri-
butions in bottom compared to top). In contrast,
response distributions based on only visual in-
puts were substantially broader for targets nearer
the starting wall compared to more distant tar-

gets (Fig. 4c, blue distributions in top compared
to bottom), as nearer targets are farther from the
opposite wall. Therefore, responses to targets
near the starting wall were dominated by path in-
tegration, and were thus mostly tethered to (i.e.
kept their distance from) the starting wall (Fig. 4c,
top row, green and orange response distributions
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largely overlap with red distributions). In compar-
ison, homing to targets near the opposite wall re-
lied more on visual inputs, whose reliability was
higher there, and thus these responses were teth-
ered relatively more to the opposite wall (Fig. 4c,
bottom row, green and orange response distribu-
tions interpolate between red and blue distribu-
tions).

The opposite tethering of near and far targets
to the starting and opposite walls in the BION
model, respectively, explains the experimentally
observed patterns of scaling of response distribu-
tions in compressed and expanded environments
(Fig. 4b, top right). The model also predicted the
experimentally observed overall tethering of re-
sponses to the starting wall (Fig. 4b, bottom right)
because, compared to other experiments, self-
motion inputs were more informative than visual
inputs in this experiment, as subjects walked a
short, straight path from a known location (center
of an identifiable wall). This contrasts with some
of the other experiments we modeled above, in
which visual inputs were relatively more informa-
tive because subjects started from a random lo-
cation uniformly sampled within the environment
(Fig. 2c) or walked a long meandering path before
the homing phase (Fig. 3c).

A re-analysis of previous experimental data'%42
revealed that, similar to human homing re-
sponses, rodent grid fields are also tethered to
environmental boundaries under analogous con-
ditions (i.e. unexpected environmental scaling).
In particular, the distance of a given grid field
to the wall that the animal most recently ap-
proached (i.e. was within 12 cm of it) is pre-
served between familiar and compressed test en-
vironments'! (Fig. 4d, top left). In order for the
neural posterior to follow the overall tethering
of the ideal observer’s posterior to the last wall
approached, which was apparent in the behav-
ioral data (Fig. 4b, right), the BION model also
predicted this tethering of neural tuning curves
(Fig. 4d, right; Supp. Material). Further quantify-
ing tethering as a relative phase shift of grid fields
confirmed that it was significantly larger along
the changed axis than along the unchanged axis
of the compressed environment, and also larger
than in the familiar environment before and after
testing in the compressed environment both in ex-
periments and in the model (Fig. 4d, middle left
and right). Finally, empirical changes in tuning
curves in the compressed environment were also
compared to hypothetical deformations based on
pure scaling vs. pure tethering. Although, over-
all, these two kinds of deformations were found to
provide comparable fits to the empirical changes,
tuning curves were significantly better correlated
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with tethering-based predictions in experiments
as well as in the model (Fig. 4d, bottom left and
right).

Discussion

Our work provides a unifying, normative theory
of how both behavioral and neural response pat-
terns depend on environmental geometry. The
key insight is that, due to the basic laws of
optics, visual inputs have a fundamental effect
on spatial uncertainty, which in turn is reflected
in behavioral responses and encoded in neural
responses as deformation, scaling, and tether-
ing by environmental boundaries. We quantify
these effects through numerical simulations of the
BION model, and provide mathematical insights
into their main qualitative features by analytical
derivations.

Previous models that attempted to link behavior
or grid cell properties to environmental geometry
only explained a subset of the phenomena that
we predict, and typically accounted for behav-
ioral effects as mere epiphenomena of particular
neural representations that were themselves of-
ten posited to be based on idiosyncratic features
of the environment®211.12_ In particular, based on
observations of place cell responses, the ‘bound-
ary vector hypothesis’ postulated a special sta-
tus for environmental boundaries, and their rep-
resentation by specialized cell types’ — a predic-
tion confirmed by later experiments**=45. These
cells were in turn suggested to underlie some of
the behavioral® and neural "6 effects seen dur-
ing environmental deformations. In contrast, the
BION model does not rely on explicit notions of
walls or boundaries, or externally provided iden-
tifying tags for them. Instead, it provides a nor-
mative basis for the special status of environ-
mental boundaries in navigation by only using
‘raw’ visual inputs. Thus, it explains the behav-
ioral and neural effects of boundaries from first
principles, as consequences of the higher visual
information close to such boundaries (Fig. 2a,
Eqg. 1). In line with this, the dependence of hip-
pocampal place cell responses on environmental
boundaries has recently also been hypothesized
to reflect such information-theoretic principles®’.
Taken together, these results raise the possibility
that the very existence of boundary vector cells*?
(and related boundary** and border cells*%) may
also derive from the same normative principle.

