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Abstract

The fundamental limitation of the behavioral cloning (BC) approach to imitation1

learning is that it only teaches an agent what the expert did at states the expert2

visited. This means that when a BC agent makes a mistake which takes them3

out of the support of the demonstrations, they often don’t know how to recover4

from it. In this sense, BC is akin to giving the agent the fish – giving them dense5

supervision across a narrow set of states – rather than teaching them to fish: to6

be able to reason independently about achieving the expert’s outcome even when7

faced with unseen situations at test-time. In response, we explore learning to8

search (L2S) from expert demonstrations, i.e. learning the components required to,9

at test time, plan to match expert outcomes, even after making a mistake. These10

include (1) a world model and (2) a reward model. We carefully ablate the set of11

algorithmic and design decisions required to combine these and other components12

for stable and sample/interaction-efficient learning of recovery behavior without13

additional human corrections. Across a dozen visual manipulation tasks from14

three benchmarks, our approach SAILOR consistently out-performs state-of-the-art15

Diffusion Policies trained via BC on the same data. Furthermore, scaling up the16

amount of demonstrations used for BC by 5-10× still leaves a performance gap.17

We find that SAILOR can identify nuanced failures and is robust to reward hacking.18

1 Introduction19

The workhorse of modern imitation learning (IL) is behavioral cloning (BC, Pomerleau [1988]).20

From training Diffusion Policies (DPs, Chi et al. [2023]) on per-task expert demonstrations collected21

via a variety of teleportation interfaces [Zhao et al., 2023, Chi et al., 2024, Wu et al., 2024] to22

Visual-Language-Action models (VLAs, Team et al. [2024], Kim et al. [2024], Intelligence et al.23

[2025]) trained on wider, multi-task datasets [Khazatsky et al., 2024, ONeill et al., 2024], we see the24

same recipe applied: collecting more data to train more expressive policy models. The latent hope25

here is that scaling will eventually lead to a “ChatGPT moment” for robotics [Vemprala et al., 2023].26

However, even for the simpler problem of language modeling where one doesn’t have to deal with27

the complexities of embodiment (e.g. meaningful, stochastic dynamics and physical safety concerns),28

simply scaling next token prediction (i.e. BC) was insufficient: we needed interactive learning in the29

form of Reinforcement Learning from Human Feedback (RLHF, Stiennon et al. [2020], Ouyang et al.30

[2022]) and more recently, Test-Time Scaling (TTS, Jaech et al. [2024], Guo et al. [2025]), to build31

robust systems. If internet-scale offline pretraining was insufficient to solve language modeling, it32

stands to reason that we’ll need similar interactive learning algorithms to train (embodied) agents.33

At heart, this is because even when they are trained on large amounts of data and over expressive policy34

classes, agents still sometimes make mistakes that take them out of the support of the offline data.35

This is a fundamental property of sequential decision-making: one has to deal with the consequences36
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Figure 1: We introduce SAILOR, a method for learning to search from expert demonstrations. By
learning world and reward models on a mixture of expert and base-policy data, we endow the agent
with the ability to, at test time, reason about how to recover from mistakes that the base policy makes.

of their own prior actions. When faced with the resulting unseen situation, we’d like an agent that37

attempts to recover and match the expert’s outcome (whenever it is possible to do so). The most38

direct approach to teach an agent this recovery behavior is to ask a human-in-the-loop to correct39

mistakes [Ross et al., 2011, Kelly et al., 2019, Spencer et al., 2020]. While simple, such an approach40

can be difficult to scale as it fundamentally makes human time the bottleneck for robot learning.41

In an ideal world, we’d like our robots to be able to learn to recover from their own mistakes without42

additional human feedback. There are two fundamental capabilities an agent needs to reason at43

test-time about recovering from mistakes. The first is prediction: to understand the consequences of44

their proposed actions. The second is evaluation: to know which outcomes are preferable to others.45

We propose an algorithmic paradigm that allows us to acquire both of these capabilities without46

requiring any sources of human data beyond the standard imitation learning pipeline. In other words,47

a better recipe with the same ingredients. In particular, rather than merely learning a policy from48

expert demonstrations, we propose learning a local world model (WM) and a reward model (RM)49

from demonstration and base policy data [Ren et al., 2024b]. By combining these components with a50

planning algorithm, we have the capability to, at test time, reason about how to recover from mistakes51

that the base policy makes by planning against our learned RM inside our learned WM. Thus, rather52

than mere imitation, we’re learning to search (L2S, Ratliff et al. [2009]) from expert demonstrations.53

Our key insight is that we can infer the latent search process required to recover from local mistakes54

from the same source of human data required for the standard behavioral cloning pipeline.55

Put differently, in contrast to approaches like BC and DAgger that give the agent the fish – i.e. relying56

on a human teacher to demonstrate desired or recovery behavior, we focus on teaching the agent to57

fish: to develop the reasoning process required to match the expert’s outcomes, even when faced58

with situations unseen in the training dataset, often as a result of the agent’s own earlier mistakes.59

In our work, we focus on long-horizon visual manipulation tasks and therefore instantiate the L2S60

paradigm by using base Diffusion Policies [Chi et al., 2023], Dreamer World Models [Hafner61

et al., 2024], and the Model-Predictive Path Integral Control (MPPI, Williams et al. [2017]) Planner.62

Concretely, we learn a residual planner [Silver et al., 2018] that performs a local search at test time63

to correct mistakes the base policy makes. We call our composite architecture SAILOR: Searching64

Across Imagined Latents Online for Recovery. More specifically, our contributions are three-fold:65

1. We demonstrate that across a dozen visual manipulation problems at three different dataset66

scales, SAILOR outperforms Diffusion Policies trained on the same demonstrations. Furthermore,67

we find that scaling up the number of demonstrations passed to DP by ≈ 5-10× often still leaves a68

performance gap. We are also significantly more interaction-efficient than model-free inverse RL69

methods that use state of the art Diffusion Policy RL algorithms like DPPO [Ren et al., 2024a].70

2. We carefully ablate the algorithmic and design decisions required to learn and combine71

the above components for stable and sample-efficient learning. Specifically, we find that “warm72

starting” the hybrid world model training period, doing online hybrid world model fine-tuning [Ross73
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Figure 2: Left: we see SAILOR consistently out-perform diffusion policies trained on the same demos
across twelve visual manipulation problems at multiple dataset scales. Right: our learned reward
model is able to detect shared prefixes, base policy failure suffixes and SAILOR’s successful suffixes.

and Bagnell, 2012, Vemula et al., 2023, Ren et al., 2024b], and periodically distilling the learned74

search algorithm into the base policy (akin to expert iteration [Anthony et al., 2017, Sun et al., 2018]75

or Guided Policy Search [Levine and Koltun, 2013]) are critical for performance.76

3. We investigate the fidelity and test-time scaling properties of our learned search algorithm.77

We find that our learned reward model is able to identify nuanced failures that occur at different stages78

of our long-horizon manipulation tasks and that our composite stack is robust to reward hacking.79

2 Related Work80

Imitation Learning. The simplest approach to imitation learning is behavioral cloning (BC, Pomer-81

leau [1988], Chi et al. [2023]), where one learns a policy via maximizing the likelihood of expert82

actions at expert states. However, whether it is due to limited demonstrations [Swamy et al., 2022b],83

optimization error [Swamy et al., 2021], misspecification [Espinosa-Dice et al., 2025], or partial84

observability [Swamy et al., 2022a], a policy trained via BC will often make a mistake that takes it85

out of the support of the expert demonstrations, where it can continue to make errors, an issue known86

as compounding errors [Ross et al., 2011], which is unavoidable in general [Swamy et al., 2021].87

