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Abstract

Minimum Bayes Risk (MBR) decoding has be-
come a popular decoding strategy for different
natural language generation tasks, especially
machine translation. MBR relies on an esti-
mator of an expected loss, where we use our
learned model as a proxy for the target distribu-
tion that we wish to take this expectation with
respect to. However, this reliance can be prob-
lematic if the model is a flawed proxy, for ex-
ample, in light of a lack of training data in a spe-
cific domain. In this work, we show how using
a posterior over model parameters, and decod-
ing with a weighted-averaging over multiple
models, can improve the performance of MBR
by accounting for uncertainty over the learned
model. We benchmark different methods for
learning posteriors and show that performance
correlates with the diversity of the combined
set of models’ predictions. Intriguingly, predic-
tion diversity also determines whether risk can
be successfully used for selective prediction.

1 Introduction

Natural language generation systems use decod-
ing strategies to construct an output for a given
input from a probabilistic model. Minimum Bayes
Risk (MBR) decoding is one such strategy, which
aims to find the string that minimizes an expected
risk function, for example, the negative value of
some standard quality metric. MBR was originally
proposed in the era of statistical machine transla-
tion (Kumar and Byrne, 2002), with the motivation
that while we might not be able to trust that our
models accurately learn the mode of the target dis-
tribution, they are overall good representations of
this distribution (Smith, 2011). More recent works
have shown that these problems persist with mod-
ern models (Stahlberg and Byrne, 2019; Cohen and
Beck, 2019), precipitating the resurgence of MBR.

Amidst this resurgence, there has been ample
work on efficient variations of MBR (Eikema and

Aziz, 2022; Fernandes et al., 2022; Cheng and
Vlachos, 2023; Vamvas and Sennrich, 2024) and
the effects of the chosen utility function (Freitag
et al., 2022). On the other hand, little attention
has been paid to a potentially large source of error:
the model distribution. In MBR, the quality of the
risk estimator—and consequently, the quality of
the chosen string—relies on a good estimate of the
target distribution. For over-parameterized models
like large deep networks, parameters change drasti-
cally simply by using different random seeds (Fort
et al., 2019, App. B). This suggests that there is
large uncertainty in the learned model and this com-
ponent of the MBR pipeline may be error-prone.
Accordingly, increasing the robustness of MBR to
such uncertainties is a clear path toward potential
improvements.

In this work, we propose different methods for
accounting for parameter uncertainty in MBR de-
coding. In short, we take an additional expectation
over the posterior distribution of model parame-
ters when computing expected risk. In practice,
this boils down to combining the predictions of
multiple models—sampled from an estimate of the
Bayesian posterior—when generating the hypothe-
sis set in MBR. Such model combination has been
shown to provide better-calibrated distributions and
can improve robustness and downstream perfor-
mance, especially in low-resource settings (Blun-
dell et al., 2015; Lakshminarayanan et al., 2017;
Maddox et al., 2019; Shen et al., 2024). We ex-
plore both token- and sequence-level methods for
combining model predictions.

Overall, we find strong evidence that account-
ing for weight uncertainty can improve MBR and
make it more robust. We find that improvements
trend with the expressiveness of the posterior dis-
tribution from which the combined models are ob-
tained. Likely related to this observation, we see
that the performance of uncertainty-aware MBR
is highly correlated with the diversity of the hy-



pothesis set generated from these models. We also
find that weight uncertainty provides a useful sig-
nal for selective prediction, where we observe that
uncertainty-aware expected risk can be used to de-
cide when to predict vs. abstain from generation.
Finally, we show that our methods scale well to a
larger number of models and larger hypothesis set
sizes.

2 Background

2.1 Probabilistic Language Generation

Modern models for language generation are
predominantly locally-normalized, autoregressive
models of the conditional distribution over next
tokens. The probability of a sequence of tokens
forming a string can be determined by the product
of all next token probabilities in the sequence. For-
mally, given an input x, the probability of an output
sequence y = (y1,¥2, ... ) can be computed as
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where each y; is a token from some predetermined
vocabulary V.

Learning p,. We denote a single mode as py,
where @ are its parameters (also called weights).
These parameters are generally learned given
paired examples D = {x(), y@}N_ aloss func-
tion and an optimization procedure. The loss func-
tion quantifies how far our model is from a chosen
target distribution, for example the data-generating
distribution p(- | x) that we assume D is sampled
from.

Decoding from p,. At inference time, our goal
is to generate a string from p,(- | x). The set of
decision rules used in this process is often referred
to as the decoding strategy. One such strategy is
simply to sample tokens autoregressively until a
stopping criterion (usually a fixed maximum length
or a special end-of-sequence token) is met. An-
other strategy is to search for the maximum prob-
ability string according to p,(- | x). Both of these
approaches have proved problematic empirically
(Fan et al., 2018; Holtzman et al., 2020; Eikema
and Aziz, 2020; Hewitt et al., 2022), prompting the
exploration of alternative strategies. The shortcom-
ings of these strategies have been (at least partially)
attributed to the fact that they do not consider a
string’s utility, which may not perfectly align with

its probability. Minimum Bayes Risk decoding
aims to solve this issue.