The BION model starts from the fundamental
principle (long-recognized in engineering applica-
tions) that representing spatial uncertainty is key
for efficient and reliable navigation because al-
locentric location can only be inferred from sen-
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sory inputs and motor outputs that are inherently
noisy and ambiguous. This is a fundamental dif-
ference from dominant theories of grid cell re-
sponses that either make the simplifying assump-
tion that location is already given to the model
as an input, without uncertainty '317,38,46.48.49 ~ o
perform localization from sensory inputs without
considering the unavoidable uncertainty in the
process®>°0,  Conversely, models that formal-
ized navigation in a Bayesian inference frame-
work have not incorporated an image-computable
ideal observer. Thus, these models did not study
how environmental geometry affects spatial un-
certainty and, in turn, homing behavior or grid cell
responses16,20,21,25,51—56_

An alternative theoretical account of some forms
of grid field deformations is based on the succes-
sor representation (SR)®’. Specifically, according
to SR-theory, place cell responses encode a pre-
dictive map, the (time-discounted) probability with
which a given location in the environment will be
reached from the animal’s current location, while
grid fields provide a set of basis functions for effi-
ciently representing this map'3. Because these
transition probabilities depend on the geometry
of the environment, they inherit the asymmetry
of the environment. Therefore, SR predicts an
overall asymmetry of grid fields between the two
halves of a trapezoid environment'3, and lower
gridness in the narrow side“6. Based on visual
uncertainty alone (Fig. 2b), the BION model also
predicts this overall asymmetry, along with more
fine-grained differences in the gridness and di-
ameter of grid fields (Fig. 2f). While SR-based
theories have also made predictions about grid
field diameters (or equivalently, radial frequen-
cies, Fig. 1j in Ref. 5), these seem to be in con-
flict with experimental data that shows larger di-
ameters in the narrow than in the broad half of
the trapezoid® that the BION model successfully
predicted (Fig. 2f). In addition, unlike the BION
model, SR does not explain experimental findings
when the environment is changed (Figs. 3 and 4).

The recently proposed ‘default representation’
(DR) is similar to SR, in that it also encodes a
predictive map without considering spatial uncer-
tainty*®. DR mainly differs from SR in that it is
based on a ‘default’ behavioral policy that de-
pends on basic physical constraints of the envi-
ronment rather than the current task-dependent
behavioral policy. Therefore, although the predic-
tions of DR have not been spelled out for the ex-
periments we considered here, they can be ex-
pected to be similar to those of SR, as long as
the behavior of the animal is constrained mainly
by environmental geometry (as in random pellet
chasing, but see below).
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Critically, SR-like and our uncertainty-based
mechanisms need not be mutually exclusive. For
example, there are changes in place cell re-
sponses (albeit not in grid cell responses®-¢0)
that happen in the absence of any change in vi-
sual inputs, when only the behavioral policy of
the animal is changed®'. Such changes may
be naturally accounted for by SR, as changing
the behavioral policy will also change the tran-
sition probabilities between locations, but might
not be readily predicted by our uncertainty-based
account. Conversely, the grid field deformations
described for unexpected environmental changes
that the BION model naturally captured (Figs. 3
and 4) seem difficult to reconcile with a purely
SR-based account. Moreover, studies of grid
field deformations using a ‘hairpin maze’ have
found profound differences in grid cell responses
when subjects navigated the same environment
with vs. without walls, even though their trajecto-
ries (and hence transition probabilities) were con-
strained to be similar®®€°, These results chal-
lenge a purely SR-based (but not DR-based) ac-
count of grid cell firing*®, while they are consis-
tent with an uncertainty-based mechanism given
the critical role of visual inputs in determining
spatial uncertainty, as revealed by our analyses.
Taken together, we propose that SR (or DR) may
be most relevant for place cell responses, while
grid cell deformations may be driven primarily by
uncertainty-based mechanisms.

Our work focuses on how a probabilistic esti-
mate of location (and head direction) is computed
from noisy and ambiguous sensory inputs. A
complete understanding of navigational behav-
ior also requires the formalization of how these
estimates, and the uncertainty about them, are
used for route planning®? — something that we
only modeled phenomenologically (Fig. 1c). In-
deed, recent work using a more formal model of
the planning process?® has been able to account
for apparent violations of the Bayes-optimal com-
bination of landmark and self motion cues?’2®
and reconcile them with earlier results suggest-
ing optimal cue combination®®. These results
lend further support to our core suggestion: that
Bayesian principles play a fundamental role in
navigation.
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Environmental geometry Behavioral (Human) Neural (Rodent)

Square vs. trapezoid Bellmund et al. 2020° Krupic et al. 2015°

Expanded & compressed rect- | Chen etal. 2015°, Hartley et al. | Barry et al. 20070, Keinath et
angles 20048, Keinath et al. 202012 al. 20181

Table 1 | Choice of experimental tasks.

Methods

Choice of experimental tasks

We chose experimental tasks with which we can test both behavioral and neural effects of uncertainty
as a function of the environmental geometry. Typically, human experiments yielded suitable behavioral
measures (e.g., endpoints in homing tasks®) and rodent experiments yielded suitable neural measures
(e.g., electrophysiological recordings from grid cells while the animal chased a randomly dropped pel-
lets). Therefore, we chose pairs of experiments that employed analogous environmental geometry and
compared their results with our model (Table 1).

BION ideal observer model

Generative model

We consider an observer (a modeled human or nonhuman subject) that navigates an environment while
trying to find out its own location within the environment. In experiments we modeled, the subjects were
familiarized with the environment, or believed that they were in a familiar environment, so we assume
that the observer’s uncertainty about the configuration of the environment (also known as a ‘map’) to be
negligible. The observer still has uncertainty about where it is, due to noise in its sensory inputs (visual,
self-motion, and tactile) and its movements.