Under the hood, the reason a BC policy makes mistakes is due to the covariate shift between the88

training input distribution (expert states) and the testing input distribution (learner states). Interacting89

with the environment allows us to generate samples from this test distribution. If we’re able to further90

query the demonstrator in the loop, we can ask them for action labels at these states [Ross et al., 2011,91

Kelly et al., 2019, Spencer et al., 2020]. However, such approaches are often labor-intensive.92
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Learning to Search = RM + WM. In Learning to Search (L2S, Ratliff et al. [2009]), one learns the93

components (i.e., RM and a WM) required to, at test time, search for actions, rather than directly94

learning a policy. If there are no meaningful dynamics or stochasticity (e.g., append-only, auto-95

regressive language generation), one can eschew the WM and plan over the entire horizon via repeated96

sampling and scoring under the RM, an approach known as Best-of-N (BoN, Brown et al. [2024]).97

Otherwise, one samples some plans, performs stochastic rollouts inside the WM, calling the RM98

along the way to estimate performance before updating the sampling distribution. We use the MPPI99

algorithm of Williams et al. [2017] as our search procedure due to the strong performance it has100

demonstrated when deployed inside a learned WM on robotics problems [Hansen et al., 2022, 2024].101

In contrast to prior L2S approaches. SAILOR learns from expert demonstrations alone (i.e., without102

test-time access to a ground-truth simulator as in Silver et al. [2017], Brown and Sandholm [2019] or103

any information about the ground-truth reward function as in Hansen et al. [2022, 2024]).104

After expending computation at test-time for a search procedure, it is often valuable to distill the105

search process back into the base policy, an approach known as expert or dual policy iteration106

[Anthony et al., 2017, Sun et al., 2018]. While such approaches have long demonstrated strong107

performance in continuous control [Levine and Koltun, 2013, Wang et al., 2025], they have attracted108

renewed interest in the context of LLM reasoning [Zelikman et al., 2022, Gandhi et al., 2024, Hosseini109

et al., 2024]. SAILOR can be seen as a generalization of these ideas to continuous control problems110

with stochastic dynamics, visual observations, and unknown reward functions, which none of the111

above can handle directly. We ablate the value of ExIt-like updates and find they provide some112

improvement in policy performance. Recent work by Wu et al. [2025b] applies similar ideas on113

real-world visual manipulation problems but focuses on mode selection rather than more general114

behavior correction. Another perspective on SAILOR is that it fuses the paradigms of residual RL115

[Silver et al., 2018, Yuan et al., 2025, Ankile et al., 2024] and L2S by learning to search for residuals.116

3 Robust Imitation via Learning to Search117

We adopt the framework of a Partially Observed Markov Decision Process (POMDP, Kaelbling et al.118

[1998]) and use O, A, and Z to denote the observation, action, and latent spaces, respectively. We119

also use γ ∈ [0, 1] to denote the discount factor and k to denote our policy’s planning horizon.120

3.1 Why Learn to Search?121

Before we delve into the practicalities of L2S, it is worth pausing for a moment to think about why122

L2S is an attractive algorithmic paradigm. After all, interactive approaches to imitation learning123

like DAgger [Ross et al., 2011] and inverse RL [Ziebart et al., 2008] are already provably robust124

to the compounding errors that can stymie offline algorithms like behavior cloning [Swamy et al.,125

2021]. Furthermore, approaches like inverse RL that learn rewards / verifiers from demonstrations126

can take advantage of lower sample complexity on problems for which generation-verification gaps127

exist [Swamy et al., 2025]. Beyond these benefits, the unique advantage of the L2S paradigm is a128

computational one: the ability to only need to plan at the states encountered at test-time, rather than129

potentially at all states in the underlying MDP during standard RL [Kearns et al., 2002]. In this sense,130

L2S lets us trade potentially redundant computation at train time for only what’s necessary at test131

time. Furthermore, expert iteration-style distillation updates let us recycle these compute cycles.132

3.2 What is Learning to Search?133

In SAILOR, we learn a search algorithm that generates residual plans to correct a nominal plan134

generated by an arbitrary base policy. Concretely, after learning a world model WM, reward model135

RM, and critic V from a combination of expert demonstrations and base policy rollouts, we perform136

repeated stochastic rollouts of potential residual plans inside our WM, scoring the latent states with R137

and V, before selecting the plan with the highest estimated score. We then execute the first step of the138

corrected plan in the real world before re-planning in the style of model predictive control (MPC).139

More formally, at inference time, we attempt to solve the following local search problem:140

∆⋆
t:t+k = argmax

∆t:t+k

EWM

[
k−1∑
h=0

γhRM(zt+h) + γkV(zt+k)

∣∣∣∣ot, abase
t:t+k +∆t:t+k

]
. (1)
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Figure 3: At inference time, SAILOR performs a search for residual plans to correct mistakes in the
base policy’s nominal plan in the latent world model WM against the learned reward model RM and
critic V. It then executes the first step of the best corrected plan before re-planning, MPC-style.

Algorithm 1 SAILOR (Inference)
1: Input: Base Policy πbase, World Model WM, Reward Model RM, Critic Network V, Obs. ot,
2: Sample nominal plan from base: abase

t:t+k ∼ πbase(ot).
3: for iteration j in 1 . . . J do
4: // Can perform in parallel
5: for residual plan n in 1 . . . N do
6: Sample ∆n

t:t+k ∼ N (µj , σj).
7: Execute plan in WM: znt:t+k ∼ WM(ot, abase

t:t+k +∆n
t:t+k).

8: Compute Q̂s: Q̂n ←
∑k−1

h=0 γ
hRM(znt+h) + γkV(znt+k).

9: end for
10: // Update mean and std
11: µj+1, σj+1 ← MPPI_update(µj , σj , Q̂1:N ,∆1:N

t:t+k).
12: end for
13: Return corrected plan a⋆t:t+k ∼ N (abase

t:t+k + µJ , σJ).

We then execute the first of these actions, abase
t +∆⋆

t , in the environment before re-planning on top141

of the fresh observation and base plan. We describe this process in Alg. 1 and visualize it in Fig. 3.142

We now describe each of these components before describing the phases of training.143

Base Policy. We assume access to a base policy πbase that can generate k-step plans given an144

observation ot: abase
t:t+k ∼ πbase(ot). This could be an arbitrary policy pretrained on a wide set of data145

like a VLA [Team et al., 2024, Intelligence et al., 2025, Kim et al., 2024] or a task-specific Diffusion146

Policy (DP, Chi et al. [2023]) trained via behavioral cloning. We adopt the latter for our experiments147

for simplicity, but note that the general SAILOR framework does not require doing so. 1 As is standard148

practice [Chi et al., 2023], we use a ResNet-18 [He et al., 2016] encoder for our DP that takes in both149

image observations and the proprioceptive state of the robot and generates 8-step plans.150

World Model. To avoid the complexity of modeling the dynamics of and planning directly in the space151

of high-dimensional observations, we adopt the Recurrent State-Space Model architecture (RSSM,152

Hafner et al. [2019, 2024]). This means our world model is composed of three key components, i.e.153

WM = {enc, f, dec}. The first, the encoder enc : Z×O×A → Z encodes the observation into latent154

space i.e. zt ≈ enc(zt−1, at−1, ot). The second, the latent dynamics model f : Z ×A → Z predicts155

the next latent after taking an action, i.e. zt ≈ f(zt−1, at−1). The third, the decoder dec : Z → O156

tries to reconstruct the observation from the latent state, i.e. dec(zt) ≈ ot. In SAILOR, we train all157

three of these components on hybrid data, i.e. a mixture of demonstrations D and on-policy rollouts158