2.2 Minimum Bayes Risk Decoding

Minimum Bayes Risk decoding is a strategy based
on Bayesian Decision Theory which states that opti-
mal decisions are those that minimize expected risk
(or maximize expected utility), see DeGroot (2005,
inter alia). Given a utility function w : V* x V* —
R>o which assigns to each pair of strings a nonneg-
ative utility value, we should aim to find the string
that maximizes expected utility with respect to our
target distribution. This principle is especially ap-
pealing when working with a possibly imperfect
model of the target distribution, such as p,. Specif-
ically, it allows us to make use of the full model
distribution rather than relying on the adequacy of
individual samples, which is argued to be the down-
fall of other decoding strategies (Eikema and Aziz,
2020). We thus choose the hypothesis that satisfies:

y*=argmax E

[u(y,y")] )

y'evs y~pe([x)
= argmax Y pe(y | ¥uly,y). 3
yle *

yev*

There are several obstacles to the direct computa-
tion of Eq. (3). Namely, both summing over all
possible strings in V* to compute our expectation
and searching over them to find the expectation-
maximizing hypothesis are computationally infea-
sible. Thus, typically an approximation to the MBR
problem Eq. (3) is used in practice.

The standard approach to circumvent the afore-
mentioned obstacles is to employ an estimator—
often specifically a Monte Carlo estimator—of our
expected utility and limit the search space to a
subset of V*. Since the estimator requires a sam-
ple of strings from the distribution of interest, the
same strings are often used in both the approximate
search and utility estimation.! We refer to this sub-
set as the hypothesis set and denote the sample used
in our estimator as H = {y(i)}ij\il. In the case of
a Monte Carlo estimator where y(i) ~ Dy, We de-
note this set as Hg. This leads to the following

'Some works have explored using different subsets for
these two steps (Eikema and Aziz, 2022; Fernandes et al.,
2022); we leave the exploration of the interaction of this design
choice with our methods to future work.



approximation to Eq. (3):2

y* = arg max Z . 4)
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Most prior work has focused on making the approx-
imation in Eq. (4) more efficient (Eikema and Aziz,
2022; Fernandes et al., 2022; Cheng and Vlachos,
2023; Vamvas and Sennrich, 2024) or on better
choices for utility functions (Freitag et al., 2022).
Yet, few have considered the important underlying
assumption of MBR: that p, is a good substitute for
p. In the face of high weight uncertainty, that is,
uncertainty about suitable values of model param-
eters 0, this assumption may not hold. Rather, a
single choice of model parameters may not provide
a robust substitute for the target distribution. Given
that weight uncertainty occurs often in overparam-
eterized deep learning models, when the model has
not seen sufficient data in a specific domain, this
should be an important consideration when using
MBR. In this work, we show how weight uncer-
tainty can be incorporated into MBR to create a
more robust decoding method.

3 Minimum Bayes’ Risk Decoding with
Weight-Uncertainty

Our goal is to show how weight uncertainty can be
used to improve MBR decoding. We first introduce
weight uncertainty, and then present two decoding
methods based on it.

3.1 Weight Uncertainty

Placing a probability distribution over model pa-
rameters is an oft-employed method for modeling
weight uncertainty (Graves, 2011; Blundell et al.,
2015; Maddox et al., 2019; Osawa et al., 2019;
Mollenhoff and Khan, 2023; Yang et al., 2024).
The distribution ¢(-), which in our case will be an
approximation to the Bayesian posterior distribu-
tion, attaches a probability to each parameteriza-
tion. There are numerous methods one can use for
obtaining ¢(-); we discuss the ones that we employ
in §4.1 and §4.2.

Using the posterior ¢(-), we can create a more ro-
bust version of our model (Maddox et al., 2019) by
combining the predictions of multiple p,, weighted
by the probability attached to each parameteriza-
tion 6. The resulting distribution is often referred

We drop the normalizing term in our Monte Carlo estima-
tor for succinctness as it does not affect the arg max operation.

to as the predictive posterior distribution. Our pro-
posed method to account for weight uncertainty is
then simply to replace the definition of p, in Eq. (3)
with the predictive posterior pe, leading to the fol-
lowing variant of the MBR problem:

y® =argmax »  po(y | x)uly,y) ()
YEVT yeps

For autoregressive sequence generation, there
are two logical definitions of this predictive poste-
rior. The first uses the product of the expectations
of token-level probabilities:

ey | %) =

T
H E [pe(y: | y<t,x)]. (6)
0~q
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The second uses the expectation of the probability
of full sequences under each parameterization:
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Under mild assumptions, these two quantities
should be identical. However, their approximations
using a finite sample size—which are necessary
since the exact computation of these quantities is
infeasible—are different.> We thus explore the
use of Monte Carlo estimates of Egs. (6) and (7) in
place of pg in Eq. (5). Note that regardless of which
estimator is used, the ensemble is usually sampled
i.1.d. from ¢ (Maddox et al., 2019, inter alia). We
denote such ensembles as M = {8 ~ ¢(6)}M .

3.2 Token-Level Averaging

We first explore the use of token-level predictive
posteriors, i.e., Eq. (6), for incorporating weight
uncertainty into MBR. We can approximate p(mk)
with a Monte-Carlo estimator, which uses our en-
semble of sampled models M:

~(tok)

Do (Yt | y<t,x

|M‘ 9;/1299 Yt | Y<t, X )
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We then sample our set of hypotheses Hg from this
approximation of the predictive posterior. With this,
we get the following estimator for Eq. (5):?