Formally, at each time step t, the observer intends to turn by «?, which results in a noisy rotation @ in
its allocentric head direction 6:

il ~vM(d! At kAL (2)
Ht = 9t,1 + FJ? (3)
where vM(-) denotes von Mises distribution. Likewise, the observer intends to move forward by v*, which

results in a noisy forward motion &* in its allocentric location £, except when it meets a wall 9&, in which
case it stops at the nearest intersection of its trajectory and the wall:

i} ~ gamma(uiAt, (o) u{ At) 4)

i = (@,0) " (5)

8 =g+ R(6:) ':'f (6)

B(e.£') =2 N oE (7)

.- {et’ | i et: €& .
argmin,, . de1_1,e[/)d(£t_1’£) if e, ¢ ¢&

The observer receives egocentric visual input on a flat rectangular array of retinotopic neurons through
a pinhole projection of the 3D scene. The individual neuron’s signal V is subject to Poisson noise with
the tuning curve (i.e., expected firing rate) given by a blurred first person view v, which is a function of
the observer’s location and head direction:

Vi ~ Poisson(v;(£:, 0;) At) ©)

Finally, the observer receives egocentric tactile input W if it is within distance x, from a wall, with
reliability p,,:

W, ~ {Bernoulli( + %pw) if B, £+ x,u(@+7))| >0 (10)

1
2
Bernoulli(§ — 1py) otherwise

There were a few differences between the generative models we used for different experiments: (1) For
human experiments, which were performed in VR, we did not use tactile input (Eqg. 10). (2) For the
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scaling experiments done in large environments®®, we used isotropic Gaussian distribution instead of
gamma distribution for the translation (Eq. 4).

A recent theory used a normative model to explain undershoot in navigation to a remembered target
location by having a prior that places higher probability on slower speeds (i.e. a slowness prior rather
than imperfect integration)?2. In contrast, in our model we assumed that the perception of the control
signal is well calibrated and is observed, while the resulting movement is noisy, following the convention
of some of the robotic navigation literature'®. That said, as our model specifies P(A(, 0)|(u®, u?)), it
would be possible to emulate a slowness prior. However, we did not include slowness prior in our
analyses because (1) in the experiments we modeled, vestibular and/or afferent copy of motor signals
(in addition to optic flow) were available, which would have made the perception of self motion more
reliable, compared to the experiment modeled by Ref. 22 where only optic flow was available; (2) the
main results we replicated were differences between conditions (e.g., difference of biases between
expansion vs. compression of environments) rather than the bias relative to the true distance, so that
any undershoot would be subtracted in the comparison.

Bayesian filtering

The ideal observer is given by Bayesian inversion of the generative model above. Specifically, we used
Bayesian filtering, where the observer infers the posterior distribution over its allocentric pose (location
and head direction) given the full history of noisy sensory inputs and control signal.

P(ZT = z|u0;T, 00;7) 0.8 /P(0T|ZT = Z) P(ZT =Z | ur,zZy_q1 = Z/) P(ZT,1 = ZI | uO;T,1,00;T,1) dZ/ (11)
observation prediction dynamic prior
where the pose is the latent state z := (¢, 0) that consists of the allocentric location £ and head direction
#, and observation o := (v, w) consists of egocentric visual input v and tactile input w, which we assume
to be independent given z. Hence, P(o|z) = P(v|z) P(w|z). For simplicity, we assume that the control
signal u (= intended movement) is known by the observer without noise, but that the actual movement
is noisy '°.

Visual likelihood

A key novel component of the BION model is its visual likelihood. It is computed as the likelihood of
the egocentric visual observation given an allocentric pose. This is achieved by inverting the generative
model of the visual input (Eqg. 9). Specifically:

—i rAt _
P(V=vlz)=]] @A) ((Zr)iig)! i (12)

where i indexes neurons with a retinotopic arrangement (‘retinotopic neural population’) and z := (¢;, 6;).
This is an extension of a classical Bayesian decoder (Eqg. 3.30 of Ref. 32) to the 3D case, by using tuning
curves obtained from the projection of a 3D scene onto the retinal plane, v/(z). This extension has an
important implication for the amount of visual information. While the assumption of independent Poisson
noise of pixels is an obvious simplification, it still yields powerful predictions when combined with the
law of optics of the projection from the 3D world onto the 2D retina (Supp. Material and Results). The
extension also has implications for numerical computation. To see this, note that expressions like the
above is typically evaluated using logarithm for numerical stability as:

log P(V=v|z)=) [rlogV(z) - V(z) -] (13)

i
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Here, unlike Eq. 3.31 of Ref. 32, we cannot ignore the second term, because we cannot assume it will
be independent of z. That is because in case of Ref. 32, the tuning curves are arranged evenly in the
space of the stimulus, whereas in our case, the space of the stimulus, z, cannot be linearly mapped
onto the retinal space (on which the tuning curves are approximately evenly arranged). As a result, for
example, some places z may simply be darker than other places and evoke fewer spikes across the
retinal space, making the second term different between different z.

