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Abstract

Several works in implicit and explicit generative modeling empirically observed that
feature-learning discriminators outperform fixed-kernel discriminators in terms of
the sample quality of the models. We provide separation results between probability
metrics with fixed-kernel and feature-learning discriminators using the function
classes F2 and F1 respectively, which were developed to study overparametrized
two-layer neural networks. In particular, we construct pairs of distributions over
hyper-spheres that can not be discriminated by fixed kernel (F2) integral probability
metric (IPM) and Stein discrepancy (SD) in high dimensions, but that can be
discriminated by their feature learning (F1) counterparts. To further study the
separation we provide links between the F1 and F2 IPMs with sliced Wasserstein
distances. Our work suggests that fixed-kernel discriminators perform worse than
their feature learning counterparts because their corresponding metrics are weaker.

1 Introduction

The field of generative modeling, whose aim is to generate artificial samples of some target distri-
bution given some true samples of it, is broadly divided into two types of models (Mohamed and
Lakshminarayanan, 2017): explicit generative models, which involve learning an estimate of the
log-density of the target distribution which is then sampled (e.g. energy-based models), and implicit
generative models, where samples are generated directly by transforming some latent variable (e.g.
generative adversarial networks (Goodfellow et al., 2014), normalizing flows (Rezende and Mohamed,
2015)).

Several works have observed experimentally that both in implicit and in explicit generative models,
using ‘adaptive’ or ‘feature-learning’ function classes as discriminators yields better generative
performance than ‘lazy’ or ‘kernel’ function classes. Within implicit models, Li et al. (2017) show
that generative moment matching networks (GMMN) generate significantly better samples for the
CIFAR-10 and MNIST datasets when using maximum mean discrepancy (MMD) with learned instead
of fixed features. For a related method and in a similar spirit, Santos et al. (2019) show that for image
generation, fixed-feature discriminators are only successful when we take an amount of features
exponential in the intrinsic dimension of the dataset. Genevay et al. (2018) study implicit generative
models with the Sinkhorn divergence as discriminator, and they also show that other than for simple
datasets like MNIST, learning the Wasserstein cost is crucial for good performance.

As to explicit models, Grathwohl et al. (2020) train energy-based models with a Stein discrepancy
based on neural networks and show improved performance with respect to kernel classes. Chang et al.
(2020) show that Stein variational gradient descent (SVGD) fails in high dimensions, and that learning
the kernel helps. Given the abundant experimental evidence, the aim of this work is to provide some
theoretical results that showcase the advantages of feature-learning over kernel discriminators. For
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the sake of simplicity, we compare the discriminative behavior of two function classes F1 and F2,
arising from infinite-width two-layer neural networks with different norms penalties on its weights
(Bach, 2017). F1 displays an adaptive behavior, while F2 is an RKHS which consequently has a lazy
behavior. Namely, our main contributions are:

(i) We construct a sequence of pairs of distributions over hyperspheres Sd−1 of increasing dimensions,
such that the F2 integral probability metric (IPM) between the pair decreases exponentially in the
dimension, while the F1 IPM remains high.

(ii) We construct a sequence of pairs of distributions over Sd−1 such that the F2 Stein discrepancy
(SD) between the pair decreases exponentially in the dimension, while the F1 SD remains high.

(iii) We prove polynomial upper and lower bounds between theF1 IPM and the max-sliced Wasserstein
distance for distributions over Euclidean balls. For a class F̃2 related to F2, we prove similar
upper and lower bounds between the F̃2 IPM and the sliced Wasserstein distance for distributions
over Euclidean balls.

Our findings reinforce the idea that generative models with kernel discriminators have worse per-
formance because their corresponding metrics are weaker and thus unable to distinguish between
different distributions, especially in high dimensions.

2 Related work

A recent line of research has studied the question of how neural networks compare to kernel methods,
with a focus on supervised learning problems. Bach (2017) shows the approximation benefits of
the F1 space for adapting to low-dimensional structures compared to the (kernel) space F2; an
analysis that we leverage. The function space F1 was also studied by Ongie et al. (2019); Savarese
et al. (2019); Williams et al. (2019), which focus on the ReLU activation function. More recently,
several works showed that wide neural networks trained with gradient methods may behave like
kernel methods in certain regimes (see, e.g., Jacot et al., 2018). Examples of works that compare
‘active/feature-learning’ and ‘kernel/lazy’ regimes for supervised learning include Chizat and Bach
(2020); Ghorbani et al. (2019); Wei et al. (2020); Woodworth et al. (2020), and Domingo-Enrich
et al. (2021) for energy-based models. We are not aware of any works that study how feature-learning
function classes and kernel classes differ as discriminators for IPMs or Stein discrepancies.

