
Improving Minimum Bayes Risk Decoding with Weight Uncertainty

Anonymous ACL submission

Abstract

Minimum Bayes Risk (MBR) decoding has be-001
come a popular decoding strategy for different002
natural language generation tasks, especially003
machine translation. MBR relies on an esti-004
mator of an expected loss, where we use our005
learned model as a proxy for the target distribu-006
tion that we wish to take this expectation with007
respect to. However, this reliance can be prob-008
lematic if the model is a flawed proxy, for ex-009
ample, in light of a lack of training data in a spe-010
cific domain. In this work, we show how using011
a posterior over model parameters, and decod-012
ing with a weighted-averaging over multiple013
models, can improve the performance of MBR014
by accounting for uncertainty over the learned015
model. We benchmark different methods for016
learning posteriors and show that performance017
correlates with the diversity of the combined018
set of models’ predictions. Intriguingly, predic-019
tion diversity also determines whether risk can020
be successfully used for selective prediction.021

1 Introduction022

Natural language generation systems use decod-023

ing strategies to construct an output for a given024

input from a probabilistic model. Minimum Bayes025

Risk (MBR) decoding is one such strategy, which026

aims to find the string that minimizes an expected027

risk function, for example, the negative value of028

some standard quality metric. MBR was originally029

proposed in the era of statistical machine transla-030

tion (Kumar and Byrne, 2002), with the motivation031

that while we might not be able to trust that our032

models accurately learn the mode of the target dis-033

tribution, they are overall good representations of034

this distribution (Smith, 2011). More recent works035

have shown that these problems persist with mod-036

ern models (Stahlberg and Byrne, 2019; Cohen and037

Beck, 2019), precipitating the resurgence of MBR.038

Amidst this resurgence, there has been ample039

work on efficient variations of MBR (Eikema and040

Aziz, 2022; Fernandes et al., 2022; Cheng and 041

Vlachos, 2023; Vamvas and Sennrich, 2024) and 042

the effects of the chosen utility function (Freitag 043

et al., 2022). On the other hand, little attention 044

has been paid to a potentially large source of error: 045

the model distribution. In MBR, the quality of the 046

risk estimator—and consequently, the quality of 047

the chosen string—relies on a good estimate of the 048

target distribution. For over-parameterized models 049

like large deep networks, parameters change drasti- 050

cally simply by using different random seeds (Fort 051

et al., 2019, App. B). This suggests that there is 052

large uncertainty in the learned model and this com- 053

ponent of the MBR pipeline may be error-prone. 054

Accordingly, increasing the robustness of MBR to 055

such uncertainties is a clear path toward potential 056

improvements. 057

In this work, we propose different methods for 058

accounting for parameter uncertainty in MBR de- 059

coding. In short, we take an additional expectation 060

over the posterior distribution of model parame- 061

ters when computing expected risk. In practice, 062

this boils down to combining the predictions of 063

multiple models—sampled from an estimate of the 064

Bayesian posterior—when generating the hypothe- 065

sis set in MBR. Such model combination has been 066

shown to provide better-calibrated distributions and 067

can improve robustness and downstream perfor- 068

mance, especially in low-resource settings (Blun- 069

dell et al., 2015; Lakshminarayanan et al., 2017; 070

Maddox et al., 2019; Shen et al., 2024). We ex- 071

plore both token- and sequence-level methods for 072

combining model predictions. 073

Overall, we find strong evidence that account- 074

ing for weight uncertainty can improve MBR and 075

make it more robust. We find that improvements 076

trend with the expressiveness of the posterior dis- 077

tribution from which the combined models are ob- 078

tained. Likely related to this observation, we see 079

that the performance of uncertainty-aware MBR 080

is highly correlated with the diversity of the hy- 081
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pothesis set generated from these models. We also082