BION neural representation model

We use the readout P8(¢) of a Bayesian decoder of the animal’s location £ given Poissonian firing rates
r of a grid cell population as ‘neural posterior'. Our hypothesis is that the tuning curves of the grid
cells are warped such that this neural posterior represents the ideal observer’s posterior P as closely
as possible. Formally, the neural posterior has a parametric form obtained by inverting the generative
model of the firing rates:

ri~ Poisson(fig*(z)T) (14)
PE(l; v, @) o P(L | 1 £ (2))™ (15)
o |P(r | &£ @) P(r; £ (2)) (16)
1e
log PE(6;r,©%) = &' Y log P(r; | £ £ (2)) + (const) (17)

where i indexes neurons, fg* is the ‘encoding’ tuning curve, which gives rise to the firing rate r := {r;},
and f¢ is the ‘decoding’ tuning curve. Here £ is the familiar environment, and £* is the test environment,
which may or may not be the same as £. «' is a parameter that determines the sharpness of the
posterior, which ensures that the neural posterior does not become infinitely sharp even with infinite
number of neurons. It is necessary because we assume that there is nonzero uncertainty in the ideal
observer’s posterior due to noisy observation (see Results).

Our strategy is to first optimize the tuning curves to match the neural posterior with the ideal observer’s
posterior, and then to compare them with the experimental data. For this comparison, for the neural
model, we chose, z := (¢, h) where £ is the location of the animal and 4 is the last wall approached, to
match the way the tuning curves are reported in Ref. 11 (Fig. 4d). Specifically, we fit £~ (observable),
parameterized with ®“ to be a warping with a mesh. When the test environment is familiar, f¢ is
constrained to be the same as f¢~, which is fit. Otherwise, ¢ is fixed to the value fit when the particular
£ was the test environment, and £ is fit.

In practice, we assume that head direction uncertainty is small (because salient orientation cues were
available in all experiments) and that tactile reliability is high, so we treat h as observed. Therefore, fE
and f¢ depend on h, but we only need to compute the posterior over the location £.

Also, for simplicity of optimization, we assume the limit of an infinite-sized neural population. (Note
that this contrasts with our assumption of a finite retinotopic neural population (Eqg. 12), where we used
the Poisson noise as a proxy for noise and ambiguity inherent in the egocentric visual input.) This
assumption allows us to express the right hand side of Eq. 17 with /¢ instead of r:

of Z log P(r; | £ (2)) = o Z i log P(r; | &£ (2)) (18)
| RN
- O/Z,Z rTlog(fE(@)T) — f£@)T _p%%i)r (19)
log PA(6:2,0) = 3 i [T @) Tlog(fE @) — fE@T] + o 20)
i 1z
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where N; is the number of neurons with the same tuning curve. We suppress the Poisson variability
and use £ in place of r;, by setting the population size N; — oo and setting the contribution of an
individual neuron o’ := «;/N; — +0 while keeping «; finite. For simplicity, we treat the N; neurons that
share the same tuning curve f¢~ as a single deterministic neuron i with a continuous firing rate £~ from
here. We then fit a := {«;}, to account for the difference between the contribution of each neuron to the
decoded neural posterior. Since our hypothesis is that warping is the dominant factor determining the
posterior, we constrain «; to be the same for all neurons within a grid module. We denote all parameters
controlling the neural posterior together as © := (@Y, o). We fix T = 1 for simplicity.

To fit the warping, we use gradient descent to find:

© - argmin £t 4 L8 (21)
e
where
L™ = (D[P} || PE), (22)

is the divergence of the neural posterior from the ideal observer’s posterior, averaged across time. £
is a regularization loss that penalizes deviation of the angle between neighboring nodes of the mesh

from 90°. It is defined as:
1—sind\”
reg = reg - 2
L= W) ( 2 ) 23)
Here, ¢ is an angle subtended by neighboring points in the mesh controlling the warp, w™¢ and g are
hyperparameters that control the weight and stiffness of the regularization, respectively.

It turns out that we can further simplify the calculation of the £, because it is equivalent to minimiz-
ing the divergence of the posterior (in our case, defined over believed location £), given a state that
parameterizes the neural firing rate (in our case, z), averaged across time:

<DK|_[Pb (é, z, t) | P& (é, z, @>]>t = lT Z Z pb (é, z, t) (log pb (E, z, t) — log P& (E, z, @)) (24)
=C— — Z log Pg( ) pb (é, Z;, t) (25)

tz;=z
—Cc-~ Z Z log Pg< ) M(z)PP (z z) (26)
Here, C is a constant term that is independent of 6 M(z) := |{t : z; = z}| is the number of visits to z, and
Pb(z) := M<z 5 2 tzyez P (2, zi, ) is the ideal observer’s posterlor at z averaged across time, which is also

mdependent of @. These two terms can be pre-computed, which greatly accelerates the optimization
of ® when |{z}| < T, as is the case for our simulations.