It turns out that the F2 integral probability metric that we study is in fact MMD for certain kernels
that often admit a closed form (Roux and Bengio, 2007; Cho and Saul, 2009; Bach, 2017). MMDs
are probability metrics that were first introduced by Gretton et al. (2007, 2012) for kernel two-
sample tests, and that have enjoyed ample success with the advent of deep-learning-based generative
modeling as discriminating metrics: Li et al. (2015) and Dziugaite et al. (2015) introduced GMMN,
which differ from GANs in that the discriminator network is replaced by a fixed-kernel MMD. Li
et al. (2017) introduces an improvement on GMMN by using the MMD loss on learned features.
From this viewpoint, our separation results in Sec. 5 can be interpreted as instances in which a given
fixed-kernel MMD provably has less discriminative power than adaptive discriminators.

Other related work includes the Stein discrepancy literature. Stein’s method (Stein, 1972) dates to
the 1970s. Gorham and Mackey (2015) introduced a computational approach to compute the Stein
discrepancy in order to assess sample quality. Later, Chwialkowski et al. (2016), Liu et al. (2016) and
Gorham and Mackey (2017) introduced the more practical kernelized Stein discrepancy (KSD) for
goodness-of-fit tests. Liu and Wang (2016) introduced SVGD, the first method to use the KSD to
obtain samples from a distribution. Barp et al. (2019) employed KSD to train parametric generative
models, and Grathwohl et al. (2020) trained models replacing KSD by a neural-network-based SD.

Our work also touches on sliced and spiked Wasserstein distances. Sliced Wasserstein distances were
introduced first by Kolouri et al. (2016); Kolouri et al. (2019). Spiked Wasserstein distances, which
are a generalization, were studied later by Paty and Cuturi (2019), and they also appear in Niles-Weed
and Rigollet (2019) as a good statistical estimator. Nadjahi et al. (2020) and Lin et al. (2021) have
studied statistical properties of sliced and spiked Wasserstein distances, respectively.
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3 Framework

3.1 Notation

If V is a normed vector space, we use BV (β) to denote the closed ball of V of radius β, and
BV := BV (1) for the unit ball. If K denotes a subset of the Euclidean space, P(K) is the set of
Borel probability measures,M(K) is the space of finite signed Radon measures andM+(K) is the
set of finite positive Radon measures. If γ is a signed Radon measure over K, then ‖γ‖TV is the total
variation (TV) norm of γ. Throughout the paper, and unless otherwise specified, σ : R→ R denotes
a generic non-linear activation function. We use (·)+ : R→ R to denote the ReLu activation, defined
as (x)+ = max{x, 0}. τ denotes the uniform probability measure over a space that depends on the
context. We use Sd for the d-dimensional hypersphere and log for the natural logarithm.

3.2 Overparametrized two-layer neural network spaces

Feature-learning regime. We define F1 as the Banach space of functions f : K → R
such that for some γ ∈ M(Sd), for all x ∈ K we have f(x) =

∫
Sd σ(〈θ, x〉) dγ(θ)

for some signed Radon measure γ (Bach, 2017). The norm of F1 is defined as ‖f‖F1
=

inf
{
‖γ‖TV |f(·) =

∫
Sd σ(〈θ, ·〉) dγ(θ)

}
.

Kernel regime. We define F2 as the (reproducing kernel) Hilbert space of functions f : K → R
such that for some absolutely continuous ρ ∈ M(Sd) with dρ

dτ ∈ L
2(Sd) (where τ is the uniform

probability measure over Sd), we have that for all x ∈ K, f(x) =
∫
Sd σ(〈θ, x〉) dρ(θ). The norm

of F2 is defined as ‖f‖2F2
= inf

{∫
Sd h(θ)2 dτ(θ) | f(·) =

∫
Sd σ(〈θ, ·〉) h(θ) dτ(θ)

}
. As an RKHS,

the kernel of F2 is

k(x, y) =

∫
Sd
σ(〈x, θ〉)σ(〈y, θ〉)dτ(θ). (1)

Such kernels admit closed form expressions for different choices of activation functions, among
which ReLu (Roux and Bengio, 2007; Cho and Saul, 2009; Bach, 2017).