= arg max Z ©))

y'€He

There are several intuitive reasons why averag-
ing the outputs of multiple models should help in
3These definitions are also discussed in Malinin and Gales

(2021, Sec. 3); the theoretical properties of their estimators
are derived in Appendix A of the same work.



MBR. Perhaps the foremost is that the probabili-
ties obtained from this style of model averaging
are usually better-calibrated than those of a sin-
gle model and better reflect predictive uncertainty,
for instance, in out-of-domain settings (Shen et al.,
2024, inter alia). Since predictive uncertainty has
been shown to correlate with hallucinations (Xiao
and Wang, 2021), one hope would be that incorpo-
rating weight uncertainty would downweigh poten-
tially hallucinated outputs, such as mistranslations.

Even though the method introduces an additional
overhead during inference because | M| models
have to be evaluated for approximating the expec-
tation, the number of comparisons required for the
Bayes risk estimator stays the same. To be precise,
|#H|? evaluations are required for a given hypoth-
esis set. We next explore sequence-level methods
for approximating Eq. (5).

3.3 Sequence-Level Averaging

Our second approach uses estimators for Eq. (7)—
which requires sequence-level averaging—to find
an approximate solution to Eq. (5). We make use
of an important result: when our utility function «
is bounded* or nonnegative we can apply Fubini’s
theorem to switch the order of the two expectations
in Eq. (5) (one of which is implicit in the definition
of pg) (DeGroot, 2005, Sec. 8.9):

y? =argmax 3 E [po(y | %)) u(y.y’)

y'ev* yev*
(10)
= argmax E [ > oy | X)U(y,y’)]-
yIGV* q yev*
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Eq. (10) follows by the definition of pSeQ). This sug-
gests that another valid estimator of Eq. (5)—and
therefore another method for incorporating weight
uncertainty in MBR—is to average per-sequence
utilities (rather than token probabilities) across the
posterior. One interpretation of this approach is
as a consensus decoding that prefers outputs with
high utility under many models.

In practice, approximating Eq. (11) can be done
simply by using a specific H in Eq. (4). Given an
ensemble of models M, let H g = UgeatHg. Our

“Many commonly used utility functions for MBR are
bounded and non-negative. For example, BLEU (Papineni
et al., 2002) and BERTScore (Zhang et al., 2020) return scores
from 0 to 100 or O to 1, respectively.

approximate solution then becomes:>

y© = arg max Z Z u(y,y').
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(12)

Note that the same hypothesis can be contained
in multiple Hg, and this will potentially have a
large effect on that hypothesis’s utility. This dif-
ferentiates our approach from other works that
have used multiple models in MBR, where sum-
mation occurs over the union of individual hypoth-
esis sets (Kobayashi, 2018, Alg. 1). These prior
approaches therefore do not provide an unbiased
estimate of the expected risk in Eq. (11).

3.4 Selective Prediction with Bayes’ Risk

For some inputs, the quality of model predictions
might be poor and even using MBR cannot lead to
outputs of sufficient quality. For example, an input
may be out of domain or contain errors, making it
unlikely that the model can provide a good output.
In such situations, the best action is arguably to ab-
stain from answering and, e.g., defer to a human ex-
pert instead. This is the approach taken in selective
prediction: answers are only given for queries in
which inputs (or outputs) score highly according to
some criterion (Geifman and El-Yaniv, 2017; Ren
et al., 2023; Kuhn et al., 2023). Formally, selective
prediction defines a criterion s : V* — R that as-
signs a score for a given input x; this score may
depend solely on the input or involve an assessment
of model outputs, for example by transforming the
predictive distribution (Ren et al., 2023). Given a
factor o and a test-dataset Dies, We consider the
model’s answers for the top-[a - |Diest|| examples
according to s. Only this subset is evaluated; we
“abstain” from providing model answers to the re-
maining examples. If s is reliable, performance
should improve as « decreases and we evaluate a
smaller and smaller subset of outputs.

Expected utility is a logical candidate for such
a criterion. If it is low for a particular input, we
should abstain from answering; if it is high, we
can place more trust in the model’s answer. Here
we compare different methods for using expected
utility as the selective prediction criterion. We first
consider the utility of the maximum-utility output

in He or Hg, i.e:?
Sk (X) = max uy,y’) (13)
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Another strategy is to use the expected utility
across outputs for the given input. We can do this
by averaging the utility of all outputs in the hypoth-
esis set He or Hq.2

Sok(x) = Y Y uly,y) (15)
y'eHo yEHO
gseq(x> = Z Z Z u(y,y') (16)
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3.5 Discussion

In the incorporation of weight uncertainty in MBR,
is not clear a priori whether token- or sequence-
level estimators should lead to a better-performing
decoding strategy. While Malinin and Gales (2021)
found that token-level methods performed best
for predictive uncertainty estimation with entropy-
based measures, model architectures have changed
considerably since this study; we thus explore both
methods. We note, however, that there are clear ad-
vantages in terms of computational complexity be-
tween the two approaches. While both require eval-
uating | M| models, token-level aggregation only
requires |#|?>-many MBR evaluations, whereas
sequence-level aggregation needs | M| - |H|? cal-
culations. On the other hand, Eq. (11) is easier to
parallelize if models are kept on separate devices
as aggregation does not need to happen at every
time step.