To gauge the quality of the fit, we show optimized Dy, along with controls in Fig. 1e, which are defined
as follows:

DM - <DKL[Pb(ﬁ;zt, t) I Pg(i; zt,é)]>t 27)
o s TP - ) 1 (5 -2.8)))

(28)

DL® - <DKL[Pb (E; z, t) | P8 (E; zt,e“’g>]>t (29)

Dhuffle ._ <DKL[ (z Zy 1 ) | P8 (e z, e)]>t (30)

where @"¢ is the parameter of the warping that gives regular grid fields, and #(¢) is the t-th time step
after shuffling.

For results in Fig. 4d, we only fit f£~ while fixing fé to be regular grid fields. This was because the
familiar environment was always a square, in which the effect of warping was small.
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Homing task

Overview

Homing experiments ®8° consisted of a learning phase followed by a test phase. In the learning phase,
subjects navigated to a visible target location. In the test phase, subjects had to navigate back to
the hidden target location from memory, starting from a designated location that differed from the target
location. In Ref. 9, subjects had to follow a designated path (that was randomly chosen by the computer
program every trial) before they navigate back to the hidden target location.

In both phases, at each time step, a control signal u is chosen among four options: staying still, moving
forward, turning right, and turning left. Formally:

u = (o, u?) (31)
ecC (32)
= {u’,..,u} (33)
= {(0,0), (AL, 0), (AL, —AG), (AL, +AO)} (34)

Learning phase

We modeled the observer to be from the starting location toward the true target location in as straight as
possible trajectory at each moment (or following a designated path®). The control signals are sampled
passively, i.e., without regard to the observer’s beliefs. If there are more than two possible such control
signals at a given moment, one is chosen at random. When the observer arrives at the true target loca-
tion, its belief about its location is stored as the mean believed target location £, given all observations
o and control signals u (which include translation and rotation):

ﬁleam (éleam) ~x P (élearn|0|earn ul)ef-irmm, g) Blearn (35)

0:Tlearns

7- E(é'eam) (36)

where 0 < Br.m < 11is the inverse temperature parameter that models forgetting (the lower, the more
forgetting).
Test phase: position estimation

The observer chooses its own control signal. For this, it first computes the counterfactual expected
value from executing each candidate control:

V= Z Z v (élearn’ étest) plearn (élearn) pi (étest) (37)

plearn ptest
where the value is defined to be tﬁe neegative squared Euclidean distance:
V(élearn’étest) . _||l7|earn _ étest”% (38)
The counterfactual location posterior when staying is defined to be the same as the current posterior:
F~,0 (Etest) — P (Etest |0}f§t> ugejt, g) (39)

In general, the counterfactual location distribution after executing the j-th candidate control u/ is defined
in the believed environment space:

PI(8t) 5= P80l it . ) (40)
with a temperature parameter o2, which effectively scales the distance in Eq. 38:
P(ui = uj) x e/ (41)

The final response is made when the observer chooses to stay, i.e., ul** = u’, and the observer’s true
location at that time is recorded as the responded location.
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Test phase: distance estimation

In addition to the homing task, subjects in Ref. 5 also performed a distance estimation task. In this
task, subjects were asked to indicate the distance between two target objects they have seen during the
learning phase. During the test phase, subjects were asked to walk the distance they want to indicate in
a virtual circular enclosure (to which they were previously familiarized). Specifically, they were asked to
walk the same distance as the distance between a pair of objects, starting from a root of a static visual
arrow placed randomly in the familiar circular environment, following the direction of the arrow, which
always pointed to the center.

In our simulation, the observer is driven from a random starting location toward the root of the arrow
in as straight as possible trajectory at each moment, until it arrives at the root (similar to the learning
phase of the homing task Eq. 35). The observer starts this trajectory with a uniform prior belief over

locations and heading directions, and ends it with a distribution of believed position of the root P(imot).

Note that, since the observer continues onto the estimation as soon as it reaches the root of the arrow,
we assume it does not forget the position of the root (i.e., retains the full posterior without exponentiation
by Biearm, Unlike Eq. 35 and Eq. 36).

At each time step from then on, the observer decides whether to walk another step in the direction
of the arrow or stay, using the counterfactual value of the predicted location after each action (walk or
stay), as in the test phase of the homing task Eq. 37-Eq. 41. Here, the value v of a control signal
uy = u € {walk,stay} is defined as the negative expected squared difference between the predicted
distance from the root of the arrow and the believed distance between the given pair of objects (, k):

VLQJSt = ze: %: F~’ (éroot = e) |5“ (£l|éroot = E’ Up:t—1, 00:t—1> VESt (”E - EIHZ) (42)

v (e = €12) = = (e — £~ g~ &l)° (43)
Then the choice is made based on the softmax over u, with the temperature parameter o,, which effec-
tively scales the difference between distances in Eq. 43, as it does in the homing task (Eq. 41). The
estimation trial ends when the observer chooses to stay, and the observer’s true distance from the root
of the arrow is recorded as the responded distance.
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Supplementary Material
Visual uncertainty

A point landmark and a single neuron

While all results are obtained from numerical simulation using Eq. 11, we also derived simple ana-
lytic relation between Fisher information and the environmental geometry to gain analytic insights, and
checked its correspondence with the numerical simulation (Fig. 2a). Here we start by deriving the Fisher
information /¢ of the apparent position ¢ about the true distance ¢ along an axis of interest, assuming
that the axis of interest is the same as the optical axis of a pinhole projection (the line of sight of our
ideal observer). We further assume that the distance of the point landmark from the axis, ¢, as well as
blur ¢ (on the image plane at a focal length of 1 without loss of generality) is known, which gives the
distribution of the apparent position ¢ ~ A (¢’, o) with ¢’ := ¢/¢. Then:

0?
1) = < 5 PE | £>> (S1)

0?
~ [ depte 0gnpte (52)

Ao [% () ()
—2C/_Oodee P . (83)

where C = U\}ﬁ is the normalization factor. The partial derivative evaluates to:
D [(e—N\P D [é—elT se
— [ — =2 -~ 4
(%2(0) a( - )(J) (54)
2 9 _ _
- 350 (eeﬁ 2 3) (S5)
- 32( 2¢ct™ + 320 (S6)
2 PN 3e2 04
= ; (7266 ) € — 6/ + 6/ + % (87)
—awl—3 /o2 _ler

Substituting back to Eq. S3:

o -1 (4“ )/ dec (%) ((e_e’)—;e/) (s8)

To evaluate the integral, note that.

—e_%(é%,)z =— <€_ €/> e_%(éi"sl)2 (S9)

0¢

1

o
1

o?

5 (e—¢) e_%(é%l) (S10)
Substituting back to Eq. S8:

=3 1 e=€)? o0 © 1 e=€)?
If(€)=;C(—46£ ) —o? {e_z(")} —%e'/ dée_E(T) (S11)

o2

-0 =1/C

62

= (S12)
The result’s unit is (length)~2, as it should be from Eq. S1, where g—; (whose unit is (length)—2) is applied
to ((¢€ — €')/o)?, which is dimensionless since ¢, ¢/, and o are dimensionless ratios between lengths (e.g.,

€ = ¢/l).
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An array of Poissonian neurons

Now we derive the Fisher information /£(¢) about ¢ given the firing rates r of an array of N neurons with
independent Poisson spikes, which is defined as:

140) = /dr p(r | f)agzln p(r | 0) (S13)

While the results of this step has been known®2, we describe them here for completeness. Here, our
aim is to express /“(¢) as a function of each neuron i’s tuning curve f;(¢), which is defined as the mean
firing rate given the true stimulus ¢, i.e.:

£(0) = / dr, p(ri | O (514)

First consider p(r | ¢) in Eq. S13. Since we assume that each neuron’s spikes follow independent
Poisson distribution, the likelihood of observing a certain vector of firing rates r is simply:

(1= H el s15)

where T is the duration during which the spikes are observed. Now we can evaluate the partial derivative
in Eq. S13 using Eq. S15:

& FHOTYT

(%zlnp(rw)—%l (H Pt > (S16)
P (<
- o (Z(r,rln(f,() - f(@r—ln(riT)!)) (517)

9 (= (T o
" o0 (TZ (o ))> 19

1

) O g0
‘T.Z(( f(rr)“ f"‘”) G19)

I=

Finally, substitute Eq. S19 back into Eq. S13 and srmplrfy using Eq. S14:

f”<f> AGK "
use Eq. S14
N
__ _ 7 () 1y
_ TZ(( foF 0 g 0 - W’)) s21)
N
7 (07
TZ fil0) (S22)

Therefore, as aimed, we expressed I£(¢) as a function of £(¢).

A retinal image

We are finally ready to derive the Fisher information /(¢) about the 3D distance ¢ from neurons with a
uniform 2D retinotopic array of tuning curves. Assume a Gaussian tuning curve

filf) = rmaxef%(éi:/z)z (S23)

then
R S [ERT Pt s
- 7# — el (S25)
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Substitute Eqg. S23 and Eg. S25 into Eq. S22:
2+ N =12
ro-Iy <(€’d)ﬁ(€)> (s26)

o ot
i=1
Compare this with Ref. 32, Egs. 3.46-48 to approximate the sum with an integral to obtain:

62 (ZW)D/ngDizrmaxT
) = — - S27
L (0) 7 D (S27)

62

€4
where p is the number of neurons in a unit range of ¢ := ¢/¢, and D is the number of dimensions of
the space where the neurons are arranged, which is 2 for us. This expression is used for the lines in
Fig. 2a, and its simplified form is presented as Eq. 1. Note that here we used ¢ instead of d to avoid
confusion during integration.

= TPMax T - (S28)

Intriguingly, as explained in Ref. 32, the Fisher information is independent of the width of the tuning
curve o, because the number of neurons responding to the stimulus scales with po?. The difference
from Ref. 32 is the factor of €2/¢*, which arises because our quantity of interest ¢ is inversely related to
the center of the tuning curve ¢/¢ (rather than linearly related, which would have given the center of ¢).
Note that the resulting expression for I£(¢) has the same unit as /°(¢), and is proportional to it without the
o term, scaled with the number of spikes, prmaxT.

Bias in distance estimation — analytic intuition

Our numerical simulation replicated different biases in distance estimation between environments and
between sides of the trapezoid (Fig. 2d, bottom). Here, we provide analytic intuition for the results with
a simplified version of the ideal observer model. We derive a relation that explains how strongly the bias
in distance estimation along a given axis (x or y) depends on the (half of the) sizes of the environment
along that axis (‘depth’, L) and the axis orthogonal to it (‘eccentricity’, ¢). Then we use this relation to
show how the relative sizes of the environments and its sides (Fig. S1) translate into the difference in
biases.