find that weight uncertainty provides a useful sig-083

nal for selective prediction, where we observe that084

uncertainty-aware expected risk can be used to de-085

cide when to predict vs. abstain from generation.086

Finally, we show that our methods scale well to a087

larger number of models and larger hypothesis set088

sizes.089

2 Background090

2.1 Probabilistic Language Generation091

Modern models for language generation are092

predominantly locally-normalized, autoregressive093

models of the conditional distribution over next094

tokens. The probability of a sequence of tokens095

forming a string can be determined by the product096

of all next token probabilities in the sequence. For-097

mally, given an input x, the probability of an output098

sequence y = ⟨y1, y2, . . . ⟩ can be computed as099

p(y | x) =
|y|∏
t=1

p(yt | y<t,x), (1)100

where each yt is a token from some predetermined101

vocabulary V .102

Learning pθ. We denote a single mode as pθ,103

where θ are its parameters (also called weights).104

These parameters are generally learned given105

paired examples D = {x(i),y(i)}Ni=1, a loss func-106

tion and an optimization procedure. The loss func-107

tion quantifies how far our model is from a chosen108

target distribution, for example the data-generating109

distribution p(· | x) that we assume D is sampled110

from.111

Decoding from pθ. At inference time, our goal112

is to generate a string from pθ(· | x). The set of113

decision rules used in this process is often referred114

to as the decoding strategy. One such strategy is115

simply to sample tokens autoregressively until a116

stopping criterion (usually a fixed maximum length117

or a special end-of-sequence token) is met. An-118

other strategy is to search for the maximum prob-119

ability string according to pθ(· | x). Both of these120

approaches have proved problematic empirically121

(Fan et al., 2018; Holtzman et al., 2020; Eikema122

and Aziz, 2020; Hewitt et al., 2022), prompting the123

exploration of alternative strategies. The shortcom-124

ings of these strategies have been (at least partially)125

attributed to the fact that they do not consider a126

string’s utility, which may not perfectly align with127

its probability. Minimum Bayes Risk decoding 128

aims to solve this issue. 129

2.2 Minimum Bayes Risk Decoding 130

Minimum Bayes Risk decoding is a strategy based 131

on Bayesian Decision Theory which states that opti- 132

mal decisions are those that minimize expected risk 133

(or maximize expected utility), see DeGroot (2005, 134

inter alia). Given a utility function u : V∗ × V∗ → 135

R≥0 which assigns to each pair of strings a nonneg- 136

ative utility value, we should aim to find the string 137

that maximizes expected utility with respect to our 138

target distribution. This principle is especially ap- 139

pealing when working with a possibly imperfect 140

model of the target distribution, such as pθ. Specif- 141

ically, it allows us to make use of the full model 142

distribution rather than relying on the adequacy of 143

individual samples, which is argued to be the down- 144

fall of other decoding strategies (Eikema and Aziz, 145

2020). We thus choose the hypothesis that satisfies: 146

y∗ = argmax
y′∈V∗

E
y∼pθ(·|x)

[
u(y,y′)

]
(2) 147

= argmax
y′∈V∗

∑
y∈V∗

pθ(y | x)u(y,y′). (3) 148

There are several obstacles to the direct computa- 149

tion of Eq. (3). Namely, both summing over all 150

possible strings in V∗ to compute our expectation 151

and searching over them to find the expectation- 152

maximizing hypothesis are computationally infea- 153

sible. Thus, typically an approximation to the MBR 154

problem Eq. (3) is used in practice. 155

The standard approach to circumvent the afore- 156

mentioned obstacles is to employ an estimator— 157

often specifically a Monte Carlo estimator—of our 158

expected utility and limit the search space to a 159

subset of V∗. Since the estimator requires a sam- 160

ple of strings from the distribution of interest, the 161

same strings are often used in both the approximate 162

search and utility estimation.1 We refer to this sub- 163

set as the hypothesis set and denote the sample used 164

in our estimator as H = {y(i)}Ni=1. In the case of 165

a Monte Carlo estimator where y(i) ∼ pθ, we de- 166

note this set as Hθ. This leads to the following 167

1Some works have explored using different subsets for
these two steps (Eikema and Aziz, 2022; Fernandes et al.,
2022); we leave the exploration of the interaction of this design
choice with our methods to future work.
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approximation to Eq. (3):2168

ŷ∗ = argmax
y′∈Hθ

∑
y∈Hθ

u(y,y′). (4)169

Most prior work has focused on making the approx-170

imation in Eq. (4) more efficient (Eikema and Aziz,171

2022; Fernandes et al., 2022; Cheng and Vlachos,172

2023; Vamvas and Sennrich, 2024) or on better173

choices for utility functions (Freitag et al., 2022).174

Yet, few have considered the important underlying175

assumption of MBR: that pθ is a good substitute for176

p. In the face of high weight uncertainty, that is,177

uncertainty about suitable values of model param-178

eters θ, this assumption may not hold. Rather, a179

single choice of model parameters may not provide180

a robust substitute for the target distribution. Given181

that weight uncertainty occurs often in overparam-182

eterized deep learning models, when the model has183

not seen sufficient data in a specific domain, this184

should be an important consideration when using185

MBR. In this work, we show how weight uncer-186

tainty can be incorporated into MBR to create a187

more robust decoding method.188

3 Minimum Bayes’ Risk Decoding with189

Weight-Uncertainty190

Our goal is to show how weight uncertainty can be191

used to improve MBR decoding. We first introduce192

weight uncertainty, and then present two decoding193

methods based on it.194

3.1 Weight Uncertainty195

Placing a probability distribution over model pa-196

rameters is an oft-employed method for modeling197

weight uncertainty (Graves, 2011; Blundell et al.,198

2015; Maddox et al., 2019; Osawa et al., 2019;199

Möllenhoff and Khan, 2023; Yang et al., 2024).200

The distribution q(·), which in our case will be an201

approximation to the Bayesian posterior distribu-202

tion, attaches a probability to each parameteriza-203

tion. There are numerous methods one can use for204

obtaining q(·); we discuss the ones that we employ205

in §4.1 and §4.2.206

Using the posterior q(·), we can create a more ro-207

bust version of our model (Maddox et al., 2019) by208

combining the predictions of multiple pθ, weighted209

by the probability attached to each parameteriza-210

tion θ. The resulting distribution is often referred211

2We drop the normalizing term in our Monte Carlo estima-
tor for succinctness as it does not affect the argmax operation.

to as the predictive posterior distribution. Our pro- 212

posed method to account for weight uncertainty is 213

then simply to replace the definition of pθ in Eq. (3) 214

with the predictive posterior pΘ, leading to the fol- 215

lowing variant of the MBR problem: 216

yΘ = argmax
y′∈V∗

∑
y∈V∗

pΘ(y | x)u(y,y′) (5) 217

For autoregressive sequence generation, there 218

are two logical definitions of this predictive poste- 219

rior. The first uses the product of the expectations 220

of token-level probabilities: 221

p(tok)
Θ (y | x) :=

T∏
t=1

E
θ∼q

[pθ(yt | y<t,x)] . (6) 222

The second uses the expectation of the probability 223

of full sequences under each parameterization: 224

p
(seq)
Θ (y | x) := E

θ∼q
[pθ(y | x)] . (7) 225

Under mild assumptions, these two quantities 226

should be identical. However, their approximations 227

using a finite sample size—which are necessary 228

since the exact computation of these quantities is 229

infeasible—are different.3 We thus explore the 230

use of Monte Carlo estimates of Eqs. (6) and (7) in 231

place of pΘ in Eq. (5). Note that regardless of which 232

estimator is used, the ensemble is usually sampled 233

i.i.d. from q (Maddox et al., 2019, inter alia). We 234

denote such ensembles as M = {θ(i) ∼ q(θ)}Mi=1. 235

3.2 Token-Level Averaging 236

We first explore the use of token-level predictive 237

posteriors, i.e., Eq. (6), for incorporating weight 238

uncertainty into MBR. We can approximate p(tok)
Θ 239

with a Monte-Carlo estimator, which uses our en- 240

semble of sampled models M: 241

p̂ (tok)
Θ (yt | y<t,x) =

1

|M|
∑
θ∈M

pθ(yt | y<t,x)