Remark that since
∫
|h(θ)|dτ(θ) ≤ (

∫
h(θ)2 dτ(θ))1/2 by the Cauchy-Schwarz inequality, we have

F2 ⊂ F1. In particular, when σ is the ReLu unit, Bach (2017) shows that two-layer networks with a
single neuron belong to F1 but not to F2, and their L2 approximations in F2 have exponentially high
norm in the dimension. Informally, one should understand F1 as the space of two-layer networks
where both the input layer and output layer parameters are trained, in the limit of an infinite number
of neurons. On the other hand, F2 is the space of infinite-width two-layer networks where only the
output layer parameters are trained while the input layer parameters are sampled uniformly on the
sphere and kept fixed.

4 F1 and F2 Integral Probability Metrics

Let K be a subset of Rd+1. Integral probability metrics (IPM) are pseudometrics on P(K) of the
form

dF (µ, ν) = sup
f∈F

Ex∼µf(x)− Ex∼νf(x),

where F is a class of functions from K to R.

F2 IPM or F2 MMD. One possible choice for F is the unit ball BF2
of F2. Since F2 is an RKHS

with kernel k, the corresponding IPM is in fact a maximum mean discrepancy (MMD) (Gretton et al.,
2007) and it can be shown (Lemma 1 in App. A) to take the form

d2
BF2

(µ, ν) =

∫
Sd

(∫
K

σ(〈x, θ〉)d(µ− ν)(x)

)2

dτ(θ).
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Notice that for any feature θ ∈ Sd, Ex∼pσ(〈x, θ〉) can be seen as a generalized moment of p. dBF2

can be seen as the L2 distance between generalized moments of µ and ν as functions of θ ∈ Sd.

F1 IPM. An alternative choice for F is the unit ball BF1 of F1. The IPM for the unit ball of F1 can
be developed (Lemma 2 in App. A) into

dBF1
(µ, ν) = sup

θ∈Sd

∣∣∣∣∫
K

σ(〈x, θ〉)d(µ− ν)(x)

∣∣∣∣ . (2)

Observe that dBF1
is the L∞ distance between generalized moments of µ and µ as functions of

θ ∈ Sd. That is, instead of averaging over features, all the weight is allocated to the feature at which
the generalized moment difference is larger.

We will provide separate results for two interesting choices for K: (i) for K = Sd, we obtain neural
network discriminators without bias term which are amenable to analysis using the theory of spherical
harmonics; and (ii) for K = Rd × {1}, we obtain neural networks discriminators with a bias term
which is encoded by the last component (notice that probability measures over Rd can be mapped
trivially to probability measures over Rd × {1}). We will write F1(K) or F2(K) for specific K
when it is not clear by the context.

A function f : R→ R is α-positive homogeneous function if for all r ≥ 0, x ∈ R, f(rx) = rαf(x).
One-dimensional α-positive homogeneous functions can be written in a general form as

f(x) = a(x)α+ + b(−x)α+. (3)

where a, b ∈ R are arbitrary. When the activation function σ is α-positive homogeneous, Theorem 1
shows that the F1 and F2 IPMs are distances when K = Rd × {1} if a, b fulfill a certain condition
which is satisfied by the ReLu activation, but they are not distances when K = Sd. See Theorem 6
and Theorem 7 in App. B for the proof.

Theorem 1. For any non-negative integer α, let σ : R→ R be an α-positive homogeneous activation
function of the form (3). If (−1)αa − b 6= 0 and K = Rd × {1}, both the F1 and F2 IPMs are
distances on P(K). If K = Sd, both the F1 and F2 IPMs are not distances on P(K), as there exist
pairs of different measures for which the IPMs evaluate to zero.

In other words, Theorem 1 states that certain fixed-kernel and feature-learning infinite neural networks
with RELU or leaky RELU non-linearity, yield distances when we include a bias term, but not when
the inputs lie in a hypersphere. This result sheds light on when the “neural net distance” introduced
by Arora et al. (2017) is indeed a distance.

5 Separation between the F1 and F2 IPMs

In this section for each dimension d ≥ 2, we construct a pair of probability measures µd, νd over
P(Sd−1) such that the F1 IPM between µd and νd stays constant along the dimension, while the F2

IPM decreases exponentially.