B. As argued by Ross and Bagnell [2012], Vemula et al. [2023], Ren et al. [2024b], while such a159

1Explicitly, we make no assumptions on the base policy, other than the ability to fine-tune it via behavioral
cloning (i.e., maximum likelihood estimation) for an optional expert iteration subroutine.
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Algorithm 2 SAILOR (Training)

1: Input: Base Policy πbase, Expert Demos D
2: // Phase I: Warm Start
3: Collect on-policy rollouts: B ← {(ot, at) ∼ πbase}.
4: // Co-train components on hybrid data
5: WM← argminWM ℓ(D,B, WM), RM← argminRM ℓ(D,B, RM), V← argminV ℓ(D,B, V).
6: // Phase II: Online Fine-Tuning
7: for iteration j in 1 . . . J do
8: Collect on-policy rollouts: B ← B ∪ {(ot, at) ∼ SAILOR}.
9: WM← argminWM ℓ(D,B, WM), RM← argminRM ℓ(D,B, RM), V← argminV ℓ(D,B, V).

10: // Optional Phase III: Expert Iteration
11: if j%m == 0 then
12: Relabel Bdistill ← {(ot, SAILOR(ot))|ot ∈ B}.
13: Distill πbase = argminπ ℓ(Bdistill, π).
14: end if
15: end for
16: Return πbase, WM, RM, V.

world model is only locally accurate on the expert’s and learner’s state distributions, a policy that160

looks good when evaluated in such a model is guaranteed to do well in the real world. 2161

Reward Model. Intuitively speaking, we train a reward model RM : Z → R to score the latent states162

of our world model by how “expert-like” they are, which allows us to plan to match expert outcomes163

in the imagined future. More formally, we train a discriminator between the latent embeddings of164

expert and learner rollouts using the moment-matching loss proposed by Swamy et al. [2021]:165

ℓ(D,B, RM) = E(z,a,o)∼B[RM(enc(z, a, o))]− E(z,a,o)∼D[RM(enc(z, a, o))]. (2)

As proposed by Swamy et al. [2021], we also add in a gradient penalty Gulrajani et al. [2017] to the166

above to stabilize training. We iteratively update the RM over the course of training to ensure that we167

are able to detect mistakes made by the current iteration of the composite SAILOR stack, similar to168

inverse RL procedures [Ziebart et al., 2008, Ho and Ermon, 2016]. While we do not dwell on the169

theoretical implications thereof, we note in passing that minimizing the above across a set of potential170

reward functions corresponds to bounding the performance difference between the expert and the171

learner under any of these rewards, thereby avoiding compounding errors [Swamy et al., 2021].172

Critic. To enable truncated horizon rollouts in our WM of k steps, we learn a critic V that acts as a173

terminal cost estimate. The critic V is trained to predict bootstrapped λ-returns (Sutton et al. [1998]):174

vλ
t = RM(zt) + γ

(
(1− λ)V(zt) + λvλt+1)

)
, vλk = V(zt+k). (3)

In our experiments, we train an ensemble of 5 critic networks (Ball et al. [2023], Chen et al. [2021]).175

When computing terminal cost estimates, we take the mean of 2 randomly sampled critics and subtract176

an uncertainty penalty proportional to the standard deviation across the entire ensemble.177

The Three Phases of Training a Seaworthy SAILOR. As outlined in Algorithm 2, training proceeds178

in three phases. In Phase I: Warm-Start (Lines 2-5), we perform rollouts with the base policy πbase179

to pre-fill the buffer B, before co-training the world model WM, reward model RM, and critic V on a180

mixture of data from B and the expert demonstrations D. In Phase II: Online Fine-Tuning (Lines181

6-15), we instead perform rollouts with the entire SAILOR stack, periodically performing hybrid182

training of the WM, RM, and V. 3 There is an optimal subroutine of Phase II, Phase III: Expert Iteration183

(Lines 11-14), in which we distill the outputs of test-time search into the base policy to avoid the need184

to expend compute if the learner ends up in a similar situation in the future. More formally, we take185

2While we do not investigate this in our experiments, the above theory still holds if the world model is trained
on a wide data distribution that covers both the expert and learner’s visitation distribution. Thus, a particularly
interesting future direction is to train a powerful foundation world model [Agarwal et al., 2025, Bruce et al.,
2024, Parker-Holder et al., 2024] on internet-scale robotics datasets [Khazatsky et al., 2024, ONeill et al., 2024],
before plugging it into the SAILOR framework to allow for wider-ranging recovery from mistakes.

3One can consider training on buffer B as a variant of Follow the Regularized Leader [McMahan, 2011], the
sort of no-regret algorithm one would analyze to prove guarantees about our algorithm, as in Ren et al. [2024b].
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Figure 4: Across 12 visual manipulation problems from 3 benchmarks, SAILOR consistently outper-
forms diffusion policy (DP) trained on the same demos.

some of the most recent (o, a) pairs in buffer B, post-hoc relabel them by calling the SAILOR stack186

on the observation o to generate new action labels, and fine-tune the base policy πbase via behavioral187

cloning. This can be seen as using SAILOR as an expert for a DAgger [Ross et al., 2011] update.188

4 Experiments189

Benchmarks. We evaluate the efficacy of SAILOR on 12 challenging visual manipulation problems.190

This includes 3 tasks from Robomimic [Mandlekar et al., 2021b] {Lift, Can, Square}, 6 from Ro-191

boSuite [Zhu et al., 2020] {Door, Stack, Bread, Cereal, Round, BreadCanRandom}, and192

3 from ManiSkill [Tao et al., 2025] {PullCube, PokeCube, LiftPeg}. These include multi-193

step pick-and-place tasks (BreadCanRandom), articulated object manipulation (Door), and tool use194

(Square, Round, PokeCube). For Robomimic tasks, we use the provided demonstrations, while195

we collect our own demonstrations using a SpaceMouse controller for the other suites. To solve each196

task, SAILOR is provided with a set of expert demonstrations |D|, along with a budget specifying the197

maximum number of environment interactions it can perform. The observation space consists of198

RGB images from a wrist-mounted camera and a third-person camera mounted in front of the agent,199

and the proprioceptive states. More details are provided in App. C and D.200

Algorithms. We compare three imitation learning methods: Diffusion Policies (DP, Chi et al. [2023])201

trained via BC, a model-free inverse RL method (DPPO-IRL) that directly updates DP parameters202

using DPPO [Ren et al., 2024a] against a learned RM with a separate encoder, and SAILOR. For203

evaluation, we measure the Success Rate (SR) across 50 rollouts, and report the mean and standard204

error obtained with 3 seeds. More details on the implementation of the methods are provided in App.205

A, B. All methods were trained on 1 NVIDIA 6000 Ada GPU with 48 GB of memory.206

4.1 Results207

Can SAILOR outperform DP trained on the sameD? Fig. 4 compares SAILOR and DP across various208

tasks and size of demonstration datasets. We observe that SAILOR significantly outperforms DP across209
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Figure 5: We see that simply scaling up the amount of data used for training DP via behavioral cloning
by 5-10× often plateaus in performance and is unable to match the performance of SAILOR.