(8) 242

We then sample our set of hypotheses HΘ from this 243

approximation of the predictive posterior. With this, 244

we get the following estimator for Eq. (5):2 245

ŷΘ = argmax
y′∈HΘ

∑
y∈HΘ

u(y,y′). (9) 246

There are several intuitive reasons why averag- 247

ing the outputs of multiple models should help in 248

3These definitions are also discussed in Malinin and Gales
(2021, Sec. 3); the theoretical properties of their estimators
are derived in Appendix A of the same work.
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MBR. Perhaps the foremost is that the probabili-249

ties obtained from this style of model averaging250

are usually better-calibrated than those of a sin-251

gle model and better reflect predictive uncertainty,252

for instance, in out-of-domain settings (Shen et al.,253

2024, inter alia). Since predictive uncertainty has254

been shown to correlate with hallucinations (Xiao255

and Wang, 2021), one hope would be that incorpo-256

rating weight uncertainty would downweigh poten-257

tially hallucinated outputs, such as mistranslations.258

Even though the method introduces an additional259

overhead during inference because |M| models260

have to be evaluated for approximating the expec-261

tation, the number of comparisons required for the262

Bayes risk estimator stays the same. To be precise,263

|H|2 evaluations are required for a given hypoth-264

esis set. We next explore sequence-level methods265

for approximating Eq. (5).266

3.3 Sequence-Level Averaging267

Our second approach uses estimators for Eq. (7)—268

which requires sequence-level averaging—to find269

an approximate solution to Eq. (5). We make use270

of an important result: when our utility function u271

is bounded4 or nonnegative we can apply Fubini’s272

theorem to switch the order of the two expectations273

in Eq. (5) (one of which is implicit in the definition274

of pΘ) (DeGroot, 2005, Sec. 8.9):275

yΘ = argmax
y′∈V∗

∑
y∈V∗

E
θ∼q

[pθ(y | x)]u(y,y′)

(10)

276

= argmax
y′∈V∗

E
θ∼q

[ ∑
y∈V∗

pθ(y | x)u(y,y′)
]
.

(11)

277

Eq. (10) follows by the definition of p(seq)
Θ . This sug-278

gests that another valid estimator of Eq. (5)—and279

therefore another method for incorporating weight280

uncertainty in MBR—is to average per-sequence281

utilities (rather than token probabilities) across the282

posterior. One interpretation of this approach is283

as a consensus decoding that prefers outputs with284

high utility under many models.285

In practice, approximating Eq. (11) can be done286

simply by using a specific H in Eq. (4). Given an287

ensemble of models M, let HM = ∪θ∈MHθ. Our288

4Many commonly used utility functions for MBR are
bounded and non-negative. For example, BLEU (Papineni
et al., 2002) and BERTScore (Zhang et al., 2020) return scores
from 0 to 100 or 0 to 1, respectively.

approximate solution then becomes:2 289

ŷΘ = argmax
y′∈HM

∑
θ∈M

∑
y∈Hθ

u(y,y′). (12) 290

Note that the same hypothesis can be contained 291

in multiple Hθ, and this will potentially have a 292

large effect on that hypothesis’s utility. This dif- 293

ferentiates our approach from other works that 294

have used multiple models in MBR, where sum- 295

mation occurs over the union of individual hypoth- 296

esis sets (Kobayashi, 2018, Alg. 1). These prior 297

approaches therefore do not provide an unbiased 298

estimate of the expected risk in Eq. (11). 299

3.4 Selective Prediction with Bayes’ Risk 300

For some inputs, the quality of model predictions 301

might be poor and even using MBR cannot lead to 302

outputs of sufficient quality. For example, an input 303

may be out of domain or contain errors, making it 304

unlikely that the model can provide a good output. 305

In such situations, the best action is arguably to ab- 306

stain from answering and, e.g., defer to a human ex- 307

pert instead. This is the approach taken in selective 308

prediction: answers are only given for queries in 309

which inputs (or outputs) score highly according to 310

some criterion (Geifman and El-Yaniv, 2017; Ren 311

et al., 2023; Kuhn et al., 2023). Formally, selective 312

prediction defines a criterion s : V∗ → R that as- 313

signs a score for a given input x; this score may 314

depend solely on the input or involve an assessment 315

of model outputs, for example by transforming the 316

predictive distribution (Ren et al., 2023). Given a 317

factor α and a test-dataset Dtest, we consider the 318

model’s answers for the top-⌈α · |Dtest|⌉ examples 319

according to s. Only this subset is evaluated; we 320

“abstain” from providing model answers to the re- 321

maining examples. If s is reliable, performance 322

should improve as α decreases and we evaluate a 323

smaller and smaller subset of outputs. 324

Expected utility is a logical candidate for such 325

a criterion. If it is low for a particular input, we 326

should abstain from answering; if it is high, we 327

can place more trust in the model’s answer. Here 328

we compare different methods for using expected 329

utility as the selective prediction criterion. We first 330

consider the utility of the maximum-utility output 331

in HΘ or HM, i.e:2 332

s∗tok(x) = max
y′∈HΘ

∑
y∈HΘ

u(y,y′) (13) 333

s∗seq(x) = max
y′∈HM

∑
θ∈M

∑
y∈Hθ

u(y,y′) (14) 334
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Another strategy is to use the expected utility335