First, we express /, the estimated location, obtained with Bayesian inference after Laplace approxima-
tion of the prior and the visual likelihood, as a function of L and e. Here, without loss of generality, we
adopt a convention where ¢ = 0 means that the estimated location matches the mean prior location:

0 = f(oy 0<l<L (S29)

where () = - +jg 0 0 < f(l) <1 (530)
YN

and g(0) = & - ) o 0 < g(0) (S31)

Here, L — ¢ is the distance to the wall in front, ﬁ is the precision of the likelihood (following Eq. S28),
% is the precision of the prior (which is lower in a larger environment), where X is a free parameter that
indicates the relative informativeness of the prior compared to the likelihood.

Then, we express how much g depends on L vs. ¢ in preparation for a later comparison on how much
the estimated location ¢ depends on them:

og . &) L

- 2—L — <2 I > (S32)

og 2

9 " —Eg(ﬁ) (533)
which means that, since L — ¢ € [0,L] and 2 — L;L’ € [0,2], when L = ¢:

Jg| _ |98

31 Be (S34)
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In other words, g changes more with L than with e. Now we express the estimated distance d between
two target locations ¢; and ¢, as a function of f, and in turn, of g:

d=10;— 10, 0> 0 = f(l) > f(£y)
(S35)
d="0,— 0, (S36)
= f(l)t — f(la)ty (837)
Then we compare how the change in L vs. ¢ affects d using the relations derived above:
ad
87g = —f2(€1)£1 +f2(€2)€2 (538)
od 9dgod
9L 9L 0g <0 (S39)
od dgdd
g - 4
9 ~dcog " (540)

In words, the estimated distance between two target locations ¢; and ¢, is shorter when the environment
is deeper (when the wall is farther and visual likelihood is less precise) due to stronger regression to
mean, and longer when the environment is wider due to weaker regression to mean. From Eq. S34, the
absolute values of the above two quantities can be compared as:

oL Oe
Therefore, the estimated distance relies more on the depth of the environment than on its width.

(S41)

Finally, we use Eqg. S41 to compare the estimated distances in square vs. trapezoid, and in the broad
vs. narrow sides of the trapezoid, which we denote as 5 (square), T (trapezoid), B (broad side of the
trapezoid), and N (narrow side of the trapezoid). We further denote the size of the environments and
the halves of the trapezoid as X. and Y. as shown in Fig. S1.

Using these relations, we begin by comparing the estimated distance along the x axis between the
square and trapezoid environments. Here, Xs and X; are the depths. (To be exact, the prior mean x
location of the trapezoid is off center, but we ignore it for simplicity and use X; for L, since the following
holds as long as Xs < X;.) Since Xs < Xy, we can infer that § > T (larger depth results in shorter
estimated distance; Eq. S39). To disambiguate this comparison with others, we denote it as S* > T,
which means we used Xs and Xt as the depth (L) of the environment.

I:ikewige, we can compare the widths (¢) of the environments as Ys < Yy, from which we infer that
SY > TY (larger width results in longer estimated distance; Eq. S40) using the same convention as
above.

We can also compare the estimated distance along the y axis. Then Ys and Yr would be the depths,

and Xs and X7 the widths. We can summarize the comparisons along the x and y axes as:

Xs < Xr = S>> TX

Ys>Yr = S >TY

square vs. trapezoid (S42)

Ys>Yr = SE < i-l_Y

Xs <X = S<TX

Thus, the estimated distance in the square should be longer along the x axis, while it should be shorter

along the y axis. To resolve this conflict, we compare the relative importance of the two axes. According

to Eq. S41, the influenpe ofAthe deptb shoyld dominate the influence of the width when L = ¢. This allows

us to compare, e.g., |S* — T| and |S¥ — TX|, where the same set of sizes (Xs and X7) were used. This,

combined with the relative size difference of the two environments along the two axes means that:
ISX—TX| > 18X ~TX = S>T
ISy —TY|> 1|8 -TY = S<T

along x axis {

along y axis {

}:> S>T (S43)
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a b c
2¥s S 2Yr 2Yy #YN
—> >

Fig. S1 | Symbols used to explain the analytic intuition for the bias in distance estimation. Schematics of the environments
where their relative sizes roughly follow that of Ref. 5, where the distance estimation experiments are reported. a. Whole square.
b. Whole trapezoid. ¢. Broad and narrow side of the trapezoid, split in half. Because the subject does not know whether they are
in the broad or narrow half, their prior along the x axis covers the whole environment. Hence, we define Xg := Xy := Xt so that any
of them can substitute L from Eq. S29 to Eq. S41.

which agrees with the experimental results (Fig. 2d bottom, green vs. orange).