Legendre harmonics and Legendre polynomials. Let ed ∈ Rd be the d-th vector of the canonical
basis. There is a unique homogeneous harmonic polynomial Lk,d of degree k over Rd such that: (i)
Lk,d(Ax) = Lk,d(x) for all orthogonal matrices that leave ed invariant, and (ii) Lk,d(ed) = 1. This
polynomial receives the name of Legendre harmonic, and its restriction to Sd−1 is indeed a spherical
harmonic of order k. If we express an arbitrary ξ(d) ∈ Sd−1 as ξ(d) = ted + (1 − t2)1/2ξ(d−1),
where ξ(d−1) ⊥ ed, we can define the Legendre polynomial of degree k in dimension d as Pk,d(t) :=
Lk,d(ξ(d)) by the invariance of Lk,d (it is not straightforward that Pk,d(t) is a polynomial on t, see
Sec. 2.1.2 of Atkinson and Han (2012)). Conversely, Lk,d(x) = Pk,d(〈ed, x〉) for any x ∈ Sd−1, and
by homogeneity, Lk,d(x) = ‖x‖kPk,d(〈ed, x〉/‖x‖) for any x ∈ Rd. Legendre polynomials can also
be characterized as the orthogonal sequence of polynomials on [−1, 1] such that Pk,d(1) = 1 and∫ 1

−1
Pk,d(t)Pl,d(t)(1− t2)

d−3
2 dt = 0, for k 6= l.
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Figure 1: 3D polar plot representing the densities of the measures µd (left) and νd (right), for the
choices d = 3, k = 4. In each direction, the distance from the origin to the surface is proportional to
the density of the measure.

The pair µd and νd. We define µd and νd as the probability measures over Sd−1 with densities

dµd
dλ

=

{
γk,dLk,d(x)
|Sd−1| if Lk,d(x) > 0

0 if Lk,d(x) ≤ 0
,

dνd
dλ

=

{
0 if Lk,d(x) > 0
−γk,dLk,d(x)
|Sd−1| if Lk,d(x) ≤ 0

.

(4)

for some k ≥ 2 and some γk,d ≥ 0, where λ is the Hausdorff measure over Sd−1. Namely,

Proposition 1. If we choose γk,d = 2
(∫

Sd−1 |Lk,d(x)| dτ(x)
)−1

, then µd and νd are probability
measures.

Figure 1 shows a representation of the measures µd, νd for d = 3, k = 4, where one can see that
they allocate mass in different regions of the sphere. We are now ready to state our separation result,
which is proved in App. D.
Theorem 2. Let σ : R→ R be an activation function that is bounded in [−1, 1]. For any d ≥ 2 and
k ≥ 1, if we set γk,d as in Proposition 1 we have that

dBF1
(µd, νd) =

2
∣∣∣∫ 1

−1
Pk,d(t)σ(t)(1− t2)

d−3
2 dt

∣∣∣∫ 1

−1
|Pk,d(t)|(1− t2)

d−3
2 dt

, (5)

and

dBF1
(µd, νd)

dBF2
(µd, νd)

=
√
Nk,d =

√
(2k + d− 2)(k + d− 3)!

k!(d− 2)!
, (6)

where Nk,d is the dimension of the space of spherical harmonics of order k over Sd−1. That is,

log

(
dBF1

(µd, νd)

dBF2
(µd, νd)

)
=

1

2

(
k log

(
k + d− 3

k

)
+ (d− 2) log

(
k + d− 3

d− 2

))
+O(log(k + d)).

(7)

From (7) we see that choosing the parameter k of the same order as d, dBF1
(µd, νd) is exponentially

larger than dBF2
(µd, νd) in the dimension d. Equation (5) holds regardless of the choice of the acti-

vation function σ, and decreases very slowly in d for the ReLu activation, as shown in Figure 2. This
result suggests that in high dimensions there exist high frequency densities that can be distinguished
by feature-learning IPM discriminators but not by their fixed-kernel counterpart, and that may explain
the differences in generative modeling performance for GMMN and Sinkhorn divergence (Sec. 1).
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The key idea for the proof of Theorem 2 is that the Legendre harmonics Lk,d have constant L∞ norm
equal to 1 (see equation (26) in App. C), but their L2 norm decreases as 1/Nk,d (see equation (32) in
App. D). The proof boils down to relating dBF1

(µd, νd) to the L∞ norm of Lk,d, and dBF2
(µd, νd)

to its L2 norm.