across outputs for the given input. We can do this336

by averaging the utility of all outputs in the hypoth-337

esis set HΘ or HM.2338

s̄tok(x) =
∑

y′∈HΘ

∑
y∈HΘ

u(y,y′) (15)339

s̄seq(x) =
∑
θ∈M

∑
y′∈Hθ

∑
y∈Hθ

u(y,y′) (16)340

3.5 Discussion341

In the incorporation of weight uncertainty in MBR,342

is not clear a priori whether token- or sequence-343

level estimators should lead to a better-performing344

decoding strategy. While Malinin and Gales (2021)345

found that token-level methods performed best346

for predictive uncertainty estimation with entropy-347

based measures, model architectures have changed348

considerably since this study; we thus explore both349

methods. We note, however, that there are clear ad-350

vantages in terms of computational complexity be-351

tween the two approaches. While both require eval-352

uating |M| models, token-level aggregation only353

requires |H|2-many MBR evaluations, whereas354

sequence-level aggregation needs |M| · |H|2 cal-355

culations. On the other hand, Eq. (11) is easier to356

parallelize if models are kept on separate devices357

as aggregation does not need to happen at every358

time step.359

The method presented in Eq. (11) draws parallels360

between MBR and PAC-Bayes bounds (Alquier,361

2021) which study the risk (or negative utility) of362

predictive posteriors and can be used for further363

theoretical insights. Token- and sequence-level364

aggregation methods can also be combined to ob-365

tain a similar hierarchical method to Manakul et al.366

(2023). Finally, our work provides a framework367

that encompasses earlier system aggregation meth-368

ods that have weighted model predictions to arrive369

at similar decision rules, for example by optimiz-370

ing scalar model weights using a minimum-risk371

objective (González-Rubio et al., 2011, Eq. 8). We372

believe this work can therefore aid in the under-373

standing of these prior methods.374

4 Experiments & Results375

In this section, we demonstrate empirically that376

incorporating model weight uncertainty into the377

MBR framework can improve decoding strategy378

performance. We first provide common experimen-379

tal details in §4.1. Then, we compare token- and380

sequence-level ensembling and show results with381

different estimates of the posterior distributions 382

in §4.2. §4.3 explores a trade-off between per- 383

formance and ensemble diversity and §4.4 shows 384

results when using Bayes’ risk for selective predic- 385

tion. Finally, we provide intuitions into the scaling 386

behavior of various methods in §4.5. 387

4.1 Experimental Details 388

We focus our experiments on machine translation 389

using neural language generation models.5 All of 390

our models follow the Transformerbase architecture 391

from Vaswani et al. (2017) and are encoder-decoder 392

models with 6 layers for each component. We use 393

two datasets: the WMT14 English to German (En- 394

De) translation task (Bojar et al., 2014), where 395

we evaluate on newstest2014, and the IWSLT14 396

German to English (De-En) translation task (Cet- 397

tolo et al., 2014). We evaluate all models using 398

the SacreBLEU implementation (Post, 2018) of 399

BLEU (Papineni et al., 2002) and the quality es- 400

timator COMET22 (Rei et al., 2022). We train 401

all models using the IVON optimizer (Shen et al., 402

2024), as described in the next paragraph. We use 403

BLEU for u. Further details are given in App. B. 404

Learning weight uncertainty We use the varia- 405

tional learning algorithm IVON to estimate a pos- 406

terior distribution over model weights. We learn a 407

unimodal Gaussian posterior with diagonal covari- 408

ance, i.e., q(θ) = N (θ | m,Σ) for mean m and 409

covariance matrix Σ. Setting model parameters 410

equal to the mode of this distribution (m) is simi- 411

lar to standard neural network training but Σ also 412

provides an estimate of its stability. To be precise, 413

for each parameter mi the variance Σii indicates 414

how much this parameter can be changed without 415

significant performance degradation. Each train- 416

ing run has only negligible overhead compared to 417

AdamW (Loshchilov and Hutter, 2019) and gives 418

comparable performance. 419

4.2 Weight Uncertainty & Model 420

Combination 421

We show that different posterior forms can be used 422

to improve token- and sequence-level model combi- 423

nation in MBR. Results on WMT14 and IWSLT14 424

are shown in Tab. 1. All models are evaluated us- 425

ing a hypothesis set size of 20 obtained using both 426

5For other tasks like dialog or summarization, no improve-
ments over beam search or ancestral sampling were observed
when using MBR. We leave the exploration of these results
for future work.
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WMT14 En-De IWSLT14 De-En
Sampling Beam Search Sampling Beam Search MBR Effective

Method BLEU COMET BLEU COMET BLEU COMET BLEU COMET comparisons beam size
Best Mean 23.25 67.74 26.55 73.25 33.69 74.71 35.90 76.65 400 20

24.07 68.47 26.55 73.33 34.53 75.18 36.07 76.76 1600 40
Sequence-level

Unimodal 24.08 68.90 26.60 73.30 34.65 75.20 35.99 76.67 1600 80
Mixture 24.10 69.20 26.81 73.70 35.42 75.84 37.42 77.69 1600 80

Token-level
Unimodal 23.38 67.77 26.57 73.26 33.62 74.68 35.94 76.66 400 80
Mixture 23.37 67.74 27.19 74.04 34.61 75.06 38.56 78.31 400 80

Table 1: Using four model samples to incorporate weight-uncertainty can improve the performance of MBR decoding
on WMT14 and IWSLT14. More complex mixture posteriors offer further improvements over simpler unimodal
posterior, which can not always improve over MBR for the equivalent number of comparisons. Interestingly,
sequence-level aggregation provides stronger improvements when hypothesis sets are obtained via sampling,
whereas token-level aggregation is better mainly when beam search is used.
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34
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38