Figure 6: We find that SAILOR is significantly more interaction-efficient than a model-free inverse
RL baseline that directly updates DP policy parameters via DPPO [Ren et al., 2024a].

all environments and dataset scales considered, indicating that the learning to search paradigm allows210

us to squeeze out significantly more from the same expert data. We find particularly large gaps in the211

low-data regime, reflecting how L2S inherits sample-efficiency benefits of inverse RL approaches that212

learn verifiers from human data rather than just learning policies / generators [Swamy et al., 2025].213

Does DP catch up with more data? A natural question after viewing the preceding results might214

be as to whether more demonstrations could close the gap between DP and SAILOR, reflecting robot215

learning’s current emphasis on large-scale data collection [ONeill et al., 2024, Khazatsky et al., 2024].216

In Fig. 5, we observe that while DP improves with more expert data, the performance plateaus after217

100 demonstrations. This means that when we scale up the number of provided demonstrations to218

200, ≈ 10× the amount provided to SAILOR, DP is still unable to match our method’s performance.219

Note further that these are expert demonstrations collected directly for the target environment. One220

can imagine that as practitioners choose to scale up offline data with sources such as human-video221

demonstrations and Internet-scale pretraining, data which is by design even less in-distribution to222

the task at hand, we expect a pure BC model to exhibit diminishing performance gains. SAILOR, by223

contrast, might be able to absorb that same large, noisy dataset into its WM and RM. Pre-training these224

components on broad “notions of success” may yield robust dynamics priors and value estimates that225

drive on-policy action distillation and keep improving the policy long after BC has plateaued.226

How much real-world interaction does the WM save us? Model-based approaches are well-known227

to be more interaction-efficient than their model-free analogs, a benefit SAILOR inherits. In particular,228

each observation isn’t treated as a single data point. Instead, SAILOR uses it as a seed to spawn an229

entire tree of counter-factual trajectories, not only slashing the number of costly real trials needed230

to reach a given performance, but also pruning potentially high-variance or dangerous paths before231

executing them on the physical hardware. To quantify the size of this benefit, we compare SAILOR232

to a model-free IRL algorithm DPPO-IRL that directly updates policy parameters after performing233

rollouts in the real world. In Fig. 6, we consistently see that even with 5× the interaction budget,234

DPPO-IRL is unable to match the performance of SAILOR, reflecting the importance of the WM.235

Can the RM detect nuanced failures? We now explore qualitatively what our learned RM is detecting.236

We do this by sampling trajectories that fail to ultimately complete the task from the base DP, truncate237

at a prefix where failure is not yet guaranteed, and then roll out SAILOR counterfactually from these238

states to recover from mistakes. In Fig. 7, we see that our RM is able to detect nuanced failures that239

occur at various stages of a complex task (e.g. a narrowly missed tool hang after a successful grasp).240
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Figure 7: At different stages of multi-step task execution, we see our learned reward model RM able
to identify a variety of nuanced failures and SAILOR able to counterfactually avoid them.

Figure 8: We use 256 samples (analogous to N in BoN) for the MPPI planning process at train-time
(black cross). We see that more compute leads to higher performance up to 256 and do not see a
degradation in performance even with 8× as many samples, indicating robustness to reward hacking.

How robust is SAILOR to reward hacking? A common concern with test-time scaling approaches241

is that with enough compute, they may “hack” a learned proxy reward model and perform worse on242

the ground-truth metric [Gao et al., 2023]. We explore the test-time scaling properties of SAILOR243

by scaling up the number of samples generated in the MPPI planning procedure, which is analogous244

to the N in BoN. We see in Fig. 8 that up to the number of samples used for training (256), more245

compute consistently leads to better performance. Furthermore, we do not see a degradation in246

performance even with 8× as many samples, reflecting a high degree of robustness to reward hacking.247

4.2 What Matters in Learning To Search?248

We now ablate the importance of several parts of the overall SAILOR pipeline.249

Warm-Start. We found that allocating≈ 20% of the given interaction budget to a “warm-start phase”250

significantly boosts our final performance, as shown in the leftmost part of Fig. 9. We attribute this to251

the fact that having the WM, RM, and V accurate on πbase’s distribution reduces exploration in Phase II.252

Hybrid WM Updates. Another component that has a significant effect on model performance is using253

a mix of expert and learner data to update the WM. We observe in Fig. 9, center, that this “hybrid”254

fitting of the WM not only has the potential to improve initial model performance (as for PokeCube),255

but can also improve final performance (as for Cereal), reflecting the insights of Ren et al. [2024b].256

Expert Iteration. Finally, we find that adding an expert iteration subroutine can further boost model257

performance, as shown in the rightmost part of Fig. 9. This can be attributed to the base policy258

knowing how to recover from mistakes its prior iterations would have made.259

Figure 9: We ablate the impact of three components of our overall training pipeline: warm starting,
hybrid world-model training, and expert iteration, and find that all three matter for performance.
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NeurIPS Paper Checklist510

The checklist is designed to encourage best practices for responsible machine learning research,511

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove512

the checklist: The papers not including the checklist will be desk rejected. The checklist should513

follow the references and follow the (optional) supplemental material. The checklist does NOT count514

towards the page limit.515

Please read the checklist guidelines carefully for information on how to answer these questions. For516

each question in the checklist:517

• You should answer [Yes] , [No] , or [NA] .518

• [NA] means either that the question is Not Applicable for that particular paper or the519

relevant information is Not Available.520

• Please provide a short (1âĂŞ2 sentence) justification right after your answer (even for NA).521

The checklist answers are an integral part of your paper submission. They are visible to the522

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it523

(after eventual revisions) with the final version of your paper, and its final version will be published524

with the paper.525

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.526

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a527

proper justification is given (e.g., "error bars are not reported because it would be too computationally528

expensive" or "we were unable to find the license for the dataset we used"). In general, answering529

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we530

acknowledge that the true answer is often more nuanced, so please just use your best judgment and531

write a justification to elaborate. All supporting evidence can appear either in the main paper or the532

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification533

please point to the section(s) where related material for the question can be found.534

IMPORTANT, please:535

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",536

• Keep the checklist subsection headings, questions/answers and guidelines below.537

• Do not modify the questions and only use the provided macros for your answers.538

1. Claims539

Question: Do the main claims made in the abstract and introduction accurately reflect the540

paper’s contributions and scope?541

Answer: [Yes]542

Justification: We show that our method outperforms DP in Figure 4, present DP cannot543

catch-up with 5-10× data in Figure 5, and show robustness of learned RM in Figure 8 and544

Figure 7.545

Guidelines:546

• The answer NA means that the abstract and introduction do not include the claims547

made in the paper.548

• The abstract and/or introduction should clearly state the claims made, including the549

contributions made in the paper and important assumptions and limitations. A No or550

NA answer to this question will not be perceived well by the reviewers.551

• The claims made should match theoretical and experimental results, and reflect how552

much the results can be expected to generalize to other settings.553

• It is fine to include aspirational goals as motivation as long as it is clear that these goals554

are not attained by the paper.555

2. Limitations556

Question: Does the paper discuss the limitations of the work performed by the authors?557

Answer: [NA]558
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Justification:559

Guidelines:560

• The answer NA means that the paper has no limitation while the answer No means that561

the paper has limitations, but those are not discussed in the paper.562

• The authors are encouraged to create a separate "Limitations" section in their paper.563

• The paper should point out any strong assumptions and how robust the results are to564

violations of these assumptions (e.g., independence assumptions, noiseless settings,565

model well-specification, asymptotic approximations only holding locally). The authors566

should reflect on how these assumptions might be violated in practice and what the567

implications would be.568

• The authors should reflect on the scope of the claims made, e.g., if the approach was569

only tested on a few datasets or with a few runs. In general, empirical results often570

depend on implicit assumptions, which should be articulated.571

• The authors should reflect on the factors that influence the performance of the approach.572