6 Separation between F1 and F2 Stein discrepancies

The arguments to derive the separation result in Sec. 5 can be leveraged to obtain a similar separation
for the Stein discrepancy, which helps explain why for Stein discrepancy energy-based models
(EBMs) and SVGD feature learning yields improved performance.

6.1 Stein operator and Stein discrepancy

As shown by Domingo-Enrich et al. (2021), for a probability measure ν on the sphere Sd−1 with a
continuous and almost everywhere differentiable density dν

dτ , the Stein operator Aν : Sd−1 → Rd×d
is defined as

(Aνh)(x) =

(
∇ log

(
dν

dτ
(x)

)
− (d− 1)x

)
h(x)> +∇h(x), (8)

for any h : Sd−1 → Rd that is continuous and almost everywhere differentiable, where ∇ denotes
the Riemannian gradient. That is, for any h : Sd−1 → Rd that is continuous and almost everywhere
differentiable, the Stein identity holds: Eν [(Aνh)(x)] = 0.

IfH is a class of functions from Sd−1 to Rd, the Stein discrepancy (Gorham and Mackey, 2015; Liu
et al., 2016) forH is a non-symmetric functional defined on pairs of probability measures over K as

SDH(ν1, ν2) = sup
h∈H

Eν1 [Tr(Aν2h(x))]. (9)

WhenH = BHd0 = {(hi)di=1 ∈ Hd0 |
∑d
i=1 ‖hi‖2H0

≤ 1} for some reproducing kernel Hilbert space
(RKHS)H0 with kernel k with continuous second order partial derivatives, there exists a closed form
for the problem (9) and the corresponding object is known as kernelized Stein discrepancy (KSD) Liu
et al. (2016); Gorham and Mackey (2017). When the domain is Sd−1, the KSD takes the following
form (Lemma 5, Domingo-Enrich et al. (2021)):

KSD(ν1, ν2) = SD2
BHd0

(ν1, ν2) = Ex,x′∼ν1 [uν2(x, x′)],

where we have uν(x, x′) = (sν(x) − (d − 1)x)>(sν(x′) − (d − 1)x′)k(x, x′) + (sν(x) − (d −
1)x)>∇x′k(x, x′) + (sν(x′) − (d − 1)x′)>∇xk(x, x′) + Tr(∇x,x′k(x, x′)), and we use ũν(x, x′)
to denote the sum of the first three terms (remark that the fourth term does not depend on ν). Here we
have used the notation sν(x) = ∇ log(dνdτ (x)), which is known as the score function.

6.2 Separation result

We show a separation result between the two cases:

• F1 Stein discrepancy: H = BFd1 = {(hi)di=1 ∈ Fd1 |
∑d
i=1 ‖hi‖2F1

≤ 1}. This discriminator set
initially appeared as a particular configuration in the framework of Huggins and Mackey (2018),
and its statistical properties for energy based model training were later studied by Domingo-Enrich
et al. (2021).

• F2 Stein discrepancy: H = BFd2 = {(hi)di=1 ∈ Fd2 |
∑d
i=1 ‖hi‖2F2

≤ 1}. Since F2 is an RKHS,
this corresponds to a KSD with the kernel k. However, particular care must be taken in checking
that the kernel k has continuous second order partial derivatives, which might not always be the
case (i.e. with α = 1).
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The pair µd and νd. For d ≥ 2, we set µd to be the uniform Borel probability measure over Sd−1.
We define νd as the probability measure over Sd−1 with density

dνd
dλ

(x) =
exp

(
γk,dLk,d(x)

)∫
Sd−1 exp

(
γk,dLk,d(x)

)
dλ(x)

(10)

for some γk,d ∈ R that we will specify later on and some k ≥ 2.
Theorem 3. Let σ : R → R be an α-positive homogeneous activation function of the form (3)
such that a + (−1)k+1b 6= 0. For all k ≥ 1, d ≥ 2 we can choose γk,d ∈ [−1, 1] such that
SDBFd1

(µd, νd) = 1 and

SDBFd1
(µd, νd)

SDBFd2
(µd, νd)

≥
k(d+k−3)
α+1√

2
Nk,d

(
k(k + d− 2)