The method presented in Eq. (11) draws parallels
between MBR and PAC-Bayes bounds (Alquier,
2021) which study the risk (or negative utility) of
predictive posteriors and can be used for further
theoretical insights. Token- and sequence-level
aggregation methods can also be combined to ob-
tain a similar hierarchical method to Manakul et al.
(2023). Finally, our work provides a framework
that encompasses earlier system aggregation meth-
ods that have weighted model predictions to arrive
at similar decision rules, for example by optimiz-
ing scalar model weights using a minimum-risk
objective (Gonzalez-Rubio et al., 2011, Eq. 8). We
believe this work can therefore aid in the under-
standing of these prior methods.

4 Experiments & Results

In this section, we demonstrate empirically that
incorporating model weight uncertainty into the
MBR framework can improve decoding strategy
performance. We first provide common experimen-
tal details in §4.1. Then, we compare token- and
sequence-level ensembling and show results with

different estimates of the posterior distributions
in §4.2. §4.3 explores a trade-off between per-
formance and ensemble diversity and §4.4 shows
results when using Bayes’ risk for selective predic-
tion. Finally, we provide intuitions into the scaling
behavior of various methods in §4.5.

4.1 Experimental Details

We focus our experiments on machine translation
using neural language generation models.> All of
our models follow the Transformery,se architecture
from Vaswani et al. (2017) and are encoder-decoder
models with 6 layers for each component. We use
two datasets: the WMT14 English to German (En-
De) translation task (Bojar et al., 2014), where
we evaluate on newstest2014, and the IWSLT14
German to English (De-En) translation task (Cet-
tolo et al., 2014). We evaluate all models using
the SacreBLEU implementation (Post, 2018) of
BLEU (Papineni et al., 2002) and the quality es-
timator COMETsy (Rei et al., 2022). We train
all models using the IVON optimizer (Shen et al.,
2024), as described in the next paragraph. We use
BLEU for u. Further details are given in App. B.

Learning weight uncertainty We use the varia-
tional learning algorithm IVON to estimate a pos-
terior distribution over model weights. We learn a
unimodal Gaussian posterior with diagonal covari-
ance, i.e., ¢(8) = N(6 | m,>) for mean m and
covariance matrix Y. Setting model parameters
equal to the mode of this distribution (m) is simi-
lar to standard neural network training but ¥ also
provides an estimate of its stability. To be precise,
for each parameter m; the variance >.;; indicates
how much this parameter can be changed without
significant performance degradation. Each train-
ing run has only negligible overhead compared to
AdamW (Loshchilov and Hutter, 2019) and gives
comparable performance.

4.2 Weight Uncertainty & Model
Combination

We show that different posterior forms can be used
to improve token- and sequence-level model combi-
nation in MBR. Results on WMT14 and IWSLT14
are shown in Tab. 1. All models are evaluated us-
ing a hypothesis set size of 20 obtained using both

5For other tasks like dialog or summarization, no improve-
ments over beam search or ancestral sampling were observed
when using MBR. We leave the exploration of these results
for future work.



WMT14 En-De

IWSLT14 De-En

Sampling Beam Search Sampling Beam Search MBR Effective
Method BLEU COMET BLEU COMET BLEU COMET BLEU COMET comparisons beam size
Best Mean 23.25 67.74 26.55 73.25 33.69 74.71 35.90 76.65 400 20
24.07 68.47 26.55 73.33 34.53 75.18 36.07 76.76 1600 40
Sequence-level
Unimodal ~ 24.08 68.90 26.60 73.30 34.65 75.20 35.99 76.67 1600 80
Mixture 24.10 69.20 26.81 73.70 35.42 75.84 37.42 77.69 1600 80
Token-level
Unimodal ~ 23.38 67.77 26.57 73.26 33.62 74.68 35.94 76.66 400 80
Mixture 23.37 67.74 27.19 74.04 34.61 75.06 38.56 78.31 400 80

Table 1: Using four model samples to incorporate weight-uncertainty can improve the performance of MBR decoding
on WMT14 and IWSLT14. More complex mixture posteriors offer further improvements over simpler unimodal
posterior, which can not always improve over MBR for the equivalent number of comparisons. Interestingly,
sequence-level aggregation provides stronger improvements when hypothesis sets are obtained via sampling,
whereas token-level aggregation is better mainly when beam search is used.
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Figure 1: Weight-uncertainty is more successful when
the ensembled models are diverse. We compare a diag-
onal Gaussian posterior (unimodal) to one mixture-of-
Gaussian posterior that mixes models from one training
run (snapshot) and one that uses models from multiple
runs (mixture). Sampling from a unimodal posterior
with larger temperature can increase diversity and im-
prove performance (in blue). Results with token-level
combination on IWSLT14 using beam search.

ancestral sampling and beam search. Further de-
tails are in App. B. We first discuss the changes
in performance that we observe as a function of
the estimation of g—the posterior distribution over
model parameters—before discussing the perfor-
mance of token- and sequence-level combinations
for creating the predictive posterior.