39

Unimodal
Snapshot

Mixture

temperature ↑

Diversity

B
L

E
U

Figure 1: Weight-uncertainty is more successful when
the ensembled models are diverse. We compare a diag-
onal Gaussian posterior (unimodal) to one mixture-of-
Gaussian posterior that mixes models from one training
run (snapshot) and one that uses models from multiple
runs (mixture). Sampling from a unimodal posterior
with larger temperature can increase diversity and im-
prove performance (in blue). Results with token-level
combination on IWSLT14 using beam search.

ancestral sampling and beam search. Further de-427

tails are in App. B. We first discuss the changes428

in performance that we observe as a function of429

the estimation of q—the posterior distribution over430

model parameters—before discussing the perfor-431

mance of token- and sequence-level combinations432

for creating the predictive posterior.433

Comparison of parameter posteriors Here we434

compare using a uni- and a multimodal Gaussians435

for q. While the unimodal posterior is faster to436

train, because it only requires one training run,437

the multimodal posterior can capture a more com-438

plex distribution which can be beneficial. We train439

four unimodal posteriors using IVON with different 440

seeds. We either use the best-performing (accord- 441

ing to the performance of m) posterior (unimodal) 442

or compose a mixture-of-Gaussian (mixture) of 443

all independently-trained posteriors. We obtain 444

this mixture by setting the weight of each mixture 445

component to be equal. This resembles common 446

ensembling techniques in deep learning like deep 447

ensembles (Lakshminarayanan et al., 2017) but has 448

shown superior performance (Shen et al., 2024). 449

Tab. 1 shows results with both posteriors. We 450

use either 4 samples from the unimodal poste- 451

rior or the mean of each mixture component. We 452

find that both can give improvements over using 453

just one model when the beam size of this one 454

model matches the number of beams per model 455

when using a posterior. When controlling for 456

the number of MBR comparisons, the improve- 457

ments of uncertainty-aware MBR with only a uni- 458

modal posterior relative to standard MBR can van- 459

ish. Mixture-based posteriors, though, give much 460

stronger improvements and even outperform the 461

best mean when MBR comparisons are matched 462

but require more training effort. We take this as 463

indication that incorporating knowledge of weight 464

uncertainty is helpful and that more complex pos- 465

teriors provide further improvements, potentially 466

due to incorporating knowledge from various loss 467

basins (Lion et al., 2023). 468

Token- vs. sequence-level combination Here, 469

we compare the use of token- and sequence-level 470

posteriors (Eqs. (9) and (11)) in MBR. Since Tab. 1 471

shows similar trends for unimodal and mixture- 472

based posteriors, we mainly discuss the latter. 473

We find that, in comparison to ancestral sam- 474
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Figure 2: Weight-untertainty and MBR can be combined for selective prediction. Both the total risk and best-output-
risk can be used effectively for selective prediction (a) but creating the hypothesis set with ancestral sampling
performs better than beam search. Increasing temperature when sampling from unimodal posteriors also improves
selective prediction (b). Using ancestral sampling, selective prediction generally works well (d) but when using
beam search the performance depends on increased diversity and more expressive posteriors. Results on IWSLT14.