(
d+α−2
α+1

)2

+
(
k(d+k−3)
α+1

)2
) (11)

That is,

log

SDBFd1
(µd, νd)

SDBFd2
(µd, νd)

 ≥1

2

(
k log

(
k + d− 3

k

)
+ (d− 2) log

(
k + d− 3

d− 2

))
+O(log(k + d))

(12)

As in Theorem 2, from (12) we see that choosing the parameter k of the same order as d,
SDBFd1

(µd, νd) is exponentially larger than SDBFd2
(µd, νd) in the dimension d. This result sug-

gests that in high dimensions there exist high frequency densities that can be distinguished by
feature-learning Stein Discrepancy discriminators but not by their fixed-kernel counterpart, and that
may explain the differences in generative modeling performance for Stein discrepancy EBMs and
SVGD (Sec. 1).

7 Bounds of F1 and F2 IPMs by sliced Wasserstein distances

F1 andF2 IPMs measure differences of densities by slicing the input space and then maximizing (resp.
averaging) the appropriate quantities. Max-sliced and sliced Wasserstein distances work, which have
been studied by several works, work in an analogous fashion; one projects the distributions onto one-
dimensional subspaces, and then maximizes or averages over the subspaces. Unlike the Wasserstein
distance, which has been used for generative models such as WGAN (Arjovsky et al., 2017) but
whose estimation suffers from the curse of dimensionality, max-sliced and sliced Wasserstein enjoy
parametric estimation rates which make them more suitable as discriminators.

The goal of this section is to show that F1 IPMs are equivalent to max-sliced Wasserstein distances
up to a constant power, while sliced Wasserstein distances are similarly equivalent to a fixed-kernel
IPM with a kernel that is slightly different from the F2 kernel. These bounds are helpful to get a
quantitative understanding of how strong feature-learning and fixed-kernel IPMs are, and provide a
novel bridge between sliced optimal transport and generative modeling discriminators.

7.1 Spiked and sliced Wasserstein distances

Throughout this section k denotes an integer such that 1 ≤ k ≤ d. The Stiefel manifold Vk is the set
of matrices U ∈ Rk×d such that UU> = Ik×k (i.e. the rows of U are orthonormal). We define the
k-dimensional projection robust p-Wasserstein distance between µ, ν ∈ P(Rd) as

Wp,k(µ, ν)p = max
U∈Vk

min
π∈Γ(µ,ν)

∫
‖Ux− Uy‖pdπ(x, y), (13)

where Γ(µ, ν) denotes the set of couplings between µ, ν, i.e. of measures P(K×K) with projections
µ and ν. This is the distance studied by Niles-Weed and Rigollet (2019) as a good estimator for the
Wasserstein distance for a certain class of target densities with low dimensional structure.

7



The integral k-dimensional projection robust p-Wasserstein distance between µ, ν ∈ P(Rd) is
defined as

Wp,k(µ, ν)p =

∫
Vk

(
min

π∈Γ(µ,ν)

∫
‖Ux− Uy‖pdπ(x, y)

)
dτ(U), (14)

where τ is the uniform measure over Vk. Nadjahi et al. (2020) studied statistical aspects of this
distance in the case in which k = 1, while Lin et al. (2021) considers the case with general k. Notice
trivially thatWp,k(µ, ν) ≥ Wp,k(µ, ν).

Sliced Wasserstein distances are spiked Wasserstein distances with k = 1, but they were studied
first chronologically (Bonneel et al., 2014; Kolouri et al., 2016; Kolouri et al., 2019). Namely, the
sliced Wasserstein distance is the integral 1-dimensional projection robust Wasserstein distanceWp,k,
and the max-sliced Wasserstein distance is the 1-dimensional projection robust Wasserstein distance
Wp,k. Some arguments are easier for the case k = 1 because the Stiefel manifold is the sphere Sd−1.