For example, a facial recognition algorithm may perform poorly when image resolution573

is low or images are taken in low lighting. Or a speech-to-text system might not be574

used reliably to provide closed captions for online lectures because it fails to handle575

technical jargon.576

• The authors should discuss the computational efficiency of the proposed algorithms577

and how they scale with dataset size.578

• If applicable, the authors should discuss possible limitations of their approach to579

address problems of privacy and fairness.580

• While the authors might fear that complete honesty about limitations might be used by581

reviewers as grounds for rejection, a worse outcome might be that reviewers discover582

limitations that aren’t acknowledged in the paper. The authors should use their best583

judgment and recognize that individual actions in favor of transparency play an impor-584

tant role in developing norms that preserve the integrity of the community. Reviewers585

will be specifically instructed to not penalize honesty concerning limitations.586

3. Theory assumptions and proofs587

Question: For each theoretical result, does the paper provide the full set of assumptions and588

a complete (and correct) proof?589

Answer: [NA]590

Justification:591

Guidelines:592

• The answer NA means that the paper does not include theoretical results.593

• All the theorems, formulas, and proofs in the paper should be numbered and cross-594

referenced.595

• All assumptions should be clearly stated or referenced in the statement of any theorems.596

• The proofs can either appear in the main paper or the supplemental material, but if597

they appear in the supplemental material, the authors are encouraged to provide a short598

proof sketch to provide intuition.599

• Inversely, any informal proof provided in the core of the paper should be complemented600

by formal proofs provided in appendix or supplemental material.601

• Theorems and Lemmas that the proof relies upon should be properly referenced.602

4. Experimental result reproducibility603

Question: Does the paper fully disclose all the information needed to reproduce the main ex-604

perimental results of the paper to the extent that it affects the main claims and/or conclusions605

of the paper (regardless of whether the code and data are provided or not)?606

Answer: [Yes]607

Justification: We describe the architecture details of our method in Appendix A. The608

baselines are described in B. For the tasks where we collected demonstrations, we have609

added details in Appendix D.610

Guidelines:611
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• The answer NA means that the paper does not include experiments.612

• If the paper includes experiments, a No answer to this question will not be perceived613

well by the reviewers: Making the paper reproducible is important, regardless of614

whether the code and data are provided or not.615

• If the contribution is a dataset and/or model, the authors should describe the steps taken616

to make their results reproducible or verifiable.617

• Depending on the contribution, reproducibility can be accomplished in various ways.618

For example, if the contribution is a novel architecture, describing the architecture fully619

might suffice, or if the contribution is a specific model and empirical evaluation, it may620

be necessary to either make it possible for others to replicate the model with the same621

dataset, or provide access to the model. In general. releasing code and data is often622

one good way to accomplish this, but reproducibility can also be provided via detailed623

instructions for how to replicate the results, access to a hosted model (e.g., in the case624

of a large language model), releasing of a model checkpoint, or other means that are625

appropriate to the research performed.626

• While NeurIPS does not require releasing code, the conference does require all submis-627

sions to provide some reasonable avenue for reproducibility, which may depend on the628

nature of the contribution. For example629

(a) If the contribution is primarily a new algorithm, the paper should make it clear how630

to reproduce that algorithm.631

(b) If the contribution is primarily a new model architecture, the paper should describe632

the architecture clearly and fully.633

(c) If the contribution is a new model (e.g., a large language model), then there should634

either be a way to access this model for reproducing the results or a way to reproduce635

the model (e.g., with an open-source dataset or instructions for how to construct636

the dataset).637

(d) We recognize that reproducibility may be tricky in some cases, in which case638

authors are welcome to describe the particular way they provide for reproducibility.639

In the case of closed-source models, it may be that access to the model is limited in640

some way (e.g., to registered users), but it should be possible for other researchers641

to have some path to reproducing or verifying the results.642

5. Open access to data and code643

Question: Does the paper provide open access to the data and code, with sufficient instruc-644

tions to faithfully reproduce the main experimental results, as described in supplemental645

material?646

Answer: [No]647

Justification: We plan to release the data and code with the final version of the paper. We648

have provided details in main paper and appendix for reproducibility.649

Guidelines:650

• The answer NA means that paper does not include experiments requiring code.651

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/652

public/guides/CodeSubmissionPolicy) for more details.653

• While we encourage the release of code and data, we understand that this might not be654

possible, so âĂIJNoâĂİ is an acceptable answer. Papers cannot be rejected simply for655

not including code, unless this is central to the contribution (e.g., for a new open-source656

benchmark).657

• The instructions should contain the exact command and environment needed to run to658

reproduce the results. See the NeurIPS code and data submission guidelines (https:659

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.660

• The authors should provide instructions on data access and preparation, including how661

to access the raw data, preprocessed data, intermediate data, and generated data, etc.662

• The authors should provide scripts to reproduce all experimental results for the new663

proposed method and baselines. If only a subset of experiments are reproducible, they664

should state which ones are omitted from the script and why.665
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• At submission time, to preserve anonymity, the authors should release anonymized666

versions (if applicable).667

• Providing as much information as possible in supplemental material (appended to the668

paper) is recommended, but including URLs to data and code is permitted.669

6. Experimental setting/details670

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-671

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the672

results?673

Answer: [Yes]674

Justification: We have added the training and test details in Sec. 4.675

Guidelines:676

• The answer NA means that the paper does not include experiments.677

• The experimental setting should be presented in the core of the paper to a level of detail678

that is necessary to appreciate the results and make sense of them.679

• The full details can be provided either with the code, in appendix, or as supplemental680

material.681

7. Experiment statistical significance682

Question: Does the paper report error bars suitably and correctly defined or other appropriate683

information about the statistical significance of the experiments?684

Answer: [Yes]685

Justification: We report all our results with mean score and standard error obtained with 3686

seeds.687

Guidelines:688

• The answer NA means that the paper does not include experiments.689

• The authors should answer "Yes" if the results are accompanied by error bars, confi-690

dence intervals, or statistical significance tests, at least for the experiments that support691

the main claims of the paper.692

• The factors of variability that the error bars are capturing should be clearly stated (for693

example, train/test split, initialization, random drawing of some parameter, or overall694

run with given experimental conditions).695

• The method for calculating the error bars should be explained (closed form formula,696

call to a library function, bootstrap, etc.)697

• The assumptions made should be given (e.g., Normally distributed errors).698

• It should be clear whether the error bar is the standard deviation or the standard error699

of the mean.700

• It is OK to report 1-sigma error bars, but one should state it. The authors should701

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis702

of Normality of errors is not verified.703

• For asymmetric distributions, the authors should be careful not to show in tables or704

figures symmetric error bars that would yield results that are out of range (e.g. negative705

error rates).706

• If error bars are reported in tables or plots, The authors should explain in the text how707

they were calculated and reference the corresponding figures or tables in the text.708

8. Experiments compute resources709

Question: For each experiment, does the paper provide sufficient information on the com-710

puter resources (type of compute workers, memory, time of execution) needed to reproduce711

the experiments?712

Answer: [Yes]713

Justification: We add details on compute details under Implementation Details in Sec 4.714

Guidelines:715

• The answer NA means that the paper does not include experiments.716
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,717

or cloud provider, including relevant memory and storage.718

• The paper should provide the amount of compute required for each of the individual719

experimental runs as well as estimate the total compute.720

• The paper should disclose whether the full research project required more compute721

than the experiments reported in the paper (e.g., preliminary or failed experiments that722

didn’t make it into the paper).723

9. Code of ethics724

Question: Does the research conducted in the paper conform, in every respect, with the725