Likewise, we compare the broad vs. narrow sides of the trapezoid. Note that the two sides share the
same size along the x axis (which is X7) for the purpose of determining the precision of the prior and
likelihood:

X =X=X = Bl = A
along x axis { YB ; T B‘L( ﬁ;Y
broad vs. narrow side B> IN = B> N
of the trapezoid (S44)
ZOl R R
g Y > Yy = B <N
along y axis =
Xg=Xn=X = B=N
Again, we compare them with Eq. S41:
B = M| = |BE = NX[=0 = B=N L
BY _ R BY RY . .= B<N (S45)
|BL_NL|>|Be_Ne| = B< N

which, again, agrees with the experimental results (Fig. 2d bottom, light vs. dark orange). Therefore,
we can see that the difference in the estimated distance (Egs. S43 and S45) can be explained by the
effect of the size of the environments on the precision of the prior and likelihood in Bayesian inference.

Neural tethering — analytic intuition

Our goal is to show that, if the ideal observer’s posterior is tethered to the last wall approached, then
a neural posterior, if it is encoded by tuning curves tethered to the last wall approached, also matches
the ideal observer’s posterior. Since tuning curves define mean firing rates, we first consider the mean
posterior P, defined as the ideal observer posterior averaged over time:

F(EM, 0, 5) . <P (é\ o, Vo 5) >t:(em)=(w) (546)

For simplicity, here we only consider the 1D location ¢ € £ = [0, L] along the changed axis, and two
opposite head directions along that axis, § € Q = {0, 7}, where # = 0 means the observer faces toward
L. We also assume that the momentary posterior of the ideal observer matches its average posterior
in either environment € € {€,£*}, which allows us to parameterize the ideal observer posterior P" with
location, head direction, and environment, as follows:

P (i:67.07.€) = P(1161.67.8)

= P ({0, vour € Ve (847)
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Simplifying the approximate patterns seen in behavioral data, assume that the ideal observer’s belief
PP is tethered to the last wall in the new environment £*, and that the last wall is always behind the
observer (i.e., when 6 = 0, the last wall is at 0, and when ¢ = =, the last wall is at L"*V). For 6* = 0, this is
simply:

pb (M*,e* _o, 5*) x PP (E; 00"~ 0, 5) vV 0* e [0, L7V (S48)

Pb.,(0%=0) pb

new familiar

(0°-0)

We also assume an exact match between the ideal observer and neural posteriors in &:

Pb(z?;e*,e*,é) = pe| 7 Fer, 0%, 6) | v (e, 0%) (549)
fi

P

b
familiar

3
familiar

Note that we are considering the limit of a large neural population size, which gives r; = f(¢}, 05, ) Vt, and
the limit of good coverage of the environment by the observer’s trajectory, which gives {(¢;,6;)} = L x ©.
Here, for simplicity, we assume LV < [familiar, i.e., that the observer is in a new environment £* com-
pressed compared to the familiar environment £, such that tethered beliefs can cover the whole length
of £*.

Then, having tethered tuning curve, i.e.,

F*,6% =0,E%) = f(£*,0* =0,E) V" € [0, L] (S50)
Joew(6*=0) Sramitiar(6* =0)
which implies
PEOLF(*,0% =0,E) | oc PE| 2| f(€%,0" =0,E%) | V£ o, L] (S51)
Seamitiar(0* =0) Srew(0*=0)
PE i (07=0) PS5 (0% =0)

is, by transitivity across Eqs. S48, S49 and S51, sufficient to give

P8l 0| f(e*,0% =0,E) | = P° (Z;e*,e* -0, 5*) v % e [0, L"V] (S52)
N————

Srew(6*=0)

Pb., (0% =0)

Plew(6*=0)
Also, in the limits of good coverage that we're assuming, it is also natural to assume mirror symmetry in
g, ie.,

P (60,07 = 0,8) = PP (BB — ¢ 9" - . E) (353)

b
Pfamiliar

and the same for the neural posterior and tuning curves. Then, by mirror symmetry, results analogous
to Eq. S52 also hold when 6* = 7. That is, tethering of the ideal observer’s belief...

(6%=0) Pb

familiar(

6* =)

p (é; L g5 9" = 7, 5*) o PP (E; pfamiiar g+ gx _ 5) V6 € [0, L") (S54)
Prew(07=T) Pnitiar (0 =)
... and tethering of tuning curves...
f(Lnew _ e*’e* _ 0,8*) =f(Lfami|iar _ e*,e* -0, g-) V= [0, LneW] (555)
fnew (9 * =0) ffamiliar(e * =0)
... which imply...
Pe | f| f(rfamiiar — g g% — w E) | oc PB4 (LY — £*,6% =, EX) | YV £* € [0, L") (S56)
Seamitiar(6 =70) Joew(0* =)
P itiar (07 =T0) Phew(6* =)
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... are, by transitivity across Egs. S49, S54 and S56, sufficient for the neural posterior to match the ideal
observer’s posterior given 6* = 7:

pel 7 ey — ¢%,0% = 0,6%) | = PP (é; LreY gt g - w,g*) V0% € [0, L7V] (S57)
g Pl (6%-m)
Phew(0* =)

Therefore, tuning curves tethered to the last wall in £* is sufficient for the neural likelihood to be tethered
the same way, and when the likelihood is sharp enough, for the neural posterior to match the ideal
observer posterior tethered to the last wall approached in either direction, as in Eqgs. S52 and S57.
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