7.2 Results

We prove in Theorem 4 that for K = {x ∈ Rd|‖x‖2 ≤ 1}×{1}, for which the F1 space corresponds
to overparametrized two-layer neural networks with bias, theF1 IPM can be upper and lower-bounded
by the projection robust Wasserstein distanceW1,k(µ, ν) up to a constant power (not depending on
the dimension).
Theorem 4. Let δ > 0 be larger than a certain constant depending on k and α. Let σ(x) = (x)α+ be
the α-th power of the ReLu activation function, where α is a non-negative integer. Let µ, ν be Borel
probability measures with support included in {x ∈ Rd|‖x‖2 ≤ 1} × {1}. Let dBF1

be as defined in
(2) andW1,k as defined in (13). Then,

δW1,k(µ, ν) ≥ δdBF1
(µ, ν) ≥ W1,k(µ, ν)− 2C(k, α)δ−

1
α+(k−1)/2 log (δ) , (15)

where C(k, α) is a constant that depends only on k and α. If we optimize the lower bound in (15)
with respect to δ, we obtainW1,k(µ, ν) ≥ dBF1

(µ, ν) ≥ Ω̃(W1,k(µ, ν)α+ k+1
2 ) where Ω̃ hides log

factors.

While for the F2 IPM the link with the sliced Wasserstein distance is not straightforward, it can be
established when we switch from uniform τ to an alternative feature measure τ̃ . We define the class
F̃2 of functions Rd → R as the RKHS associated with the following kernel

k̃(x, y) =

∫
Sd
σ(〈(x, 1), θ〉)σ(〈(y, 1), θ〉) dτ̃(θ) =

1

π

∫
Sd−1

∫ 1

−1

σ
(
〈(x, 1), (

√
1− t2ξ, t)〉

)
σ
(
〈(y, 1), (

√
1− t2ξ, t)〉

)
(1− t2)−1/2 dt dτ(d−1)(ξ).

Proposition 2. (τ̃ as a rescaling of uniform measure) The measure dτ̃(
√

1− t2ξ, t) = 1
π (1 −

t2)−1/2 dt dτ(d−1)(ξ) is a probability measure. For comparison, the uniform measure over Sd can
be written as dτ(

√
1− t2ξ, t) = Γ((d+1)/2)√

πΓ(d/2)
(1− t2)

d−1
2 dt dτ(d−1)(ξ).

That is, F2 and F̃2 are both fixed-kernel spaces with a similar kernel. They differ only in the weighing
measure of the kernel; all the expressions which are valid in the F2 setting are also valid for F̃2 if we
replace τ by τ̃ . In analogy with the F2 IPM, the F̃2 IPM is given below.

d2
BF̃2

(µ, ν) =

∫
Sd

(∫
K

σ(〈x, θ〉)d(µ− ν)(x)

)2

dτ̃(θ). (16)

Analogously to Theorem 4, Theorem 5 establishes that the F̃2 IPM is upper and lower-bounded by
the sliced Wasserstein distanceW1,1(µ, ν) up to a constant power (not depending on the dimension).
The reason to introduce the space F̃2 is that in the proof, the argument that makes the connection
with the sliced Wasserstein distance requires the base measure of the kernel to be τ̃ and does not
work for τ . However, we do not imply that a similar result for the F2 IPM is false.
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Theorem 5. Let δ > 0 be larger than a certain constant depending on k and α. Let σ(x) = (x)α+ be
the α-th power of the ReLu activation function, where α is a non-negative integer. Let µ, ν be Borel
probability measures with support included in {x ∈ Rd|‖x‖2 ≤ 1} × {1}. Let dBF̃2

be as defined in
(16) andW1,1 as defined in (14). Then,

δd
2/3

F̃2
(µ, ν) ≥

(
5

12πα2α/2

)1/3 (
W1,1(µ, ν)− 2C(1, α)δ−

1
α log (δ)

)
. (17)

and πd2
BF̃2

(µ, ν) ≤ W1,1(µ, ν). If we optimize the lower bound in (17) with respect to δ, we obtain

d
2/3

F̃2
(µ, ν) ≥ Ω̃(W1,1(µ, ν)1+α).

8 Experiments

To validate and clarify our findings, we perform experiments of the settings studied Sec. 5, Sec. 6
and Sec. 7. We use the ReLu activation function σ(x) = (x)+, although remark that the results of
Sec. 5 hold for a generic activation function, and the results of Sec. 6 and Sec. 7 hold for non-negative
integer powers of the ReLu activation. The empirical estimates in the plots are detailed in App. G.
They are averaged over 10 repetitions; the error bars show the maximum and minimum.