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?726

Answer: [Yes]727

Justification:728

Guidelines:729

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.730

• If the authors answer No, they should explain the special circumstances that require a731

deviation from the Code of Ethics.732

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-733

eration due to laws or regulations in their jurisdiction).734

10. Broader impacts735

Question: Does the paper discuss both potential positive societal impacts and negative736

societal impacts of the work performed?737

Answer: [NA]738

Justification:739

Guidelines:740

• The answer NA means that there is no societal impact of the work performed.741

• If the authors answer NA or No, they should explain why their work has no societal742

impact or why the paper does not address societal impact.743

• Examples of negative societal impacts include potential malicious or unintended uses744

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations745

(e.g., deployment of technologies that could make decisions that unfairly impact specific746

groups), privacy considerations, and security considerations.747

• The conference expects that many papers will be foundational research and not tied748

to particular applications, let alone deployments. However, if there is a direct path to749

any negative applications, the authors should point it out. For example, it is legitimate750

to point out that an improvement in the quality of generative models could be used to751

generate deepfakes for disinformation. On the other hand, it is not needed to point out752

that a generic algorithm for optimizing neural networks could enable people to train753

models that generate Deepfakes faster.754

• The authors should consider possible harms that could arise when the technology is755

being used as intended and functioning correctly, harms that could arise when the756

technology is being used as intended but gives incorrect results, and harms following757

from (intentional or unintentional) misuse of the technology.758

• If there are negative societal impacts, the authors could also discuss possible mitigation759

strategies (e.g., gated release of models, providing defenses in addition to attacks,760

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from761

feedback over time, improving the efficiency and accessibility of ML).762

11. Safeguards763

Question: Does the paper describe safeguards that have been put in place for responsible764

release of data or models that have a high risk for misuse (e.g., pretrained language models,765

image generators, or scraped datasets)?766

Answer: [NA]767

Justification:768
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Guidelines:769

• The answer NA means that the paper poses no such risks.770

• Released models that have a high risk for misuse or dual-use should be released with771

necessary safeguards to allow for controlled use of the model, for example by requiring772

that users adhere to usage guidelines or restrictions to access the model or implementing773

safety filters.774

• Datasets that have been scraped from the Internet could pose safety risks. The authors775

should describe how they avoided releasing unsafe images.776

• We recognize that providing effective safeguards is challenging, and many papers do777

not require this, but we encourage authors to take this into account and make a best778

faith effort.779

12. Licenses for existing assets780

Question: Are the creators or original owners of assets (e.g., code, data, models), used in781

the paper, properly credited and are the license and terms of use explicitly mentioned and782

properly respected?783

Answer: [Yes]784

Justification: We have added citations for code and benchmarks in the main paper.785

Guidelines:786

• The answer NA means that the paper does not use existing assets.787

• The authors should cite the original paper that produced the code package or dataset.788

• The authors should state which version of the asset is used and, if possible, include a789

URL.790

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.791

• For scraped data from a particular source (e.g., website), the copyright and terms of792

service of that source should be provided.793

• If assets are released, the license, copyright information, and terms of use in the794

package should be provided. For popular datasets, paperswithcode.com/datasets795

has curated licenses for some datasets. Their licensing guide can help determine the796

license of a dataset.797

• For existing datasets that are re-packaged, both the original license and the license of798

the derived asset (if it has changed) should be provided.799

• If this information is not available online, the authors are encouraged to reach out to800

the asset’s creators.801

13. New assets802

Question: Are new assets introduced in the paper well documented and is the documentation803

provided alongside the assets?804

Answer: [Yes]805

Justification: The code and dataset used in this work will be documented and released.806
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• The answer NA means that the paper does not release new assets.808

• Researchers should communicate the details of the dataset/code/model as part of their809

submissions via structured templates. This includes details about training, license,810

limitations, etc.811

• The paper should discuss whether and how consent was obtained from people whose812

asset is used.813

• At submission time, remember to anonymize your assets (if applicable). You can either814

create an anonymized URL or include an anonymized zip file.815

14. Crowdsourcing and research with human subjects816

Question: For crowdsourcing experiments and research with human subjects, does the paper817

include the full text of instructions given to participants and screenshots, if applicable, as818

well as details about compensation (if any)?819
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Answer: [NA]820

Justification:821

Guidelines:822

• The answer NA means that the paper does not involve crowdsourcing nor research with823

human subjects.824

• Including this information in the supplemental material is fine, but if the main contribu-825

tion of the paper involves human subjects, then as much detail as possible should be826

included in the main paper.827

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,828

or other labor should be paid at least the minimum wage in the country of the data829

collector.830

15. Institutional review board (IRB) approvals or equivalent for research with human831

subjects832

Question: Does the paper describe potential risks incurred by study participants, whether833

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)834

approvals (or an equivalent approval/review based on the requirements of your country or835

institution) were obtained?836

Answer: [NA]837

Justification:838

Guidelines:839

• The answer NA means that the paper does not involve crowdsourcing nor research with840

human subjects.841

• Depending on the country in which research is conducted, IRB approval (or equivalent)842

may be required for any human subjects research. If you obtained IRB approval, you843

should clearly state this in the paper.844

• We recognize that the procedures for this may vary significantly between institutions845

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the846

guidelines for their institution.847

• For initial submissions, do not include any information that would break anonymity (if848

applicable), such as the institution conducting the review.849

16. Declaration of LLM usage850

Question: Does the paper describe the usage of LLMs if it is an important, original, or851

non-standard component of the core methods in this research? Note that if the LLM is used852

only for writing, editing, or formatting purposes and does not impact the core methodology,853

scientific rigorousness, or originality of the research, declaration is not required.854
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for what should or should not be described.861
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A Implementation Details862

In this section we first describe the network architecture for each component of SAILOR in Sec. A.1863

following details of training pipeline and hyperparameters in Sec. A.2864

A.1 Network Architecture865

Base Policy. SAILOR uses a Diffusion Policy (DP, Chi et al. [2023]) as the base policy. The base866

policy takes the stack of current and previous observations ([ot−1, ot]) as input and predicts the867

k-step action plan abase
t:t+k. The observation ot has proprioceptive states and RGB images from a868

wrist camera and a front camera. To encode RGB images, DP uses a ResNet-18 encoder initialized869

with the ImageNet1K_V1 weights, and the intermediate activations are passed through a Spatial870

Softmax layer [Mandlekar et al., 2021a] to get the final image embedding. Here, each input image871

uses a different copy of the encoder, and all encoded image inputs are concatenated together with the872

proprioceptive state and finally passed to the noise network ϵ.873

The noise network is a conditional 1D U-Net, where conditioning is incorporated via FiLM mod-874

ulation, following the approach of [Chi et al., 2023]. The network is conditioned on the diffusion875

timestep (represented as a 16 dimentional embedding generated by a sinosuidal encoding layer876

followed by a small MLP), and the encoded observations. The UNet consists of multiple convolution877

and transposed convolution layers with channels [64, 128, 256], kernel size 3, GroupNorm Wu and878

He [2018] for stable training and Mish [Misra, 2019] activation function. The noise network is879

trained to reverse the forward noising process of adding Gaussian noise at each step (DDPM, Ho880

et al. [2020], Nichol and Dhariwal [2021]). Lastly, DP is trained using a behavior cloning objective,881

formulated as a denoising task where the model learns to predict the noise added to a k-step action882

chunk, conditioned on the given observation and diffusion timestep.883

During inference, DP uses the DDIM sampling [Song et al., 2020] with the noise network to generate884

the action chunk for a given observation. In this work, we use the first action generated abase
t to885

step in the environment. The agent uses a action blending mechanism that smoothens the action at886

current step using the predictions from earlier observations [Dasari et al., 2024]. We found this to887

significantly boost the performance of DP in our experiments.888

World Model. The world model used in SAILOR uses the architecture of DreamerV3 [Hafner et al.,889