Comparison of parameter posteriors Here we
compare using a uni- and a multimodal Gaussians
for ¢. While the unimodal posterior is faster to
train, because it only requires one training run,
the multimodal posterior can capture a more com-
plex distribution which can be beneficial. We train

four unimodal posteriors using IVON with different
seeds. We either use the best-performing (accord-
ing to the performance of m) posterior (unimodal)
or compose a mixture-of-Gaussian (mixture) of
all independently-trained posteriors. We obtain
this mixture by setting the weight of each mixture
component to be equal. This resembles common
ensembling techniques in deep learning like deep
ensembles (Lakshminarayanan et al., 2017) but has
shown superior performance (Shen et al., 2024).

Tab. 1 shows results with both posteriors. We
use either 4 samples from the unimodal poste-
rior or the mean of each mixture component. We
find that both can give improvements over using
just one model when the beam size of this one
model matches the number of beams per model
when using a posterior. When controlling for
the number of MBR comparisons, the improve-
ments of uncertainty-aware MBR with only a uni-
modal posterior relative to standard MBR can van-
ish. Mixture-based posteriors, though, give much
stronger improvements and even outperform the
best mean when MBR comparisons are matched
but require more training effort. We take this as
indication that incorporating knowledge of weight
uncertainty is helpful and that more complex pos-
teriors provide further improvements, potentially
due to incorporating knowledge from various loss
basins (Lion et al., 2023).

Token- vs. sequence-level combination Here,
we compare the use of token- and sequence-level
posteriors (Egs. (9) and (11)) in MBR. Since Tab. 1
shows similar trends for unimodal and mixture-
based posteriors, we mainly discuss the latter.

We find that, in comparison to ancestral sam-
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Figure 2: Weight-untertainty and MBR can be combined for selective prediction. Both the total risk and best-output-
risk can be used effectively for selective prediction (a) but creating the hypothesis set with ancestral sampling
performs better than beam search. Increasing temperature when sampling from unimodal posteriors also improves
selective prediction (b). Using ancestral sampling, selective prediction generally works well (d) but when using
beam search the performance depends on increased diversity and more expressive posteriors. Results on IWSLT14.

pling, the improvements over the baseline from
using beam search with token-level combination
to form the hypothesis set are much stronger. Still,
when using a mixture-based posterior, performance
is improved in both settings but larger for IWSLT14
than for WMT14. Sequence-level combination, on
the other hand, provides similar improvements for
both settings. As discussed, these improvements
also hold when matching the number of MBR com-
parisons. Hence, the preferred method may depend
on the decoding algorithm used to create the hy-
pothesis set. Overall, modeling weight uncertainty
reduces hallucinations, as shown in App. C.1 and
the qualitative examples in App. C.2, which show
fewer translation errors.

4.3 Correlation of Quality and Diversity

Next, we show that the performance of MBR with
weight-uncertainty is strongly correlated with the
prediction diversity of the models that are ensem-
bled. This is in line with prior works on ensembling
for classification tasks which have found that diver-
sity is often important for good performance (Fort
et al., 2019; Masegosa, 2020) but can also form a
trade-off with, for example, individual model per-
formance (Abe et al., 2022; Wood et al., 2023).
We hypothesize that prediction diversity, and
incorporating knowledge from multiple loss basins—
regions with low loss—due to a more complex poste-
rior, is the main reason why multimodal posteriors
outperform unimodal posteriors. We empirically
validate the former claim in Fig. 1, where we plot
BLEU on IWSLT14 with token-level averaging
against the prediction diversity, which we mea-
sure as 100 minus average self-BLEU; self-BLEU

scores are measured on the set of greedy decoding
outputs of each ensemble member, similar to Shen
et al. (2019). The plot shows a clear correlation
between both metrics. Hence, we ask two ques-
tions: 1) can diversity be promoted in unimodal
posteriors to improve performance and 2) can we
find a method with the same training overhead as a
unimodal posterior but more expressiveness?

For the first, we note that the variance of the
IVON posterior is 02 = 1/\(h + §), where h is
the expected Hessian of the loss, § is weight-decay
and ) the effective sample size which can be seen
as an (inverse) temperature parameter. We decrease
A gradually, which samples models from the poste-
rior with higher temperature. This improves diver-
sity and can improve performance. For the latter,
we use a mixture-of-Gaussian consisting of check-
points from one training run, denoted by “snapshot”
due to its similarity to snapshot ensembles (Huang
et al., 2017). This comes at no training time in-
crease but can improve performance by incorpo-
rating knowledge from different regions along the
optimization trajectory. Our results show that good
posterior approximation is important and we expect
further improvements from better approximations.

4.4 Selective Prediction with Bayes’ Risk

Here, we explore the use of expected Bayes’ risk
for selective prediction. We observe that both the
maximum output utility and the expected output
utility (i.e., average expected utility across outputs)
can be used effectively for selective prediction. Our
results are summarized in Fig. 2.

First, we find in Fig. 2 (a) that using the average
expected utility across outputs as our selective pre-
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Figure 3: Scaling behavior of weight-uncertainty in MBR on IWSLT 14 in terms of ensemble (a, b) and hypothesis set
size (c, d). (a, b) For a unimodal posterior ([J), larger ensembles improve token-level combination using sampling
but not beam search. For mulitmodal posteriors (o), larger ensembles generally improve performance. (c, d)
Sequence-level combination performs better for smaller beam sizes but is outperformed by token-level combination
at larger ones. Scaling the hypothesis set produces stronger improvements for ancestral sampling than beam search.

diction criterion performs slightly better than just
using the best-expected-output utility. This seems
especially true when creating hypothesis sets with
beam search, which performs much worse than an-
cestral sampling in general in this setting. Next, we
again sample from the unimodal posterior with dif-
ferent temperatures (via decreasing A\). We find that
this improves selective prediction with MBR when
using beam search to create the hypothesis set, and
likewise corresponds to an increase in prediction
diversity, as shown in Fig. 2 (b).