pling, the improvements over the baseline from475

using beam search with token-level combination476

to form the hypothesis set are much stronger. Still,477

when using a mixture-based posterior, performance478

is improved in both settings but larger for IWSLT14479

than for WMT14. Sequence-level combination, on480

the other hand, provides similar improvements for481

both settings. As discussed, these improvements482

also hold when matching the number of MBR com-483

parisons. Hence, the preferred method may depend484

on the decoding algorithm used to create the hy-485

pothesis set. Overall, modeling weight uncertainty486

reduces hallucinations, as shown in App. C.1 and487

the qualitative examples in App. C.2, which show488

fewer translation errors.489

4.3 Correlation of Quality and Diversity490

Next, we show that the performance of MBR with491

weight-uncertainty is strongly correlated with the492

prediction diversity of the models that are ensem-493

bled. This is in line with prior works on ensembling494

for classification tasks which have found that diver-495

sity is often important for good performance (Fort496

et al., 2019; Masegosa, 2020) but can also form a497

trade-off with, for example, individual model per-498

formance (Abe et al., 2022; Wood et al., 2023).499

We hypothesize that prediction diversity, and500

incorporating knowledge from multiple loss basins–501

regions with low loss–due to a more complex poste-502

rior, is the main reason why multimodal posteriors503

outperform unimodal posteriors. We empirically504

validate the former claim in Fig. 1, where we plot505

BLEU on IWSLT14 with token-level averaging506

against the prediction diversity, which we mea-507

sure as 100 minus average self-BLEU; self-BLEU508

scores are measured on the set of greedy decoding 509

outputs of each ensemble member, similar to Shen 510

et al. (2019). The plot shows a clear correlation 511

between both metrics. Hence, we ask two ques- 512

tions: 1) can diversity be promoted in unimodal 513

posteriors to improve performance and 2) can we 514

find a method with the same training overhead as a 515

unimodal posterior but more expressiveness? 516

For the first, we note that the variance of the 517

IVON posterior is σ2 = 1/λ(h + δ), where h is 518

the expected Hessian of the loss, δ is weight-decay 519

and λ the effective sample size which can be seen 520

as an (inverse) temperature parameter. We decrease 521

λ gradually, which samples models from the poste- 522

rior with higher temperature. This improves diver- 523

sity and can improve performance. For the latter, 524

we use a mixture-of-Gaussian consisting of check- 525

points from one training run, denoted by “snapshot” 526

due to its similarity to snapshot ensembles (Huang 527

et al., 2017). This comes at no training time in- 528

crease but can improve performance by incorpo- 529

rating knowledge from different regions along the 530

optimization trajectory. Our results show that good 531

posterior approximation is important and we expect 532

further improvements from better approximations. 533

4.4 Selective Prediction with Bayes’ Risk 534

Here, we explore the use of expected Bayes’ risk 535

for selective prediction. We observe that both the 536

maximum output utility and the expected output 537

utility (i.e., average expected utility across outputs) 538

can be used effectively for selective prediction. Our 539

results are summarized in Fig. 2. 540

First, we find in Fig. 2 (a) that using the average 541

expected utility across outputs as our selective pre- 542
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Figure 3: Scaling behavior of weight-uncertainty in MBR on IWSLT14 in terms of ensemble (a, b) and hypothesis set
size (c, d). (a, b) For a unimodal posterior (□), larger ensembles improve token-level combination using sampling
but not beam search. For mulitmodal posteriors (◦), larger ensembles generally improve performance. (c, d)
Sequence-level combination performs better for smaller beam sizes but is outperformed by token-level combination
at larger ones. Scaling the hypothesis set produces stronger improvements for ancestral sampling than beam search.

diction criterion performs slightly better than just543

using the best-expected-output utility. This seems544

especially true when creating hypothesis sets with545

beam search, which performs much worse than an-546

cestral sampling in general in this setting. Next, we547

again sample from the unimodal posterior with dif-548

ferent temperatures (via decreasing λ). We find that549

this improves selective prediction with MBR when550

using beam search to create the hypothesis set, and551

likewise corresponds to an increase in prediction552

diversity, as shown in Fig. 2 (b).553

Finally, we evaluate the influence of the posterior554

approximation. First, we find that a hypothesis set555

built with ancestral sampling is reliable indepen-556

dent of the used posterior. Even the single model557

baseline works well but is outperformed by using558

an ensemble and more expressive posteriors give559

bigger improvements. For beam search, the base-560

line completely fails and token-level can be unreli-561

able. Sequence-level combination performs much562

better, especially with more expressive multimodal563

posteriors. These results are shown in Fig. 2 (c, d).564

In short, ancestral sampling provides better selec-565

tive prediction but worse downstream performance566

than beam search, where multimodal posteriors and567

sequence-level combination are preferable.568

4.5 Scaling Behavior569

Finally, we examine the scaling behavior of token-570

and sequence-level combination with different pos-571

teriors. Results are summarized in Fig. 3 and show572

scaling both ensemble and hypothesis set size.573

First, we show scaling the ensemble size in Fig. 3574

(a) for ancestral sampling and beam search (b).575

Using beam search, both token- (in blue) and576

sequence-level (in black) combination using uni- 577

modal posteriors provide no improvements. For 578

ancestral sampling, we find improvements with a 579

unimodal posterior, especially at larger ensemble 580

sizes of 32 models, but sequence-level combina- 581

tion of a unimodal posterior only improves until 4 582

models. In all other settings, scaling the ensemble 583

size is usually beneficial. This again shows that if 584

the number of models is scaled, it is helpful if they 585

are diverse and the posterior more expressive. 586

When scaling hypothesis sets with beam search, 587

the improvements are small, likely because the hy- 588

pothesis sets lack diversity. Note that the per-model 589

hypothesis set size is shown. Ancestral sampling 590

shows a different picture and we obtain strong 591

improvements when scaling hypothesis sets. In- 592

triguingly, for small hypothesis sets it is better to 593

use sequence-level ensembling but for larger sizes 594

token-level combination is better. 595

5 Discussion & Conclusion 596

In this work, we explore the effects of account- 597

ing for weight uncertainty in MBR. We investigate 598

different methods within this realm, combining pre- 599

dictions from multiple models during generation or 600

afterwards, ensembling their individual hypothesis 601

sets. We benchmark these methods on different 602

machine translation tasks and show that modeling 603

weight uncertainty can effectively improve MBR. 604

We evaluate the effects of using different poste- 605

rior distributions. More complex distributions pro- 606

vide stronger performance improvements. Perhaps 607

related, prediction diversity is important for both 608

standard MBR and when using the expected utility 609

of MBR for selective prediction. 610
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6 Limitations611

One key limitation of our work is that the methods612

we use introduce an overhead either at inference613

time, training time, or both. For example, learning614

multiple distributions for a mixture-of-Gaussian615

posterior results in the training time being increased616

by a factor proportional to the number of distribu-617

tions that are being learned. In a similar vein, using618

multiple models during decoding requires as many619

additional forward passes as there are models. If620

their predictions are kept for sequence-level aver-621

aging, the inference cost of MBR is also increased.622

Another limitation is the scale of our models.623

While we experiment mostly with smaller trans-624

formers, current LLMs are often many magnitudes625

larger and it would be interesting to see how our626

approaches can improve such large models. In a627

similar vein, we only evaluate on the task of ma-628

chine translation, because initial experiments sug-629

gested that other tasks did not benefit from MBR630

at all, either with or without the incorporation of631

weight uncertainty.632

Finally, our evaluation also only covers transla-633

tion between German and English language and634

therefore has limited coverage of language fami-635

lies.636

7 Ethics and Broader Impact Statement637

Our work uses probabilistic language models to638

generate machine translations. Such models can639

produce outputs that are, among others, harmful,640

toxic, and hallucinated and our methods can not641

guarantee that such outputs are not generated. How-642

ever, we aim to improve the robustness of language643

generation methods and, therefore, aim to alleviate644

these issues. Therefore, we believe there to be no645

direct ethical concern in our work.646
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A Relationship of Token- and939

Sequence-level Averaging940

log E
θ∼q
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T∏
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pθ(yt | y<t,x)

(17)

941
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943

=
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t=1

E
θ∼q

log pθ(yt | y<t,x)

(20)