2024]. The encoder (enc) encodes the pixel-based inputs with stride 2 convolutions to a resolution890

of 4 × 4 and state inputs are embedded with a 5-layer MLP. Note that the WM is using a separate891

encoder for observations as we found it to work well in our experiments. The decoder (dec) uses892

a transposed convolutions with stride 2 to reconstruct image observations and a 5-layer MLP to893

reconstruct the proprioceptive states. Note that the RGB images are downscaled to size 64× 64 for894

training. The latent representation zt is a combination of a deterministic recurrent state ht and a895

stochastic state st. The deterministic state is has a GRU network with 512 dimensional hidden state.896

The latent state zt−1 and action at−1 from previous time step are used to estimate the deterministic897

component ht at current step. The deterministic state is fed through the dynamics model f to898

sample the prior stochastic state ẑt. Moreover, the deterministic state combined with the observation899

is passed through the encoder enc to get the posterior state zt. The stochastic representation of900

1024 dimensions is sampled through a vector of multinomial distributions where the gradients are901

backpropagated through straight-through estimators [Bengio et al., 2013] while learning.902

The world model is trained by hybrid learning where the half of the batch of sequences is obtained903

from the demonstration D and other half comes from the replay buffer B. More formally, consider a904

sampled batch of observation subsequences ot:t+u, actions at:t+u, continuation flag ct:t+u (to predict905

the end of episode), where t ∼ U{1, . . . , T}, u denotes the length of the sequence, and T denotes the906

length of a trajectory. We minimize a combination of a prediction loss ℓpred, a dynamics loss ℓdyn and907

a representation loss ℓrep over samples drawn from D and B:908

ℓ(D,B, WM) = 1

2
Eot:t+u,at:t+u,ct:t+u∼D[βpredℓpred(·) + βdynℓdyn(·) + βrepℓrep(·)]

+
1

2
Eot:t+h,at:t+h,ct:t+h∼B[βpredℓpred(·) + βdynℓdyn(·) + βrepℓrep(·)], (4)
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where βpred = 1.0, βdyn = .1 and βrep = .5 represent the loss weights. The loss functions are:909

ℓpred(ot:t+u, at:t+u, ct:t+u, WM) = −
t+u∑
h=t

ln dec(oh|zh)− ln dec(ch|zh),

ℓdyn(ot:t+u, at:t+u, ct:t+u, WM) =
t+u∑
h=t

max(1,DKL[sg(enc(zh|zh−1, ah−1, oh))∥dec(ẑh|zh−1, ah−1)]),

ℓrep(ot:t+u, at:t+u, ct:t+u, WM) =
t+u∑
h=t

max(1,DKL[enc(zh|zh−1, ah−1, oh)∥sg(dec(ẑh|zh−1, ah−1))]).

The prediction loss optimizes for reconstructing the observations via a Mean Squared Loss (MSE)910

criterion and the continuation predictor via logistic regression. The dynamics and representation911

losses optimize the same objective is optimized with different set of parameters: the former updates912

the dynamics model to predict the posterior state while the latter term ensures that the stochastic term913

is more predictable. Note that the dynamics and representation loss only differ in the stop-gradient914

term sg and the loss weight terms.915

Reward Model. The reward model RM takes the latent representation zt as input and uses a 2-layer916

MLP to predict a scalar value expressing the desirability of being in a state. The RM is optimized with917

the loss function defined in Eq. 2. The RM is updated with a gradient penalty term [Gulrajani et al.,918

2017] with a coefficient of 10. To stabilize learning, the RM is updated less frequently than the world919

model. Moreover, we do not update the parameters of the world model with the loss of the RM.920

Critic Network. Similar to RM, the critic V network uses a 2-layer MLP and predicts the discounted921

average rewards of future states with the latent representation zt as input. The critic is updated with922

the Mean Squared Loss (MSE) with target vλt defined in Eq. 3:923

ℓ(zt:t+u, V) =
t+u∑
h=t

(V(zh)− vλh)
2. (5)

Unlike RM, the critic is updated with the WM. Training the critic more frequently than RM is important924

to ensure it accurately estimates the average rewards and remains synchronized with the changing925

reward function. Similar to Hansen et al. [2024], SAILOR maintains and uses an ensemble of 5 value926

networks. Like Dreamer, SAILOR also maintains a slow value network to compute a slow target for927

the critic network and uses this as a regularizer for critic loss. The slow networks are updated with928

EMA over the critic parameters.929

MPPI Planner. SAILOR uses MPPI for planning withing the world model in this work. The planner930

maintains a gaussian distribution with mean µ and diagonal covariance σ to predict the residual931

action ∆∗
t:t+k. The planning procedure is described in Alg. 1 where the parameters are initialized932

with 0 mean and a fixed standard deviation. At each iteration, 256 action chunks are sampled and933

scored with the RM and V by imagining future latent with WM. The top 64 sequences with highest n-step934

returns is used to update the parameters µ and σ. Unrolling in the latent space allows evaluating935

large batches in parallel on a single GPU, and thereby makes planning efficient. After 6 iterations, an936

action plan ∆⋆
t:t+k is sampled using final parameters µ⋆ and σ⋆.937

A.2 Training details938

With the demonstrations D, SAILOR first pretrains the base policy– DP. The training procedure of939

SAILOR was outlined in Alg. 2. The pretrained DP is used to collect rollouts in the environment940

and uses around 20% of total environment steps. For instance, when the agent is tasked with 100K941

environment steps, the pretrained DP is deployed to collect for 20K transitions. SAILOR adds a small942

noise sampled from N (0, .1) to the action to promote exploration while collecting data from the943

environment. The agent maintains a uniform replay buffer B with an online queue of size 1× 105.944

During the warmstart phase, the WM, RM and critic V are updated with a hybrid batch sampled from945

demonstration D and replay buffer B. Note that, the gradient steps of WM and V was set to 1.5×946

the number of transitions collected. For training stability, the RM is updated slowly and once every947

100 updates to the WM. After warmstart, SAILOR uses online finetuned with batch data collection948

and updates over multiple rounds. At each round, SAILOR deploys the planner to collect on-policy949
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trajectories for 3500 environment steps. The WM and V are then updated for 5000 gradient steps where950

the RM is updated once every 100 gradient steps of WM. After every 10 rounds, the last 64 collect951

trajectories are relabeled with the planner and the base policy is updated for 1000 iterations using952

a hybrid batch composed of relabeled data and expert demonstrations . In Table. 1, we provide the953

details of hyperparameters used in this work. Our agents where trained on a single NVIDIA 6000Ada954

GPU with 48 GB memory and takes 36 hours for training end-to-end with 500K environment steps.955

B Baselines956

For baselines, we compare SAILOR with the pretrained DP policy and a diffusion based IRL method957

(DPPO-IRL). Specifically, we apply DPPO [Ren et al., 2024a] – a model-free RL algorithm that958

directly updates DP parameters – with feedback from a reward model learned in the same as for959