Finally, we evaluate the influence of the posterior
approximation. First, we find that a hypothesis set
built with ancestral sampling is reliable indepen-
dent of the used posterior. Even the single model
baseline works well but is outperformed by using
an ensemble and more expressive posteriors give
bigger improvements. For beam search, the base-
line completely fails and token-level can be unreli-
able. Sequence-level combination performs much
better, especially with more expressive multimodal
posteriors. These results are shown in Fig. 2 (c, d).

In short, ancestral sampling provides better selec-
tive prediction but worse downstream performance
than beam search, where multimodal posteriors and
sequence-level combination are preferable.

4.5 Scaling Behavior

Finally, we examine the scaling behavior of token-
and sequence-level combination with different pos-
teriors. Results are summarized in Fig. 3 and show
scaling both ensemble and hypothesis set size.
First, we show scaling the ensemble size in Fig. 3
(a) for ancestral sampling and beam search (b).
Using beam search, both token- (in blue) and

sequence-level (in black) combination using uni-
modal posteriors provide no improvements. For
ancestral sampling, we find improvements with a
unimodal posterior, especially at larger ensemble
sizes of 32 models, but sequence-level combina-
tion of a unimodal posterior only improves until 4
models. In all other settings, scaling the ensemble
size is usually beneficial. This again shows that if
the number of models is scaled, it is helpful if they
are diverse and the posterior more expressive.

When scaling hypothesis sets with beam search,
the improvements are small, likely because the hy-
pothesis sets lack diversity. Note that the per-model
hypothesis set size is shown. Ancestral sampling
shows a different picture and we obtain strong
improvements when scaling hypothesis sets. In-
triguingly, for small hypothesis sets it is better to
use sequence-level ensembling but for larger sizes
token-level combination is better.

5 Discussion & Conclusion

In this work, we explore the effects of account-
ing for weight uncertainty in MBR. We investigate
different methods within this realm, combining pre-
dictions from multiple models during generation or
afterwards, ensembling their individual hypothesis
sets. We benchmark these methods on different
machine translation tasks and show that modeling
weight uncertainty can effectively improve MBR.
We evaluate the effects of using different poste-
rior distributions. More complex distributions pro-
vide stronger performance improvements. Perhaps
related, prediction diversity is important for both
standard MBR and when using the expected utility
of MBR for selective prediction.



6 Limitations

One key limitation of our work is that the methods
we use introduce an overhead either at inference
time, training time, or both. For example, learning
multiple distributions for a mixture-of-Gaussian
posterior results in the training time being increased
by a factor proportional to the number of distribu-
tions that are being learned. In a similar vein, using
multiple models during decoding requires as many
additional forward passes as there are models. If
their predictions are kept for sequence-level aver-
aging, the inference cost of MBR is also increased.

Another limitation is the scale of our models.
While we experiment mostly with smaller trans-
formers, current LLMs are often many magnitudes
larger and it would be interesting to see how our
approaches can improve such large models. In a
similar vein, we only evaluate on the task of ma-
chine translation, because initial experiments sug-
gested that other tasks did not benefit from MBR
at all, either with or without the incorporation of
weight uncertainty.

Finally, our evaluation also only covers transla-
tion between German and English language and
therefore has limited coverage of language fami-
lies.

7 Ethics and Broader Impact Statement

Our work uses probabilistic language models to
generate machine translations. Such models can
produce outputs that are, among others, harmful,
toxic, and hallucinated and our methods can not
guarantee that such outputs are not generated. How-
ever, we aim to improve the robustness of language
generation methods and, therefore, aim to alleviate
these issues. Therefore, we believe there to be no
direct ethical concern in our work.
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A Relationship of Token- and
Sequence-level Averaging
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The second step follows from Jensen’s inequality
(log is strictly concave), then we use linearity of
expectation.

B Experimental Details

Datasets Our usage of the WMT14 English-to-
German translation tasks (Bojar et al., 2014) fol-
lows the set-up from (Vaswani et al., 2017) but aug-
ments the training data by the news-commentary-
vI2 data from WMT17 (Bojar et al., 2017). In
total, we train on ca. 3.9M paired examples. We
also use a validation set during training in order to
pick checkpoints which consists of ca 39.4K exam-
ples. We use the original newstest2014 data which
consists of 3,003 examples.

We also use the IWSLT14 German-to-English
translation task (Cettolo et al., 2014) which consists
of ca 160K training examples. The validation set
consists of ca. 7.3K examples. The test set consists
of 6,750K examples.

All data usages can be reproduced by following
the instructions from the Fairseq repository under
https://github.com/facebookresearch/
fairseq/tree/main/examples/translation
and will be published along our code.