944

The second step follows from Jensen’s inequality945

(log is strictly concave), then we use linearity of946

expectation.947

B Experimental Details948

Datasets Our usage of the WMT14 English-to-949

German translation tasks (Bojar et al., 2014) fol-950

lows the set-up from (Vaswani et al., 2017) but aug-951

ments the training data by the news-commentary-952

v12 data from WMT17 (Bojar et al., 2017). In953

total, we train on ca. 3.9M paired examples. We954

also use a validation set during training in order to955

pick checkpoints which consists of ca 39.4K exam-956

ples. We use the original newstest2014 data which957

consists of 3,003 examples.958

We also use the IWSLT14 German-to-English959

translation task (Cettolo et al., 2014) which consists960

of ca 160K training examples. The validation set961

consists of ca. 7.3K examples. The test set consists962

of 6,750K examples.963

All data usages can be reproduced by following964

the instructions from the Fairseq repository under965

https://github.com/facebookresearch/966

fairseq/tree/main/examples/translation967

and will be published along our code.968

Models All models follow the Transformerbase969

architecture from Vaswani et al. (2017) and consist970

of an encoder-decoder Transformer with 6 encoder971

and 6 decoder layers. The models use a vocabu-972

lary of Byte-Pair-Encoding tokens (Sennrich et al.,973

2016). The WMT model has an input vocabulary974

size of 40480 and an output vocabulary size of975

42720. Altogether, the model has 86, 736, 896 pa- 976

rameters. The IWSLT model has an input vocab- 977

ulary size of 8848 and an output vocabulary size 978

of 6632 for in total 39, 469, 056 parameters. The 979

input and output embedding parameters of the de- 980

coder are shared. 981

Training We train all models from scratch us- 982

ing the fairseq library (Ott et al., 2019) which we 983

extend for variational learning and a Bayesian in- 984

terpretation of neural networks. Fairseq is licensed 985

under MIT license6 which permits our form of us- 986

age. We will release our code publicly in the future 987

for further research in a software repository under 988

Apache License 2.07. We train all models with the 989

IVON optimizer (Shen et al., 2024) and place a 990

diagonal Gaussian posterior over neural networks. 991

We use IVON with a isotropic Gaussian prior and 992

initialize all entries of the Hessian with 0.1. We 993

use an effective sample size of 1 · 10−8, a small 994

weight-decay of 0.0001, and a learning rate of 0.1. 995

We set β1 = 0.9 and β2 = 0.9999. All models are 996

trained with a batch size of 32 and we use 2 MC 997

samples from the posterior during training. While 998

this roughly doubles training time when compared 999

to AdamW, it is also possible to use just 1 MC 1000

sample and arrive at similar results. We train the 1001

models until performance in terms of BLEU has 1002

not improved for at least 3 epochs and then stop. 1003

Afterwards, we use the distribution that has best 1004

validation performance. 1005

For the snapshot-like approach, we add 3 1006

randomly-sampled distributions that were trained 1007

with at least 10 epochs to the best-performing one. 1008

For the multi-IVON mixture-of-Gaussian approach 1009

we always use the best performing distribution for 1010

runs with different random seeds. In all experi- 1011

ments we sample from the posterior “as-is” and 1012

only vary the temperature by reducing the effective 1013

sample size when explicitly mentioned. 1014

All models are trained on a single GPU which 1015

is an NVIDIA GPU with either 40GB, 32GB or 1016

24GB GPU memory. Training takes around 1-2 1017

hours for the IWSLT14 models and 1-2 days for 1018

the WMT models. 1019
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Sampling Beam Search
Method BLEU COMET LaBSE BLEU COMET LaBSE

Best Mean 33.69 74.71 85.33 35.90 76.65 86.44
Sequence-level

Unimodal 34.65 75.20 85.68 35.99 76.67 86.45
Mixture 35.42 75.84 86.07 37.42 77.69 86.97

Token-level
Unimodal 33.62 74.68 85.39 35.94 76.66 86.45
Mixture 34.61 75.06 85.88 38.56 78.31 87.34

Table 2: Measuring hallucinations with LaBSE (higher
is better) on IWSLT14 with hypothesis set of size 20
shows similar trends as quality estimation metrics: incor-
porating weight-uncertainty can reduce hallucinations,
especially when a complex posterior is used.

Sampling Beam Search
Method BLEU COMET LaBSE BLEU COMET LaBSE

Best Mean 23.25 67.74 86.74 26.55 73.25 88.60
Sequence-level

Unimodal 24.08 68.90 87.09 26.60 73.30 88.62
Mixture 24.10 69.20 87.28 26.81 73.70 88.86

Token-level
Unimodal 23.38 67.77 86.70 26.57 73.26 88.60
Mixture 23.37 67.74 86.62 27.19 74.04 88.87

Table 3: Measuring hallucinations with LaBSE (higher
is better) on WMT14 with hypothesis set of size 20
shows similar trends as quality estimation metrics: in-
corporating weight-uncertainty can reduce hallucina-
tions, especially when a complex posterior is used.