6 8 10 12 14 16
Dimension d

10 3

10 2

IP
M

s

F1 and F2 IPM estimates (k = 6)

F1 IPM
F1 IPM (theory)
F2 IPM

6 8 10 12 14 16
Dimension d

102

Ra
tio

s
Ratios F1 IPM / F2 IPM (k = 6)

Ratio F1 IPM/F2 IPM
Ratio (theory)

Figure 2: F1 and F2 IPM estimates for the pairs µd and νd defined in (4) for k = 6 and varying
dimension d. (Left) The blue and red curves (superposed) show two different estimates of the F1

IPM. The purple curve shows estimates for the F2 IPM. (Right) The blue curve shows the theoretical
ratio between the F1 and the F2 IPMs (see equation (6)). The red curve shows an empirical estimate
of the ratio obtained by dividing the IPM estimates. 4400 million samples of µd and νd are used.

Separation between F1 and F2 IPMs. Figure 2 shows F1 and F2 IPM estimates for the pairs µd
and νd defined in (4) for the Legendre polynomial of degree k = 6 and varying dimension d, and
its ratios. We observe that while the F1 IPM remains nearly constant in the dimension, the F2 IPM
experiences a significant decrease. The ratios between IPMs closely track those predicted by our
Theorem 2, the mismatch being due to the overestimation of the F2 IPM caused by statistical errors.
We were constrained in the values of k and d that we could choose; when the F2 IPM is small, which
is the case when k and/or d are large, we need a high number of samples from the distributions µd, νd
to make the statistical error smaller than dBF2

(µd, νd) and get a good estimate.

Separation between F1 and F2 SDs. Figure 3 shows F1 and F2 SD estimates for the pairs µd
and νd defined in equation Subsec. 6.2 for the Legendre polynomial of degree k = 5 and varying
dimension d, and its ratios. The fact that the empirical ratio is significantly above the theoretical
lower bound indicates that our lower bound (although exponential) is not tight. This can be guessed
by looking at the slackness in the inequalities of Lemma 10 and Lemma 11.

F1, F2, F̃2 IPMs versus max-sliced and sliced Wasserstein. Figure 4 shows several metrics
between a standard multivariate Gaussian and a Gaussian with unit variance in all directions except
for one of smaller variance 0.1, in varying dimensions. We observe that while the F1 IPM and the
max-sliced Wasserstein distance are constant, the F2, F̃2 IPMs and the sliced Wasserstein distance
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Figure 3: F1 and F2 SD estimates for the pairs µd and νd defined in Subsec. 6.2 for k = 5 and
varying dimension d. (Left) The red curve shows an empirical estimate of the F1 SD, the blue curve
shows a theoretical lower bound (Lemma 10 in App. E) on the F1 SD, the purple curve shows an
estimate of the F2 SD. (Right) The blue curve represents the theoretical lower bound on the ratio
between the F1 and the F2 SDs (see equation (11)), while the red curve shows an empirical estimate
of the ratio obtained by dividing the SD estimates. 30 million samples are used.

decrease. For high dimensions they match the corresponding distances between two datasets of
standard multivariate Gaussian, which means that the statistical noise precludes discrimination in
these metrics.

101 102 103
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Di
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F2 IPM
F2 IPM
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Figure 4: For varying dimension d, we plot F1,
F2, F̃2 IPM, sliced and max-sliced Wasserstein es-
timates between a standard multivariate Gaussian
and a Gaussian with unit variance in all directions
except for one of smaller variance 0.1. The esti-
mates are computed using 100000 samples of each
distribution. For comparison, the same estimates
are shown between a standard multivariate Gaus-
sian and itself, using two different sets of 100000
samples.

9 Conclusions and discussion

We have shown pairs of distributions over hyperspheres for which the F1 IPM and SD are expo-
nentially larger than the F2 IPM and SD. In parallel, we have also provided links between the F1

IPM and max-sliced Wasserstein distance, and between the F̃2 IPM and the sliced Wasserstein
distance. The densities of the distributions constructed in Sections Sec. 5 and Sec. 6 are based on
Legendre harmonics of increasing degree. Keeping in mind that spherical harmonics are the Fourier
basis for L2(Sd−1) (in the sense that they constitute an orthonormal basis of eigenvalues of the
Laplace-Beltrami operator), one can infer a simple overarching idea from our constructions: ‘F1

discriminators are better than F2 discriminators at telling apart distributions whose densities have
only high frequency differences. It would be interesting to develop this intuition into a more general
theory. Another avenue of future work is to understand how deep discriminators perform versus
shallow ones, in analogy with the work of Eldan and Shamir (2016) for regression.
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