Models All models follow the Transformerp,ge
architecture from Vaswani et al. (2017) and consist
of an encoder-decoder Transformer with 6 encoder
and 6 decoder layers. The models use a vocabu-
lary of Byte-Pair-Encoding tokens (Sennrich et al.,
2016). The WMT model has an input vocabulary
size of 40480 and an output vocabulary size of
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42720. Altogether, the model has 86, 736, 896 pa-
rameters. The IWSLT model has an input vocab-
ulary size of 8848 and an output vocabulary size
of 6632 for in total 39,469, 056 parameters. The
input and output embedding parameters of the de-
coder are shared.

Training We train all models from scratch us-
ing the fairseq library (Ott et al., 2019) which we
extend for variational learning and a Bayesian in-
terpretation of neural networks. Fairseq is licensed
under MIT license® which permits our form of us-
age. We will release our code publicly in the future
for further research in a software repository under
Apache License 2.0”. We train all models with the
IVON optimizer (Shen et al., 2024) and place a
diagonal Gaussian posterior over neural networks.
We use IVON with a isotropic Gaussian prior and
initialize all entries of the Hessian with 0.1. We
use an effective sample size of 1-107%, a small
weight-decay of 0.0001, and a learning rate of 0.1.
We set 51 = 0.9 and B2 = 0.9999. All models are
trained with a batch size of 32 and we use 2 MC
samples from the posterior during training. While
this roughly doubles training time when compared
to AdamW, it is also possible to use just 1 MC
sample and arrive at similar results. We train the
models until performance in terms of BLEU has
not improved for at least 3 epochs and then stop.
Afterwards, we use the distribution that has best
validation performance.

For the snapshot-like approach, we add 3
randomly-sampled distributions that were trained
with at least 10 epochs to the best-performing one.
For the multi-IVON mixture-of-Gaussian approach
we always use the best performing distribution for
runs with different random seeds. In all experi-
ments we sample from the posterior “as-is” and
only vary the temperature by reducing the effective
sample size when explicitly mentioned.

All models are trained on a single GPU which
1s an NVIDIA GPU with either 40GB, 32GB or
24GB GPU memory. Training takes around 1-2
hours for the IWSLT14 models and 1-2 days for
the WMT models.


https://github.com/facebookresearch/fairseq/tree/main/examples/translation
https://github.com/facebookresearch/fairseq/tree/main/examples/translation
https://github.com/facebookresearch/fairseq/tree/main/examples/translation

Sampling Beam Search

Method BLEU COMET LaBSE BLEU COMET LaBSE
Best Mean  33.69 74.71 8533 3590 76.65 86.44
Sequence-level
Unimodal ~ 34.65 75.20 85.68  35.99 76.67 86.45
Mixture 3542 75.84 86.07 37.42 77.69 86.97
Token-level
Unimodal ~ 33.62 74.68 85.39 3594 76.66 86.45
Mixture 34.61 75.06 85.88  38.56 78.31 87.34

Table 2: Measuring hallucinations with LaBSE (higher
is better) on IWSLT14 with hypothesis set of size 20
shows similar trends as quality estimation metrics: incor-
porating weight-uncertainty can reduce hallucinations,
especially when a complex posterior is used.

Sampling Beam Search

Method BLEU COMET LaBSE BLEU COMET LaBSE

Best Mean 23.25 67.74 86.74 2655 73.25 88.60
Sequence-level

Unimodal 24.08 68.90 87.09  26.60 73.30 88.62

Mixture 24.10 69.20 87.28  26.81 73.70 88.86
Token-level

Unimodal 23.38 67.77 86.70  26.57 73.26 88.60

Mixture 23.37 67.74 86.62  27.19 74.04 88.87

Table 3: Measuring hallucinations with LaBSE (higher
is better) on WMT14 with hypothesis set of size 20
shows similar trends as quality estimation metrics: in-
corporating weight-uncertainty can reduce hallucina-
tions, especially when a complex posterior is used.

C Additional Results

C.1 Incorporating Weight Uncertainty
Reduces Hallucinations

In this section, we additionally measure the amount
of hallucinations generated by various strategies.
We use LaBSE (Feng et al., 2022) to evaluate hallu-
cinations which has shown strong correlation with
human judgements (Himmi et al., 2024). The hallu-
cination score is calculated by the cosine similarity
of the LaBSE embedding of input and output, re-
spectively. Note that a higher score means less hal-
lucinations. We use the checkpoint from Sentence
Transformers (Reimers and Gurevych, 2019) which
is available on the huggingface (Wolf et al., 2020)
hub®. Results are shown in Tab. 2 for IWSLT14
and in Tab. 3 for WMT14. We find that the overall
trends follow the same pattern as observed in terms
of quality estimation metrics. Using weight un-
certainty improves over a single model, especially
when a multimodal posterior is used. Similarly, for
a hypothesis set size of 20, we find that sequence-
level combination outperforms token-level combi-

®https://github.com/facebookresearch/fairseq/
blob/main/LICENSE

7https ://www.apache.org/licenses/LICENSE-2.0

8https ://huggingface.co/sentence-transformers/
LaBSE
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nation when using ancestral sampling but not when
using beam search.