C Additional Results1020

C.1 Incorporating Weight Uncertainty1021

Reduces Hallucinations1022

In this section, we additionally measure the amount1023

of hallucinations generated by various strategies.1024

We use LaBSE (Feng et al., 2022) to evaluate hallu-1025

cinations which has shown strong correlation with1026

human judgements (Himmi et al., 2024). The hallu-1027

cination score is calculated by the cosine similarity1028

of the LaBSE embedding of input and output, re-1029

spectively. Note that a higher score means less hal-1030

lucinations. We use the checkpoint from Sentence1031

Transformers (Reimers and Gurevych, 2019) which1032

is available on the huggingface (Wolf et al., 2020)1033

hub8. Results are shown in Tab. 2 for IWSLT141034

and in Tab. 3 for WMT14. We find that the overall1035

trends follow the same pattern as observed in terms1036

of quality estimation metrics. Using weight un-1037

certainty improves over a single model, especially1038

when a multimodal posterior is used. Similarly, for1039

a hypothesis set size of 20, we find that sequence-1040

level combination outperforms token-level combi-1041

6https://github.com/facebookresearch/fairseq/
blob/main/LICENSE

7https://www.apache.org/licenses/LICENSE-2.0
8https://huggingface.co/sentence-transformers/

LaBSE

nation when using ancestral sampling but not when 1042

using beam search. 1043

C.2 Qualitative Examples 1044

Tab. 4 shows qualitative examples that were gen- 1045

erated with MBR and a hypothesis set of size 20 1046

created with beam search for IWSLT14de-en and 1047

WMT14en-de. We compare the source and tar- 1048

get translations to a translation produced by the 1049

best mean, as well as sequence- and token-level 1050

model combination of models from a multimodal 1051

posterior. We find in general that the amount of 1052

hallucinations is reduced when comparing the sin- 1053

gle model baseline to a model combination, for 1054

example the additional “i’ll tell you” in the first 1055

example of IWSLT14. Furthermore, grammar and 1056

translation mistakes are reduced. This highlights 1057

how modeling weight uncertainty can effectively 1058

improve MBR. 1059
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IWLST14de-en

Source wenn sie jetzt mal ein stückchen weiter denken .
Target now let’s take that a step further .
Best Mean now , if you think a little farther , i’ll tell you
Sequence-level now , if you think a little bit further
Token-level now , if you keep thinking a little bit further
Source passiert ist das maschinenzeitalter und passiert ist das buch und passiert ist die ist die fotolitografie
Target then the machine age happened and the book and then we had photolithography
Best Mean and the machine age has happened , and what’s happened is the book , and that’s what’s happened
Sequence-level what happened is the machine age , and what happened is the book , and what happened is the photolitography
Token-level what’s happened is the machine age , and what’s happened is the book , and what’s happened is the photolitography
Source und das ist halt nicht im hobbybereich , aber es ist eine wirklich coole technologie , die auch sehr viel kann
Target and that’s not within the range of amateurs , but it’s a really cool technology , which is capable of a lot
Best Mean and that’s not in the hobbyist , but it’s a really cool technology , it can do a lot
Sequence-level and that’s not in the hobbysphere , but it’s a really cool technology that can do a lot
Token-level and that’s not in the hobbyist , but it’s a really cool technology that can do a lot
Source also es war eine neugier und ich wollte irgendwie näher ran an die materie , so
Target so it was curiosity and i somehow wanted to get closer to the material , that was it
Best Mean so it was a curiosity , and i wanted to get closer to the subject , like that
Sequence-level so it was a curiosity , and i wanted to sort of get closer to the material , like that
Token-level so it was a curiosity , and i wanted to sort of get closer to the matter , like that
Source also für ihn waren sie nur bauklötze
Target so to him , they were just blocks
Best Mean so for him , they were just timbers
Sequence-level so for him , they were just building blocks
Token-level so for him , they were just building blocks

WMT14en-de

Source Together with an accomplice , who procured the women , he brought them to various brothels in the south-west
Target Zusammen mit einem Kollegen , der die Frauen vermittelte , brachte er sie in verschiedene Bordelle im Südwesten
Best Mean Zusammen mit einem Komplizen , der die Frauen beschaffte , brachte er sie zu verschiedenen Brüdern im Südwesten
Sequence-level Zusammen mit einem Komplizen , der die Frauen beschaffte , brachte er sie in verschiedene Bordelle im Südwesten
Token-level Zusammen mit einem Komplizen , der die Frauen beschaffte , brachte er sie in verschiedene Bordelle im Südwesten
Source Founding Chairman Henne reported in depth on the work of the organisation
Target Der erste Vorsitzende Henne berichtete ausführlich von der Arbeit des Vereins
Best Mean Gründervorsitzender Henne hat ausführlich über die Arbeit der Organisation berichtet
Sequence-level Gründervorsitzender Henne berichtete ausführlich über die Arbeit der Organisation
Token-level Der Gründungsvorsitzende Henne berichtete ausführlich über die Arbeit der Organisation
Source They then drove away
Target Anschließend fuhren sie davon
Best Mean Sie verjagten sich
Sequence-level Dann fuhren sie weg
Token-level Dann sind sie weg
Source They earn as much as teachers and can make a good living
Target Sie verdienten so viel wie Lehrer und könnten gut davon leben
Best Mean Sie verdienen so viel wie Lehrer und können ein gutes Leben
Sequence-level Sie verdienen so viel wie Lehrer und können gut leben
Token-level Sie verdienen so viel wie Lehrer und können ein gutes Leben führen
Source The fact that the dog was spotted is unbelievable
Target Die Tatsache , dass der Hund entdeckt wurde , ist unglaublich
Best Mean Dass der Hund aufgedeckt wurde , ist unglaublich
Sequence-level Die Tatsache , dass der Hund entdeckt wurde , ist unglaublich
Token-level Die Tatsache , dass der Hund entdeckt wurde , ist unglaublich
Source There are lots of well-publicized theories about the causes of precocious puberty
Target Es gibt viele umfassend publizierte Theorien über die Ursachen frühzeitiger Pubertät
Best Mean Es gibt viele gut publizisierte Theorien über die Ursachen von bösartiger Pubertät
Sequence-level Es gibt viele gut publizierte Theorien über die Ursachen von bösartiger Pubertät
Token-level Es gibt eine Menge gut publizierter Theorien über die Ursachen der bösartigen Pubertät

Table 4: Qualitative examples of outputs generated by the best learned mean, as well as sequence- and token-level
model combination using beam search and a multimodal posterior.
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