SAILOR (Eq. 2). In contrast to learning a WM and learning to search in SAILOR, DPPO-IRL optimizes960

the policy directly using the outcomes of the learned reward model. To encode the observation, the961

reward model used the same encoding as the base DP of DPPO and a 2-layer MLP of width 256. We962

tuned the hyperparameters of the reward model (update epochs and batch size), and observed that963

the best version used 2 as update epochs and a batch size of 100. As for SAILOR, we used a gradient964

penalty term with a coefficient of 10 to stabilize learning of the reward model.965
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Name Value
DP Pretraining
Batch Size 256
Optimizer AdamW
Training iterations 24,000
LR scheduler Cosine Annealing
LR scheduler warmup steps 100
LR range [1× 10−4, 1× 10−5]

World Model

Replay capacity 1× 105

Batch size 16
Batch length 32
Optimizer Adam
Reconstruction Loss Scale 1.0
LR 1× 10−4

Demo Sampling Ratio 50%

Reward Model
Optimizer Adam
LR 3× 10−5

Gradient Penalty coefficient 10

Critic
Discount factor γ .997
Return lambda λ .95
EMA regularizer 1
EMA decay .98
Optimizer Adam
LR 3× 10−5

Ensemble size 5

MPPI Planner
Iterations 6
Samples 256
Top candidates 32
Temperature .5

General
Warmstart env step ratio 20%
Env steps per round 3500
Update steps per round 5000
Distillation frequency 10
Trajectories relabeled for distillation 64
Distillation steps 1000

Table 1: Hyperparameters. For training, we recommend tuning training parameters in the General
section that includes the update steps per round ∈ [1000, 2000, 3500, 5000, 10000], distillation fre-
quency of the base policy ∈ [1, 5, 10, 50] and distillation steps of the base policy ∈ [500, 1000, 2000].
LR, Env and EMA denotes learning rate, environment and exponential moving average.
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C Benchmarks966

In this section, we describe the environments used in this work. The experiments are conducted967

on multiple robotic manipulation environments from RoboMimic [Mandlekar et al., 2021b], Robo-968

Suite [Zhu et al., 2020] and ManiSkill3 [Tao et al., 2025]. Fig. 10 presents a visual image for each969

of the task used in this work. For each task, the agent is provided with an RGB image from the970

wrist camera and an RGB image from a camera in front of the agent. The agent is also given the971

proprioceptive states composed of position, orientation of the end effector and the position of gripper.972

In Table 2, we provide the episode horizon, the environment steps used for IRL training and a brief973

description of the task. The action space is a 7-dimensional vector with values between [−1, 1]. The974

first 6 dimensions of the action control the change in position and orientation of the end-effector and975

the last value opens or closes the gripper.976

Domain Task Horizon Env Steps Description

RoboMimic
Lift 100 1× 105 Lift Block above the desk.
Can 200 5× 105 Lift can and place in correct bin.

Square 200 5× 105 Pick square tool and insert in slot.

RoboMimic

Door 200 1× 105 Pull down handle and open door.
Stack 150 3× 105 Lift block and place above other block.
Bread 200 3× 105 Lift bread and place in correct bin.
Cereal 150 5× 105 Lift cereal and place in correct bin.
Round 300 5× 105 Pick round tool and place in slot.

BreadCan 400 5× 105 Place both objects in respective bins.

ManiSkill
PullCube 50 1× 105 Pull cube to the marked area
PokeCube 100 3× 105 Use tool to poke cube to marked area

LiftPeg 150 3× 105 Lift peg to make it stand upright

Table 2: The maximum episode length (Horizon), environment steps and description of the tasks.
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RoboMimic - Lift RoboMimic - Can RoboMimic - Square

RoboSuite - Door RoboSuite - Stack RoboSuite - Bread

RoboSuite - Cereal RoboSuite - Round RoboSuite - BreadCan

ManiSkill - Lift Peg ManiSkill - Pull Cube ManiSkill - Poke Cube

Figure 10: Visual description of all tasks used from RoboMimic (top row), RoboSuite (middle rows)
and ManiSkill (bottom row).
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D Demonstrations977

In this section, we describe the demonstrations used for learning. For RoboMimic tasks, we used978

the demonstrations provided in the dataset. For tasks in RoboSuite and ManiSKill, we collected979

upto 200 demonstrations using a 3D SpaceMouse. The camera angles were adjusted for each task980

to make the process intuitive to the human teleoperator. Below we provide a table of the number of981

demonstrations used per task for Fig. 4. For BreadCan, Cereal and Round we collected upto 200982

demonstration for our result in Fig. 5. We plan to release the demonstrations and the codebase.983

Domain Task Number of Demonstrations

RoboMimic
Lift 5, 10, 15
Can 10, 15, 20

Square 50, 75, 100

RoboMimic

Door 1, 3, 5
Stack 15, 20, 25
Bread 15, 20, 25
Cereal 20, 25, 30
Round 25, 50, 75

BreadCan 50, 75, 100

ManiSkill
PullCube 10, 15, 20
PokeCube 5, 10, 15

LiftPeg 15, 20, 25

Table 3: The number of demonstrations used for each task.
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E Related Work (Extended)984

Reward Models. Another approach to interactive imitation learning is inverse reinforcement learning985

(IRL, [Ng et al., 2000, Syed and Schapire, 2007, Ziebart et al., 2008, Ho and Ermon, 2016, Swamy986

et al., 2021]), which does not require human-in-the-loop queries. In IRL, one learns a classifier987

that maximally differentiates learner from expert behavior and uses it as a reward model (RM) for988

RL-based policy updates. Different forms of reward models include successor features [Jain et al.,989

2025], score matching [Wu et al., 2025a], and optimal transport metrics Haldar et al. [2023b,a].990

Unfortunately, the RL step of IRL is often rather interaction-inefficient. Recent theoretical work has991

argued that rather than a global RL procedure, a local search procedure4 is sufficient for performant992

imitation [Swamy et al., 2023, Espinosa-Dice et al., 2025]. SAILOR fits within the overarching993

algorithmic paradigm of local search IRL but learns to search rather than learning a policy directly.994

World Models. World models (WMs, Ha and Schmidhuber [2018]) have been an integral component995

of impressive RL results in a variety of domains [Hafner et al., 2020, 2021, Jain et al., 2022, Hansen996

et al., 2022, Hafner et al., 2024, Hansen et al., 2024, Zhou et al., 2024, Bruce et al., 2024, Parker-997

Holder et al., 2024, Agarwal et al., 2025], including real-world robotics [Mendonca et al., 2021, Wu998

et al., 2023]. While our overall algorithmic framework is agnostic to the choice of WM architecture,999

we use Dreamer-style world models [Hafner et al., 2020] in our experiments due to their ubiquity.1000

Popov et al. [2024] use rollouts in a learned world model to minimize a trajectory-level divergence1001

between the expert and the learner at train time on autonomous driving problems. In contrast, we use1002

the world model at test-time to enable recovery from just the mistakes the learner actually makes,1003

which might be more computationally efficient than a global search procedure [Kearns et al., 2002].1004

Learning to Search in Natural Language. We note briefly that the term “learning to search” is1005

also used to describe a class of methods for structured prediction problems, which encompass many1006

natural language processing tasks [Chang et al., 2015, 2023]. However, these methods usually assume1007

access to a queryable expert policy in the vein of DAgger [Ross et al., 2011] and AggraVaTe [Ross1008

and Bagnell, 2014]. In contrast, we make no such assumptions, and instead focus on how best to give1009

the learner the ability to search independently at test time without additional expert guidance.1010

4By local search, we mean merely competing with the expert rather than the optimal policy for an adversari-
ally chosen reward. For the former, there exist algorithms that avoid the worst-case, exponential-in-the-horizon
exploration complexity of RL [Bagnell et al., 2003, Ross and Bagnell, 2014, Swamy et al., 2023].
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