C.2 Qualitative Examples

Tab. 4 shows qualitative examples that were gen-
erated with MBR and a hypothesis set of size 20
created with beam search for IWSLT14de-en and
WMT14en-de. We compare the source and tar-
get translations to a translation produced by the
best mean, as well as sequence- and token-level
model combination of models from a multimodal
posterior. We find in general that the amount of
hallucinations is reduced when comparing the sin-
gle model baseline to a model combination, for
example the additional “i’1l tell you” in the first
example of IWSLT14. Furthermore, grammar and
translation mistakes are reduced. This highlights
how modeling weight uncertainty can effectively
improve MBR.


https://github.com/facebookresearch/fairseq/blob/main/LICENSE
https://github.com/facebookresearch/fairseq/blob/main/LICENSE
https://www.apache.org/licenses/LICENSE-2.0
https://huggingface.co/sentence-transformers/LaBSE
https://huggingface.co/sentence-transformers/LaBSE

IWLST14de-en

Source

Target

Best Mean
Sequence-level
Token-level

wenn sie jetzt mal ein stiickchen weiter denken .
now let’s take that a step further .
now , if you think a little farther , i’ll tell you
now , if you think a little bit further
now , if you keep thinking a little bit further

Source

Target

Best Mean
Sequence-level
Token-level

passiert ist das maschinenzeitalter und passiert ist das buch und passiert ist die ist die fotolitografie
then the machine age happened and the book and then we had photolithography
and the machine age has happened , and what’s happened is the book , and that’s what’s happened
what happened is the machine age , and what happened is the book , and what happened is the photolitography
what’s happened is the machine age , and what’s happened is the book , and what’s happened is the photolitography

Source

Target

Best Mean
Sequence-level
Token-level

und das ist halt nicht im hobbybereich , aber es ist eine wirklich coole technologie , die auch sehr viel kann
and that’s not within the range of amateurs , but it’s a really cool technology , which is capable of a lot
and that’s not in the hobbyist , but it’s a really cool technology , it can do a lot
and that’s not in the hobbysphere , but it’s a really cool technology that can do a lot
and that’s not in the hobbyist , but it’s a really cool technology that can do a lot

Source

Target

Best Mean
Sequence-level
Token-level

also es war eine neugier und ich wollte irgendwie niher ran an die materie , so
so it was curiosity and i somehow wanted to get closer to the material , that was it
S0 it was a curiosity , and i wanted to get closer to the subject , like that
so it was a curiosity , and i wanted to sort of get closer to the material , like that
so it was a curiosity , and i wanted to sort of get closer to the matter , like that

Source

Target

Best Mean
Sequence-level
Token-level

also fiir ihn waren sie nur bauklotze
so to him , they were just blocks
so for him , they were just timbers
so for him , they were just building blocks
so for him , they were just building blocks

WMT14en-de

Source

Target

Best Mean
Sequence-level
Token-level

Together with an accomplice , who procured the women , he brought them to various brothels in the south-west
Zusammen mit einem Kollegen , der die Frauen vermittelte , brachte er sie in verschiedene Bordelle im Siidwesten
Zusammen mit einem Komplizen , der die Frauen beschaffte , brachte er sie zu verschiedenen Briidern im Siidwesten
Zusammen mit einem Komplizen , der die Frauen beschaffte , brachte er sie in verschiedene Bordelle im Siidwesten
Zusammen mit einem Komplizen , der die Frauen beschaftte , brachte er sie in verschiedene Bordelle im Siidwesten

Source

Target

Best Mean
Sequence-level
Token-level

Founding Chairman Henne reported in depth on the work of the organisation
Der erste Vorsitzende Henne berichtete ausfiihrlich von der Arbeit des Vereins
Griindervorsitzender Henne hat ausfiihrlich iiber die Arbeit der Organisation berichtet
Griindervorsitzender Henne berichtete ausfiihrlich iiber die Arbeit der Organisation
Der Griindungsvorsitzende Henne berichtete ausfiihrlich iiber die Arbeit der Organisation

Source

Target

Best Mean
Sequence-level
Token-level

They then drove away
Anschlieend fuhren sie davon
Sie verjagten sich
Dann fuhren sie weg
Dann sind sie weg

Source

Target

Best Mean
Sequence-level
Token-level

They earn as much as teachers and can make a good living
Sie verdienten so viel wie Lehrer und konnten gut davon leben
Sie verdienen so viel wie Lehrer und konnen ein gutes Leben
Sie verdienen so viel wie Lehrer und konnen gut leben
Sie verdienen so viel wie Lehrer und konnen ein gutes Leben fiihren

Source

Target

Best Mean
Sequence-level
Token-level

The fact that the dog was spotted is unbelievable
Die Tatsache , dass der Hund entdeckt wurde , ist unglaublich
Dass der Hund aufgedeckt wurde , ist unglaublich
Die Tatsache , dass der Hund entdeckt wurde , ist unglaublich
Die Tatsache , dass der Hund entdeckt wurde , ist unglaublich

Source

Target

Best Mean
Sequence-level
Token-level

There are lots of well-publicized theories about the causes of precocious puberty
Es gibt viele umfassend publizierte Theorien iiber die Ursachen frithzeitiger Pubertit
Es gibt viele gut publizisierte Theorien iiber die Ursachen von bosartiger Pubertit
Es gibt viele gut publizierte Theorien tiber die Ursachen von bosartiger Pubertit
Es gibt eine Menge gut publizierter Theorien iiber die Ursachen der bosartigen Pubertit

Table 4: Qualitative examples of outputs generated by the best learned mean, as well as sequence- and token-level
model combination using beam search and a multimodal posterior.
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